
HAL Id: hal-02285029
https://hal.science/hal-02285029

Submitted on 13 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Sequence-Based Metaheuristics for Tactical
Distribution Problems in Closed-Loop Supply Chains

Pierre Desport, David Lesaint, Frédéric Lardeux, Carla Di Cairano -
Gilfedder, Anne Liret, Gilbert Owusu

To cite this version:
Pierre Desport, David Lesaint, Frédéric Lardeux, Carla Di Cairano - Gilfedder, Anne Liret, et al.. A
Sequence-Based Metaheuristics for Tactical Distribution Problems in Closed-Loop Supply Chains. 9th
IFAC Conference Manufacturing Modelling, Management and Control MIM 2019, Aug 2019, Berlin,
Germany. �hal-02285029�

https://hal.science/hal-02285029
https://hal.archives-ouvertes.fr

A Sequence-Based Metaheuristic For
Tactical Distribution Planning In

Closed-Loop Supply Chains

Pierre Desport ∗,∗∗,∗∗∗ Frédéric Lardeux ∗ David Lesaint ∗
Carla Di Cairano-Gilfedder ∗∗∗ Anne Liret ∗∗∗

Gilbert Owusu ∗∗∗

∗ LERIA, EA 2645, UNIV Angers, 2 Bd Lavoisier, 49045 Angers,
France (e-mail: firstname.lastname@univ-angers.fr)

∗∗ LIFAT EA 6300, ROOT ERL CNRS 7002, Université de Tours, 64
avenue Jean Portalis, Tours 37200, France (e-mail:

firstname.lastname@univ-tours.fr)
∗∗∗ British Telecom, Adastral Park, Martlesham Heath, UK (e-mail:

firstname.lastname@bt.com)

Abstract: We present a metaheuristic for planning the distribution of items in closed-loop
supply chains. This metaheuristic composes sequences of transfer and repair actions to generate
plans iteratively. It uses a local search algorithm based on an efficient data structure to construct
and select improving sequences at each step. An experimental comparison with a mixed integer
programming approach shows its scalability and robustness on a variety of instances. We also
study and discuss the ability to support different distribution policies.
Copyright c© 2019 IFAC

Keywords: Supply Chain Planning, Metaheuristics, Distribution, Transport

1 Introduction

Many organisations in equipment-intensive sectors (auto-
motive, electronics, telecommunications, . . .) implement
closed-loop supply chains to recapture economic value
from used or defective parts. Closed-loop supply chains
(CLSC) extend the “forward flow” model of traditional
supply chains by integrating reverse logistics operations in-
cluding repair, recycling or disposal (????). In field service
organisations for instance, CLSC typically combine two
flows: the replenishment of field depots with spare parts,
and the transfer of used parts back to warehouse centres
before repair and possible reuse. Figure 1 illustrates a
three-echelon CLSC in this context where a warehouse
centre relies on a repair site to reinject repaired parts in
the supply flow.

Fig. 1. A 3-level closed-loop supply chain

CLSC inventory systems control all repair and transfer
activities (supply of spare parts and return of used parts)
across the different sites of the supply chain (warehouse
centres, repair centres, hubs, field depots . . .). In some
environments (e.g. field maintenance operations), the de-
mand for spare parts for each site and each time period
is known beforehand with certainty. In this case, a cen-
tralised proactive approach may be applied to plan these
activities ahead of time and minimise costs relating to
backordering, storage, transport and repair. ? propose a
mixed integer program (MIP) to solve this tactical dis-
tribution planning problem (TDPP). The model uses a
weighted objective function and combines conservation-
of-flow constraints with a priority rule that forbids backo-
rdering on a site in the presence of spares. This rule makes
the problem NP-hard and the authors introduce a meta-
heuristic called BIS that compares favourably against a
MIP method over pseudo-random instances.

BIS is a best-improvement local search algorithm using
diversification. It builds plans iteratively by selecting and
adding at each step a sequence of unitary actions (supply,
return and/or repair of a single part). In this paper, we
provide a detailed description of the two components of
BIS, namely, the local search algorithm and the sequence
construction and selection procedure which uses a dedi-
cated data structure to efficiently update the set of feasible
sequences and resulting gains. The rest of the paper is
organised as follows. Section 2 gives a brief overview of
the MIP model for TDPP. Section 3 introduces BIS and
section 4 presents experimental results comparing BIS and
MIP. Section 5 then discusses how different weightings

of the objective function affect the distribution of items.
Section 6 concludes.

