
HAL Id: hal-02285040
https://hal.science/hal-02285040

Submitted on 12 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interactive Elicitation of a Majority Rule Sorting Model
with Maximum Margin Optimization

Ons Nefla, Meltem Öztürk, Paolo Viappiani, Imène Brigui-Chtioui

To cite this version:
Ons Nefla, Meltem Öztürk, Paolo Viappiani, Imène Brigui-Chtioui. Interactive Elicitation of a Ma-
jority Rule Sorting Model with Maximum Margin Optimization. ADT 2019 - 6th International Con-
ference on Algorithmic Decision Theory, Oct 2019, Durham, NC, United States. �hal-02285040�

https://hal.science/hal-02285040
https://hal.archives-ouvertes.fr


Interactive Elicitation of a Majority Rule Sorting Model
with Maximum Margin Optimization
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Abstract. We consider the problem of eliciting a model for ordered classifica-
tion. In particular, we consider Majority Rule Sorting (MR-sort), a popular model
for multiple criteria decision analysis, based on pairwise comparisons between
alternatives and idealized profiles representing the “limit” of each category.
Our interactive elicitation protocol asks, at each step, the decision maker to clas-
sify an alternative; these assignments are used as training set for learning the
model. Since we wish to limit the cognitive burden of elicitation, we aim at asking
informative questions in order to find a good approximation of the optimal clas-
sification in a limited number of elicitation steps. We propose efficient strategies
for computing the next question and show how its computation can be formulated
as a linear program. We present experimental results showing the effectiveness of
our approach.

Keywords: preference elicitation · ordinal classification · incremental elicitation
·MR-sort · simulations.

1 Introduction

There are several situations where it is necessary to classify objects, defined on several
criteria, into ordered classes (for example, credit ratings, evaluating students, hotel cate-
gorization, etc). Such ordinal classification problems, also called multi-criteria sorting,
have been considered by ELECTRE TRI [16,19], a popular method from the field of
multi-criteria decision analysis that has been successfully applied to several domains.

Majority Rule Sorting (MR-sort) [15] is a simplified version of ELECTRE TRI be-
longing to a class of “non compensatory” decision models that have been axiomatized
by Bouyssou and Marchant [5]. The remarkable characteristic of the MR-sort procedure
is that its classifications are readily explainable to the users. In MR-sort an alternative
is assigned to a category when it is “at least as good as” an idealized profile describ-
ing the category’s lower “limit” and “not better” than the category’s upper limit. The
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limit profiles encode the characteristics that an alternative should have in order to be
assigned to a particular class according to the decision maker (for example: a 4-stars
hotel should have rooms of at least a certain size, it should have a swimming pool, a
5 star hotel should have a classy restaurant, etc). The relation comparing alternatives
and limit profiles is based on a weighted majority rule (in Sobrie et al. [21] a non linear
model for combining the weights is considered).

In order to use MR-sort in practice, it is necessary to undertake a preference elic-
itation phase in order to assess the parameters of the model. The “classical” approach
to elicitation consists in a fine grained assessment of the model parameters; however
since it is often not reasonable to directly ask the decision maker about the values of
the parameters of the model, we adopt an incremental elicitation approach and we as-
sume that the decision maker can easily classify one given alternative into one of the
categories; the information provided by the user can be used to update the model and
provide a better result. The intuition is that, by selectively choosing which items the
decision maker could classify, we could retrieve a good approximation of the “correct”
model of the decision maker (DM) even with a small number of examples. We also
stress that the information provided by the user may be noisy, as she may have made a
mistake in assessing the right category for the alternative.

In this paper we adopt max-margin optimization, whose main principle is the fol-
lowing. The currently known assignments of items to categories are encoded by a set
of inequalities on the feasible parameters; a shared non-negative margin is introduced
as a decision variable that is maximized in the objective function. Noisy feedback is
addressed by relaxing the constraints using slack variables and adding a penalty term in
the objective function for violated constraints. In this paper, we propose an incremental
approach for eliciting the parameters of a MR-sort model; at each step of the elicitation
procedure, the system asks a question to the user and the question is specifically cho-
sen in order to be as “informative” as possible. Our main algorithm repeatedly uses the
max-margin optimization routine with two goals 1) to make an estimation of the model
parameters given the current information 2) to determine a measure of uncertainty as-
sociated with a potential question. For the second goal, we consider different strategies
based on computing the maximum-margin a posteriori (considering the different an-
swers that the decision maker could give).

