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Abstract—Software-intensive systems in the automotive do-
main are often built in different variants, notably in order to
support different market segments and legislation regions. Model-
based concepts are frequently applied to manage complexity
in such variable systems. However, the considered approaches
are often focused on single-product development. In order to
support variable products in a model-based systems engineering
environment, we describe a tool-supported approach that allows
us to annotate SysML models with variability data. Such vari-
ability information is exchanged between the system modeling
tool and variability management tools through the Variability
Exchange Language. The contribution of the paper includes the
introduction of the model-based product line engineering tool
chain and its application on a practical case study at Volvo
Construction Equipment. Initial results suggest an improved
efficiency in developing such a variable system.

Index Terms—Product Line Engineering, Model-based Systems
Engineering, Integrated Tool Chain

I. INTRODUCTION

Product Line Engineering (PLE) [1] is commonly used in
the automotive industry [2]. This approach allows to combine
the economic benefits of mass production with customization
for specific purposes or market segments. PLE is a relatively
modern approach for the design and production of software-
intensive systems sharing a common platform or code base but
dedicated to different systems - variants. Product variants are
obtained by configuring and enabling various common and
variable features in the product line. The approach has the
potential to bring up to ten-fold productivity gains as shown
in an extended survey [3].

In literature, the majority of PLE studies consider software-
only systems [4]. Complex systems, however, might include
several domains, e.g., hardware and software. Model-based
systems engineering (MBSE), [5], is often applied for the
development of such systems, e.g. [6]. In addition to the
implementation of software, MBSE includes activities such
as requirement engineering, system architecture specification,
verification and validation, etc. In the MBSE world, the model
is a first-class citizen of the engineering process. Therefore,

we want to make it possible to manage variability in different
engineering process phases, e.g., requirement engineering,
system design, verification and validation, in addition to
the variability in implementation. As models, in an MBSE
environment, usually prescribe and coordinate development
across different engineering domains, it is important to manage
variability in the complete MBSE process.

Systems Modeling Language (SysML) [7] is a widely used
modeling language in industrial practice [8]. In this paper,
we propose an approach to deal with SysML models in a
PLE-based approach. We make it possible to add variability
information from variability management tools into SysML
models and generate individual system variants based on the
variability information. The information between the variabil-
ity management tool and system modeling tool is exchanged
through the Variability Exchange Language (VEL) [9].

We instantiate the approach in practice using an integrated
tool chain based on tools from the MegaM@Rt2 [10] and
REVaMP2 [11] projects.

The rest of the paper is structured as follows. Section II
introduces the context in which Volvo Construction Equipment
(Volvo CE) develops highly variable diesel engine systems and
the motivation for migrating towards an MBSE-PLE approach.
Section III provides a general overview of our proposed
approach. The tool chain and its application to the Volvo
CE example are described in Section IV. Preliminary results
of the initial application suggest that PLE concepts in an
MBSE environment have the potential to improve efficiency
in the development of complex and variable systems. After
the discussion from Section V, we briefly dive into the related
work in Section VI. Finally, Section VII summarizes the paper.

II. MOTIVATING EXAMPLE

Volvo CE develops and manufactures off-road construction
machinery such as articulated haulers, excavators, wheel load-
ers, as shown in Figure 1. All construction machinery share a
common engine platform. The common platform is outsourced
to a technology provider within the Volvo Group. The Engine



Fig. 1. Volvo CE Machinery

Department of Volvo CE then extends the platform for Volvo
CE specific applications. The required engine behavior and
performance are vastly different between applications. For
example, in the articulated hauler, the engine is connected to
a transmission, while in an excavator, the engine is connected
to a hydraulic pump. In addition to the variable requirements
from product platforms (e.g. excavators, haulers), the engine
system must fulfill legal requirements for exhaust emissions
and diagnostic services in different legislation regions (US,
EU, China, and non-regulated markets).

The technology provider develops both the base engine
hardware (a bare-bones engine system) and engine control
software. To adapt the base engine for Volvo CE specific
applications, auxiliary components, such as sensors, oil filters,
turbochargers, and cooling fans, are developed at the Engine
Department and added to the base engine. Consequently, the
software configuration parameters are adjusted to enable or
disable software features that control the installed auxiliary
components. The software then needs to be calibrated to meet
engine performance requirements (e.g. max engine power and
torque response) at the Engine Controls Department at Volvo
CE. In order to cope with the increasing complexity of both the
base engine platform and the auxiliary components, the Engine
Department of Volvo CE is in the process of adopting an
MBSE approach based on SysML. The aim is to bring together
the two different engineering domains: hardware (physical en-
gine and auxiliary components) and software (engine controls
software). However, one of the major factors that have to be
considered during systems engineering at the Engine Controls
department is the fact that engine systems must support a large
number of variants. At the moment, SysML does not provide
a means to document variability within models.