2 Tactical Distribution Planning Problem

A TDPP instance is primarily defined by a CLSC network
and a discrete planning horizon. As shown in Figure 1, a
CLSC network consists of supply, return and repair routes
connecting the different sites. Each route comes with a
fixed schedule that defines the possible start and end
times for actions planned along this route (e.g., 1-day long
weekly shipments starting on Mondays). Each site initially
holds a predefined number of spare parts (aka. healthy
items) and used parts (aka. faulty items). The “demand”
forecast then defines the number of healthy items that
should be taken out of inventory on each site and at
each point in time (stock permitting) and the number of
faulty items that will be dropped on the site and enter the
supply chain. These quantities are considered identical in
some environments (e.g., field repair services) which is the
assumption made here.

The objective is to determine an optimal and feasible plan
of actions. Each action is defined by the choice of a route,
a start time, and a quantity representing the number of
healthy or faulty items acted upon (transfers or repairs).
All actions must comply with the above mentioned topo-
logical and calendar constraints, and the conservation-of-
flow constraints enforced on each site over healthy and
faulty items. To comply with standard practices, an addi-
tional rule applies that forbids backordering if spares are
locally and readily available on a site, i.e., satisfying local
demand takes priority. Lastly, the objective is cast as a
weighted sum of linear cost functions on the total number
of items that are backordered, held in inventory, trans-
ferred or repaired. No start-up penalty applies and the
weights are used-defined to allow different prioritisation
strategies.

Table 1. Constants and variables of a TDPP
instance

Constants
demand forecast d : L× T → N

storage unit costs µs
h

, µs
f

: L→ R

backordering unit costs µb : L→ R

transfer unit costs µm
h

, µm
f

: L× L→ R

repair unit costs µm
r

: L→ R

weights ωs, ωb, ωm
hf

, ωm
r ∈ N

Variables

storage sh, sf : L× T → N
backorders b : L× T → N

transfers mh,mf : L× L× T × T → N
repairs mr : L× T × T → N

costs c, cs, cb, cm
hf

, cm
r ∈ R

? propose a MIP to model this problem which we briefly
introduce. L and T denote, respectively, the set of sites
and the planning horizon viewed as an ordered set of time
buckets. Table 1 introduces the constants and variables
of the model. Constants include the demand forecast d,
the unit costs µ∗ and the user-defined weights w∗. Vari-
ables model the actions of the plan (in bold style) and

the resulting state of the supply chain over the temporal
horizon. For two sites l and l′, and time buckets t and t′,
variable mh

l,l′,t,t′ (respectively, m
f
l,l′,t,t′) denotes the num-

ber of healthy (resp., faulty) items transferred from l at t
and reaching l′ at t′. Likewise, variable mr

l,t,t′ denotes the
number of faulty items whose repair starts at t and ends at
t′ on site l. The constraints (not shown here) link state and
action variables to enforce the rules relating to routing,
scheduling, flow preservation, and flow prioritisation. In
particular, any action variable corresponding to a non-
existant route is set to 0. Note also that any assignment
of the action variables completely determine the state
variables. The equations below show the objective function
c to minimise and its different components.

cs =
∑

l∈L,t∈T

(shl,t × µs
h

l + sfl,t × µ
sf

l)

cb =
∑

l∈L,t∈T

bl,t × µbl

cm
hf

=
∑

l,l′∈L,

t,t′∈T

(mh
l,l′,t,t′ × µm

h

l,l′ +mf
l,l′,t,t′ × µ

mf

l,l′)

cm
r

=
∑
l∈L,

t,t′∈T

(mr
l,t,t′ × µm

r

l)

c = ωs × cs + ωb × cb + ωm
hf

× cm
hf

+ ωm
r

× cm
r

3 Metaheuristic

This section presents the metaheuristic BIS (Best Improv-
ing Sequence) for solving TDPP. BIS does not operate
on the solution representation of the MIP model. Rather,
it constructs a plan by repeatedly adding sequences of
unitary actions (i.e., actions that only involve a single
item). As explained below, sequences are constructed over
the space-time graph of the problem based on the current
plan, filtered and scored using a dedicated data structure,
and selected using a probabilistic diversification policy.

