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Abstract: 36 

The removal of black crusts decaying the surface of artworks is an important concern for the 37 

conservation of cultural heritage. Nd:YAG laser cleaning of encrusted stones and plasters at 1064 nm is 38 

widely recognized as an effective restoration technique, but induces a noticeable yellowing of the 39 

surface. Several researches carried out on the effects of laser cleaning have been focused on the induced 40 

yellowing and how to visually mitigate this phenomenon. To this end, UV-B radiations were 41 

successfully used to lessen the laser-induced yellowing due to the removal of lamp black particles on 42 

gypsum. The mechanism at play for both the formation of the compounds yellowing the surface and 43 

their disappearance upon UV-B exposure remains, however, poorly understood. Within the frame of this 44 

research, we apply surface-sensitive characterization techniques to analyze the yellowed surface 45 

produced after Nd:YAG Q-Switched laser cleaning of lamp black deposit on a gypsum plate, and the 46 

same surface after UV-B exposure. A combination of X-ray photoelectron spectroscopy and Fourier-47 

transformed infrared spectroscopy has been used to identify the residual carbon compounds responsible 48 

for the yellow coloration of the substrate. A nanoscale structural description of the ejected particles 49 

collected during the laser cleaning was finally performed with transmission electron microscopy. We 50 

found that the yellowing is due to partially oxidized hydrocarbons compounds deposited at the surface 51 

of the gypsum substrate. We propose that they form by reactions between carbon species emitted by the 52 

vaporization of the carbon particles, with hydrogen and oxygen produced by the dissociation of water 53 

molecules coming together from dehydration of the gypsum surface and from the water sprayed by the 54 

operator during cleaning. 55 

 56 
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1. Introduction 61 

Laser cleaning in restoration of artworks is a well-established and optimized technique [1,2]. 62 

Criticisms have, however, been expressed after its implementation due to the yellowish tint of the laser 63 

cleaned surfaces [3]. The phenomenon thus became a controversial issue as it was unclear whether it 64 

resulted from a specific side effect of laser cleaning [4] or from the revealing of a preexisting yellowish 65 

layer [5,6]. Many scientific investigations recently evidenced laser irradiation as the cause of the 66 

yellowing process and proposed ways to mitigate the discoloration pattern using poultices [7] or UV-B 67 

irradiation [8]. Nevertheless, the chemical composition as well as the formation mechanism of the 68 

compounds yellowing the surface remain enigmatic. As recently pointed out: “the exact nature of the 69 

material generated by laser treatment of black crust and contributing to the yellow color is still 70 

unknown” [9]. Several obstacles preclude the investigations. The material, phase or impurities at the 71 

origin of the yellowing are invisible and hardly analyzable using conventional techniques on thin 72 

sections. When analyses are carried out at the surface, only the substrate compounds are revealed 73 

without recognition of any neoformed phases [1,2,9]. The phases induced by laser cleaning are therefore 74 

assumed to be nano-sized and in a very low amount. 75 

Black crusts forming at the interface between the substrate, the atmosphere and the polluted urban 76 

or industrial environment, have very complex compositions ranging from nano to sand size particles, 77 

minerals and organics, with a long list of chemical elements that are combined in various ways [5,10]. 78 

The interactions that may occur during a laser pulse are complex and the distinction between the initial 79 

black crust compounds and neoformed phases resulting from laser irradiation is far from obvious. A 80 

way to experimentally reproduce the phenomenon at play is (i) to make synthetic gypsum substrate, 81 

close to the epigenic gypsum layer systematically found beneath the black crust on carbonate stone 82 

surface [8,9], (ii) to artificially cover this substrate with a layer containing a single specie sensitive to 83 

the laser, and (iii) to study the residues present on the yellowed surface after laser irradiation. Such 84 

model systems have been investigated by various authors, using a multi-scale approach from optical to 85 

electron microscopy coupled with energy-dispersed X-ray as well as electron energy loss spectroscopy 86 

to study the morphological, mineralogical and chemical features that could be linked to the yellowing 87 
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phenomenon [8,9,11,12]. These studies brought new insights on the involvement of iron compounds 88 

and fly ashes in the yellowing phenomenon. Researches also showed that black crusts can be mimicked 89 

by lamp black nanoparticles, and that the laser-induced yellowing phenomenon is mitigated by UV-B 90 

irradiation [8,11]. The different processes at play along these treatments of gypsum plates covered with 91 

lamp black particles were carefully followed by spectrocolorimetry, but no information concerning the 92 

composition of the laser-induced yellow surface were gained up until now. Following this work, we 93 

have developed a specific analytical protocol capable of characterizing primary as well as neoformed 94 

