Automatic recognition of Virtual Reality sickness based on physiological signals - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Automatic recognition of Virtual Reality sickness based on physiological signals

Nicolas Mathieu
  • Fonction : Auteur
  • PersonId : 1053893
Nico Pallamin
  • Fonction : Auteur
  • PersonId : 1010799
Jean-Marc Diverrez
  • Fonction : Auteur
  • PersonId : 1008619

Résumé

Virtual Reality (VR) sickness seems one of the main limitations to the large-scale adoption of VR technologies. This disturbance seems to induce physiological changes that affect the sympathetic and parasympathetic activities of the users. Thereby, it seems relevant to measure users' physiological data in order to prevent and reduce VR sickness. This paper presents the results of an initial real-life experiment of VR sickness detection based on physiological data. The electrodermal, cardiac and subjective data of 27 participants was recorded during VR sessions. Machine Learning algorithms were trained and the best model (Gradient Boosting) explained 48% of the VR sickness variance. These results demonstrate the opportunity to develop an automatic and continuous tool to detect the appearance of VR sickness based on physiological signals. This tool will prove very valuable to the VR industry.
Fichier principal
Vignette du fichier
IBC_ref261_V2.pdf (291.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02284832 , version 1 (12-09-2019)

Identifiants

  • HAL Id : hal-02284832 , version 1

Citer

Nicolas Martin, Nicolas Mathieu, Nico Pallamin, Martin Ragot, Jean-Marc Diverrez. Automatic recognition of Virtual Reality sickness based on physiological signals. IBC, 2018, Amsterdam, Netherlands. ⟨hal-02284832⟩
325 Consultations
291 Téléchargements

Partager

More