As the models at the Engine Controls department include
requirements, system structure and behavior, the system mod-
eling approach must support variability on all SysML diagram
types. Moreover, the approach must allow one to trace a
feature at different abstraction levels, e.g. from requirements
to behavior specifications to individual software parameters.

III. SOLUTION

In order to address the needs of organizations that are
developing variable products, such as the described Volvo CE
example, we present an approach that combines PLE and
model-based development in a common process. Figure 2
illustrates the proposed approach. The left side in the figure
depicts the problem domain where the variability in the system,
the relations and the constraints between variable features are

Fig. 2. A generic approach for combining variability modeling with system
modeling

described. In our approach, we propose the use of feature
models, which are both documented extensively in literature
([12], [13]) and applied in industrial practice [3].

Once the system variability is described in the variability
model, the variability must also be implemented in the solution
domain. The middle part of Figure 2 depicts the solution
domain. This is where the system models of both common
and variable features are developed.

To document variability in models we use 150% models
( [14], [15], [16]) i.e. all system variants are modeled within a
single over-specified model. The 150% approach to product
lines has the potential to increase product quality, reduce
amount of artifacts that need to be maintained, reduce lead-
time, etc. [17]. The 150% model contains all system variations
within a single model. It is important to consistently exchange
variability information between the problem and solution
domain. In our proposed tool chain, we use the Variability
Exchange Language to integrate the design and variability
management tools (cf. Section IV).

Variability models serve as a starting point for customers
during the definition of a product variant. Customers select
variable product features based on their needs. Constraints
and relations between features restrict how features can be
combined. The variability information then needs to be ex-
changed with the system modeling tool that contains the 150%
model. The system modeling tool should then be able to
generate a 100% system model of a single system variant.
As illustrated in the right part of Figure 2, the derived model
should include only model artifacts from the solution domain
that were selected during feature selection. For example, these
can be requirement models, system architecture, verification
procedures, etc.

Since different organizations may have different systems
engineering processes and use models at different levels of the
process, we strive that our approach is generic enough to be
applicable to any phase of their systems engineering process
by making it possible to model variability on any diagram
type, e.g. requirement models, structure, behavior, etc.

IV. TOOL CHAIN

This section describes a tool chain that supports the ap-
proach discussed in the previous section.

In the tool chain, we use the pure::variants tool
from pure-systems [18] to manage variability in the problem
domain and the Modelio [19] modeling tool to model the



Fig. 3. Product Line Engineering Process with the Model-based Tool Chain

system in the solution domain. In order to integrate the two
tools, the Variability Exchange Language was used. It allows
us to exchange variability information between the problem
and solution domain. pure::variants, as a variability
management tool, already supported VEL. However, Modelio
had to be extended with mechanisms to support modeling of
variability in system models and to exchange information via
VEL.

In Figure 3, we illustrate the proposed tool chain workflow
in more detail in the context of a Volvo CE use case. It covers
several phases of an engine development process starting
with requirements and continuing with system design and
verification, to some extent.

In Step 1 , customers (product platforms) define their
requirements on the system, e.g. needed torque, power, engine
start/stop function, etc. In addition, depending on the legisla-
tion region in which the customer plans to use the engine, the
exhaust emission and diagnostic requirements are varying.

In Step 2 , based on their requirements, customers se-
lect system features from the feature model with the
pure::variants tool, as illustrated in Figure 4.
pure::variants is a variability management tool sup-

porting VEL to facilitate product line development. As de-
picted in Figure 4, a feature model is specified to document
all variability of the product line. A set of system features and
the possible variants of the feature are shown. The example
shows the variability of the Urea Dosing System (UDS) which
is a subsystem of the engine. A single UDS consists of
a Diesel Exhaust Fluid (DEF)1 storage tank, a pump that
pressurizes the DEF and and injection nozzle through which

1DEF is a mixture of urea and water that chemically reacts with exhaust
gases to reduce harmful emissions.

the DEF is dispersed into the exhaust stream. There are also
a DEF quality sensor and a valve that controls engine coolant
circulation throughout the system in order to defrost it at low
temperatures. An actuator control unit (ACU) is used to control
the pump in the system.