nano-sized phases of lamp black upon the different treatments. A combination of X-ray photoelectron 95 

spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy 96 

(SEM), and transmission electron microscopy (TEM) was applied to follow the chemical and 97 

morphological changes of a gypsum plate covered with lamp black, exposed to Nd:YAG Q-Switched 98 

laser cleaning at 1064 nm followed by UV-B irradiation at 313 nm. These investigations bring new 99 

insights on the nature and origin of the laser-induced yellowing phenomenon. 100 

 101 

2. Research aims 102 

Beside its unquestionable advantages, the Nd:YAG laser cleaning of artworks yields to the 103 

yellowing of the treated surfaces. This study thus aims at understanding the mechanism at play in the 104 

laser-induced yellowing phenomenon by providing morphological, chemical, and structural 105 

characterizations of the primitive and the neo-formed carbon species on a model system. The ultimate 106 

objective consists in providing physico-chemical justifications for the simultaneous or consecutive use 107 

of UV-B exposure allowing for the progressive removal of the carbon compounds involved in the 108 

yellowing phenomenon. 109 

 110 

3. Materials and methods 111 

3.1 Sample preparation: Synthetic samples were elaborated with gypsum plaster plates manually 112 

covered with a thin layer of lamp black particles. The gypsum plates were made by hydration of pure 113 
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hemihydrate (97%, Acros organics) with distilled water (1/1 in mass). Windows (76 x 26 mm) were cut 114 

in a dense foam template and glass microscope slides were placed at the bottom. The mixture 115 

(hemihydrate + distilled water) was then applied on the slides until the windows were filled. The surface 116 

was finally leveled with a spatula and the samples were left to dry for at least 24 hours. After demolding, 117 

the surface was covered with lamp black pigment (noir de fumée ©) supplied by Artech. Fine-grained 118 

black powder was applied dry with a brush to cover the gypsum plate with a black layer. 119 

3.2 Laser cleaning: The plates were first cleaned with a Nd:YAG Q-Switched (QS) laser at 1064 120 

nm (Thomson BM Industries NL201, 8 mm spot beam, 15 ns pulse duration, 10 Hz pulse frequency). 121 

The laser fluence, expressed as an energy per unit area of the beam, ranged from 200 to 400 mJ/cm2. 122 

The irradiation conditions have been adjusted by an experienced restorer to optimize the cleaning result. 123 

The surface of the samples was sprayed with water just before irradiation. Around a quarter of each 124 

sample was preserved from laser cleaning and kept as a reference area (Area 1 in Fig. 1). A 125 

complementary laser cleaning was carried out in the same conditions in order to collect the ablated 126 

particles during laser irradiation. In this case, the sample was inclined at 45° in a box and small metal 127 

grids used for transmission electronic microscope observation were held close to it during the cleaning 128 

operation. 129 

3.3 UV-B exposure: After laser cleaning, the plates were exposed to UV-B radiation (313 nm) in 130 

an accelerated UV degradation chamber (Q-Panel LAB product) following previously optimized 131 

conditions [8]: 90 hours at an irradiance of 1.42 W/m2 reaching a total UV-B fluence of 46 J/cm2. A 132 

second quarter of the sample was protected with an aluminum foil to preserve the yellowed surface 133 

obtained after laser cleaning (Area 2 in Fig. 1). The UV-B exposed surface represents the rest of the 134 

sample (Area 3 in Fig. 1). 135 

3.4 Spectrocolorimetry: Color measurements were carried out with a Hunterlab MiniScan XE 136 

Plus System spectrocolorimeter with illuminant D65 using the 10° observer, equipped with a hand-held 137 

positioning device [8], to evaluate the color variations after QS laser cleaning (Area 2 in Fig. 1) and UV- 138 

B exposure versus time (Area 3 in Fig. 1). The evolution of the b* parameter, representative of the 139 

chromaticity of interest, was specifically followed with respect to the gypsum reference surface. 140 
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3.5 X-ray photoelectron spectroscopy: XPS was recorded on Areas 1-3 to characterize the 141 

elemental composition and the chemical speciation of the surface species. Reference spectra were also 142 

acquired on a bare gypsum plate and on the lamp black powder for comparison purposes. The 143 

experiments were performed under ultra-high vacuum using a Resolve 120 hemispherical electron 144 

analyzer (PSP Vacuum) and a TX400 (PSP vacuum) unmonochromatized X-ray source (Mg Kα	at 145 