We now provide a brief discussion about related works. Reasoning with preferences
[7] is an important issue in artificial intelligence. Several researchers have dealt with the
problem of dealing with an incompletely specified preference model and with the issue
of preference elicitation [4,6,24,27]. In the machine learning community, approaches
for preference learning have been proposed [10], including approaches for ordinal clas-
sification (see Chapter 8 in [17], and, for instance [9] and [11]).

Our work is stimulated by recently proposed approaches for eliciting multi-attribute
utility functions using maximum-margin optimization [25,26] in configuration prob-
lems. The maximum-margin optimization that we adopt has been used (with some
variations) in previous works [21,22] that tackled the problem of learning the weights
of a MR-sort model; these works, however, did not consider incremental elicitation.
Bennabou et al. [2,3] recently proposed interactive elicitation methods based on mini-
max regret for ordinal classification problems (with a related but different model); these
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methods however have the inconvenience that they are not tolerant to errors in the re-
sponses of the decision maker.

The paper is structured as follows. After some background in Section 2, we present
MR-sort model in Section 3 and the interactive elicitation in Section 4. We then discuss
our experimental results in Section 5 and provide some final comments and directions
for future work in Section 6.

2 Background

We consider a set X of m items that are evaluated with respect to a set of criteria C =
{criterion1, . . . , criterionn}. Criteria associate items with a performance evaluation;
(with little abuse of notation, we use x to refer to both the item and its evaluation vector).
The evaluation of x is a vector (x1, x2, . . . , xn) ∈ E1 × . . . En. The sets E1, . . . , En are
totally ordered and represent the space of criteria evaluations. Indeed we are interested
in ordinal classification methods that allow the criteria evaluations to be defined on
scales not necessarily numerical, and that can differ among the criteria. We use [m] to
denote the set {1, . . . ,m}.

MR-sort [15] is a multi-criteria ordinal classification method allowing to assign
alternatives to ordered categories. The set of categories is denoted by C = {C1, C2, . . . ,
Cp}. Categories are ordinal, C1 being the worst and Cp the best one. Each category Ch
is characterized by two “fictitious” items bh = (bh1 , ..., b

h
n) ∈ E1 × . . . En and bh+1 =

(bh+1
1 , ..., bh+1

n ) ∈ E1 × . . . En; these are called the limit profiles of Ch and we denote
by B = {b1, b2 . . . , bp+1} the set of such limit profiles. Limit profiles play the role of
the lower and the upper bounds of the category Ch; limit profiles of higher categories
dominate the lower ones: ∀k = 1, . . . , n, bi+1

k ≥k bik and ∃j, bi+1
j >k bij , where

≥k is the binary relation on the evaluations on the criterionk. There are two special
limit profiles, b1 and bp+1 that are defined as the minimum and the maximum values:
b1 = (b11, ..., b

1
n), such that ∀i, b1i = minx∈X(xi) (resp. bp+1 = (bp+1

1 , ..., bp+1
n ), such

that bp+1
i = maxx∈X(xi)). To fully specify a MR-sort model we need to associate each

criterion cri with a numerical weight wi, that intuitively represents its importance. A
parameter λ is called the majority threshold, whose role will become clear below.

