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Abstract—In recent years, representation learning ap-
proaches have disrupted many multimedia computing tasks.
Among those approaches, deep convolutional neural networks
(CNNs) have notably reached human level expertise on some
constrained image classification tasks. Nonetheless, training
CNNs from scratch for new task or simply new data turns out
to be complex and time-consuming. Recently, transfer learning
has emerged as an effective methodology for adapting pre-
trained CNNs to new data and classes, by only retraining
the last classification layer. This paper focuses on improving
this process, in order to better transfer knowledge between
CNN architectures for faster trainings in the case of fine
tuning for image classification. This is achieved by combining
and transfering supplementary weights, based on similarity
considerations between source and target classes. The study
includes a comparison between semantic and content-based
similarities, and highlights increased initial performances and
training speed, along with superior long term performances
when limited training samples are available.
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I. INTRODUCTION

With the emergence of large, public and thoroughly anno-
tated datasets [1], along with the ever increasing computing
capabilities of GPUs, Deep Neural Networks, and especially
CNNs, have rapidly revolutionized many computer vision
tasks. Such quantities of data allow to learn visual feature ex-
tractors whose relevance and discrimination power surpasses
the best hand crafted ones [2], regardless of the problem
complexity or the model size. However, the time and asso-
ciated cost for creating such new huge datasets, and to make
new models converge over these are still a huge bottleneck in
real-world use cases, so that someone with limited resources
cannot reasonably compete with companies running each of
their models during weeks over hundreds of GPUs (or TPUs)
and gigantic datasets.

Transfer learning is a recent and still evolving approach to
address this issue. It consists in reusing a model developed
for a task as a starting point for another related task. This
is based on the assumption that two related tasks require
some common knowledge, so that some of the knowledge
associated to a task could benefit another similar one. In deep
learning, this is performed by using some of the model’s
weights as an initialization for the training over the new task,
while the usual practice is to initialize them randomly ( [3]).
In computer vision tasks, well trained CNN low level and
mid-level layers generally detect basic shapes and textures,
no matter the specificity of the task. They consequently
transfer well between different computer vision problems,
as shown in numerous publications ( [4] [5] [6] [7] [8] [9]
[10]).

Transfer learning can then be distinguished in two types
of applications : domain adaptation, aiming to adapt a pre-
trained network to a new task, out of this work’s scope, and
fine-tuning, which consists in adapting the network to new
target data, for the same task. In the latter case, one can
extend the transfer to the whole set of weights concerning
the features extraction, and just replace the output fully
connected layer with one shaped for his target classes.
Almost all the knowledge required to perform the task is
already present in the network, and can be aligned with the
target data by a small training procedure (not necessary on
the entire set of weights), lighter than the one required to
train a model “from scratch”. Note that fine-tuning a pre-
trained CNN often leads to better performances, and requires
fewer data than a network trained from scratch, as most of
the knowledge required for the task is already present in it
( [5], [6]).

Fine tuning has become common practice, allowing faster
trainings on consequently smaller datasets, and giving the
opportunity for researchers and companies to develop their
own systems. However, there may still be a lack of efficiency
in training a new fully connected layer from scratch, and
transfer learning can once again fulfill it. To further improve
the transfer, we thus propose to reuse some weights of the
last fully connected layer of the original model, based on
similarity between source and target classes.
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The contribution of this work is fivefold: First, we show
that there is some important knowledge within the last layer
of pre-trained DNN models which when identified and used
properly can be somewhat transferred to the new model, to
speed up training and benefit model accuracy for fine tuning.
Second, we propose a novel method to reuse that knowledge
in combining multiple relevant source classes. Third, we
conduct a study over one visual and two semantic similarity
measures to select these relevant source classes. Fourth, we
propose an original analysis enabling us to separate cases
between three possible types of knowledge transfer, to attest
that we are performing well on each of them, and optimize
our process. Fifth, we monitor our method while decreasing
the amount of training data, to validate the consistency of
the results.

The paper is organized as follows. We will first review
some works related to ours, then present our approach,
before discussing the experimental results. Finally, we will
present the conclusions of this work, and propose future
developments.

II. RELATED WORKS

A. Datasets and architectures

The most common source dataset to apply transfer learn-
ing for computer vision tasks is ImageNet [1], since it
presents 1000 classes, shared between various semantic
fields (animals, flora life, vehicles, tools, etc...). It is thus
very likely to benefit the training of almost any kind of target
data, and its efficiency is demonstrated in [11].

As for the choice of the network to use, many state
of the art results in image classification tasks (including
the ImageNet dataset) have been achieved by (or built on)
the ResNet architecture [12], [13], and Inception [14], [15]
structures (or combinations of them). Their efficiency and
simplicity often places them as the best choice for transfer
learning, be it for other classification tasks, or using it as a
backbone for other tasks (object detection and segmentation,
for example).