1253.6 eV) operated at 100 W. The information depth of XPS at this excitation energy and in the 146 

geometrical arrangement of the setup is typically 1 nm at the C1s line. Survey spectra were first collected 147 

at pass energy of 50 eV and an energy step of 0.2 eV, while the C1s lines were collected at 20 eV pass 148 

energy, and a step of 0.1 eV. The XPS lines were deconvoluted with the CasaXPS program, using 149 

Gaussian/Lorentzian profiles and after Shirley-type background subtraction. Elemental composition (in 150 

at. %) are obtained from the analysis of the survey spectra and after correction by the relative sensitivity 151 

factors provided in the program. 152 

3.6 Fourier-transform infrared spectroscopy: the infrared spectra were recorded in attenuated 153 

total reflectance (ATR, germanium crystal) mode using a Bruker VERTEX70 mid-IR Fourier Transform 154 

Figure 1. a/ Macroscopic color changes of a gypsum plate covered with lamp black (Area 1) after Q-
Switched laser cleaning (Area 2) and UV-B exposure (Area 3). The plate is 7.5 cm long. b/ Chromatic 
evolution of the Q-Switched laser cleaned area (b* value) as function of the cumulated UV-B fluence. 
The dashed blue line corresponds to the b* value measured on the reverse side of the gypsum plate. 

 



7 
 

spectrometer equipped with a temperature-stabilized DLaTGS detector. All spectra were accumulated 155 

on the surface of the different areas as well as the reference materials (bare gypsum plaster and lamp 156 

black) in a spectral range of 650-4000 cm-1 by recording 200 scans at a resolution of 4 cm-1. In this 157 

energy domain, information depth in ATR is in the range of 0.2-1.4 μm for gypsum, i.e. 200-1400 times 158 

deeper than XPS. The Opus software was used for the baseline correction, where a polynomial fit was 159 

applied over the whole spectral range with a minimal number of anchor points (between 3 and 5, 160 

typically). The characterization of the absorbance bands and the interpretation of their evolution with 161 

the different treatments were carried out by a curve fitting procedure using the PeakFit software. We 162 

have selected two regions of interests (ROIs) where specific spectral features of carbon are observed, 163 

corresponding to the intervals between 1300 and 1600 cm-1 and between 2800 and 3100 cm-1. The ROIs 164 

were adjusted with several absorbance bands with Voigt profiles. Such profile is common in complex 165 

condensed materials and corresponds to a convolution of Lorentzian and Gaussian profiles. The fitting 166 

was achieved using a least-squares iterative procedure by varying the peak position, amplitude/area, 167 

Gaussian and Lorentzian half-widths for all absorbance bands. 168 

3.7 Scanning electron microscopy and transmission electron microscopy: SEM was used to study 169 

the morphology of the lamp black particles, the gypsum plaster substrate, and the treated areas at a 170 

micron and sub-micron scale. The SEM observations were performed with a JEOL 6320F operated at 171 

15kV. Samples were coated with titanium prior to being placed in the SEM chamber. TEM was 172 

performed to characterize the nanoscale morphology and internal structure of the particles composing 173 

the lamp black and the ablated particles collected on the grids during cleaning tests. TEM observations 174 

were carried out on a JEOL JEM 2011 operated at 200kV. Bright field TEM micrographs were acquired 175 

with a CCD camera (GATAN, Ultrascan® 1000XP) assisted by the Digital Micrograph software 176 

(GATAN). 177 

 178 

4. Results 179 

Visual observation (Fig. 1a) allows an easy distinction of the three different areas (Area 1/lamp 180 

black crust, Area 2/after Q-Switched laser cleaning, and Area 3/after 90 hours of UV-B exposure). After 181 
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laser cleaning, Area 2 has a yellowish aspect, with a b* value of about 7 in term of chromaticity. It 182 

corresponds to the b* value at zero UV-B fluence (Fig. 1b). The evolution of b* indicates the 183 

colorimetric changes induced by UV-B exposure of Area 3. Colorimetric measurements were made 184 

repetitively on this area after 15, 40, 50, 70, and 90 hours of exposure. The decrease of b* highlights the 185 

progressive de-yellowing phenomenon previously described [8,11]. However, b* does not reach the 186 

reference value of 0.99 (dashed line in Fig. 1b) within the considered exposure time, indicating that UV-187 

B exposure does not fully reveal the original color of the gypsum plate. 188 

The deconvoluted C1s XPS spectra recorded on Areas 1-3 are shown in Fig. 2a (the C1s and O1s 189 

spectra, including those of the bare gypsum plate and the lamp black particles are presented and further 190 

discussed in the supplementary material S1). The black crust of Area 1 (Fig. 2a, bottom) presents a main 191 

peak located at a binding energy of 284.8 eV corresponding to the lamp black particles, and typical of 192 

graphitic materials [13]. The second peak at 288.2 eV is related to carbonate CO3, likely in the form of 193 

calcium carbonate CaCO3 [14] contaminating the gypsum plate surface, a contamination of unknown 194 

origin. It is already present on the bare gypsum spectrum (see supplementary material S1) and is detected 195 

in Area 1 as the substrate is not perfectly covered by the carbon crust (see below, SEM results, Fig.5a). 196 