3.1 Solution representation and neighbourhood

The space-time graph of a TDPP instance, denoted G∗,
represents all the activity routes allowed at each point
in time. Its nodes correspond to the pairings of sites
and time buckets (L × T) and its arcs link the nodes
consistently with the network topology, schedule and lead
time constraints. G∗ is the union of 3 subgraphs Gh, Gf
and Gr that represent the supply links, the return links
and the repair links, respectively. Any planned action on n
items (i.e., the assignment of value n to an action variable
of the MIP that maps to a route) may be viewed as a
labelling of an arc of G∗ with quantity n. Therefore, any
plan (i.e., any set of actions) determines itself a particular
labelling of G∗ with quantities.

Since every action on n items splits into n unitary actions,
every plan is itself defined by a multiset of unitary actions.
A plan may also be defined as a set of sequences by
clustering these actions into sequences consistently with

G∗ (i.e., into chains of unit actions over G∗). BIS adopts
this view to construct a plan by assembling sequences
iteratively. At each iteration, it searches for a sequence
amongst the set of feasible sequences and adds it to the
current plan. This addition operation boils down to a set
union operation between the multiset of actions defining
the plan and the set of actions defining the sequence.
Formally, the neighbourhood N of a plan P is the set
N(P) = {P ∪ S|S ∈ SEQ} where SEQ denotes the set
of sequences consistent with P .

Algorithm 1 describes the global structure of BIS. BIS
relies on Algorithm 2 for constructing and selecting a
sequence at each step which we present in Section 3.2. By
design, BIS cannot remove sequences to “undo” a plan.
Every choice of sequence is therefore critical in the con-
struction process and we choose to adopt a best improve-
ment sequence selection approach. To avoid local optima,
we introduce stochasticity in Algorithm 2 and we restart
the search for a plan a predefined number of times. This
process is inspired from Variable Neighbourhood Search
(VNS) (?) which increases the size of the neighbourhood
at each restart of the algorithm. It is also inspired by
Simulated Annealing which, contrary to our approach,
evolves from a large to a small neighbourhood (?). An-
other common issue with best improvement selection is
the computational cost incurred by the evaluation of all
neighbours. We make use of a specific data structure to
this effect which is presented in Sections 3.3 and 3.4.

Algorithm 1 BIS
Input: an initial plan P0, a number of restarts nmax, an

initial probability α0, a control parameter v
Output: a plan
1: P ∗ ← P0
2: α← α0
3: n← 1
4: while n ≤ nmax do
5: P ← P0;
6: Build sequence seq using Algorithm 2 with param-

eters P and α;
7: while seq 6= seq∅ do . seq∅ is the empty sequence
8: P ← P ∪ seq
9: Build sequence seq using Algorithm 2 with

parameters P and α;
10: end while
11: if c(P) ≤ c(P ∗) then . c is the cost function
12: P ∗ ← P
13: end if
14: α← 1− ((1− v)n × (1− α0))
15: n← n+ 1
16: end while
17: return P ∗

3.2 Sequence selection

Every sequence of SEQ is a tuple of unitary actions that
corresponds to a path in G∗. We shall denote by Xl,l′,t,t′ a
unit action of type X that starts at t from site l and ends
at t′ on site l′. Specifically, Bl,l′,t,t′ ∈ Gf (respectively,
Rl,l,t,t′ ∈ Gr, Al,l′,t,t′ ∈ Gh) will denote a return (resp.,
repair, supply) action. We shall also use subscript symbol
∗ to indicate any particular location or time bucket. For
instance, Al,∗,t,∗ will denote any supply action starting
from site l at t. We list below the chaining rules that prevail
when constructing a sequence of SEQ :

(1) An action must start from the end site of the previous
action, if any.

(2) An action must not start before the end time bucket
of the previous action, if any.

(3) An item must be available on the site of an action
when it starts.

(4) The on-hand inventory on the site of the action
initiating the sequence must be sufficient not to cancel
subsequent unitary actions that are already planned.

