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Purpose

-The purpose of this paper is to analyze two dimensional steady state Rayleigh-Bénard convection within rectangular enclosures in different aspect ratios filled with yield stress fluids obeying the Herschel-Bulkley model. Design/methodology/approach -In this study, a numerical method based on the finite element has been developed for analyzing two dimensional natural convection of a Herschel-Bulkley fluid. The effects of Bingham number ݊ܤ and power law index ݊ on heat and momentum transport have been investigated for a nominal Rayleigh number range (5 * 10 ଷ < ܴܽ < 10 ହ ) , three different aspect ratios (ratio of enclosure length:height ܴܣ = 1, 2, 3 ) and a single representative value of nominal Prandtl number ݎܲ( = 10). Findings -Results show that the mean Nusselt number ݑܰ തതതത increases with increasing Rayleigh number due to strengthening of convective transport. However, with the same nominal value of ܴܽ the values of ݑܰ തതതത for shear thinning fluids ݊ < 1 are greater than shear thickening fluids ݊ > 1 . The values of ݑܰ തതതത decrease with Bingham number and for large values of ݊ܤ , ݑܰ തതതത rapidly approaches to unity which is indicated that heat transfer takes place principally by thermal conduction. The effects of aspect ratios have also been investigated and results show that ݑܰ തതതത increases with increasing ܴܣ due to stronger convection effects. Originality/value -Finite element analysis of viscoplastic fluids. Analysis of Rayleigh-Bernard flows involving Herschel-Bulkley fluids for a wide range of Rayleigh numbers, Bingham numbers and power law index. Study on the effects of aspect ratio on flow and heat transfer of Herschel-Bulkley fluids.

Introduction

Viscoplastic fluids are characterized by a yield stress, the existence of a "yield stress" is traditionally recognized to be responsible for the complicated transition between classical solid-like and liquid-like behavior. If the material is not sufficiently stressed, it will not deform and behaves like a solid, but once the yield stress is exceeded, it will deform and flow according to different constitutive relations.

Several systems and industrial processes are based on viscoplastic fluid behavior such as blood, drilling mud, mayonnaise, toothpaste, grease, and some lubricants. There are three ideal models based on viscoplastic model, the Bingham plastic, the Herschel-Bulkley model, and the Casson model [START_REF] Mitsoulis | Flows of viscoplastic materials: models and computations[END_REF]. Heat transfer analysis and especially convection had been one of the interesting parts of viscoplastic research works in last decades because of its applications, such as Nouar studies about combined forced and free convection heat transfer of a yield stress fluid [START_REF] Nouar | Thermal convection for a thermo-dependent yield stress fluid in an axisymmetric horizontal duct[END_REF] and thermal convection for an incompressible Herschel-Bulkley fluid along an annular duct [START_REF] Nouar | Numerical and experimental investigation of thermal convection for a thermodependent Herschel-Bulkley fluid in an annular duct with rotating inner cylinder[END_REF]. In this field instability of necking processes for an elasto-viscoplastic lithosphere has been studied by Regenauer-Lieb and his co-worker [START_REF] Regenauer-Lieb | Quasi-adiabatic instabilities associated with necking processes of an elasto-viscoplastic lithosphere[END_REF] and also, Soares et al. [START_REF] Soares | Heat transfer to viscoplastic materials flowing axially through concentric annuli[END_REF] have analyzed heat transfer in the entrance-region flow of Herschel-Bulkley fluids inside concentric annular spaces. Despite the number of researches carried out, information about natural convection process within a square enclosure containing viscoplastic material (especially for Herschel-Bulkley and Casson models) is still very scarce.

Rayleigh-Bénard convection as an important part of heat transfer has been investigated by some researchers. Actually Rayleigh-Bénard is a type of natural convection and occur in a fluid layer due to a horizontal temperature gradient, when the lower wall is heated and the upper wall cooled. First studies on this problem were motivated by the Bénard's experiments around 1900 [START_REF] Bénard | Les tourbillons cellulaires dans une nappe liquide[END_REF]) who considered the stability of a fluid layer heated from below. A linear stability analysis was proposed in first chapters of Chandrasekhar's book [START_REF] Chandrasekhar | Hydrodynamic and Hydromagnetic Stability[END_REF] present the linear theory within the Boussinesq approximation. Non-linear approaches were reviewed in [START_REF] Busse | Non-linear properties of thermal convection[END_REF][START_REF] Newell | Order Parameter Equations for Patterns[END_REF]).

