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Abstract 

In building simulation, internal heat gains correspond to 

heat production by human metabolism or electrical 

devices use. It is one of the most uncertain model inputs 

and could have an important impact on building 

simulation results. This study proposes a method to 

investigate the influence of the internal heat gains 

uncertainties by separating the uncertainty on the 

internal heat gains of the entire building, the uncertainty 

on the spatial distribution and its evolution on time. The 

uncertainty sources are propagated independently in a 

dynamic thermal simulation (DTS). The temperature of 

each zone at each moment is analyzed. In order to 

simplify this study, the most representing temperatures 

are selected with a method based on cumulative 

variances and a clustering algorithm. This approach is 

applied on an office building in France. The data coming 

from a one year monitoring period, provide information 

to reduce the uncertainties about the real internal heat 

gains. The results indicate that the effects of the internal 

heat gains uncertainties are time dependent. They also 

depend on the heating scenario of the thermal zone 

(heated or not-heated). At last, the temperatures are 

mainly influenced by the uncertainty on the internal heat 

gains of the entire building. 

Introduction 

Many studies have attempted to reduce the gap between 

the predicted and measured energy consumption by the 

calibration of DTS model in the building's monitoring 

conditions (de Wilde, 2014). Occupant behavior is one 

of the key parameter in this exercise (Mahdavi & al, 

2009). Indeed, it is necessary to take into account the 

actions of the occupant on some building components 

(the settings of Heating Ventilation and Air 

Conditioning, the opening of windows…) and the 

internal heat gains due to the occupant body metabolism 

and the heat provided by the electrical devices. This 

study will focus on the configuration of internal heat 

gains for the calibration of DTS. 

Data about the internal heat gains of the entire building 

and its spatial distribution between each zone are 

needed. For instance, electrical meters may give 

information about the heat provided by the electrical 

devices to the entire building. Moreover, a building 

occupancy schedule can be used to assess the heat gain 

by human metabolism. These sources of information do 

not allow to assess precisely the internal heat gains, but 

various constraints as the cost of the measurement 

equipment or the respect of privacy limit the availability 

of more accurate data (Yan et al., 2017; Zhang & al., 

2018). As a results, the internal heat gains of the entire 

building, the spatial repartition between the thermal 

zones and the time dependency of spatial repartition still 

uncertain model parameters. Therefore, the simulated 

results will be affected by this imprecise setting. 

For this reason, uncertainty propagation (UP) techniques 

have been applied on DTS model to assess the influence 

of parameters uncertainties on the model outputs. (Ligier 

& al. (2017) or Ren & al. (2017) have assessed the 

effects related to the uncertainty on the internal heat 

gains of the entire building. In this work, the uncertainty 

due to the spatial repartition and its time dependency are 

also taken into account. The uncertainty sources have 

been propagated with a Monte-Carlo procedure of   

simulations (Saltelli & al., 2008). (BIPM & al., 2008) 

recommends to choose the   number of simulations 

such as the confidence level of the model output interval 

reaches a desired value. For a 95% confidence level, it 

leads on      . However, a DTS required a large 

computing time and the realization of     simulations is 

often not feasible. This paper follows an approximate 

approach, proposed by the same author: a relatively 

small value of        simulations is performed. The 

average and the standard deviation of the outputs are 

computed to characterize the distribution of the model 

outputs. 

The most commonly used outputs in UP, are some 

global results as the building consumption during one 

year (Tian et al., 2018), the maximal heating load 

(Tahmasebi & al., 2015) or the cumulative distribution 

of indoor temperature (Mahnameh et al., 2017). Yet, the 

temperatures of the thermal zones are also interesting 

outputs of DTS. Recent works such as  Maykot & al. 

(2018) or Aghniaey et al. (2019) used the measurement 

of the inside air temperature for a thermal comfort 

analysis of the building. In an experimental process, the 

temperature can be a key factor to identify parameters 

related to the building energy performance (Roels et al., 

2017; Ajib, 2018). That is why this contribution focuses 

on these outputs only. 

At the end of the UP, several methods exist to analyze 

the model outputs variability. The standard deviation and 

the average of the   observations of each output can be 



 

 

computed (Saltelli et al., 2008). However, if the number 

of output is too large, it will be difficult to summarize 

these results (Campolongo & al., 2007).  

For this purpose, Campbell & al. (2006) have reduced 

the dimension of the outputs space with a principal 

component analysis. When just a few axis can be 

retained, this technique allows to interpret easily the UP 

results. When more axis has to be kept, the interpretation 

is much more difficult. 