Algorithm 2 describes the selection and construction of
a sequence of unit actions. It is based on two functions,
denoted gainC and gainI, which compute the improve-
ment that a unit action could bring to a plan (see Section
3.3) and a variable corresponding to the best possible
action following a given action (next(y) is the best ac-
tion following action y). Algorithm 2 uses probability α
to introduce stochasticity when selecting an improving
sequence. Every time we select a unit action to extend
the sequence, we might select another improving action
than the best one or end the sequence with a probability
equals to α. Probability α evolves at each restart in BIS
following an arithmetico-geometric series. Given α0 the
initial probability and v a control parameter, probability
αn at the n-th restart is defined as follows:

αn = 1− ((1− v)n × (1− α0))

Parameter v ranges in [0, 1] and is used to control the range
of values for α. Based on experiments, we deduced that α0

should be set between 0 and 0.15 to ensure a good balance
between intensification and diversification. Depending on
the number of restarts, v is adjusted to make α range from
0 to 0.15.

Algorithm 2 Construction of a sequence
Input: a plan P , a probability α
Output: a sequence seq
1: seq ← seq∅
2: if max(gainI(X∗,∗,∗,∗)) > 0 then
3: p← Random(0, 1) . a random value in [0,1]
4: if p ≥ α then
5: Select y such that gainI(y) =
max(gainI(X∗,∗,∗,∗))

6: else
7: Select y such that gainI(y) > 0
8: end if
9: repeat

10: Append y to seq
11: p← Random(0, 1)
12: if p ≥ α then
13: y′ ← next(y) . next(y) returns NULL if

there is no improving action following y.
14: else
15: Select y′ such that gainC(y′) > 0 and y′

follows y
16: end if
17: y ← y′

18: until y = NULL
19: end if
20: return seq;

3.3 Gain functions

We present here the definition of functions gainI and
gainC and the set of variables they rely upon.
Boolean variable ahl,t (resp. a

f
l,t) denotes the possibility to

send an healthy (resp. faulty) item from site l at time
bucket t. This action is possible only if items are available
at t and if it does not cancel another action planned later
on. Note that in case of healthy items, sending an item
might cause a backorder on a subsequent time bucket but
must not cause a backorder on the current time bucket to
remain consistent with the TDPP constraints.

∀l ∈ L, t ∈ T, ahl,t =


1 if shl,t > 0 and ∀t′ ∈]t, Tmax],∑

l′∈L,

t′′>t′
mh
l,l′,t′,t′′ > 0→ shl,t′ ≥ 1

0 otherwise

∀l ∈ L, t ∈ T, afl,t =


1 if sfl,t > 0 and ∀t′ ∈]t, Tmax],∑

l′∈L,

t′′>t′
mf
l,l′,t′,t′′ > 0→ sfl,t′ ≥ 1

0 otherwise

We also define variables that represent the number of
backorders generated or avoided by applying a supply
action and its impact on storage for both the source and
target sites of the action.

∀l ∈ L, t ∈ T, t′ > t,
//number of backorders avoided - target site

ddStr(l, t, t′) = |{t′′|t′ > t′′ ≥ t and bl,t′′ > 0}|
//number of backorders generated - source site

dd(l, t, t′) = |{t′′|t′ > t′′ ≥ t and shl,t′′ = 0}|
//impact on storage - target site

dhs(l, t, t′) = |{t′′|t′ > t′′ ≥ t and bl,t′′ = 0}|
//impact on storage - source site

dhsStr(l, t, t′) = |{t′′|t′ > t′′ ≥ t and shl,t′′ > 0}|

Based on these variables, functions gainC and gainI
compute the maximum gain a unitary action can bring
to the current plan. gainC(x) computes the improvement
that unitary action x can bring to a sequence. In other
words, when building a sequence, gainC will help to decide
which action should be chosen to continue the sequence,
if any. This function is computed recursively and takes
into account the improvement that could be brought by
an action following the one we are evaluating.

