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Abstract—This paper deals with the problem of Canonical
Polyadic (CP) decomposition of a given tensor. Standard al-
gorithms to perform this decomposition generally require the
knowledge of the rank of the sought tensor decomposition. Yet,
determining the rank of a given tensor is generally hard. In this
paper, we propose a method to find the rank of a symmetric
tensor. We reformulate the CP decomposition problem into a
truncated moment problem and we derive a sufficient condition
to certify the rank of the tensor from the rank of some moment
matrices associated with it. For tensors with rank not exceeding
a prescribed value, this sufficient condition is also necessary.
Finally, we propose to combine our rank detection procedure
with existing algorithms. Experimental results show the validity
of our results and provide an illustration of its practical use.
Our method provides the correct rank even in the presence a
moderate level of noise.

I. INTRODUCTION

Tensors are useful mathematical tools in a wide range of sci-
entific areas. For example, the diffusion kurtosis tensor is used
in medical imaging, the elasticity tensor in physics, and tensors
play also important roles in image authenticity validation, in
crystal study, or in quantum physics [1]. At the origin of the
wide spread of tensors, one can find decomposition possibil-
ities, which have become fundamental operations in today’s
science and engineering. More precisely, tensor factorizations
aim at decomposing an intricate or large tensor into a sum of
smaller and simpler ones. Several decompositions have been
proposed for different applications such as Canonical Polyadic
(CP) or Tucker [2], [3] decompositions.

Among these decomposition problems, we are focusing
here on the CP decomposition. The current methods for
performing this decomposition include mainly optimization
techniques such as Alternating Least Squares (ALS), Non-
linear Least Squares (NLS) [4], and non-linear unconstrained
optimization (OPT) [4], [5]. A few algebraic methods have
also been proposed such as the generalized eigenvalue method
(GEVD) [6] or methods based on the decomposition of a
homogeneous polynomial into a sum of given powers of linear
forms [7]. However, in order to perform the decomposition, all
the mentioned methods require to know explicitly the tensor
rank. Yet, finding the true rank is difficult, as it is known
to be an NP-hard problem [8]. Furthermore, any error in the
sought rank can yield dramatic consequences, as the set of
tensors of given rank does not form a closed set. Common rank
estimation methods are based on optimization problems using

the nuclear norm as a surrogate for the rank [9], Bayesian
models [10], or on matrix unfoldings such as balanced matri-
cization [3].

In this paper, we deal with the CP decomposition of a
symmetric tensor, which has for instance application in blind
identification of under-determined mixtures [7]. Applications
of symmetric tensors to machine learning can also be found
in [11] and applications to other areas in [1]. For symmetric
tensors, one can introduce the notion of symmetric rank, which
is also NP-hard to determine [8] but has the benefit to be com-
putable by some existing algebraic methods [12]. Although,
the rank and the symmetric rank may be different [13], they
are in many cases equal.

We propose here a moment based method offering the-
oretical guarantees to determine the symmetric rank in the
CP decomposition of a symmetric tensor. Our method has
the advantage to provide a necessary and sufficient condition
to obtain the true rank whereas for instance, rank-revealing
matrix unfoldings [3] give only a sufficient condition. The
link between CP decompositions and moment problems has
been mentioned [14], but not explored further. Our method
shows also similarities with the algebraic methods proposed
in [7], and [15]. Nonetheless, we present the method from
a completely different perspective that may provide further
insight.

Our paper is organized as follows: Section II introduces the
CP decomposition and rank for a symmetric tensor. Section III
states our main result allowing us to calculate the rank value.
The tools used in our method are presented in Section IV, as
well as some elements of proof. Section V shows simulation
results and Section VI concludes our work.

We use the following notation: b·c is the greatest integer
smaller than its argument and

(
n
p

)
is the binomial coefficient

“among n choose p”. Upper case calligraphic letters denote
tensors (T ) and fraktur letter (T) their values after re-indexing
(see Section III-A). Bold upper case letters (M) denote ma-
trices, bold lower case letters (v) denote vectors and simple
lower case letters (s) denote scalars. For a multi-index α of
length n+1, we define its absolute value |α| = α0+ · · ·+αn.