The constraints between features are defined manually by
system engineers during the system design. The variability
management tool only defines and manages the system feature
model without any other knowledge about how the features
are implemented. The feature model and feature constraints

Fig. 4. Feature Model example

restrict the variability space of the system, reducing the risk
of creating a variant with incompatible features. Some users
might have requirements that are outside the scope of the
current product family, i.e. a feature not present in the current
set of features. In such a situation there are two possibilities:
(i) extend the product line to include the new feature or (ii)
implement the new requirement only for the individual variant.
Both possibilities will be discussed later in this section. Once



Fig. 5. Annotated SysML model

the feature selection is finished, the variability information
from pure::variants (Step 2 ) is exchanged with Mod-
elio through the VEL.

Modelio is an extensible UML/BPMN/SysML modeling
tool. A module has been developed to extend the tool and
allow variability information annotation on top of any kind
of supported modeling language (e.g. UML/SysML in our
context). As shown in Figure 5, a SysML Block Definition
Diagram (BDD) of the UDS is annotated with variability
information. It is a desensitized diagram that includes two
variants of the UDS. The blocks of the two variants are
annotated as ’Bosch’ and ’Albonair’ in Figure 5.

In order to exchange information between Modelio and
pure::variants, Modelio first generates a serialized
XML file in the VEL, as depicted in Figure 6. The XML
file contains information of the 150% model. For simplicity
purposes, we show one variation point, named ’Physical
Architecture’, with two possible variants, named ’Albonair’
and ’Bosch’, together with information of model elements
that belong to either feature. The VEL file is then read
by pure::variants and mapped to the feature diagram
shown in Figure 4. Mapping is done through a naming conven-
tion based on the prototype implementation of the variability
modeling functionality in Modelio. The features that the user
did not select in Step 2 are then removed from the VEL file
in pure::variants and a new VEL file is then generated.

This new file contains information with the feature set of
a single variant, i.e., a 100% file. Modelio uses the new VEL
file as an input for a model transformation where elements
not contained in the VEL file of a single variant are removed
from the 150% system model. As an example, in 3 all product
family requirements are contained. Modelio, performs a model
transformation based on the VEL file exchange to generate a
100% requirement model that is stored separately into 6 .

The requirements define the performance and driveability

goals of the base engine system and auxiliary components. For
example, the duration of the engine warm-up function when
operating in cold conditions.

The base engine software features and interfaces are con-
figured in 4 . As all engine variants are built on a single
engine platform, it is necessary to enable or disable software
functions and system interfaces based on the application. The
configuration is performed by enabling or disabling software
parameters. The derivation of software configuration param-
eters is again automated based on the same feature selection
from 2 and the single variant model elements are again stored
into the new model repository, 6 .

Finally, in 5 it is necessary to select appropriate engine
auxiliary components (sensors, oil tanks, hoses, radiators, etc.)
and configure software functions that control these. Again,
based on the feature selection from 2 , the annotated 150%
model (containing the all auxiliary component design, software
parameters, and tests) is transformed to remove all features that
were not selected and generate a 100% model containing only
the selected elements.

The variations in requirements, base engine, and auxiliary
components are resolved and an individual model is generated
and stored in a new model repository in 6 . This final system
model then drives the engine assembly and activities such as
performance calibration.

Now looking back at the case when customer requirements
can not be mapped to any feature in the product line. The
first possibility is to extend the product line and implement
the required feature. That is, the feature model in 2 must be
extended to include the new feature. Then, the requirements
in 3 and system design in 4 and 5 must be extended
to implement the new feature. The process from selecting
variants in the feature model to product derivation needs to
be performed again to derive the new variant. The second
possibility is to select the closest possible variant in 2 , then
once a product based on the feature selection is derived in
6 , it is modified to implement the new requirements. The

first approach develops the new feature to be reusable in new
projects in the future, while the second approach develops the
feature for only one variant.

V. DISCUSSION

We first discuss the approach based on the quality criteria
for product lines as defined in [20].

Pre-planning effort. Implementing product lines always
requires some pre-planning, at least to define the scope of the
product line. System models are often created iteratively and as
it is with annotative approaches in general ([20]), our approach
enables the product line to be annotated as system models are
evolving with little pre-planning. However, it is important to
consider that no or little pre-planning might require significant
effort to implement new features in later stages, as it might
require large parts of the product to change.