The lamp black peak contributes to 49 at. % to the elemental surface composition of Area 1 (Fig. 2b). 197 

After laser cleaning (Area 2) the carbonate peak at 288.2 eV has increased relatively to the other 198 

contributions (Fig. 2a, middle). The residual carbon peak, now shifted at 285.5 eV, represents only 4 at. 199 

% of the elemental composition of Area 2 (Fig. 2b). This + 0.7 eV shift indicates that this residual carbon 200 

is not of the same kind than the initial lamp black particles. Binding energies of 285.5 eV correspond to 201 

aliphatic hydrocarbons [15], which therefore dominate the composition of the residual carbon layer. A 202 

further C1s peak at 291.6 eV appears, typical of CO2 [16]. We assume that a part of the CaCO3 species 203 

located at the very surface (typically 1 nm in depth) have been decomposed in CaO + CO2 [17] under 204 

the laser beam. CO2 remains trapped in the subsurface region, perhaps through chemical complexation 205 

or in nano-bubbles. As this reaction takes place at T°> 800°C, it allows setting at 800 °C the lower 206 

temperature experienced by the first atomic layers of the gypsum surface during the laser treatment. 207 
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After UV-B exposure (Area 3, Fig. 2a top), the residual carbon peak at 285.5 eV has almost totally 208 

disappeared. The remaining signal represents only 0.75 ± 0.15 at. % (rounded at 1 at. % Fig.2b) of the 209 

elemental composition of Area 3 (Fig. 2b), while the CaCO3 and the CO2 peaks are still present. UV-B 210 

induces the removal of the residual carbon compounds, which eventually whitens the gypsum surface 211 

[8,11]. We suppose that this 1 at. % of remaining carbon precludes the full recovery of the original 212 

chromaticity of the gypsum plate (Fig. 1b). 213 

The FTIR spectra of the gypsum substrate and those of Areas 1-3 are displayed in Fig. 3, after baseline 214 

subtraction and normalization by their integrated area. The most intense absorption bands come from 215 

the bending (δ)	and stretching (υ)	vibration of gypsum, located at 1010 (υ1 SO4), 1150 (υ3 SO4), 1620 216 

Figure 2. a/ Deconvoluted C1s XPS lines 
of Areas 1-3. b/ Contributions to the total 
surface composition (in at. %) of the lamp 
black (LB) C1s line in Area 1, and of the 
residual carbon (RC) C1s lines in Area 2 
and 3.  
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(δ	O-H··O), 1680 (δ	O-H··O), 3240 (υ	O-H··O), 3410 (υ	O-H··O), and 3550 cm-1 (υ	O-H··O) [18]. 217 

Very weak bands coming from CH and CC vibrations are also present but barely distinguishable on Fig. 218 

3. 219 

The CH and CC vibrations can be studied on the two ROIs (1300-1600 cm-1 and 2800-3100 cm-220 

1) presented Fig. 4a and 4b where the spectral intensities have been renormalized to the gypsum bands 221 

at 1680 cm-1 (Fig. 4a) and 3410 cm-1 (Fig. 4b). In the 1300-1600 cm-1 region (Fig. 4a), these bands are 222 

assigned to the C-H bending bands of aliphatic compounds (δ	CH3 sym. ~1390 cm-1; δ	CH2 ~ 1430 cm-223 

1; δ	CH3 asym. ~ 1470 cm-1) and to the stretching bands of aromatic rings (υ	C=C ~ 1540 and 1600 cm-224 

1) [19]. In the 2800-3100 cm-1 region (Fig. 4b), the absorption bands are assigned to the C-H stretching 225 

bands of aliphatic and aromatic compounds (υ	CH2 bridges ~ 2825 cm-1; υ	CH2 sym. ~ 2850 cm-1; υ	CH3 226 

sym. ~ 2875 cm-1 υ	CH ~ 2895 cm-1; υ	CH2 asym. ~ 2920 cm-1; υ	CH3 asym. ~ 2960 cm-1, υ	CH aromatic 227 

at 3030 cm-1) [19,20]. These organic compounds are present in the lamp black particles, made of a 228 

mixture of small bent graphitic crystallites (see below, TEM results) and matrix-bonded hydrocarbons. 229 