In the case of Newtonian and power law fluids, Aghighi et al. [START_REF] Aghighi | Non-incremental transient solution of the Rayleigh-Bénard convection model by using the PGD[END_REF]) solved transient and steady state Rayleigh-Bénard convection using the Proper Generalized Decomposition (PGD) method. They also analyzed the effects of nanoparticle's temperature and diameter on Rayleigh-Bénard convection of Nano-fluids [START_REF] Aghighi | Parametric solution of the Rayleigh-Benard convection model by using the PGD Application to nanofluids[END_REF]. Before that, the RB convection along the isochore of nitrogen has been numerically studied by Shen and his co-worker [START_REF] Shen | Rayleigh-Bénard convection in a supercritical fluid along its critical isochore in a shallow cavity[END_REF] using the SIMPLE algorithm. The other numerical study has been done by Kao and Yang [START_REF] Kao | Simulating oscillatory flows in Rayleigh-Bénard convection using the lattice Boltzmann method[END_REF]. They used the lattice Boltzmann method to simulate the oscillatory flows of the secondary instability in 2D Rayleigh-Bénard convection. The steady state condition of twodimensional Rayleigh-Bénard Convection was analyzed by [START_REF] Ouertatani | Numerical simulation of two-dimensional Rayleigh-Bénard convection in an enclosure[END_REF] using finite volume method. There are also some experimental works such as Maystrenko et al. [START_REF] Maystrenko | Structure of the thermal boundary layer for turbulent Rayleigh-Bénard convection of air in a long rectangular enclosure[END_REF]) research about measurements of the temperature distribution in the upper (cold) boundary layer of a rectangular Rayleigh-Bénard cell for air in large aspect ratios.

While for Newtonian and Power law fluids we can refer several research studies, in the case of viscoplastic material there are no many research works especially for Herschel-Bulkley and Casson models. In the case of Bingham fluids the effects of a fluid yield stress on the classical Rayleigh-Bénard instability were examined by Zhang and his co-workers [START_REF] Zhang | Yield stress effects on Rayleigh-Bénard convection[END_REF]) and Vikhansky [START_REF] Vikhansky | Thermal convection of a viscoplastic liquid with high Rayleigh and Bingham numbers[END_REF]) considered the effect of yield stress on the Rayleigh-Bénard convection of a viscoplastic material. A numerical analysis based on Fluent for Rayleigh-Bénard convection and Bingham model has been done by [START_REF] Turan | Laminar Rayleigh-Bénard convection of yield stress fluids in a square enclosure[END_REF]. Recently, the effects of aspect ratio on steady state Rayleigh-Bénard convection of Bingham fluids have been analyzed by [START_REF] Yigit | Effects of aspect ratio on natural convection of Bingham fluids in rectangular enclosures with differentially heated horizontal walls heated from below[END_REF] using Fluent simulation. Finally in the field of experimental study, Darbouli and his co-workers [START_REF] Darbouli | Rayleigh-Bénard convection for viscoplastic fluids[END_REF]) have investigated the influence of rheological and interfacial properties of yield stress fluids on the onset of the Rayleigh-Bénard convection. Besides developing a powerful numerical method based on the finite element which can be used for analyzing different types of viscoplastic fluids, this study also investigated the effects of aspect ratio ܴܣ( = 1, 2, 3) on steady-state natural convection of yield stress fluids obeying the Herschel-Bulkley model within rectangular enclosures over wide ranges of conditions as: Rayleigh number, 5 * 10 ଷ < ܴܽ < 10 ହ , Bingham number, 0 < ݊ܤ < ݊ܤ ௫ and power law index, 0.7 < ݊ < ݊ ௫ .

To the best of our knowledge, it has not been studied before and the results reported here are new.