Method 

Overview 

In the operation phase, a building monitoring rarely 

gives a very precise knowledge about the internal heat 

gains. The lack of information is supposed to be related 

to: 

 The measurement of the total internal heat gains of 

the building ; 

 The spatial repartion of the internal heat gains 

between the thermal zones of the DTS model ; 

 The time dependence of spatial repartition. 

In order to evaluate the effect of these different 

uncertainty sources, three UPs are applied to a DTS 

building model. They take into account independently 

the uncertainty sources previously mentioned. At the end 

of one UP, a large number of temperature time series are 

simulated. A pre-selection step allows to focus the 

analysis on a part of the outputs whose variances are 

representative of all the outputs. This step operates in 

two times:  

 First, by finding temporal patterns in the variance of 

the average temperature of the building; it allows to 

select shorter periods representative of the entire 

period of simulation; 

 Secondly, the influence of each uncertainty source on 

the temperature of each thermal zone is assessed by 

calculating cumulative variances. From these data, 

the thermal zones are grouped with a clustering 

algorithm and one thermal zone is selected as a 

representative of each group. 

Finally, the average and the standard deviation of the 

distribution of the pre-selected outputs are analyzed.  

Simulation model 

The model is a multi-zone model. It divides the building 

into    thermal zones. Each sub-volume is depicted as a 

uniform temperature and air pressure volume. Each 

room of the building is considered as a zone of the 

model. The simulations were performed with (TRNSYS 

17, 2010) software and CONTAM software (Dols & al., 

2015) to couple heat and air transfer. These tools were 

chosen because they allow the prediction of the dynamic 

of the air temperature of several thermal zones. 

During the heated period, a model of an ideal heating 

system controls each room temperature. This model 

perfectly adapts the indoor temperature to the 

temperature set point thanks to a direct acting-control. 

The building performance monitoring (as described in 

‘Case study’ part) provides information for the 

parameterization and the definition of its inputs.  

The internal heat gains of the model are stored in an 

internal heat gains matrix      defined with: 
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(1) 

With  , the simulation timestep and  , the period of 

simulation. The simulation discretizes a one year period 

into   = 8760 hours.   is the index of the modelled 

thermal zone and   is the number of thermal zones. 

The internal heat gain of the entire building, quoted 

    ( ) is the sum of the columns of     . 

The part of the internal heat gains assigned to the 

thermal zone   is called an internal heat gain ratio 

(noticed   ( )). In the definition of     , assumptions 

have to be made about the time variation of these ratios 

(fixed ratios or time dependent ratios).  

The simulated temperatures are stored in matrix   where 

each element   ( ) corresponds to the temperature of the 

thermal zone   at the time  .  
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Uncertainty propagation 

First, the probability distribution of the internal heat 

gains parameters has to be quantified according to the 

uncertainty source. Rivalin, &  al. (2018) advice to 

choose normal distribution for measured parameters. For 

a non-measured parameter, if an expert can suggest a 

minimum and a maximum value, it will follow a uniform 

distribution. 

The 1
st
 UP is related to the measurement uncertainty of 

    ( ).     ( ) is estimated with the measurement of 

the electricity consumption of the entire building and an 

occupancy schedule built with the building manager. 

Then, the  th
 observation of  

   
( ) affected by the 

measurement uncertainty, is written  
   

 ( ), and  

follows: 

     
 ( )       ( )   ( )   (3) 

with    (   ) where   is the mean and   is the 

standard deviation of a normal distribution. These 

parameters have been quantified with a measurement 

uncertainty analysis by considering the uncertainty on 

the part of electricity consumption reused as a building 

heat flow, the lack of knowledge about the number of 

people and their metabolism (Titikpina, 2016). The 

generation of       random draws of   is stored in 

the 1
st
 input sample called    . 

The 2
nd

 UP is related to the uncertainty about the spatial 

repartition under the assumption that internal heat gain 

ratios are fixed in time. These ratios are defined with 



 

 

expert judgment according to the functionality and the 

available information about the number of occupants in 

each thermal zone. To take into account the uncertainty 

on that method, each ratio is supposed to follow 

    (     ) with    and    the parameters of a uniform 

distribution. The generation of       random draws 

of     (the vector of all the fixed ratios) is the 2
nd

  input 

sample called    . 