gainC(Al,l′,t,t′)= max(ddStr(l′, t′, Tmax + 1) ∗ µb
l′ ∗ ω

b

−µmh

l,l′ ∗ ω
mhf

− dhs(l′, t′, Tmax + 1) ∗ µsh

l′ ∗ ω
s ,

max({gainC(Al′,∗,t′′,∗)− µ
mh

l,l′ ∗ ω
mhf

− dhs(l′, t′, t′′) ∗ µsh

l′ ∗ ω
s

+ddStr(l′, t′, t′′) ∗ µb
l′ ∗ ω

b|t′′ ≥ t′, bl′,t′′ = 0}))
gainC(Rl,l,t,t′)= max(ddStr(l, t′, Tmax + 1) ∗ µb

l
∗ ωb − µmr

l
∗ ωmr

−dhs(l, t′, Tmax + 1) ∗ µsh

l
∗ ωs ,

max({gainC(Al,∗,t′′,∗)− µ
mr

l
∗ ωmr

− dhs(l, t′, t′′) ∗ µsh

l
∗ ωs

+ddStr(l, t′, t′′) ∗ µb
l
∗ ωb|t′′ ≥ t′, bl,t′′ = 0}))

gainC(Bl,l′,t,t′)= max(−µmf

l,l′ ∗ ω
mhf

− (Tmax− t′) ∗ µsf

l′ ∗ ω
s ,

max({gainC(Bl′,∗,t′′,∗)− µ
mf

l,l′ ∗ ω
mhf

− (t′′ − t′) ∗ µsf

l′ ∗ ω
s|t′′ ≥ t′}) ,

max({gainC(Rl′,l′,t′′,∗)− µ
mf

l,l′ ∗ ω
mhf

− (t′′ − t′) ∗ µsf

l′ ∗ ω
s|t′′ ≥ t′}))

Note that to avoid multiple computation of the same
action, we initialize variable next(x) when computing
gainC. This variable returns the best action that could
follow x or NULL if no action could improve the sequence
after applying x.

gainI(x) defines the maximum gain that a sequence ini-
tialised with unitary action x could bring to the current
solution. This function differs from gainC as gainC only

refers to actions included in a sequence and not to actions
initialising a sequence. Note that gainI assigns a negative
value to actions which are inconsistent with the current
plan so that they will never be selected to build a sequence.

gainI(Al,l′,t,t′) =


−1 if ahl,t = 0

gainC(Al,l′,t,t′) + dhsStr(l, t, Tmax+ 1) ∗ µsh

l

∗ωs − dd(l, t, Tmax+ 1) ∗ µb
l ∗ ω

b else

gainI(Rl,l,t,t′) =

{
−1 if af

l,t
= 0

gainC(Rl,l,t,t′) + (Tmax− t+ 1) ∗ µsf

l ∗ ω
s else

gainI(Bl,l′,t,t′) =

{
−1 if af

l,t
= 0

gainC(Bl,l′,t,t′) + (Tmax− t+ 1) ∗ µsf

l ∗ ω
s else

3.4 Efficient data structure

The evaluation of gainC being computationally expensive,
it is important to avoid unnecessary evaluations. Adding a
sequence to a plan updates variables and thus could impact
gains associated with unitary actions. However, it is not
necessary to recompute the gain for each unitary action
but only for the ones impacted by the sequence.

We use a matrix MgainC that permits to directly obtain
the value of gainC for a given sequence. Of course, the
initialisation of this matrix has a cost but is very efficient
afterwards. Algorithm 3 describes how matrix MgainC is
updated when a sequence is applied to a plan. Note that to
ease the understanding of the algorithm we do not detail
the update of the next value but every time we update
a MgainC value we also update its corresponding next
action. OnceMgainC values are up to date, it is necessary
to updateMgainI which is the associated matrix to gainI
asMgainC is associated to gainC. This update is simpler.
It has to be updated for all actions that are initiated from
a site whose location appears in the last applied sequence.
It also has to be updated for all actions whose MgainC
have been updated.

Algorithm 3 Update of MgainC

Input: a plan P , a sequence seq of size n
1: ToUp← ∅ . A set to store locations
2: forall Xl,l′,t,t′ ∈ seq
3: ToUp← ToUp ∪ {l} ∪ {l′}
4: end forall
5: m← X∗,∗,∗,∗
6: while m 6= ∅ do
7: Yl,l′,t,t′ ← argmaxXl′′,l′′′,t′′,t′′′∈mt

′′ . reverse
chronological

8: if l′ ∈ ToUp then
9: if gainC(Yl,l′,t,t′) 6=MgainC(Yl,l′,t,t′) then

10: Update MgainC(Yl,l′,t,t′)
11: ToUp← ToUp ∪ {l}
12: end if
13: end if
14: Remove Yl,l′,t,t′ from m
15: end while

4 Experiments

This section presents experiments carried out to evaluate
and compare BIS with the MIP model. Note that, due to
space restrictions, we only report experiments on a subset
of the instances that have been tested.