B. Transfer Learning process

Reusing some pre-trained weights for a new task has been
pioneered by [4] and [5], showing that the new task can
greatly benefit it, not only in terms of training speed, but
also of global performance.

However, the way to optimize a transfer learning process
is still unclear. We know that the deeper we go in a network,
the more specialized are its weights to the task they are
trained on [2], [5]. Concretely, if the first few layers of a
ResNet (detecting simple visual patterns like geometrical
shapes) can benefit any computer vision task, it is still
unclear how deep the weights can efficiently be reused. [5]
experiments transfers of different depths, and highlights that
the transfer of specialized layers can hurt performance on
the target task, depending on their depth.

In [6] is given a study taking into account the amount of
data available. They show that if transferring weights has
only a moderate impact on performance in a context with a
lot of data, it becomes crucial for long-term performance as
the data decreases. For two sufficiently close tasks (source
and target), they generally advise to transfer all the layers
except the classification one before a global fine tuning.
This advice seems quite reasonable in the case we are
investigating, since only the images contained in the dataset
and their classes change, while the classification objective
remains the same.

Hoewever, with enough populated classes, [5] shows that
training only the randomly initialized part of the transferred
CNN can break fragile co-adaptations at the boundary. Fine
tuning equally the whole network gives better results, al-
lowing to readjust those co-adaptations. [9] proposes a finer
process that consists in training the whole network in one
go with a lower learning rate applied to the transfered part.
This focuses the training on the new part, while allowing
co-adaptation between the two parts.

As shown in [10], transfer learning can also be improved
by deepening and/or widening the original network, giving
more rooms to small adjustments, under the condition of
correctly managing the simultaneous training of both trans-
ferred and newly created cells.

A systematic process in all these works is to discard the
classifying layer and to train a new one, adapted to the
target classes, from scratch. We argue and show that, when
the source and target are similar to a certain extent, the
knowledge contained in the pre-trained classifier layer can
be efficiently reused for learning a new model.

C. Semantic similarity between textual content
One traditional way to get a similarity measure between

two concepts is to use the WordNet graph [16]: WordNet
is an english lexical database of nouns, verbs, adjectives,
and adverbs grouped under lexicalized concepts (named
synsets), interlinked by different types of semantic relations.
There are five main semantic similarity measures defined for
WordNet in the literature : Jiang & Conrath [17], Leacock
& Chodorow [18], Lin [19], Resnik [20], and Wu & Palmer
[21]. Each of them evaluates the semantic distance between
two synsets. [22] evaluated the Wu & Palmer one, making
use of the path length between the synsets organized in a
’is-a’ hierarchy and the depth of their most specific ancestor
node, as the best one for semantic similarities.

More recently, [23] designed an approach using neu-
ral networks to project words into feature vectors named
Word2Vec representations, to represent efficiently textual
content. In this feature space, distances between words are
shown to be quite accurate to attest and quantify some
semantic relationships [23]–[25].

III. SIMILARITY-BASED KNOWLEDGE TRANSFER

A standard, basic transfer learning process to train an
image classifier for some target classes is to reuse the



convolution weights of a network already trained on a
similar task on source classes. A fully connected layer fitting
the target task is then randomly initialized on top of the
network, which is fine tuned following a strategy adapted to
the specificities of the problem (amount of available data,
possible computational power restrictions, etc...).

The fully connected layer of the pre-trained network
represents the knowledge of the task it is devised for. In cases
where the original classification problem and the destination
one are close, there might be a gain in transferring some of
the knowledge of the original network head (last layer) to
the target one.

We hypothesize that re-adjusting this available knowledge
to fit the target classes could be more efficient than creating
it from scratch, in the usual way. Assume we dispose of M
source classes and N target ones, each target class (repre-
sented by its fully connected weights) could be initialized
with a combination of a relevant subset of those M source
classes, instead of randomly. We define the relevance of such
a subset of classes by using alternative similarity measures.

A. Similarity measures
We propose three of them. The first is a visual one,

directly based on the image content. The two others are
label-based semantic similarities :

Inference similarity. The images of the target classes are
input to the plain source network. The similarities between
source and target classes are computed as F-score measures
for each ”source network output/target class” couples. In a
more practical way, let oj be the jth output of the source
network and ci the ith target class with j ∈ {1, ...,M} and
i ∈ {1, ..., N}, we compute sim(i, j) as the F-score for oj
discriminating ci. This similarity measure aims at leveraging
relations based more on pure visual content than semantics.

WordNet similarity, using the Wu & Palmer ( [21])
measure, as advised in [22].

Word2Vec similarity. Using some pre-trained Word2Vec
embeddings, we compute the standard cosine similarity
between the Word2Vec embeddings of the source and target
class names.