Finally, the 3
rd

 UP is related to the uncertainty about the 

spatial repartition under the assumption that internal heat 

gain ratios are time dependent. However, no known 

method allows modelling the time evolution of the 

internal heat gain ratios. It can only be pointed out that 

some authors proposed stochastic approaches or random 

walk approaches for modelling the random nature of the 

occupant presence (Ahn & al., 2016). In a first approach, 

a purely random process is used for modelling   ( ). 

Each ratio at time   follows   ( )  (     ). The 

uniform distribution parameters are the same as the case 

of   . The generation of        random draws of  

  ( ) (the matrix of the random process of all the ratios) 

is stored in the 3
rd

 input sample   . 

The output of the     simulation of the UP is noticed   . 

Each element   
 ( ) of    is the temperature of the 

thermal zone   at time   for the simulation  .    

Then, the estimated variance of the response   
 ( ) is 

noted   ( ) and is computed with:  

   ( )  
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     ( )    
 ( ))       (4) 

where   ( ) is the estimated average of   
 ( ) which is 

equal to:  

   ( )  
 

 
∑ ( 
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  ( ) quantifies the variability of each temperature 

caused by the uncertainty source.  

Outputs pre-selection  

First, the average temperature of the building   
 ( ) is 

computed with: 

  
 ( )  

 

 
∑ (  
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    (6) 

By combining equations (6) and (4), the variance of the 

average temperature   ( ) is obtained. The variations 

over the time of   ( ) show the time evolution of the 

influence of the uncertainties sources. Then, some 

temporal patterns of   ( ) may exist and are 

representative of the whole period. Then, the next step 

will focus on these shorter periods. 

The second step is the selection of representative thermal 

zones. First, the influence of each uncertainty source on 

each zone    is assessed by the calculation of cumulative 

variance     (Lamboni & al., 2009) on pre-selected 

periods : 

     ∑   ( )
     
     

 (7) 

where    (resp.   ) is the beginning (resp. the end) of a 

shorter period.     indicates the influence of one 

uncertainty source on the temperature of the zone   

during the period between the interval        . Then, an 

exponent is added to     in order to specify the period 

and the source of uncertainty. 

Thus, each thermal zone is characterized by the 

cumulative variances computed under the different 

conditions previously described. The cumulative 

variances of each thermal zone are stored in the 

cumulative variances matrix    : 
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Each zone   is associated with the row   of  . Each 

column of   is normalized. The Euclidean distance 

matrix between each row is computed. Then, a complete 

linkage method clusters the thermal zones according to a 

hierarchical scheme. This data analysis was computed 

with (R Development Core Team, 2018). Finally, for 

each cluster, one thermal zone is chosen as a 

representative of the others elements of the same group. 

Uncertainty analysis 

The distribution of each pre-selected output is analyzed 

by representing their confidence interval (  ) with a 

95% confidence level. Under the assumption that   
 ( ) is 

normally distributed    follows: 

   [  ( )   √  ( )    ( )   √  ( ) ] (9) 

Case study 

The case study is an office building (Figure 1). It was 

constructed from 2010 to 2012 near to Angers (France). 

It has two floors. Two parts divide the building 

according to the usage. One part is the office (853m²) 

and the second part is a workshop (703m²). The building 

complies with French Thermal Regulation RT2005 that 

was in effect during its design. However, the 

performance of the ‘office’ part is very close to the 

criteria of the Low Consumption Building – Effinergie 

label (BBC - Effinergie, 2007). The ‘office’ part was 

modelled with TRNSYS software (Titikpina, 2016). The 

model divides the building into      thermal zones 

that correspond to the same room division of the ‘office’ 

part of the building.  

 

Figure 1: Picture of the case study office building 

The simulation computes the building thermal behavior 

from the 2015/03/01 to the 2016/02/28. At the end of 

each simulation, the 39 temperature time series are 

recorded. During the simulation, a heated period is 

allocated between 01/03/2015-17/05/2015 and 

27/09/2015-28/02/2016. The real not-heated rooms of 

the building are configured in the model. The local 



 

 

weather is monitored. These data are used as inputs of 

the DTS. Moreover, electricity meters record each hour 

the building electricity consumption. Combined with the 

knowledge of an hourly occupancy schedule of the 

building, these data are used to define the internal heat 

gains of the entire building (    ( )). The ratios are 

defined relatively to each another, according to: 

 The functionality of the thermal zone: for instance, 

an office room is fitted with personal computer and 

office  worker can be present in this zone. The ratio 

will be more important in this room than another 

room like a corridor; 

 The specific knowledge about the real occupancy of 

the room: for instance, during the monitored period, 

BUR006 was not occupied. This information was 

taken into account to affect a lowest ratio to this 

room.  