Mathematical formulation

The case under consideration is the two dimensional steady natural convection of a Herschel-Bulkley fluid, in a rectangular cavity (Figure 1). No-slip conditions are considered at walls. The cavity is heated from below and cooled from above. It is assumed that the viscous dissipation terms are negligible and fluid has constant properties (except the density changes which produce buoyancy forces).

Assuming the Boussinesq approximation and using the characteristic scales ܪ for length, ݑ = )ܶ߂ܪߚ݃( ଵ ଶ ൗ for the velocity, ݐ = ܪ ݑ ൗ for the time, and  = ݑߩ ଶ for the pressure, the dimensionless continuity, momentum and energy equations for Rayleigh-Bénard convection could be written as:

ݑ߲ ݔ߲ + ݒ߲ ݕ߲ = 0 ݑ ݑ߲ ݔ߲ + ݒ ݑ߲ ݕ߲ = - ߲ ݔ߲ + ݎܲ ଶ ܴܽ ିଶ ଶ ቆ ߲߬ ௫௫ ݔ߲ + ߲߬ ௬௫ ݕ߲ ቇ ݑ ݒ߲ ݔ߲ + ݒ ݒ߲ ݕ߲ = - ߲ ݕ߲ + ݎܲ ଶ ܴܽ ିଶ ଶ ቆ ߲߬ ௬௬ ݕ߲ + ߲߬ ௫௬ ݔ߲ ቇ + ߠ ݑ ߲ߠ ݔ߲ + ݒ ߲ߠ ݕ߲ = (ܴܽ. )ݎܲ ି ଵ ଶ ൗ ቆ ߲ ଶ ߠ ݔ߲ ଶ + ߲ ଶ ߠ ݕ߲ ଶ ቇ (1)
The steady state boundary conditions for this problem would be:

ݑ = ݒ = 0 at all walls ߲ߠ ݔ߲ = 0 ݐܽ ݔ = 0 ܽ݊݀ ݔ = ܮ ܪ = 1, 2, 3 ߠ = 0.5 ݐܽ ݕ = 0 ߠ = -0.5 ݐܽ ݕ = 1 (2)
The Prandtl number, ,ݎܲ and Rayleigh number, ܴܽ, defined by:

ݎܲ = ܥߤ ݇ ܴܽ = ܪܶ∆ߚ݃ ଷ ߙߴ (3) 
The various dimensional quantities above are defined as follows: ,ݑ ,ݒ ߠ and  are dimensionless horizontal velocity, vertical velocity, temperature and pressure respectively. ߤ is the dynamic viscosity, ܥ is specific heat capacity, ݇ is the thermal conductivity, ݃ is the acceleration due to gravity, ߚ is the coefficient of thermal expansion, α is the thermal diffusivity, ∆ܶ is the temperature difference between hot and cool walls, ߥ is the kinematic viscosity, ߬ is the viscous stress and ݊ is power law index.

The dimensionless temperature ߠ is defined by:

ߠ = ܶ -ܶ ܶ ு -ܶ (4) 
Where ܶ and ܶ ு ( ܶ ு > ܶ ) are the temperatures enforced at the top and bottom cavity boundaries, respectively, and ܶ is a reference temperature:

ܶ = ( ܶ ு + ܶ ) 2 ⁄ .
The heat flux averaged over the hot wall is defined via the Nusselt number:

ݑܰ തതതത = -න ߲ߠ ݕ߲ ฬ ௬ୀ ݔ݀ (5) 
ଵ

The stress-deformation behavior of viscoplastic materials based on Herschel-Bulkley model is given by:

߬ = ൬ߛሶ ିଵ + ݊ܤ ߛሶ ൰ ߛሶ ݎ݂ |߬| > ߬ ௬ ܽ݊݀ ߛ ሶ = 0 ݎ݂ |߬| < ߬ ௬ (6) 
For ݅, ݆ = 1,2 with ( ݔ ଵ , ݔ ଶ ) = ( ,ݔ ݕ ), where ݊ is power law index, ݊ܤ Bingham number,

ߛሶ = ට ଵ ଶ ߛሶ ߛሶ and ߬ = ට ଵ ଶ ߬ ߬ .
The rate-of-strain tensor ߛሶ is defined by:

ߛሶ = ݑ߲ ݔ߲ + ݑ߲ ݔ߲ (7) 
The dimensionless Bingham number ݊ܤ generally represents the ratio of yield stress to buoyancy stresses but based on equations ( 1) and ( 6) the value of ( .ݎܲ ܴܽ )

ି ଶ

ൗ should be added to it so:

݊ܤ = ( .ݎܲ ܴܽ ) ି ଶ ൗ ߬ ௬ ܪܶ∆݃ߚߩ (8) 
Papanastasiou modifications method [START_REF] Papanastasiou | Flows of Materials with Yield[END_REF]) can be applied to Herschel-Bulkley model to avoid discontinuity between yielded and unyielded regions. He proposed an exponential regularization of stress equation. based on this model equation ( 6) would be rewritten as:

߬ = ൬ߛሶ ିଵ + 1(݊ܤ -exp (-݉ߛሶ ߛሶ ൰ γሶ (9)
where ݉ is regularization parameter and controls the exponential rise in the stress at low rates of strain.

While this model has been used by many researchers to analyze viscoplastic problems there are also other regularization techniques which circumvent the discontinuity inherent in these materials. The one which has gained wide acceptance in the literature is bi-viscous model. In this model, the unyielded material is assigned a very high value of viscosity. Comparison between the predictions of the yielded/unyielded regions using the two regularization techniques shows that the bi-viscous model is unable to identify the small unyielded regions as captured by the Papanastasiou regularization technique [START_REF] Sairamu | Natural convection from a circular cylinder in confined Bingham plastic fluids[END_REF]). However, these minor differences in the identification of yielded and unyielded regions by the two techniques have very little influence on the value of the Nusselt number [START_REF] Sairamu | Natural convection from a circular cylinder in confined Bingham plastic fluids[END_REF][START_REF] Turan | Laminar Rayleigh-Bénard convection of yield stress fluids in a square enclosure[END_REF].

Numerical analysis

A numerical code based on the finite element method with quadrilateral, eight nodes elements was developed to solve the coupled conservation equations of mass, momentum and energy related to the two dimensional steady state Raleigh-Bénard convection within rectangular enclosures. When we proceed to the discretization of the weak form related to equation ( 1) some stability conditions must be ensured. One of them concerns the so-called LBB condition that restricts the free choice of pressure and velocity approximations. As in Aghighi et al. [START_REF] Aghighi | Non-incremental transient solution of the Rayleigh-Bénard convection model by using the PGD[END_REF] in what follows we consider a penalty formulation of the incompressibility constraint. Thus, the equation ( 1) can be rewritten as below:

ݑ߲ ݔ߲ + ݒ߲ ݕ߲ + 1 ߣ  = 0 ݑ ݑ߲ ݔ߲ + ݒ ݑ߲ ݕ߲ + ߲ ݔ߲ = ݎܲ ଶ ܴܽ ିଶ ଶ ቆ ߲߬ ௫௫ ݔ߲ + ߲߬ ௬௫ ݕ߲ ቇ ݑ ݒ߲ ݔ߲ + ݒ ݒ߲ ݕ߲ + ߲ ݕ߲ -ߠ = ݎܲ ଶ ܴܽ ିଶ ଶ ቆ ߲߬ ௬௬ ݕ߲ + ߲߬ ௫௬ ݔ߲ ቇ ݑ ߲ߠ ݔ߲ + ݒ ߲ߠ ݕ߲ -(ܴܽ. )ݎܲ ି ଵ ଶ ൗ ቆ ߲ ଶ ߠ ݔ߲ ଶ + ߲ ଶ ߠ ݕ߲ ଶ ቇ = 0 (10)
Where λ is a large enough constant. In this set of equations all variables are on the left side, but the stress terms on the right. The values of stress assumed to be known when the momentum equations analyzed. Initial values of velocity were considered to calculate shear rate and stress terms.

