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Automated Detection and Segmentation of
Mitochondrial Images based on Gradient

Enhancement and

Nhan Nguyen-Thanh, Tuan

Abstract—Information of cellular organelles location and mor-
phology is essential for cancer simulation. In order to obtan such
information, the segmentation of the organelles from eleconic
microscopy intracellular image is crucial. In this paper, we
focus on the automatic segmentation of mitochondria orgarke
which is one of the most important organelles tightly relatel
to the form of cancer. A simple three-stage strategy which
includes coarse segmentation, detection and fine segmendat
is proposed for fully automatic mitochondria segmentation The
local gradient calculation provides a weight factor matrix and
a orientation matrix. The weight factor matrix will improve
the contrast of organelle boundary of intracellular imagesand
hence facilitate both coarse and fine mitochondria segmentian.
The orientation matrix will be used for enhancing the Gabor
feature extraction which make the mitochodrial detection pocess
more accurate. Machine learning-based classifiers includp k-
nearest neighbor k-NN), support vector machine (SVM)-based
and neural network (NN)-based classifiers, are consideredot
learn with eight extracted features for mitochondrial detection.
Experimental results on focused ion beam (FIB) and scanning
electron microscope (SEM) images of cancer cellular of huma

head and neck squamous cell carcinoma (SCC-61) have shown

the effectiveness of proposed method.

Index Terms—cell organelles, image segmentation, image pro-

cessing, mitochondria, gradient boundary enhancement, anta-
tion adaptive, Gabor filter, SCC-61, cancer cell.

I. INTRODUCTION

Adaptive Gabor Filter

D. Pham and Kazuhisa Ichikawa

electron microscopy (SEM), which is well-known for captur-
ing surface characteristics and morphology, to obtain atow
resolution of both intercellular and intracellular spakately,

the detail complex structure of the cell can be acquired thi¢h
combination of SEM and focused ion beam (FIB) technique,
which increase the resolution of the scan. As a result, the
integrated imaging system FIB-SEM has now been a powerful
scientific instrument for the study of biological specimans

soft materials [14].

Automatically analyzing and understanding such kind of
intracellular electron microscopy images are not a tritéak
since the space of cellular contains a complicated system
with variety of organelles possessing various shapes and
sizes. There are some recent works that succeeds in seg-
mentation of mitochondria [11]-[13] as well as some other
cell organelles [8]-[10]. In detail, in [13], a texturalded
Gentle-Boot classifier is trained for detecting mitochaadin
electron microscopy images of brain tissue. Similarly,%ig][
multiple classifiers including-nearest neighbor algorithnk-(
NN), support vector machine (SVM) and adaptive boosting
algorithm (Adaboost) are used for detecting mitochondria
and other organelles of highly pigmented human melanoma
(MNT-1) cell based on textural feature. These works were
said to be under-utilization of image information, i.e.aph
information, and were improved in [11] by considering a drap

In cell biology, mitochondrion is one of the main organellepartitioning scheme incorporated with a learn shape featur

that can be found in most eukaryotic cells. This type

aghethod. Though the results of these research are reaspnable

organelle concerns with the roles of energy supply, siggalithe huge load works for training the system could be the most

and control of cellular differentiation, growth and death.

difficulty for implementation.

is reported that there is a strong link between the functionFIB-SEM intracellular images reveal a great detail streestu
of mitochondria and cancer. [1]. For example, the functioof the cellular space which includes variety types of ordlase
of mitochondria of cancer cell is believed to be altered fauch as nucleus, mitochondria, golgi apparatus, endoptasm
resistance apoptosis [2], [3]. This leads the researchrgeta recticulum, cytoskeleton, vesicle, etc., with differersiees,

on mitochondria for cancer therapy by changing mitochaid

rishapes, texture and brightness. The solid distributiomege

metabolism or stimulating mitochondrial membrane permerganelles leads the segmentation task for intracellmages

abilization [4]. In addition, it is convinced that there aae

to be very complicated. Furthermore, in cases of images of

relation of mitochondrial morphology and molecular cofitroabnormal cellulars such as cancer cells derived from mafign
ling mechanisms during cell death [5], [6] and a connectidamor, the structure and other characteristics of orgaaédind
of mitochondrial dynamics to key signaling cascades [7§o be more sophisticated which can cause the hard segmenta-

Therefore, obtaining information of location and morplgylo
of mitochondria in intracellular space is very useful foncer
simulation.