Feature traceability evaluates support for mapping of fea-
tures between the feature model and implementation models.
The use of VEL for exchange of variability information allows



Fig. 6. Generated VEL

us to trace the features from the feature model directly to
system model elements. VEL also allows us to trace a feature
to multiple SysML models and model elements. That is, a
feature can be mapped to any number of model elements that
implement the given feature.

Separation of concerns, i.e. capability of the tool chain
to support a separation between variable aspects of system
features. Traditionally, in model-based development, views and
viewpoints are used to express different concerns of the system
design [21]. A view is a representation of the system from a
perspective (viewpoint) of a stakeholder of a related concern.
With SysML, a view can be considered as a set of model
diagrams that allow the users to visualize, analyze and reason
about a specific system concern or feature [22]. Separation of
concerns mainly depends on the implementation of the system,
i.e. whether the system is organized into cohesive components.
Cross-cutting concerns, for example, the diagnostic function of
the engine, however, span across multiple system components.
In such cases, annotating model elements with variability
information explicitly exposes the cross-cutting features.

Information hiding, i.e. separation of a component into its
internal logic and external interfaces is inherently supported
in SysML. Since our tool chain supports annotation on any
model element, encapsulated model elements of any feature
can be annotated with variability, thus enabling information
hiding with regards to features.

Granularity, i.e. the level of detail at which variability can
be implemented in system models. Our proposed annotative
approach provides fine-grained granularity. That is, it allows
annotation on all model element types and properties of such
elements, as well as annotation on the relationship links
between elements.

Uniformity states that variability in all product line artifacts
should be encoded consistently. Our tool chain provides good
uniformity as all product artifacts are SysML model elements
and are annotated in the same fashion.

Based on the initial application, it was noted that the
feature model and the constraints between features improve
the consistency of system variants as the constraints restrict
the possibility to create an invalid variant. The requirement
elicitation time from customers (product platforms in the
Volvo CE case) can be reduced since customers do not need
to interact with domain experts to define a system variant
except in the situation when customer requirements can not
be mapped to any feature. This situation was described in
Section IV. The feature model also received positive feedback
from managers and non-technical stakeholders as it allowed
them to understand the implications of certain system variants
without needing extensive technical knowledge of the system
or the domain.

VI. RELATED WORK

MBSE with SysML has been widely used in the industry
in various domains, for example, aerospace [6] and automo-
tive [23]. SysML can be extended with profiles and stereotypes
to support variability [24]. This approach does not require a
separate variability management tool. However, compared to
our approach, it does not support the modeling of variability
in SysML behavior diagrams, which are an important part of
the system design. Another approach for modeling variability
with SysML is presented in [25]. But again, it is not clear
how variability is captured in behavior models. As stated in
an literature survey, [8], activity and state machine diagrams
are widely used in systems engineering. Thus, it is important
to be able to define variants in behavior models as well.

The pure::variants tool was applied in a number
of studies and industrial examples such as: [17] [26]. The
later being interesting to us as it uses VEL to add variability
information on software code. Combining our approaches
would allow to have feature traceability through the complete
development cycle of a system, from requirements to the
system design and then the actual system implementation.



Another use of the same variability management tool and VEL
is reported in the experience report in [27]. It describes a
methodical and tooling approach with similar concepts to ours.
However, their approach uses a custom-built tool to support
variability in the problem domain throughout the complete
application lifecycle.

Feature modeling, of course, is not the only approach and
many of them are compared in [28]. For example, model
views can also be used to handle variability in a modeling
context [29]. Another study suggests Orthogonal Variability
Modeling for variability management in SysML models [30].
Nevertheless, feature-modeling seems to be the most popular
one based on a survey with industrial practitioners [3].

VII. CONCLUSION

MBSE is a common approach in practice for the de-
velopment of complex, software-intensive systems. However,
as presented in the Volvo CE example, organizations face
challenges where many similar products must be developed
and maintained for different customers. To deal with the
highly variable systems, PLE is often applied. To combine the
benefits of both worlds, PLE and MBSE, we have presented an
approach that allows us to integrate variability information into
design models of complex systems. The approach is supported
by our tool chain for which we extend the Modelio system
modeling tool to support variability modeling in SysML
models. In addition, we use the VEL to exchange variability
information with the pure::variants tool for variability
modeling and management. The approach is demonstrated
through an example from Volvo CE. The initial application
suggests a potential improvement in efficiency of the engine
development process.
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