Assuming that the substrate bands remain unaltered by the different treatments on the depth probed by 230 

the ATR technique, the normalization allows estimating the relative changes in the carbon coverages 231 

Figure 3. Baseline corrected ATR-FTIR spectra obtained on the reference gypsum plate and areas 1-3. 
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with the different treatments. A spectral deconvolution of the FTIR signal is therefore presented in Fig. 232 

4 for the two ROIs. 233 

In Area 1 the prevalence of the two absorption bands at 2850 and 2925 cm-1 (CH2 symmetric 234 

and asymmetric stretching modes, in blue lines on Fig. 4b) with respect to those of the CH3 groups 235 

terminating the aliphatic chains (in orange lines) indicates that these chains are long. The band at 2895 236 

cm-1 (in purple line on Fig. 4b) is related to C-H stretching of tertiary carbon atom at branching points 237 

of the aliphatic chains [20]. The absorption band at 2825 cm-1 is assigned to CH2 groups located near 238 

sp2-hybridized carbon (in green on Fig. 4b), for instance in aliphatic species bonded to (or binding) the 239 

edge(s) of the graphitic crystallites [20]. This band is not detected anymore in the spectrum of Area 2, 240 

indicating that these peripheral CH2 groups have disappeared after the laser impact. This is a further 241 

Figure 4. Contribution of the different vibrational modes on the curve fitting analysis of regions a/ 
1300-1600 cm-1 and b/ 2800-3100 cm-1. The reference spectrum of the lamp black powder was also 
fitted in the 2800-3100 cm-1 domain for comparison. 
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evidence, with XPS, that the structure of the residual carbon compounds is different from the initial 242 

lamp black particles. Yet, the C-H stretching bands of aliphatic chains (2850 and 2925 cm-1), the 243 

stretching bands of aromatic rings (υ	C=C ~ 1540 and 1600 cm-1), and aromatic C-H stretching (υ	CH 244 

aromatic at 3030 cm-1) are still observed, with a different intensity balance. If the residual carbon 245 

compounds are dominated by aliphatic species, they also contain aromatic hydrocarbons. The layer of 246 

organic carbon after laser cleaning is also thinner, since all the infrared bands have strongly decreased 247 

in intensity. Molecular organic compounds were also identified recently by Papanikolaou et al. [21] 248 

through their fluorescence contribution to the Raman signal of laser-cleaned marbles. These compounds 249 

are eventually bleached upon UV-B exposure, as barely no corresponding absorbance bands are detected 250 

in Area 3 (Fig. 4b). They are likely below the detection limit, as some remaining signal of the 251 

corresponding C-H groups is observed in the 1300-1600 cm-1 region of Area 3 (Fig. 4a). In this spectral 252 

region, a decrease of the infrared signal is also observed with the treatments, but less markedly than in 253 

the C-H stretching region. 254 

The SEM observation of Area 1 reveals that the gypsum plate is made of a mixture of prismatic, 255 

lamellar to acicular crystals with sharp edges entangled together (Fig. 5a). The lamp black particles lie 256 

on the crystals and consist of aggregates of submicronic spherical particles (Fig. 5a and b). Some parts 257 

of the substrate remain uncovered, as already inferred from the XPS data (Fig. 2a, Area 1). On the laser 258 

cleaned surface (Area 2), the same mixture of prismatic, lamellar and acicular gypsum crystals is 259 

observed (Fig. 5c), but the lamp black aggregates have disappeared. Single submicronic round particles 260 

are sometimes detected (Fig. 5d, arrow), in rare places where the surface of the gypsum crystals is 261 

altered. This occurs probably when the crystals are not covered with lamp black particles, and 262 

consequently absorb all the laser energy. 263 
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TEM micrographs show that the lamp black particles consist of primary spherical nanoparticles 264 

arranged in aggregates (Fig. 6a). The diameter of the primary nanoparticles ranges from 50 to 200 nm 265 

(Fig. 6a and b). Higher magnification (Fig. 6c) reveals their inner structure: the dark fringes correspond 266 

to small bent graphitic layers, concentrically arranged in an onion-like structure typical of soot particles 267 

[22]. After laser treatment the ejected particles have been also analyzed at high magnification. Some of 268 

them retain this initial structure (Fig. 6d), but new kinds of particles are observed. Figs. 6e-f show a 269 

class of particles with concentric multifaceted stacks of graphitic layers (white arrow on Fig. 6f) 270 

wrapping voids. A second type of particles displays evidences of a partial destruction (Fig. 6g), where 271 

graphitic stacks (Fig. 6h and i, white arrow) coexist with an amorphous carbon phase (Fig. 6g, black 272 

arrow), and where the concentric organization is lost. These images correspond well to the observed 273 

structural and chemical changes of carbon nanoparticles upon laser annealing [23,24], which 274 

simultaneously induces the crystallization of a part of the particles and the vaporization of another part, 275 