Recent progresses on super-resolution electronic
croscopy enable us to obtain this information through oeta

tion task to be harder. In this paper, images of a cancerlaellu

of human head and neck squamous cell carcinoma (SCC-61)
[15], [16] captured by FIB-SEM system are investigated for
megmentation mitochondria for a further cancer simulation
order to perform this purpose, we consider a simple thragest

lular image. Some earlier methods such as ion-abrasion (Igtfategy, as shown in Fig. 1, for automatically identifysuggd
or serial block-face (SFB) can be combined with scannirmpgmenting mitochondria in intracellular images.
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paper is concentrated on this part.

Third, the detected coarse mitochondrial regions are finely
segmented by fine segmentation stage. The task of this fine
segmentation stage is to improve the mitochondrial segmen-
tation by removing non-mitochondrial pixels which touch in
coarse mitochondrial regions. Since the input coarse seg-
mented regions of this stage are quite isolated and small,

arious kind of segmentation methods can be adopted for
th@ stage. Herein, we adopt similar gradient boundary en-
Zncement and combination of morphological operatorg] use

First, an initial identification for mitochondria is imple-
mented by coarse segmentation stage. The purpose of
coarse segmentation stage is to identify potential regioH

Wh'Ch_ Tozﬂy c(tj)ntal?hmlt(r)]chontdrlg.t_Thli |n_|tt|alh|de(rj1t!ft:121h in previous coarse segmentation stage, for performing this
is mainly based on the characteristic of mitochondrial sha mproving segmentation task.

_In other words, the output of this coarse s_eg_mentation $8Ye  The remainder of this paper is organized as follows. In
|sglated areas of W.h'Ch the shap_es_ are similar t(_) the Shf‘ﬂ[)e%é)ction II, the coarse segmentation stage is described. In
mltochond.rla,l.e., circular ar_1d elllptlcgl forms deriviedm the section 111, the mitochondrial detection strategy is preasd in
cross sections of tubular mitochrodrial structures. Assalte detail. In section IV, the fine segmentation stage is explin
the regions of very small and isolated organelles, WhiCHd:OUIn section V, expériment results are discussed. Finally, in
belong to cytoplasm, free protein or small vesicle, and ﬂé%ction Vi cé)nclusions are drawn ’
regions of complex and sticky filament structures, which can ’ '
originate from endoplasmic reticulum, golgi apparatusyr c Il. COARSE AND FINE SEGMENTATION
toskeleton organelles, should be excluded principallyc&iit Fig. 2 il ' ; tochondi | b

is just a coarsely initial segmentation, the requiremerztaai- I9. 2 illustrates structure of a mitochondrion. It can be
racy is not too strict. A simple combination of morphologiceS€€n that the thin outer membrane and cristae, formed by inne
operators are adopted to perform this task. For facilitatiris m.em?]randes.; ‘:‘”" creatz thin boulndafrles andd”g?s ;El'i/(l:"_“res
coarse mitochondrial segmentation stage, a gradient bouﬁyt_oc 0”””? scans. An exa;]mpeq cl::r_opp4e - I r:maghe
ary enhancement process, which is implemented based ofif dntracellular space, as shown in Fig. 4a, reveals that the

weight factor matrix formulated by the gradient magnitudgPace is filled by various types organelles with differenesj
of the mean transformed intracellular image, is additilynaIShapeS and brightness. These organelles are mixed together
considered. and their boundaries may not be clear. As a result, the bound-

Second, the coarse segmented or candidate regions are W_separation or poundary enhaqgement should be co_ndidere
ther identified to mitochondrial and non-mitochondrialicets as a pre-processing step to facilitate the segmentatidn tas

based on detection stage. The Gabor features and some f%ighé—:-se org;nelles. H:atr)eln, dwet_focus %r_] tht";' mlttf)chorhdna
features such as intensity, perimeter, and areas are &dra oundary enhancement by adopling gradient transtorm.

for mitochondrial detection stage. The gradient orieotati

of the mean transformed intracellular image is utilized foft- Gradient transform and gradient boundary enhancement
extracting orientation adaptive Gabor features which reake An imagel is firstly transformed such that the boundary of
the mitochodrial detection process more accurate. In ordeterested region is still preserved while the texturedaghat

to combine the eight proposed features for mitochondriggion is suppressed. The mean filter, which is computed by
detection, we consider multiple types of machine learning- 1

based classifiers includingnearest neighbok{NN), support o (Loy) = o2 S Ly, (1)
vector machine (SVM)-based and neural network (NN)-based woow

classifiers. Since the accuracy of the three-stage segtimentawherew is the window size, satisfies this requirement since it
method is decided in this stage, the main contribution of thémooths texture regions while provides an average iniensit



Texture image Mean filted image Gradient image

g \\\\ B. Mitochondrial coarse segmentation
\\—). - I After adopting enhancement, intracellular images is pro-
: R : :

cessed to obtain coarse segmented images by the following
H steps:
Intensiiy Intensity T « Convert to binary imagesA threshold based on Otsu
image Mean filted image Gradient image method [18] is used for getting binary version of each

\\\\ enhanced intracellular image.
- - « Remove small regionslsolated small regions in binary
L ‘ i

images which could belong to cytoplasm, free protein or
small vesicle are removed.