In the following section, these three initialization tech-
niques are compared to the classic one (i.e. using random
initialization of the neural network weights).

B. Initialization
We consider the affinity values as the coefficients of a

neighboring structure, allowing us to approach the target
class as a combination of some source neighbors. We thus
compute, for each target class, the weights of its classifier
as a linear combination of its K closest source neighbors
with respect to the similarity measure, taking as coefficients
these affinity values (normalized, for them to sum to one
over K).

W ′i =

K∑
j=1

(
sim(i, j)∑K
j=1 sim(i, j)

)
Wj

In this way, each of the K source classes neighbors con-
tributes to the construction of the target class initialization, in
proportion to its normalized similarity. The setting of K with
respect to the target classes is studied in the experimental
part.

IV. EXPERIMENTS AND RESULTS

A. Implementation Details

In the following, to combine architecture simplicity and
high performances, we use a ResNet-101 pre-trained on
Imagenet, and replace the last fully connected layer to fit
the target classes. We train weights from the fourth block
(included) to the end, and freeze the rest. One could use a
finer transfer strategy to optimize the results obtained [5],
[6], [9], [26]. Input images’ smallest sides are resized to
256 (preserving aspect ratio), then cropped (randomly for
training, center crop for testing) to output 224×224 images.

We used Adam optimizer with a learning rate of 10−3,
β1 = 0.9, β2 = 0.999 and ε = 10−8, with a batch size of
64. We apply a dropout of 0.75 on the last fully connected
layer to prevent overfitting.

B. Dataset

For this experiment, we choose as source classes the 1000
classes of the ILSVRC challenge [1], which the ResNet-101
has been trained to classify. We take as target classes 90
ImageNet synsets that are not part of those former 1000.
They can be separated in three types :

Included classes. The target synset is a child of a source
synset, thus representing a more restrictive class than the
one in the original problem.

Inclusive classes. The target class is an ancestor of some
source synset(s), thus representing a more general class.

Disjoint classes. Neither child nor ancestor of any already
source synset.

For these 90 target classes we select some synsets contain-
ing at least 1000 images and equally distributed into the three
types of target classes (30 classes each). Within each target
class, we pick 100 images for testing and 900 for training,
producing balanced training and testing sets. Depending on
the experiments, only a certain portion of this training set
will be used for training. The list of synsets used for this
experiment along with the selected images is available on a
GitHub repository. 1

C. Similarities and Initialization

We compute the inference similarities as explained earlier,
with a pass of the training set through the pre-trained
network (with the 1000 class pre-trained classifier).

For the WordNet similarities, we use those given by the
WordNet module of the NLTK Python library to obtain a
similarity measure based on the shortest path that connects

1https://github.com/lucaspascal/semantic-and-visual-similarities-for-
efficient-knowledge-transfer-in-CNN-training.
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the labels (or synsets) in the ”is-a” (hypernym/hyponym)
taxonomy.

To compute the Word2Vec embedding of a given label,
we average the embeddings 2 of all the words composing it,
since labels are not always denoted by a single word, but
often by an expression.

Each target class is then initialized with the weights of
its selected source(s), depending on the chosen similarity
measure and the number of source neighbors. For the random
initialization baseline, we use a classic Xavier initialization
[3].

D. Neighboring optimization

We first show the global behavior of our initialization
method with a single source class neighbor as initialization
for each of the target class, in terms of F-score measure,
averaged over the 90 target classes. For this experiment, we
populated each of the 90 target classes with 500 training
images (limit above which the results did not change signifi-
cantly), and trained the networks over these. Fig.1 shows this
evolution in terms of F-score averaged over all the 90 target
classes, with the four initialization strategies (i.e Random,
Inference, WordNet and Word2Vec).

Fig. 1. averaged per-class Fscore

We observe that each of the three initialization strategies
performs better that the random baseline: the convergence
is accelerated, and the models produce interesting results
even without training (iteration 0): from 40% to more than
70% of the F-score achieved at convergence, depending
on the model. The initialization by inference similarity is
performing best, as one could have expected since the
similarities in this case have directly been evaluated with
respect to the task’s performance metric. The four models
tend to converge to the same value, provided with enough
data to fill the gap.

We give in Table I an example of source/target class
correspondence given by each similarity measure, for the
”Anchor, ground tackle” target class. The results of these

2as trained on Flickr, and publicly available at https://github.com/li-
xirong/hierse/blob/master/README.md.

transfers are shown in Fig. 2. In this case, the Word2Vec
method has been mistaken by the ”tackle” term, and chose
the football accessory as a source class (worst performing).
WordNet found a logical source class (”Hook, claw”), ac-
cording to the synsets semantic, and the inference similarity
selected ”Sundial”, which has no obvious semantic link with
an anchor, but presents some very similar visual patterns, as
shown on the images (performing best).