Titikpina (2016) applies an uncertainty measurement 

analysis to this case study that shows    (  
           ). The determination of the parameters of 

the uniform distribution of    is made with an expert 

judgment seeking to conserve the initial information 

about the spatial repartition.  

Results & Discussion 

Outputs pre-selection 

Figure 2 shows the variance of the average temperature 

of the building (  ( )). First, it can be noticed that the 

variance estimated with    is larger than    and   . 

The uncertainty on the entire internal heat gains leads to 

a larger variability than the uncertainty related to the 

spatial distribution (with fixed or time varying ratios).  

  ( ) follows week variation. It may be caused by the 

week variation of the entire internal heat gains. On the 

other hand, it can be noticed that the model response to 

   is strongly influenced by the non-heated period. 

These observations lead to define two shorter periods: 

« summer» and « winter » as shown in Figure 2. 

 

Figure 2: Time evolution of   ( ) according to the 

uncertainty propagation  

  ( )  just gives a global view of the model responses at 

the building scale. The analysis of the cumulative 

variances at the thermal zone scale is used to choose 

representative thermal zone. Figure 3 is a heatmap 

representation (realized with d3heatmap, a R package 

developed by  Cheng & al. (2016))  of the cumulative 

variances matrix ( ). Each row refers to a thermal zone 

 . Each column refers to a particular uncertainty 

propagation (defined with   ,    or   ) and a specific 

period (‘SUM’ stands for the summer period and ‘WIN’ 

stands for the winter period). 

The clustering results are represented on the Figure 3. 

The rows of   were reorganized in order to position the 

zones close to the ones with similar cumulative 

variances. 

 

Figure 3: Heatmap and cluster of   – green cells: high 

level of cumulative variances, purple cells: low level of 

cumulative variances  

It seems relevant to divide the 39 zones into 5 different 

groups. A representative of each group is arbitrarily 

selected: BUR_106 for G1, SANIT_HOM_R1 for G2, 

SAL_ESSAI for G3, BUR_101 for G4, 

SANIT_FEM_R1 for G5. Figure 4 shows the cumulative 

variances of each of them. It helps to understand the 

properties of each group: 

 G1 regroups 19 zones. It regroups the most 

influenced zones by the variation of    and during 

the summer period. They are moderately impacted by 

the others conditions; 

 G2 regroups 1 zone : SANIT_HOM_R1. This zone is 

very affected by the variation of    and    during 

the winter period; 

 G3 regroups 2 zones. They are the most influenced  

zones by the variation of    and    during both 

periods. They are moderately affected by   ; 

 G4 regroups 7 zones. They are affected by the 

variation of    during the summer period. Moreover, 

they are the less influenced zones by the other 
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conditions. Figure 4 shows that the selected thermal 

zone BUR_101 seems close to the selected thermal 

zone of G1. There are few distinctive elements 

between these two objects; 

 G5 regroups the last 10 zones. Globally, they are the 

less impacted zones for all the conditions.  

Now, a sufficient number of representative outputs are 

selected. The next subsection will describe the 

uncertainty analysis of the chosen ones. 

 

Figure 4 : Normalized cumulative variances according 

to the selected thermal zones  

Uncertainty analysis results 

G1 gathers a majority of thermal zones relied on 

individual room office (actually, the ‘BUR’ prefix refers 

to a room office). Indeed, that kind of rooms is often 

used at different levels of evaluation of the building 

thermal performance, and thus, this is a good subject of 

interest.  

BUR_106 (G1) is an individual office (12m²) on the 1
st
 

floor. It is located between two others individual offices 

and is accessible from the main corridor of the respective 

floor. This room has a north facing facade. One person 

occupied this office during the data-monitoring period.  

Figure 5, Figure 6 and Figure 7 show the distribution of 

the temperature of BUR_106 simulated with different 

input uncertainty sources and during different periods. 

The black line is the mean value. The grey area covers 

the confidence interval computed with (9).  

Figure 5 shows that the distribution width is affected by 

the uncertainty of the entire heat gains when the room 

temperature is not controlled by the heating system. 

However, during the summer period, the distribution of 

the temperature around the average value is fixed 

throughout the all period (Figure 6).  