II. PROBLEM STATEMENT

A. CP decomposition

Consider in the following a tensor of order d ∈ N, d > 2 on
Rn+1, which is denoted by T ∈ Rn+1⊗· · ·⊗Rn+1 (d times).



In this paper, we deal with the case of symmetric tensors, by
which we mean that the tensor entries (Ti1,...,id)0≤i1,...,id≤n
are unchanged by any permutation of the indices. A tensor is
said to be symmetric rank-1 if it can be expressed as

v⊗d = v ⊗ · · · ⊗ v︸ ︷︷ ︸
d times

for a vector v of Rn+1, meaning that its elements are given
by
[
v⊗d

]
i1,...,id

= vi1 . . . vid . Given any symmetric tensor T ,
we are concerned with the problem of decomposing it as a
sum of rank-1 tensors, that is we want to write it

T =

R∑
r=1

v(r)
⊗d
,

or equivalently

Ti1,...,id =

R∑
r=1

vi1(r) . . . vid(r) . (1)

The decomposition (1) is called a CP decomposition of T .
The symmetric rank1, denoted by rankS T is the minimum
number of terms in any representation of T as above.

B. Indeterminacies and dehomogenization
Notice that there are ambiguities in defining the vec-

tors of decomposition (1). Indeed, the order of the vectors
(v(r))r∈J1,RK in the sum is arbitrary. For even values of d,
there is also a sign ambiguity. Going further, by normalizing
each v(r) with its pth coordinate, the decomposition (1) can
be expressed in the equivalent form

T =

R∑
r=1

λr

(
v(r)

vp(r)

)⊗d
, (2)

where we have set λr = vp(r)
d. The coordinate index p ∈

J0, nK used for the above normalization is the same for all r.
With no loss of generality, we take p = 0 in the following.
Corresponding to this choice, we assume:

Assumption 1. (∀r ∈ J1, RK) v0(r) 6= 0.

For all r ∈ J0, RK, we also set λr = v0(r)
d and then define

u(r) = (v1(r)/v0(r), . . . , vn(r)/v0(r)), which is obtained by
dividing v(r) by its first component and then dropping the first
coordinate. Such a procedure is known as dehomogenization.
Remark that if Assumption 1 does not hold, but if vp(r) 6= 0
for a given coordinate p and for all r ∈ J1, RK, dehomoge-
nization can be performed with respect to the pth coordinate.
All the results in the following then still hold, but should be
adapted by performing a permutation in the coordinates.

III. TENSOR RANK DETECTION

In this section, we give a method to detect the rank of
a tensor. Our main result links the tensor rank to the ranks
of particular matrices and offers a necessary and sufficient
condition in contrast to other methods like matrix unfoldings.
We therefore describe first the moment matrices associated to
a symmetric tensor.

1In the following rank will systematically mean symmetric rank.

A. Re-indexing of the tensor elements
Due to the symmetry assumption on the tensor T , the

order of the indices in i = (i1, . . . , id) is of no importance
for the value of Ti1,...,id and we can index the elements by
indicating the number of times each index value appears in i.
More precisely, to any d-tuple i = (i1, . . . , id), we associate
a (n+ 1)-tuple α(i) such that

α(i) = (α0(i), . . . , αn(i)) ,

where for each k ∈ J0, nK, αk(i) is the number of times the
index value k appears in i. Note that α is such that |α(i)| = d.
Any tensor entry Ti1,...,id depends on i only through α(i). We
therefore define the tensor values as follows

Ti = Tα(i) ,

where Tα is indexed by (n + 1)-tuples α = (α0, . . . , αn)
satisfying |α| = d.

Example: Let us take a tensor T of order 4 in R3 (d = 4
and n = 2). The natural description of any symmetric tensor
is by its coefficients Ti1i2i3i4 with 0 ≤ i1, i2, i3, i4 ≤ 2
and the latter coefficients are unchanged by any permutation
of {i1, i2, i3, i4}. We can equivalently describe the same
tensor with the indices α0, α1, α2 counting the number of
occurrences of 0, 1 and 2 respectively. For example, with
α0 = 2, α1 = 1, α2 = 1 we have

T211 ←→ T0012 = T0021 = T0102 = T0120 = T1002 = T1020
= T1200 = T2001 = T2010 = T2001 .