Then, using the obtained values of stress and solving equations ( 10) the new values of velocity were computed. These new values were used to recompute stress terms and the process repeated until the values of velocity and temperature converge. It should be indicated that the numerical analysis of equations ( 10) in this format is not stable so the Laplace values of velocity were added to both sides of momentum equations these values does not affect the results but make the equation stable. The CPU time shows that this convergence is very fast with an average of 400 second (Running on Mac 2.9

GHz Intel Core i5 and after about 1500 iteration). Using this method Rayleigh-Bénard convection has been analyzed successfully for viscoplastic fluids based on Herschel-Bulkley model in an enclosure with three different aspect ratios and results are presented below.

Results and discussion

Numerical method validation

Mesh convergence studies for each aspect ratio separately and based on the results, the meshes consist of 1825, 2133 and 2465 nodes have been used for AR=1, 2, 3 respectively.

The convergence of the solutions was checked by varying the penalty and regularization parameters.

Results show that the ݑܰ തതതത value converges within 0.1% by varying ߣ from 10 ଷ to 10 ସ and by varying ݉ from 10 ଶ to 10 ଷ . In the following, all results are obtained for ߣ = 10 ସ and ݉ = 10 ଷ .

To validate the numerical method Rayleigh-Bénard convection for Newtonian (݊ = 1, ݊ܤ = 0, ܴܣ = 1) and Bingham (݊ = 1, ܴܣ = 1) fluids was solved and the results compared with previous research works.

In the case of Newtonian fluids the results are compared with [START_REF] Ouertatani | Numerical simulation of two-dimensional Rayleigh-Bénard convection in an enclosure[END_REF] 

Velocity and temperature

Due to the large number of results and to summarize, the results of velocity and temperature are only presented for mid-range Rayleigh number (ܴܽ = 5 * 10 ସ ).

One can see the effects of power law index in figure 3 where the variations of non-dimensional demonstrate the advantages of the present numerical method for solving the nonlinear complex models in critical conditions (critical power law index).

Comparing the results of figures 3-5 show that the magnitude of velocity increases with increasing ܴܣ due to stronger convection force there are also more maximum (and minimum) points of velocity because of more convection rolls in the enclosure where the numbers of convection rolls are equal to the value of aspect ratio. It should be noted that the vertical mid-plane of the enclosure passes through the center of convection roll when ܴܣ = 1 and 3, but from the boundary of them when ܴܣ = 2 so different distribution of the temperature can be seen.

One can see that the magnitude of velocity and non-linearity of temperature distribution decrease with increasing power law index (or Bingham number) indicating weakening of convective thermal transport due to the additional flow resistance and this trend strengthens with increasing power law index (Bingham number) cause flow tend toward the rest condition and temperature towards the linear variation with ܮ/ݔ which is indicated that the relative contribution of thermal conduction to the overall heat transfer increases with increasing power law index (Bingham number).

For high value of power law index (Bingham number), the viscous forces overcome the buoyancy force and as a result of this, the heat transfer is due to thermal conduction and there is no significant flow within the enclosure. One can find this result from figures 3-5 where the temperature distribution becomes linear and the magnitude of velocity converge to zero. For linear distribution of temperature, the mean Nusselt number approach to unity which means that the heat transfer is due to thermal conduction. The value of power law index or Bingham number at which ݑܰ തതതത approaches to ݑܰ തതതത = 1 is defined as critical power law index (݊ ௫ ) or critical Bingham number ( ݊ܤ ௫ ). Comparing the results from figures 3-5 show that the value of ݊ ௫ or ݊ܤ ௫ increases with increasing ܴܣ due to the stronger convection force which can overcome the flow resistance up to greater values of power law index (Bingham number). More details about heat transfer and mean Nusselt number are presented in the next section.

Heat transfer (Nusselt number)

The results are presented in two parts. First, the effects of power-law index ݊ are shown for three and ݊ܤ = 0.25. The black lines in these figures show the plug regions (TUR and AUR) where ߬ < ߬ ௬ . The truly unyielded regions (TUR) move with a plug velocity profile (no deformation), and the apparently unyielded regions (AUR) are in the corners, where the velocities are very small, so the area behaves as stagnant, and no deformation occurs [START_REF] Mitsoulis | Flows of viscoplastic materials: models and computations[END_REF]. One can see that the isothermal lines become more curved and plug regions decrease with decreasing ݊ because of the low viscosity effects. Furthermore, the number of convection rolls within the enclosure change with ܴܣ and thus the qualitative nature of isothermal line and velocity vectors have also changed with .ܴܣ It can be observed that increase in ܴܣ generally decrease plug regions due to stronger convection effects.