Figure 5. SEM micrographs of gypsum covered with lamp black before (Area 1) and after Q-S laser 
cleaning (Area 2) obtained in secondary electron mode. a/ Surface of the plaster plate showing 
gypsum crystals covered with aggregates of lamp black particles (Area 1). b/ Aggregates of lamp 
black particles of spherical shapes (Area 1). c/ Surface of the plate after Q-S laser cleaning (Area 2). 
d/ Details of the gypsum crystal where some alterations are observed (Area 2). 
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followed by the formation of a condensed amorphous carbon phase from the carbon evaporated in the 276 

gas phase [23]. 277 

 278 

Figure 6. Structural reorganization of the lamp black particles. Bright field TEM micrographs of the 279 
lamp black particles before (a to c) and after Q-S laser cleaning (d to i). a/ to c/ aggregate composed of 280 
spherical nanoparticles, made of small graphitic planes (dark fringes) concentrically arranged. d/ to f/ 281 
aggregate of particles after laser irradiation showing alternating graphitic stacks (white arrow) and voids. 282 
g/ to i/ ablated particles with elongated and/or folded ribbon structures (white arrow) mixed with an 283 
amorphous carbon phase (black arrow). 284 

 285 

5. Discussion 286 

The TEM observations of the ejected particles indicate that the lamp black aggregates have been 287 

processed at very high temperatures under the laser beam. Indeed, since the thermal diffusion length is 288 
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(4Dt)1/2 where D is the thermal diffusivity of the material and �	the laser pulse duration [25], the energy 289 

of short laser pulses is mainly absorbed in a small thickness [2]. As reported by Abrahamson et al. [23], 290 

annealed particles like those of Fig. 6e readily form after a single pulse at 50 mJ/cm2 of a same Nd:YAG 291 

Q-switched laser at 1064 nm, corresponding to an equivalent temperature of 2850°C. This induces the 292 

stacking, the growth and the de-winkling of the graphitic planes [26], accompanied by the increase of 293 

the graphitic character of the considered particles [24]. At increased number of pulses, Abrahamson et 294 

al. measured a maximum temperature of 4180°C (> 4 pulses or 300 mJ/cm2) and starts detecting C2 295 

(ethene) and C3 (propadiene) radicals in the incandescence signal of the laser plume. However, carbon 296 

vaporization already starts below 4 pulses (at 3500°C), as the authors observed solidified carbon material 297 

formed by nucleation of vaporized carbon [24]. In our case, laser cleaning is achieved at pulse frequency 298 

(10 Hz) and fluence (200 - 400 mJ/cm2) conditions where both graphitization and vaporization occur. 299 

This leads to various forms of the ejected carbon particles observed by TEM: multifaceted annealed 300 

particles (Fig. 6e), partially annealed unstructured particles mixed with an amorphous carbon phase (Fig. 301 

6g), and finally intact particles (Fig 6b). 302 

On the substrate side, we have seen that within the 1 nm in depth probed by XPS, the laser treatment 303 

has increased the surface temperature to a minimum of 800°C, as indicated by the decomposition of 304 

calcite (Fig. 2). At such temperature, dehydration of the surface of gypsum crystals certainly occurs, as 305 

this process starts around 120°C. Yet, the Ca 2p line (not shown) remains unchanged after the laser 306 

treatment. In particular, no CaO species are detected, and therefore anhydrous gypsum has not thermally 307 

decomposed into CaO + SO2+ ½ O2 [27]. Since this reaction starts around 1200°C, it allows estimating 308 

the maximum surface temperature at 1200°C. Note however that the melting point of CaSO4 is not far 309 

above, at 1460°C. If the surface temperature gets close to 1460°C at some places, it is not surprising to 310 

observe some altered gypsum crystals and round particles (Fig. 5d) resulting from the (partial) melting 311 

of gypsum. However, since the gypsum bands in the infrared spectra remain unchanged (Fig. 3) upon 312 

the laser treatment, no thermal alteration of the bulk of the gypsum substrate has occurred. This is 313 

consistent with the limited thermal diffusion length of the laser pulse into the substrate (28 nm). 314 
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The SEM observations clearly indicate that no lamp black aggregates remain after laser cleaning. 315 