4.1 Instances

Experiments are carried out on a set of pseudo-random
instances that share the same supply chain network topol-
ogy. This topology follows the 3-level tree structure pre-
sented in Figure 1 and consists of a single distribution
centre (DC) which also acts as a repair centre, 33 inter-
mediate hubs, and 66 peripheral stores. Schedules and lead
times for supply, return and repair routes are also identical
for all instances and so is the demand frequency. Instances
also share the same unit cost values: a demand not met
in time (a backorder) costs 1000, a repair costs 100 and
storing an item costs 1 in the DC and 10 elsewhere. All
these data have been extracted from a real-life problem
instance developed for managing field service operations in
the telecommunications sector. Note that in this instance,
transfer costs are not taken into consideration and we thus
set the unit transfer cost to 0.

We assume that the initial plan of actions is empty. How-
ever, we introduce variability in our instances by varying
the initial volume of healthy items and their distribution
across the sites. We use two configuration schemes to this
effect. First, the initial number of healthy items is set as
a proportion of the number of demands forecast over the
time horizon and each instance is generated using one of
the following ratios: 100% (category High), 50% (category
Med) or 0% (category Low). Second, the initial volume of
healthy items is either completely allocated to the DC
(category DC), either randomly allocated to the peripheral
stores (category Sites), or evenly distributed between the
DC and the stores (category Mix). We thus get seven
classes of instances since the initial distribution of healthy
items is irrelevant for category Low (no healthy item is
available).

4.2 Results

All computational experiments are carried out on a com-
puter with an Intel Core i5-3380M processor (2.90GHz and
8GB of RAM). BIS is programmed in C++ and compiled
using g++ for this architecture while the MIP model is
solved using CPLEX 12.6. The cutoff time limit is set to
1 hour for MIP and 100 iterations for BIS.

Table 2 presents the results obtained by running MIP and
BIS over the 7 classes of instances for all possible 0/1
weightings of the fitness function. For each instance and
each weighting, we ran BIS 10 times and obtained the
same best fitness value (i.e., the standard deviation is null).
Each row corresponds to one instance of a specific class-
weighting pair. The first two columns identify each class
of instances based on its initial inventory level (category
High, Med or Low) and inventory distribution (category DC,
Mix or Sites). The third column indicates the values used
for the triplet of weights 〈ωb, ωmr

, ωs〉. We recall that a
weight set to 0 cancels the corresponding cost component

in the fitness function. Note that we omit transport weight
ωm

hf

since the unit cost is set to 0 in the studied instances
thus making it ineffective.

The remaining columns provide, respectively, the best
bound returned by MIP (column MIP - Fitness), the run
time of MIP in milliseconds (column MIP - Time), the
best fitness score returned by BIS (column BIS - Fitness),
and the average run time of BIS in milliseconds over the 10
runs (column BIS - Time). A dash symbol ‘−’ indicates
that MIP did not find a solution before the cutoff time
limit. Values in bold indicate cases where the fitness score
obtained with BIS is lower than the fitness score obtained
with MIP.

Table 2. Comparison between MIP and BIS

Weights MIP BIS
Fitness Time Fitness Time

H
ig

h

D
C

<1,0,0> 0 57000 0 22002
<0,1,0> - - 0 42343
<0,0,1> 99990 20500 99990 12129
<0,1,1> 101574 23100 101574 8029
<1,1,0> 0 32480 0 22126
<1,0,1> 112200 - 112200 28040
<1,1,1> 113784 - 113784 25625

M
ix

<1,0,0> 0 26220 0 14726
<0,1,0> 0 10780 0 3986
<0,0,1> 133862 2980 133862 6979
<0,1,1> 135446 2840 135446 4133
<1,1,0> 0 29500 0 14340
<1,0,1> 143562 - 143562 19140
<1,1,1> 145146 - 145146 16473