The procedure for making assignments is based on pairwise comparisons between
objects ofX and limit profiles. An alternative x is assigned to the categoryCh if it is “at
least as good as” the lower limit profile bh and it is not “at least as good as” the upper
limit profile bh+1 according to a binary relation �. Indifference : x ∼ y ⇐⇒ x � y
and y � x.

x→ Ch ⇐⇒ x � bh and x � bh+1 (1)

where x → Ch means that alternative x is assigned to category Ch. An item x that is
indifferent to the upper limit profile of the best category (x ∼ bp+1, meaning x � bp+1

and x � bp+1) is assigned to Cp. The binary relation �⊆ (E1× . . . En)× (E1× . . . En)
is based on the weighted majority principle:

x � bh ⇐⇒
∑

i:xi≥ibhi

wi ≥ λ (2)
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Example. Assume that we have 5 hotels (x, y, z, t, u) defined on n = 3 criteria (cost,
comfort, quality of the restaurant). Our aim is to assign our hotels into p = 3 categories
(C1: 1 star, C2 : 2 stars, C3 : 3 stars). The MR-sort model parameters are: λ = 0.55,
w = (0.2, 0.5, 0.3). The criteria evaluation scale is between 0 and 5 (5 being the best
score) for criterion1 and criterion2; the scale for criterion3 is between 0 and 10.
Table 1 presents the performances of the limit profiles and the alternatives; Table 2 their
comparisons using � and the assignments of alternatives.

criterion1 criterion2 criterion3

b1 0 0 0
b2 2 2 4
b3 4 4 8
b4 5 5 10

x 1 2 3
y 3 3 8
z 1 5 8
t 1 3 10
u 1 2 1

Table 1. Performance of limit profiles
b1, b2, b3, b4 and alternatives x, y, z, t, u

b1 b2 b3 b4 Assignment

x�� � � C1

y��� � C2

z��� � C3

t ��� � C2

u�� � � C1

Table 2. Comparison between alternatives
and profiles and final assignments.

Note that the MR-sort method allows the use of heterogeneous scales since the only
information being useful for the relation � is an ordinal one. Hence, a problem with
only ordinal scales or with different types of scales (interval one, ratio one and ordinal
one) can be handled without difficulty by an MR-sort model.

3 Learning a MR-sort model from assignments

We assume that we are given some assignments of alternatives to categories. In this
work we assume that limit profiles are given. In the following, we first introduce the
notion of possible and necessary categories, and then we present a maximum-margin
optimization for learning the parameters of a MR-sort model.

3.1 Possible Categories

Let A be the set of alternatives whose category is known and LS the “learning set”
(pairs of alternatives and categories): LS = {(x,Ch), x ∈ A, x → Ch}. From LS,
assuming an underlying MR-sort model, we can reason about the weights that are con-
sistent with the current knowledge. According to Equation (1) and (2), an assignment
of the type x DM−−→ Ch (made by the decision maker) corresponds to imposing the linear
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constraints:

∑
i:xi≥bhi

wi ≥ λ (3)

∑
i:xi≥bh+1

i

wi < λ (4)

Let Θ(LS) be set of parameters that are compatible with the learning set LS, satisfying
constraints (3) and (4) for all pairs in LS, and the requirements that the weights are non
negative and normalized.

When dealing with partially specified preference models, it is typical to reason about
possible and necessary preference information [13]. In our context, given an alternative
and its performance evaluation we can reason about the parameters that are consistent
with the current knowledge.

Now, given an item x 6∈ A, we define the set of possible categories PC(x; LS) as the
set of categories such that there is an instantiation of the parameters θ = {w1, . . . , wn, λ}
consistent with the assignment given the previously known assignments LS.

PC(x; LS) = {Ci ∈ C | ∃θ ∈ Θ(LS) : x
θ−→ Ci}

where we write x θ−→ Ci to emphasize the dependency between the parameters θ and the
assignment. If there is only one possible category, i.e. |PC(x)| = 1, then it means that
the alternative has to be necessarily assigned to the only category in PC (assuming that
the model is consistent with the learning set; in Section 3.2 we discuss how to handle
inconsistencies). In practice it is possible that a partial knowledge about the parameters
allows us to determine in which categories we have to place several alternatives. We an-
ticipate that the concept of possible categories plays an important role in our elicitation
strategies (see Section 4.2).