Therefore, the residual carbon results from the deposition of volatile carbon species at the surface of the 316 

gypsum substrate. At the laser impact, the lamp black particles explode, are vaporized, chemical bonds 317 

are broken, producing a plasma mixing atoms, molecules, and ions, where gas-phase chemical reactions 318 

occur. A fraction of the formed products can condense on the gypsum substrate. The resulting organic 319 

compounds are not visible by SEM, but they yellow the substrate. FTIR and XPS indicate that the 320 

residual carbon is made of hydrocarbon dominated by aliphatic species, mixed with few aromatic 321 

species. Their organic nature is essential for the facile degradation by UV-B radiation, through 322 

photooxidation of linear or cyclic aliphatic [28] and aromatic hydrocarbons [29], that would not take 323 

place if they were highly graphitic or made of residual black lamp particles [30]. Literature indicates 324 

that laser ablation/vaporization of carbon particles produces small gas-phase carbon clusters [31] at 325 

T°<3500°C, and carbenes C2 and C3 at T> 4180°C (and this is probably not limited to these species) 326 

[24]. In any case, the formation of hydrocarbons requires both the catenation (polymerization) of carbene 327 

- a facile reaction-, and a further hydrogen addition to the formed carbon chains. Hydrogen is provided 328 

by the laser dissociation of water molecules coming both from dehydration of the gypsum surface and 329 

from the water sprayed by the operator before the laser cleaning. Indeed, in presence of nanoparticles, 330 

water radiolysis and breakdown are caused by the secondary electrons flux generated by the visible/IR 331 

laser irradiations [32,33]. Water dissociation also provides O and OH radicals allowing for oxidation 332 

and hydroxylation of the carbon precursors. Since the residual carbon compounds yellow the surface, 333 

they include specific species not absorbing in the 560-590 nm wavelength range. A possible candidate 334 

is the carbonyl group -C=O, which causes the yellowing of organic polymers [34]. Similar to the 335 

hydrogenation reactions, -C=O groups can form by oxidation of the carbon precursors. Their probable 336 

low concentration makes them difficult to detect with infrared spectroscopy, and, furthermore, their 337 

typical bands (1670-1820 cm-1) are hidden by the bending OH vibrations of the gypsum substrate. XPS 338 

would be more sensitive, but the C=O groups also lie close in energy to the CO3 group of the calcium 339 

carbonate, making their detection difficult. 340 
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This study evidences, on a model system, the contribution of hydrocarbons stemming from the 341 

laser annealing of the lamp black particles. In the actual conditions of black crust soiling artworks, this 342 

process will add to the other causes of yellowing reported in the literature so far, such as the diffusion 343 

of soluble organic compounds [5,35], and the chemical transformations of iron oxides [12]. 344 

 345 

6. Summary and conclusions 346 

Black crust frequently covers stones and plaster of artworks in urban environments. The Nd:YAG 347 

Q-Switched laser cleaning of the soiled surfaces at 1064 nm induces however a noticeable yellowing. 348 

While this phenomenon is now mitigated by the simultaneous [21] or consecutive use of UV-B [8,11], 349 

the nature of the yellowing compounds remains unknown. The present study shows, on a model system, 350 

that the initial lamp black crust is composed of aggregates of graphitic spherical nanoparticles with 351 

matrix-bonded organic species. The Nd:YAG Q-Switched laser provokes the ablation/vaporization of 352 

these particles. Some of the ejected particles seem intact, others show signs of annealing at very high 353 

temperature, such as partial graphitization or partial destruction accompanied by amorphization. A part 354 

of the laser energy is transferred to the top surface of the gypsum substrate, causing the dissociation of 355 

the calcium carbonate contaminating the substrate, within a depth of 1 nm probed by XPS. The laser 356 

ablation of the carbon nanoparticles produces a plasma plume where carbon species can polymerize and 357 

react with hydrogen and oxygen produced by the dissociation of water, emitted by both the gypsum 358 

surface and spread by the operator. This leads to the formation of hydrocarbon chains and few aromatic 359 

species which redeposit on the substrate. The yellow color could be due to the presence of some carbonyl 360 

groups (C=O) attached to the polymeric chains. The organic nature of this residual carbon allows for its 361 

facile photooxidation under the subsequent UV-B exposure. 362 

In the light of these results, could laser cleaning be improved? The fluence and frequency of the 363 

laser pulse are set just at the ablation threshold to allow for the removal of the particles. Yet, their 364 

vaporization occurs despite this minimum deposited energy. The water sprayed before cleaning strongly 365 

enhances the process [25], but hydrogen and oxygen radicals provided by water favor the conversion of 366 
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vaporized carbon into hydrocarbon species, and their oxidation is at the origin of the yellow color. Even 367 

at 25°C and a typical 40% relative humidity, the partial pressure of atmospheric water (9.6 Torr) might 368 

provide enough water molecules (3.1 1017 molecules.cm-3) for these reactions to occur if no water is 369 

sprayed by the operator. From all these considerations, avoiding the formation of such a yellowish 370 

residual hydrocarbon film after laser cleaning seems rather difficult. It makes the subsequent UV-B 371 

exposure mandatory [8,11,21]. 372 
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S1. C1s and O1s XPS  
 