When the influence of the spatial distribution is tested, 

the distributions are tightening up (Figure 7). The 

uncertainty related to the distribution has less impact 

than the uncertainty of the entire heat gains.  

 

 

 

Figure 5: Responses of BUR106 to M1 - Winter period 

 

Figure 6: Responses of BUR106 to M1 - Summer period 

 

Figure 7: Responses of BUR106 to M2 - Summer period 

 

G1 G2 G3 G4 G5 



 

 

The thermal zone SANIT_HOM_R1 belongs to (G2). 

The distributions are different to BUR_106, especially 

for the winter period. As this is a non-heated room, the 

temperature  is influenced at each time step of the winter 

period (Figure 9).  

SAL_ESSAI belongs to the group (G3). This zone is 

identified as the most sensitive zone to the variation of 

the spatial distribution during the summer period. Figure 

8 shows the temperature distribution of this zone 

obtained with M2. The temperature seems mainly 

influenced by the spatial repartition during the 

workdays. 

G4 gathers the remaining building offices. The 

distributions of BUR_101 (G4) are close to the outputs 

distributions of BUR_106 although the clustering 

methods lead to two different groups. 

 

Figure 8 : Responses of SAL_ESSAI to M2 - summer 

period 

 

Figure 9: Model responses to M1 the winter period - 

Comparison between two non-heated zones 

The thermal zone SANIT_FEM_R1 belongs to (G5). As 

SANIT_HOM_R1, it is a non-heated room too, but the 

model response is less impacted during the winter period 

(Figure 9). 

Average of standard deviation 

The simulated temperatures could be useful in order to 

analyze the thermal comfort of every zone of that 

building. However, the UPs show the simulated 

temperatures could be sensitive to the accuracy of the 

internal heat gains. The influence also depends on:  the 

time period, the thermal zone and the uncertainty source. 

Figure 10 represents the average (in each period) of the 

standard deviation deducted from the cumulative 

variances (7).  

The highest value of the average of standard deviation is 

related to the uncertainty on the entire heat gains during 

the summer period. It is observed for BUR_106 and is 

equal to 0.4°C. During the winter period, the hisghest 

influence is obtained for a non-heated zone 

(SANIT_HOM_R1) and is equal to 0.2°C. The accuracy 

of a thermal comfort analysis based on that DTS could 

be improved by enhancing the accuracy of the 

measurement of the entire heat gains. 

The uncertainty on spatial distribution could lead on an 

average of standard deviation equal to 0.2°C 

(SAL_ESSAI during the summer period). However, for 

the same thermal room and for the same period, in 

considering that the internal heat gains ratios change 

randomly in time, the average of standard deviation 

reaches a value of 0.07°C.  

 

Figure 10 : Average of standard deviation according to 

the uncertainty sources and the simulated period 

Conclusion 

This paper has shown a method to investigate the effect 

on the building thermal behaviour of different internal 

heat gains uncertainties (the heat gains of the entire 

building and their spatial distribution). 

Input samples built with the Monte-Carlo approach have 

been used to estimate the variance of the modelled 

temperatures of 39 thermal zones over a period of one 

year. This paper has proposed a two steps method to 

select the most interesting part of theses outputs. 

An office building has been used as a case study. In that 

case, the uncertainty source that has the most influence 

was generally the uncertainty on the measurement of th 

SANIT_HOM_R1 

SANIT_FEM_R1 



 

 

entire heat gains. However, the spatial repartition has 

had a larger influence on the thermal zone temperature 

with some specific conditions, which are in the presented 

case: a winter period, a non-heated zone and a spatial 

repartition fixed in time. 

In the case study, the measurement uncertainty of the 

entire internal heat gains was the most influential 

parameter. It was mainly influent during the summer 

period of the simulation. During this period, the average 

of standard deviation could reach 0.4°C. It was shown 

that, if the internal heat gains ratio follows a random 

process, then, the uncertainty related to the spatial 

distribution has less impact. This implication can reduce 

the average of standard deviation from 0.2°C to 0.07°C 

The variance of the model outputs depends on the model 

parameterization and the implementation of the 

uncertainty propagation. For instance, the cumulative 

variances of the response are different for a non-heated 

or a heated zone during the winter period. The 

identification of more complex features could be a 

satisfying improvement of this methodology. 

To complete this work, the interaction between the entire 

heat gains uncertainty and the spatial distribution 

uncertainty should be reviewed. On the other hand, this 

work could be improved by observing relationships 

between the input sample factors and the model 

responses with a sensitivity analysis. 
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