Si
te

s

<1,0,0> 27000 2730 27000 6922
<0,1,0> 0 2070 0 4032
<0,0,1> 256128 2030 256128 6282
<0,1,1> 257712 2030 257712 3952
<1,1,0> 35600 3430 35600 7171
<1,0,1> 285983 3510 285983 9482
<1,1,1> 295909 3930 295909 7805

M
ed

D
C

<1,0,0> 0 38000 0 22094
<0,1,0> - - 0 3950
<0,0,1> 80751 35410 80751 11040
<0,1,1> 82335 31500 82335 8250
<1,1,0> 36300 - 36300 22150
<1,0,1> 92961 - 92961 28457
<1,1,1> 129756 - 129756 25190

M
ix

<1,0,0> 0 25680 0 18567
<0,1,0> 0 120500 0 3985
<0,0,1> 88669 18250 88669 8497
<0,1,1> 90253 14240 90253 5437
<1,1,0> 36300 - 36300 18771
<1,0,1> 100339 - 100339 23701
<1,1,1> - - 137134 21512

Si
te

s

<1,0,0> 93000 11730 93000 14760
<0,1,0> 0 4480 0 3984
<0,0,1> 114648 6051 114648 6273
<0,1,1> 116232 3900 116232 4338
<1,1,0> 129300 - 129300 14068
<1,0,1> 217263 19240 217263 17083
<1,1,1> 254058 - 254058 16292

L
ow -

<1,0,0> 11550000 - 11550000 9441
<0,1,0> 0 2000 0 3993
<0,0,1> 66198 8410 66198 6536
<0,1,1> 67782 8140 67782 4012
<1,1,0> 11603200 - 11596200 9649
<1,0,1> 11623128 - 11623128 10388
<1,1,1> 11669526 - 11669526 10233

4.3 Analysis

First, we point out that, in all cases, BIS always reaches
the best fitness score found by MIP. In some cases, MIP
cannot find the optimal solution and returns an upper

bound or no bound at all. In 4 of these cases, BIS returns
a solution that improves this bound. Note that when the
only activated weight is repair weight ωm

r

, the fitness
value is equal to 0, as expected. As for run time, BIS
is generally faster than MIP except for category High and
Sites. Besides, MIP reaches its time limit in 18 cases (1
hour) whereas BIS always returns a very good solution
in less than 1 minute. Overall, these results confirm the
scalability of BIS and its ability to attain optimal or near-
optimal solutions in a reasonable time.

5 Towards Distribution Policies

Different weightings of the fitness function give rise to
different behaviours in the way items get distributed over
time in the supply chain. Figure 2 illustrates the temporal
evolution of various supply chain metrics for two different
weightings.

Weighting 〈1, 0, 1〉 aims at minimising both backordering
and storage. As expected, all demands are met in time.
We also notice that all faulty items are sent back to the
DC and repaired to avoid storage costs. Healthy items are
kept in the DC as long as possible since storing items in
other sites is more expensive. Thus, this weighting can be
seen as a solve demands just-in-time and repair everything
management policy.

Weighting 〈1, 1, 0〉 aims at minimising both backordering
and repair. As expected, all demands are met in time.
The activation of repair objective implies that faulty parts
are repaired only if needed to satisfy a demand later on.
The deactivation of storage cost implies that items can be
sent to sites at any time as it will not impact the fitness
function. Thus, this weighting may be viewed as a solve
demands and repair as less as possible management policy.

6 Conclusion

This article presented BIS, a metaheuristic based on se-
quences of unit actions to solve tactical distribution plan-
ning problems in closed-loop supply chains. We detailed
the metaheuristic and the data structure used to limit the
computational time. We also proposed an experimental
analysis that shows the performances of BIS. Finally, we
discussed the impact of the weights of the fitness function
and the possibility of implementing different management
policies.

As future work, we plan to investigate how to enforce
distribution policies specified using indicators based on
appropriate weightings of the fitness function. We also
plan to investigate the robustness of our approach and to
evaluate how it deals with uncertainties.

(a) High, Mix, 〈1, 0, 1〉, Fitness = 33423.

(b) High, Mix, 〈1, 1, 0〉, Fitness = 100.

Fig. 2. Impact of two different weightings