Note that α0 + α1 + α2 = 4 = d, as already mentioned.

B. Moment matrix
Let us set k = bd2c and arrange the elements Tα of the

initial tensor T into a matrix Mk indexed with the multi-
indices α and β with respect to the lexicographic order, i.e.
α is before β if the leftmost non-zero entry of α−β is positive(
∀(α,β) ∈

(
Nn+1

)2
, |α| = |β| = k

)
(Mk)(α,β) = Tα+β ,

The matrix Mk has size N =
(
n+k
k

)
and is called the

moment matrix of order k. For any integer l such that k−l ≥ 1,
we define the moment matrix Mk−l of order k − l as the
leading principal submatrix of Mk of size

(
n+k−l
k−l

)
, i.e. the

matrix composed of the
(
n+k−l
k−l

)
first rows and columns of

Mk.
Example: Let us proceed with our example from Sec-

tion III-A. We build the following moment matrices from the
tensor T with respect to the lexicographic ordering:

M2 =


M1

T220 T211 T202

T130 T121 T112

T031 T022 T103

T220 T130 T031

T211 T121 T022

T202 T112 T103

T040 T031 T022

T031 T022 T013

T022 T013 T004


with

M1 =

T400 T310 T301

T310 T220 T211

T301 T211 T202

 .



C. Main result

We now give a sufficient condition on the moment matrices
Mk and Mk−1 which certifies the rank of the corresponding
symmetric tensor T .

Theorem 1. The tensor T has rank R if its moment matrices
of order k and k − 1 both have rank equal to R

(rankMk = rankMk−1 = R) =⇒ (rankS T = R) .

Theorem 1 offers a conceptually simple tool to get the rank
of a tensor. Indeed, we can first build the associated moment
matrix Mk, then extract the principal submatrix Mk−1 and
finally check whether their ranks are equal. The conditions in
which this theorem is applicable are discussed in more details
below and an extension is given.

D. Extended result

First, the order of the moment matrix is non-negative and
the moment matrix Mk−1 is thus defined for k ≥ 2 only.
This means that our method can only be applied to symmetric
tensors of order at least d = 4.

Furthermore, Theorem 1 cannot be used to detect ranks
exceeding the size of the moment matrix Mk−1. It can thus
only be used to detect rank values smaller than

(
n+k−1
k−1

)
. The

tensor rank can be greater since, to our knowledge, the lowest
rank upper-bound (see [7]) is

(
n+d
d

)
. The rank value restriction

of our method is hence R ≤
(
n+k−1
k−1

)
. Note that for a tensor

of order 4, it reduces to R ≤ n+ 1. In large tensor data, and
in many applications where a low rank representation of the
tensor is looked for, our result may however provide interesting
guarantees.

When the tensor rank is known in advance to have smaller
rank than the size of Mk−1, the following reciprocal of
Theorem 1 can be proved:

Theorem 2. Suppose Assumption 1 holds. If R ≤
(
n+k−1
k−1

)
,

we have the following equivalence

(rankS T = R) ⇐⇒ (rankMk = rankMk−1 = R) .

IV. CP DECOMPOSITION: A MOMENT PROBLEM

We now introduce the necessary notions for a proof of
Theorems 1 and 2, leading to an interpretation of the CP
decomposition (1) as an integral with respect to a measure
supported on R points.

A. CP decomposition as a measure integration

Following the re-indexing in III-A, and with the dehomoge-
nization performed in Section II-B, the rank R decomposition
in (1) also reads

Tα0,...,αn
=

R∑
r=1

v0(r)
α0 . . . vn(r)

αn

=

R∑
r=1

λru1(r)
α1 . . . un(r)

αn . (3)

Now, we write (3) in an equivalent integral form

Tα0,...,αn
=

∫
xα1
1 . . . xαn

n µ(dx) =

∫
xγµ(dx) , (4)

where γ = (α1, . . . , αn) and µ is the discrete measure

µ =

R∑
r=1

λrδu(r) , (5)

which is defined on n variables and supported on the points
(u(r))r∈J1,RK. Such a measure, which is concentrated on a
finite set of R points, is referred to as an R-atomic mea-
sure. Finding the vectors (u(r))r∈J1,RK and the coefficients
(λr)r∈J1,RK of the CP decomposition is hence equivalent to
determine the R-atomic measure µ in (5).