From this example, along with the global results, we
conclude that label-based semantic similarities are more
likely to select wrong matchings for visual classification,
while the inference similarity is able to bring out better ones,
out of any semantic consideration.

Another intersting fact here is that the Word2Vec similar-
ity is still learning faster than the random initialization. This
observation, verified over multiple other examples, suggests
that any pre-trained classifier is always a better initialization
than a random one for fine-tuning in image classification.

TABLE I
CLASSES CORRESPONDANCES

Target
Class

Inference
Affinity

WordNet
Affinity

Word2Vec
Affinity

Anchor,
ground
tackle

Sundial Hook, claw Football
helmet

Fig. 2. Evolution of the models on the target class Anchor, ground tackle,
for the different source classes determined by the similarity measures.

We then extend the study to the use of multiple source
classes neighbors to compute the different initializations:
Fig. 3 shows the F-scores of the models directly after
initialization (without training), with respect to the number
of source class neighbors selected, for each type of target
class (i.e disjoint, included and inclusive).

https://github.com/li-xirong/hierse/blob/master/README.md
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Fig. 3. Immediate inference results for each type of classes and initialization, with respect to the number of source classes selected to compute the
initialization.

TABLE II
EVOLUTION OF THE FOUR METHODS THROUGH DATA REDUCTION. PERFORMANCES AFTER INITIALIZATION (LEFT COLUMNS) AND BEST

REGISTERED PERFORMANCES (RIGHT COLUMNS) ARE REPORTED, WITH RESPECT TO THE NUMBER OF TRAINING SAMPLES FOR EACH CLASS.

Images
per class

Random Visual similarity WordNet semantic
similarity

Word2Vec semantic
similarity

First Best First Best First Best First Best
100 0.00 0.72 0.59 0.73 0.39 0.72 0.35 0.72
50 0.00 0.68 0.58 0.69 0.39 0.68 0.35 0.68
25 0.00 0.62 0.58 0.64 0.39 0.63 0.35 0.63
10 0.00 0.53 0.54 0.54 0.39 0.54 0.35 0.53
5 0.00 0.41 0.50 0.50 0.39 0.43 0.35 0.45
2 0.00 0.26 0.44 0.44 0.39 0.39 0.35 0.35
1 0.00 0.16 0.40 0.40 0.39 0.39 0.35 0.35

The initialization by inference similarity benefits the most
from extending the number of source class neighbors: for
any type of initialization, the built classifiers smoothly gain
in performances by adding neighbors. Beyond the selection
of one best source class, this confirms the superiority of
the visual similarity over the semantic ones to estimate
the relevance of any source class for a transfer. For the
WordNet and Word2Vec cases, there is also a significant
gain, even if the evolution over the number of neighbors is
more chaotic, and it appears to be a good way to compensate
bad matchings (like the Word2Vec case in Table ??).

E. Data reduction study

We then study how well this process generalizes while
decreasing the amount of training data. For each of the
initialization methods, we initialize a new model, taking
for each target class the optimal number of neighbors
source classes depending on its type (disjoint, included or
inclusive). These optimal numbers are taken from Fig.3.
Table II shows the scores of these models compared to the
random baseline for 100, 50, 25, 10, 5, 2 and 1 training
images per class. For each model, the initial performance
after initialization (without training) and the best registered
performance until convergence are reported.

The source classes selection by inference similarity varies
with the number of training images (unlike the two others),
since it is computed with those images. Its performance at
initialization thus decreases with the amount of training data.
However, it still always achieves better performances, which
puts aside the idea of combining both types of similarities

[27]. Under 5 training images per class, a consequent
performance gap remains between the baseline and our
models even after training. Under 2 images per class (5
for inference similarity), the best scores are achieved right
after initialization, and training only degrades performances.
Building the best possible initialization is thus crucial in such
cases.

V. CONCLUSION AND PERSPECTIVES

This paper addresses transfer learning in an image classifi-
cation context. In particular, we proposed to study alternative
approaches to re-use the knowledge inherent within the
original pre-trained deep network in the target one (handling
new image classes). Rather than only transferring network
weights corresponding to the feature extraction part, we
investigated several initialization strategies to re-use and
combine specifically identified weights from the pre-trained
classifier into the target model. To validate the impact of our
method, we presented and tested three different similarity
estimators, one visual and two semantics, optimized the
models across the different types of target classes, and
monitored them while reducing the amount of data.

In the end, our method produced systematically better ini-
tializations, faster trainings, and significantly superior long
term performances in limited training data configurations.
The consistency with which the best model, based on visual
similarities, outperforms the baseline across the different
types of target classes and amounts of data, along with its
computational lightness (a few supplementary inferences in



the network) suggest that it can be systematically adopted
when performing transfer learning in this context.
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