3.2 Maximum margin optimization

We now address the problem of learning the parameters θ = {w1, . . . , wn, λ} of a MR-
sort model (given a set of learning assignments) with a linear program. We assume that
we are given as input the following values: the number of criteria n, the number of
categories p, and the limit profiles bh for each h ∈ [p]. Our goal is to assess the weights
w and the majority threshold λ, that are decision variables for the optimization problem.
In order to discriminate between different choices for the parameters, the first step is to
introduce a shared margin µ as an additional decision variable. The first linear program
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(LP) assumes that the data in LS is perfectly consistent with the MR-sort model.

µ∗ = max µ (5)

s.t.
∑

i:xi,≥bhi

wi ≥ λ+ µ ∀(x,Ch) ∈ LS (6)

∑
i:xi≥bh+1

i

wi ≤ λ− µ ∀(x,Ch) ∈ LS (7)

n∑
i=1

wi = 1 (8)

µ ∈ R (9)
wi ≥ 0 ∀i ∈ [n] (10)

Constraints (6) and (7) correspond to Equations (3) and (4) with the inclusion of the
shared margin µ. Note that later in Section 4.2 we will use µ∗(LS) to denote the appli-
cation of the LP above to find the value of the best compatible margin.

We observe that in general there may be occasional inconsistencies in user feedback,
or simply the data may not be compatible with a MR-sort model. The “typical” way to
handle this is to introduce slack variables (whose sum we aim at minimizing); this idea
goes back to the UTA approach [14] and several later models [12,1]. We formalize the
problem of finding the weights of a MR-sort model (given a set of learning assignments)
with the following linear program.

m∗ = max µ− α
∑

(x,Ch)∈LS

ξi,j (11)

s.t.
∑

i:xi,≥bhi

wi + ξx,h ≥ λ+ µ ∀(x,Ch) ∈ LS (12)

∑
i:xi≥bh+1

i

wi − ξx,h ≤ λ− µ ∀(x,Ch) ∈ LS (13)

n∑
i=1

wi = 1 (14)

µ ∈ R (15)
ξx,h ≥ 0 ∀(x,Ch) ∈ LS (16)
wi ≥ 0 ∀i ∈ [n] (17)

The variables are the following: λ ∈ [0, 1], wi ∈ [0, 1]∀i ∈ [n], µ ∈ [0, 1] and
ξx,h ∈ [0, 1] ∀x ∈ LS such that x assigned to Ch. We use a parameter α to express
the “cost” of violating a constraint representing assignments from the learning set. The
objective (Equation 11) is to maximize the shared margin µ (that we want to maximize)
minus the sum of the constraints violations ξi,j (that we want to minimize). In order
to be able to handle the inconsistency in the user’s answers we add a slack variable
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(ξx,h) for each x ∈ A and for each h ∈ {1, . . . , p}. Constraint 12 and constraint 13
handle the conditions related to the assignments of the alternatives in the learning set
LS. Constraint 14 enforces that the weights are normalized.

4 Incremental MR-sort

Algorithm 1 The MR-sort-Inc algorithm. K is the number of questions, X the set of
alternatives, C the set of categories, LS (LS = {(x,Ch), x ∈ A, x → Ch}) learning
assignments, s the strategy.
1: Procedure MR-sort-Inc(K,X,C,LS,s)
2: for j ← 1, . . . ,K do
3: Compute m∗(LS) and associated w∗ and λ∗ with linear program
4: Classify items in X \ A using w∗ and λ∗

5: Compute classification error . This is only possible in simulations
6: for x ∈ X \ A do . Evaluate items to decide next question
7: for Ci ∈ C do
8: LS′ ← LS∪{x→ Ci} . Include additional assignment
9: vi(x)← m∗(LS′) . Compute margin a posteriori

10: end for
11: Ss(x)← aggregate v(x) according to strategy s
12: end for
13: x∗ ← argmaxx(Ss(x)) . Decide what to ask next
14: Cx∗ ← Answer(x∗ →?) . Ask question to DM
15: LS← LS∪{(x∗, Cx∗)}
16: end for
17: return w∗, λ∗

In this section, we provide an elicitation method for an ordinal classification prob-
lem assuming that the preferences can be modeled by MR-sort.