The right hand side of (4) is called the moment of order γ
of the measure µ and its degree is |γ|. The moment matrix Mk

defined in Section III-B contains moments of µ up to degree
2k. Therefore, (4) shows that finding a CP decomposition of a
symmetric tensor T as in (1) is equivalent to the estimation of
a discrete measure µ from its moments of degree up to 2k. This
is a truncated moment problem which is often encountered in
mathematics, engineering, and physics and has been widely
investigated [16], [17]. In the next section, we use information
on the moments of µ contained in the moment matrix Mk to
retrieve the number of points R on which the measure µ is
defined and to solve our original CP decomposition problem.

Example: In the example provided in Section III-A,
the elements of T are moments up to degree 4 of a 2-
atomic measure µ on x = (x1, x2). The moment monomials
corresponding to the moment matrix M1 are presented in
Table I along with their corresponding tensor elements.

TABLE I
TENSORS ELEMENTS AND RELATED MOMENTS

Tensor elements Moment monomials xγ

T0000 T400 1
T0001 T310 x1
T0002 T301 x2
T0011 T220 x21
T0012 T211 x1x2
T0022 T202 x22

B. Solving the truncated moment problem

A necessary condition for a matrix to be a moment ma-
trix is positive definiteness. In our context, T admits a CP
decomposition; thus there exist an unknown R and vectors
(v(r))r∈J1,RK satisfying (1). A corresponding measure µ can
thus always be defined as in (5). Then, we have

(∀a ∈ RN ) a>Mka =
∑

|γ|≤k,|δ|≤k

aγaδTγ+δ

=
∑

|γ|≤k,|δ|≤k

aγaδ

∫
xγ+δµ(dx)

=

∫
pa(x)

2
µ(dx) ≥ 0



where pa is the polynomial pa =
∑
|γ|≤k aγx

γ . It follows
that the moment matrix Mk that we defined for a tensor is
always positive semi-definite.

Since Mk−1 is positive semi-definite and under assumption
of Theorem 1 that Mk and Mk−1 have same rank R, [17,
Theorem 7.10] applies. Accordingly, the moments contained
in Mk−1 have a unique representing R-atomic measure. Since
the points supporting the measure are the generating vectors
of the CP decomposition, we obtain that R is also the rank of
the tensor T .

To prove the equivalence in Theorem 2, we can also
apply [17, Theorem 7.10]. Nevertheless Assumption 1 must
hold. Indeed, dehomogenization is always possible when Mk

and Mk−1 have same rank. Conversely, if T has rank R
but Assumption 1 does not hold, then one can prove that
rankMk−1 = rankMk − 1.

V. NUMERICAL RESULTS

For numerical illustration, we generate randomly rank-
R tensors by drawing their CP decomposition vectors
(v(r))r∈J1,RK according to a uniform distribution on [0, 1]

n+1.

A. Importance of rank detection

Most of the standard algorithms to perform CP decomposi-
tion require as input, the rank of the sought CP decomposition.
Here, we use the algorithms called ALS, NLS, OPT, and
GEVD from Tensorlab 3.0 [18]. To show the benefit of our
method, we compare the relative error between a tensor of
known rank and the CP decomposition returned by algorithms
ALS, NLS, OPT, and GEVD for various input ranks. The
relative error between tensors T and T̂ is used to assess the
quality of the CP decomposition and it is defined as

relative error =

∥∥∥T − T̂ ∥∥∥
F

‖T ‖F
,

where ‖.‖F is the Frobenius norm.
Figure 1 shows the average relative error on 100 random

tensors of rank 5, order 4 and dimension 30 for the different
input ranks. We can notice the sensitivity of the algorithms to
the input rank. More specifically, the algebraic method GEVD
shows a high improvement potential when the true rank is
known. Similarly NLS shows a particularly good performance
for the real rank value. This shows the importance of our
method which can thus be used to find directly the rank of
a given tensor before feeding it into a CP decomposition
algorithm.