Fig. S1 presents the C1s (left panel) and O1s (right panel) data of the bare gypsum plate 

(bottom), the lamp black particles (top), and those of Areas 1-3 (covered with lamp black; after 

laser cleaning; after laser cleaning + UV), whose C1s data are shown also Fig. 2 of the article.  

 

a/ C1s XPS spectra 

 

The C1s spectra are normalized to their integrated intensity to allow for their comparison. 

 

Figure S1. Deconvoluted C1s (left) and O1s (right) XPS lines of bare gypsum (bottom), of Areas 

1-3 and lamp black (top). 
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-The C1s spectrum of the lamp black particles is scaled for display (left panel, top). It is 

deconvoluted in 4 components [1] : the most intense peak at 284.8 eV is related to C-C bonds 

of the graphitic layers of the primary particles. The shake-up (or plasmon) peak at 290.3 eV 

results from this graphitic nature. The lamp black particles are also oxidized, as shown by the 

two contributions of oxidized carbon at 286.0 eV (C-O) and 287.9 eV (C=O).  

- The C1s spectrum of the bare gypsum plate (left panel, bottom) presents a peak at 284.8 

eV, typical of adventitious hydrocarbons CxHy, and a second one at 288.0 eV assigned to CaCO3 

[2,3] contaminating the gypsum plate. This peak could hide some oxidized groups belonging to 

the adventitious carbon species, if any. 

- The C1s spectrum of Area 1 is made of two peaks. The one at 288.0 eV is assigned to 

CaCO3 visible through holes in the lamp black crust, and the second at 284.8 eV assigned to 

the lamp black peak. This peak certainly contains a (attenuated) contribution of the adventitious 

carbon detected on the bare gypsum plate (284.8 eV), which will also be visible through these 

holes. The C1s peak at 284.8 eV is fitted with a broad single component, and therefore the slight 

oxidized part of the lamp black spectrum is not simulated.  

- The C1s spectra of Area 2 and 3 are made of three peaks. The most intense peak at 

288.0 eV is the CaCO3 peaks, which increases relatively to the lamp black contribution after 

laser cleaning (Area 2) as the particles are ablated, and after UV exposure (Area 3). As 

explained in the article, the second peak at 285.5 eV is assigned to the neo-formed phase of 

carbon that redeposits after laser ablation/vaporization (residual carbon, Area 2). The UV 

exposure makes it almost completely disappear (Area 3). The CO2 peak at 291.6 eV is a side 

effect, due to the laser decomposition of CaCO3 (see main text). 

 

 

b/ O1s XPS spectra 

 

The O1s spectra are normalized to the integrated intensity of the Ca2p3/2 peak (except for 

lamp black) to allow for their comparison. The raw O1s spectrum of lamp black is scaled for 

display. 

 

-The O1s spectrum of the lamp black particles (right panel, top) is a single peak at 530.8 

eV, which includes the two contributions of the oxidized carbon groups (C=O and C-O) [4]. 

- The O1s spectrum of the bare gypsum plate (right panel, bottom) presents a main peak 

at 533.9 eV assigned to gypsum CaSO4.2H2O, that might include a weak contribution of CaCO3 
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(energy calibration differs from [5]), and a broad one at 530.8 eV related to the oxidized carbon 

groups of the adventitious carbon species contaminating the gypsum plate.  

- The O1s spectrum of Area 1 presents a substrate peak (CaSO4.2H2O) - pointing out 

from the holes of the lamp black particles-, and a contribution of the oxidized carbon groups of 

lamp black at 530.8 eV. 

- The O1s spectra of Area 2 and 3 are made of two peaks. The most intense peak at 533.9 

eV is that of gypsum CaSO4.2H2O. The peak at 530.8 eV strongly decreases after laser 

ablation/vaporization (Area 2). We assign it as mainly due to the oxidized part of the neo-

formed phase (labelled “residual carbon”), eventually bleached after the UV treatment (Area 

3).  

The O1s evolution of the carbon oxide peaks from Area 1 to Area 3 is fully consistent 

with that of the C1s peak at 284.8 eV related to the lamp black particles contribution before/after 

ablation/vaporization and the subsequent UV exposure. 
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