4.1 Main Framework

Our elicitation procedure starts with a small learning set LS to which we add one-by-
one new assignment examples. We ask questions of the type “In which category should
x be assigned to?”; it is crucial to select “informative” items to ask about, in order to
quickly converge (in few interaction cycles) to a good classification model.

We remind that a MR-sort model is defined by the following parameters: the weights
(w1, . . . , wn), the limit profiles (b1, . . . , bp+1) and majority threshold λ. We fix the
limit profiles before the beginning of the elicitation. In the experiments below the limit
profiles are chosen in a way to evenly partition the criteria scale. The main steps of
our approach are presented in Algorithm 1. Briefly, we start with some data from the
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learning set LS (learning alternatives A and their classification) and we include them
as constraints in our linear program (LP). Given the learning set, we can estimate the
weights w∗ and λ∗ using the linear program; in simulations we can also evaluate the
classification error. After that, we test the assignment of each unassigned item to each
category and retrieve the margin values obtained when using the optimization routine
with each of the additional assignments. This gives us a vector of margins “a posteriori”,
that are aggregated differently depending on the “strategy” (different strategies will
be discussed in the following section), giving a score for each item. The item having
the highest score is chosen: the user is asked about the assignment of that item and
the learning set is augmented. This procedure continues until a stopping condition (in
our experiments when we reach a fixed number of questions, but in real applications
termination may be left to the user). The last linear program contains all the assignments
of the computed learning set, hence it provides the weights that we are looking for.

Example. We apply our incremental elicitation algorithm to the running example. Sup-
pose that we only know the assignment of alternative x (LS = {(x,C1)}) and we want
to ask just one question to the user. We first set the limit profiles: b1 = (0, 0, 0), b2 =
( 53 ,

5
3 ,

10
3 ), b3 = ( 103 ,

10
3 ,

20
3 ), b4 = (5, 5, 10). Our goal is to learn λ and a weight vec-

tor w′ which will assign the remaining alternatives to categories as close as possible
to the ones presented in Example 2. For this, according to our algorithm, we compute
the score of alternatives y, z, t, u (Ss(y),Ss(z),Ss(t),Ss(u)) and ask the assignment
of the alternative having the highest score. We add this new constraint to LS and find
the weight vector w∗ corresponding to the largest margin. Using w∗, we can find the
current best assignment of the remaining alternatives and compute 4 an error measure
using the assignments of Example 1 and the one that we find using w∗.

4.2 Question selection strategies

In the following we present several strategies to select the next question to ask to the
user. These strategies are used within our interactive elicitation paradigm described
in Algorithm 1. The proposed strategies makes use of the max-margin optimization
programs (discussed above in Subsection 3.2) to identify informative questions.

Most Uncertain With this strategy, we aim to ask the DM to classify the most uncertain
item in X \ A, that is the item that is compatible (according to the constraints derived
from the known assignments of the learning set) with the highest number of categories.
The score that this strategy assigns to an alternative x is given by the cardinality of the
set of possible categories: SMU(x) = |PC(x; LS)|.

The computation of the set PC(x) for an item xmakes use of the linear program for
learning the parameters of a MR-sort without the slack variables (Equations 5-10). For
each category Ci, we then constrain the item x to be assigned to Ci and simply check
whether the margin is non negative; indeed µ∗(LS∪(x,Ci)) > 0 if and only if Ci is
a possible category (Ci ∈ PC(x; LS)). The score of this strategy can be compactly

4 This step is of course only to be performed in simulations, in real use of the procedure the
classification error will not be known
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written as:

SMU(x) = |PC(x; LS)| =
p∑
i=1

H[µ∗(LS∪(x,Ci))]

where H(·) is the step function.

Example. Consider the problem presented in Example 2. We suppose that we know the
performance of each alternative, and the assignment of x, while the other assignments
are unknown. Assume that we want to ask just one question. As before, we fix b′1 =
(0, 0, 0), b′2 = ( 53 ,

5
3 ,

10
3 ), b′3 = ( 103 ,

10
3 ,

20
3 ), b′4 = (5, 5, 10). Table 3 presents the SMU

of all the remaining alternatives (step 3).