B. Finding the rank of a symmetric tensor

Here, we look at the numerical rank of moment matrices to
verify that Theorem 1 applies well in practice. We compute
the rank of the tensor through the ranks of moment matrices
Mk and Mk−1 and if both are equal, then this delivers the
rank of the tensor.

On four different examples with different tensor ranks,
Figure 2 plots the first twelve singulars values of the moment
matrices, normalized by the largest singular value σ1. We
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observe a significant drop after the same singular value for
both moment matrices. We can conclude that they have the
same numerical rank and infer that this rank is also the rank
of the tensor.

We generate 100 random rank-7 tensors of dimension 20
and of order 6. Figure 3 shows the ratio of the successive
singular values (sorted in decreasing order) σ5/σ6, σ6/σ7 and,
σ7/σ8 of M2, without noise and in a presence of an additive
zero-mean Gaussian noise of variance 10−4. In both case, we
observe a gap in the ratios that indicate a rank of 7 for the
moment matrix. We observe a similar gap for M3 which shows
that our method detects the rank of the tensor correctly.

In conclusion, for noiseless or moderate level of noise
scenarios, we observe that Mk and Mk−1 always have same
rank under conditions of Section III-D. We therefore can
determine the rank of the corresponding tensor and confirm
that Theorem 1 works well in numerical applications.
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C. Application to cumulant-based source separation

We consider the cumulant tensor of a random vector y such
that

y = As+w

where A ∈ Rn×R is an unknown matrix, w is a white
Gaussian noise with zero-mean, and s is a vector of R
independent random variables. In our experiments, we draw
the elements of A according to a uniform distribution on [0, 1]
and the elements of s take value -1 or 1 with equal probability.

Our goal is to retrieve the number of sources R from several
samples of the observation vector y. It is known [19] that the
tensor of cumulant follows a CP decomposition

Cum(yi, yj , yk, yl) =

R∑
r=1

AirAjrAkrAlr Cum(sr) .

We use the empirical estimation of moments to compute the
estimated cumulant tensor, which is a noise-corrupted version
of a low-rank tensor. We then apply our method to detect the
low rank model and thereby recover the number of sources.
Table II shows the percentage of cases where the number of
sources is correctly detected over 200 runs. For each of them,
100,000 samples of vectors y of size 20 are generated, for
various variance values of the noise w. We detect the rank
numerically in the moment matrices by a gap of 103 in the
ratio of successive singular values. We then feed the detected
ranks into NLS, ALS, OPT and GEVD algorithms and look
at the CP decomposition they returned. Figure 4 plots the
average relative errors for the four algorithms in the case of
three sources.

TABLE II
PERCENTAGE OF SUCCESSFUL DETECTION OF THE NUMBER OF SOURCES

Number of sources R
Variance of the noise 3 4 5

0 100% 97% 69%
1 · 10−6 100% 97% 69%
1 · 10−4 100% 97% 69%
1 · 10−2 100% 97% 69%
1 · 10−1 100% 95% 57%

We note that even with a reasonable level of noise, the
moment matrices have still the same rank that corresponds to
the rank of the tensor. The method shows satisfactory results
for low rank tensor corrupted with noise. Nevertheless, we

observe that the higher the rank, the higher the sensitivity to
the estimation noise and the higher the number of samples
must be. Figure 4 also shows that algebraic methods such
as GEVD are more sensitive to the noise despite their good
performance in the noiseless case.

VI. CONCLUSION

We have proposed a method to find the symmetric rank of
a symmetric tensor. By interpreting the problem of the CP
decomposition of a symmetric tensor as a moment problem,
we can use tools related to truncated moment problems and
obtain a necessary condition to deduce the tensor rank. Finally
our simulations show first, the importance of rank detection
and then the successful application of our result in practical
situations.
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