Conclusions

In this study a finite element numerical code has been developed for analyzing two dimensional steady state natural convection of viscoplastic fluids obeying the Herschel-Bulkley model within rectangular enclosures heated from below and cooled from above at constant temperature.

The effects of Bingham number ݊ܤ , power law index ݊ and aspect ratio ܴܣ 

  for several Rayleigh numbers and in all cases very good agreement can be determined. Results of Bingham fluids are compared with (Turan et al. 2012) where the Fluent base solution of Rayleigh-Bénard convection for Bingham fluids could be found. Results of non-dimensional velocity ݑ , non-dimensional temperature ߠ and mean Nusselt number ݑܰ തതതത for ܴܽ = 5 * 10 ସ and ݎ = 10 are shown in figure 2 where the line shows the results of the present study and points show the Turan results.

velocity

  ݒ and temperature ߠ along the horizontal and vertical mid-planes of the cavity are shown for different values of Power law index ݊ at ܴܣ = 1, 2, 3 and ݊ܤ = 0.5. On the other hand, the effects of Bingham number are presented in figures 4 and 5 for shear thinning (݊ = 0.85) and shear thickening (݊ = 1.05) viscoplastic fluids respectively. It should be noted that while the power law index greater than one may not present real fluid behavior but the mathematical results are still considered to

selected

  Figures 10 and 11 show contours of non-dimensional temperature ߠ and velocity vectors for three different values of aspect ratio ܴܣ( = 1,2,3) and power law index (݊ = 0.85,1,1.05) at ܴܽ = 5 * 10 ସ

  (length: height) on heat and momentum transport have been investigated in the nominal Rayleigh number range ( 5 * 10 ଷ < ܴܽ < 10 ହ ) for a single representative value of nominal Prandtl number ݎܲ( = 10). Results show that the mean Nusselt number ݑܰ തതതത increases with increasing Rayleigh number due to stronger convection effects and decreases with increasing power law index because of strengthening viscous forces. For a given set of values of the Rayleigh number ܴܽ and power law index ݊ the mean Nusselt number ݑܰ തതതത is found to decreases with increasing values of the Bingham number. Results show that for a large value of power law index (݊ ≥ ݊ ௫ ) or Bingham number ݊ܤ( ≥ ݊ܤ ௫ ) the value of mean Nusselt number rapidly approaches unity ݑܰ( തതതത = 1) which means that the dominant mode of heat transfer in the enclosure is thermal conduction. The values of ݊ ௫ and ݊ܤ ௫ depends on ܴܽ , and increase with increasing ܴܽ due to stronger convection effects. The effects of aspect ratio on momentum and thermal transport have also been investigated in detail. The number of convection rolls and mean Nusselt numbers are found to increase with increasing ܴܣ for a given set of values of ܴܽ and power law index ݊. Results also show that for shear thinning fluids (݊ < 1) the effects of Bingham number on heat transfer decrease with decreasing Rayleigh number.
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 12345 Figure 1: Schematic diagram of the physical model and coordinate system.
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 8 Figure 8: Evolution of the mean Nusselt number with the Bingham number for three different values of aspect ratio and power law index at Ra = 5 ⇤ 10 3 (left) and Ra = 10 4 (right).

Figure 9 :

 9 Figure 9: Evolution of the mean Nusselt number with the Bingham number for three different values of aspect ratio and power law index at Ra = 5 ⇤ 10 4(left) and Ra = 10 5 (right).
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 1011 Figure 10: Contours of non-dimensional temperature ✓ and velocity vectors with plug regions (shown with black lines) for AR = 1 (on the left) and AR = 2 (on the right) and three different values of power law index (n = 0.85, 1, 1.05) at Bn = 0.25 and Ra = 5 ⇤ 10 4 .