Alternatives PC(x; LS) SMU

y {C2, C3} 2
z {C1, C3} 2
t {C1, C2, C3} 3
u {C1} 1

Table 3. Number of possible categories for the example of hotel categorization.

As a result we ask the assignment of alternative t to the user. The user will answer
C2 to this question (coherent with Example 2) and the constraint related to t→ C2 will
be added to the LP. After the inclusion of the constraint t→ C2 in LS, we find our final
weight vector w∗, such as w∗ = (0.266, 0.366, 0.366). Even if w′ is different from the
weight vector of Example 2 (w = (0.2, 0.5, 0.3)), after our incremental elicitation we
find the same assignments for y, z, u (i.e. y → C2, z → C3 and u→ C1).

Sum-of-margin strategy The problem of the most-uncertain strategy is that, roughly
speaking, it is agnostic to whether a potential assignment is consistent with large por-
tions of the parameter space or just with small area. The intuition of sum-of-margin is to
use the value of the objective function of the LP as a surrogate measure of the “degree”
of satisfaction of an assignment x → Ch. Intuitively, we should ask about items that
may fit well into several different categories. We also include the possibility that some
constraints can be violated, therefore make use of the second LP (Equations 11-17),
with the penalty variables ξ for violated assignments of the learning set.

Considering an alternative x ∈ X \A, we evaluate the penalized margin m∗ adding
the assignment x→ Ci for all i ∈ [p] and construct the following vector:

v(x) = (m∗(LS∪(x,C1)), . . . ,m
∗(LS∪(x,Cp))).

In order to aggregate this vector into a single numerical measure, we adopt the sum.
Hence, the score of the alternative x is computed as

SΣ(x) =

p∑
i=1

vi(x) =

p∑
i=1

m∗(LS∪(x,Ci)).
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Assignment vi(·) SΣ

y → C1 -0.45 }
0.45y → C2 0.45

y → C3 0.45

z → C1 0.45 }
0.90z → C2 0

z → C3 0.45

t→ C1 0.45 }
1.08t→ C2 0.18

t→ C3 0.45

u→ C1 0.49 }
-0.10u→ C2 0

u→ C3 -0.55

Assignment v′ SE

y → C1 0 }
0.30y → C2 0.5

y → C3 0.5

z → C1 0.5 }
0.30z → C2 0

z → C3 0.5

t→ C1 0.43 }
0.44t→ C2 0.15

t→ C3 0.42

u→ C1 1 }
0.00u→ C2 0

u→ C3 0
Table 4. The score obtained by the different items in the hotel categorization example using the
heuristics sum-of-maring (left) and entropy (right)

Example. Consider again the running example. Table 4 (in the left) presents the SΣ of
alternatives {y, z, t, u}. As the example shows, the best question is to ask about t, the
second best question is to ask about z, then y, and finally u. We note a disagreement of
MU and sum-of-margin about the ranking of z and y.

Entropy This strategy adopts the notion of entropy to assess the uncertainty for a
given alternative. As the strategy sum-of-margin, we calculate m∗ which represents the
maximum penalized margin if we assign the alternative x to the category Ci, for all
i ∈ [p]. We then combine these values in an evaluation vector v′ that filters out negative
values (assigning them a zero value) and we normalize so that the values sum up to one:

v′i(x) =
R(m∗(LS∪(x,Ci))∑p
j=1R(m

∗(LS∪(x,Cj))

where R(·) is the ramp function. We then apply the entropy to calculate the final score
of the alternative.

SE(x) = −
∑

i∈[p]:v′i(x)>0

v′i(x) log(v
′
i(x))

Intuitively this method should favour asking about items whose uncertainty is the great-
est in an information-theoretic sense, considering the vector v′ (composed of normal-
ized non-negative margin values) as a surrogate measure for the probability distribution
of the category of x (i.e. how likely is x to be in each of the categories).

Example. We consider again our example on hotel categorization. We now apply the
entropy strategy; Table 4 (on the right) presents the score SE of all the alternatives. Item
t has the highest score, then z and y are tied in the second position; u is last.
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Random strategy As a baseline, we consider the random selection of an object x from
X \ A. Utilizing this strategy is equivalent to use a non incremental elicitation proce-
dure with |LS|+K (LS being the initial learning set of Algorithm 1 and K being the
number of questions) alternatives in the learning set.

Note that all our strategies have the same computational complexity : O(Kmp)
(resp. number of questions, alternatives, categories).

5 Experiments

We implemented our incremental MR-sort algorithm using Java API of CPLEX for
solving the LP.5 We performed simulations aimed at evaluating the effectiveness of the
proposed elicitation strategies with two data-sets: a synthetic data-set fully represented
by a MR-sort model, and a data-set from the UCI machine learning repository [8].

Synthetic data-set For the first part of our experiments, the input data was generated
randomly using a uniform distribution on the space of evaluations.

We include only one assignment, chosen at random in LS. The steps of the simula-
tion are as follows:

i. Using a uniform distribution for each of the parameters, we generate the perfor-
mance table of alternatives, a vector of weight w, the majority threshold λ. The
limit profiles are chosen to evenly partition the range of evaluation values. These
parameters fully specify the decision maker; we call this model M . We then apply
the MR-sort method in order to find the assignments of the generated alternatives;
these assignments constitute the “ground truth”.

ii. We apply our incremental elicitation Algorithm 1 using the assignments of some al-
ternatives of M as learning assignments. We apply incremental MR-sort by asking
questions to the user based on the proposed strategies, simulating a decision maker
who answers according to the results of the M . We generate as output a vector of
weight w∗ representing the DM’s preferences.

iii. Using the assumed limit profiles and the learned weight vector w∗ and the majority
threshold λ∗, we obtain our learned model M that provides the assignments of the
remaining alternatives.

iv. At the end we calculate an error rate based on the difference between the assign-
ments of the true model M and the learned model M .

We iterate these steps 50 times and we evaluate the classifications obtained with the
different methods according to the average classification error AEk =

∑
x∈X errk(x)/m

where m is the number of alternatives and k ∈ {1, 2}. The value errk(x) = d(Ci, Cj)

is the magnitude of error when x M−→ Ci and x M−→ Cj (the true model assigns x to Ci
while the learned model M assigns it to Cj). err1 adopts a 0/1 loss as distance, while
err2 considers the displacement between the assignments, that is d(Ci, Cj) = |i−j|.

Figure 1 presents the results of our simulations (for more results see figures 4 - 6
in the appendix ). Note that the random strategy performs very poorly, while all three

5 All experiments were run on a 2.9 GHz Intel, Core i7 and 16 Giga of RAM.
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Fig. 1. AE2 based on number of questions with m = 100, n = 5, p = 2, p = 3, p = 4,|LS| = 1
and 50 iterations

strategies (maximum uncertainty, sum of margin, entropy) have reasonably good perfor-
mance. Not surprisingly, the higher the number of categories, the quicker we converge,
since there is more uncertainty with more categories. Conversely, the higher the num-
ber of criteria the less quickly the interaction converges. The results with respect to
AE2 are quite satisfying since they show that, after few questions have been answered,
our procedure makes few assignment mistakes and these mistakes concern consecutive
categories most of the times.

UCI Car We performed simulations based on Car data-set. There are 1728 items de-
fined on 6 categorical attributes (that we interpret as ordinal); the items are partitioned
in 4 categories: unacceptable (65 items), acceptable (1210), good (384) and very good
(69). We converted the qualitative (ordinal) attributes to numeric attributes and we set
the criteria rating scale between 1 and 4. The steps of the simulation are : i.) We first
compute the best error rate that we could have if all the data was included in LS. ii.)
We ask questions until we reach this error percentage. We started to test on 300 alterna-
tives chosen randomly and we start by including in the learning set only one assignment
taken randomly.

In order to find the best error percentage, we call it P ∗, we include all the data in LS
and we vary the value of λ. We obtain P ∗ when λ is between 0.7 and 0.75. In this case
the err1 = 18.86% ( err2 being 0.24). So we aim to reach this percentage by asking
the minimum number of questions. Our simulations showed that fixing the value of λ
makes faster the convergence, we show in Figures 2- 3 the comparison between the 4
strategies where λ is fixed to 0.7.

With the random strategy we observe that the variation of error according to number
of questions is not monotonous and we don’t approach to P ∗ by asking 10 questions.
On the other hand, the strategies maximum uncertainty and sum of margin are closer
to P ∗ starting from 6th question. The strategy maximum uncertainty stops after the 7th

question because it hangs in case of inconsistency. We notice that the assignments errors
are almost always between consecutive categories; Figure 3 shows the performance with
respect to the second metric.
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Fig. 2. AE1 based on number of questions withm = 300, n = 6, p = 4,|LS|=1 and 50 iterations

Fig. 3. AE2 based on number of questions withm = 300, n = 6, p = 4,|LS|=1 and 50 iterations

6 Conclusions

MR-sort is an attractive method for ordinal classification that offers the advantage of al-
lowing the use of heterogeneous scales (mixing ordinal and cardinal scales). In this pa-
per we presented an incremental elicitation procedure for the parameters (weights and
threshold) of MR-sort. Our approach relies on a maximum-margin optimization that
aims at satisfy as well as possible the known assignments, following approaches pro-
posed in the literature for non-interactive learning of MR-sort and variations [15,21,22].
The novelty of this paper consists in showing how the optimization can be used to
evaluate the uncertainty associated to the items whose category is not known yet; the
choice of the next question is based on evaluating the margin a posteriori (the value of
maximum-margin optimization when adding a possible response to a question). Based
on this intuition we proposed several strategies for selecting the next question to ask. We
evaluated the proposed interactive elicitation procedure comparing the performance of
the different strategies showing that the procedure quickly converges to the real optimal
classification in very few interaction cycles.
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We highlight that one important limitation of our framework is that we expect the
decision maker to provide us with the limit profiles of the different categories. In future
works we will relax this assumption considering techniques to elicit as well the limit
profiles (either in a preliminary step or in an integrated approach), therefore providing a
complete method for interactive elicitation of a MR-sort model. This task will be chal-
lenging, since previous works on (non incremental) elicitation of MR-sort have shown
that, while it is possible to introduce integer variables [15] the resulting optimization
is computationally very demanding and not scalable; therefore randomized heuristics
[20,23] have been proposed.

We are also interested in performing simulation to compare our approach to other
elicitation frameworks, as the recent work of Olteanu [18], and the approaches based on
minimax regret [2,3], in realistic settings. We plan to investigate the connection between
our approach and the field of machine learning. First, maximum-margin bears much
similarity to Support Vector Machines (SVM). Second, ordinal classification has also
been studied in machine learning. Third, there is strong similarity between incremental
elicitation and active learning.

Finally, another important direction is to elicit the preferences of several users, pro-
viding methods that can exploit the similarity between users, as in Teso et al. [26].
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11. Johannes Fürnkranz, Eyke Hüllermeier, Eneldo Loza Mencı́a, and Klaus Brinker. Multilabel

classification via calibrated label ranking. Machine learning, 73(2):133–153, 2008.
12. Krzysztof Gajos and Daniel S. Weld. Preference elicitation for interface optimization. In

Proceedings of UIST, pages 173–182. ACM, 2005.



Interactive Elicitation of a Majority Rule Sorting Model 15

13. Salvatore Greco, Vincent Mousseau, and Roman Slowinski. Ordinal regression revisited:
Multiple criteria ranking using a set of additive value functions. European Journal of Oper-
ational Research, 191(2):416–436, 2008.
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Fig. 4. Classification error AE1 based on number of questions with m = 100, n = 4, p = 2,
p = 3, p = 4, |LS| = 1 and 50 iterations

Fig. 5. AE2 based on number of questions withm = 100, n = 4, p = 2, p = 3, p = 4, |LS| = 1
and 50 iterations

Fig. 6. AE1 based on number of questions with m = 100,n = 5, p = 2, p = 3,p = 4, |LS| = 1
and 50 iterations
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