« Remove nucleus and cell membrane region.

« Apply combination of morphological operatoithe com-

Ny

N
Intensity Intensity Intensity

Fig. 3. Gradient boundargA) and ridge(B) detection examples bination of morphology operators aiming to keep circular
and elliptical shape is described as follows:
) ) ) — Fill holes,
level at the intersection boundary between two difference — Apply opening operator with disk structuring ele-
neighbor textural regions. ment,
Next, the gradient transform vector of the mean transformed  _ Remove small regions,

image is calculated by

Compute erosion by disk structuring element,
O, OI,, Remove small regions, _
ox ' Oy And compute dilation by disk structuring element.
] ) ) ) Since the morphological operators are adopted to a large
Consequently, the gradient orientation and magnitude @t egyea with various condition, the morphological operatars i

2

Vi, - |

pixel are computed by principally selected such that the integrity of mitochdabr
oI, /oI, organelles is warranty. This selection means that a level of
Puy = tan™! ( ayy/ 6xy) (3) merged objects is acceptable.
Fig. 4 shows a comparison example of coarse mitochondrial
and segmentation outputs for different enhancement types4big
Ol 2 Ol 2 is the coarse segmentation output of the original intratzall
Viey| = ( Oz ) + ( dy ) ) (4) image in Fig 4a. Fig 4c exhibits the enhanced version based

on contrast limited adaptive histograph equalization (EIE

respectively. The low intensity variation of the smoothefB7] of the original intracellular image. Fig 4d gives theacse
region causes a low gradient value while strong variatigiegmentation regions obtaining by adopting the proposed
between intersection boundary and both neighbor textutagorithm to Fig 4c. Similarly, Fig 4f displays the coarse
region provides two new high gradient value boundaries Wwhigegmentation regions of the gradient boundary enhanced in-
limit the original intersection boundary. Therefore, thaue tracellular image shown in Fig 4e. It can be seen that for
of w will determine the thickness of detected boundary. Fighe same coarse segmentation algorithm, the gradient bound
3 illustrated the examples of gradient boundary and ridggy enhanced image provide a better coarse segmentation
detection. It can be seen that the gradient transform magmit result compared to original non-enhanced image and CLAHE-
provides a good localization for boundaries between textubased enhanced image. Furthermore, since mitochondria are
regions. contained in most of coarse segmented regions, a further

In order to perform boundary enhancement, gradient magentification for mitochondrial regions will be implemext
nitude vector is adopted for formulating a weight factormxat in the next detection stage.
as follows:

C. Mitochondrial fine segmentation

The fine segmentation stage is executed for finely segment-
ing detected coarse segmented mitochondrial regions. Due
to the separation of detected coarse mitochondrial regions
wheren is the power transform order, which amplifies th@arious segmentation method can be applied to provide a fine
contrast of gradient image. A larger value of provide a segmented output without affecting other areas. Therefore
higher contrast of weight factor matrix. The intensity oéththe fine segmentation stage is totally opened for multiple
original image is directly adjusted by multiplying with thesegmentation methods.
weight factor matrix. In general, the value ofdetermine the  Herein, a similar gradient boundary enhancement and mor-
separation level of boundary. A higher valuerotan lead to phological operator combination, used in previous coarse
more broken boundary. Therefore, the selection if a trade segmentation stage, are performed for finely segmenting- mit
off between the separation of inter-organelle touchedatbje chondria. However, unlike coarse segmentation stage,af gr
and the integrity of intra-organelle parts. dient boundary enhancement and morphological operaters ar

n

[V Ly
Woy =1 - ——F=—F 5
Y max (|VIzy|) ©)



Fig. 4. Coarse segmentation comparison exam&@sAn original intracellular image(b) Coarse segmentation of (&) Enhanced image of (a) based on
CLAHE [37]. (d) Coarse segmentation of (de) Enhanced image of (a) based on gradient boundary enhanteff)eéDoarse segmented image of (e).

only affect in small detected mitochondrial regions. There, provide a certain accuracy level for detecting mitochosmdhis

the parameters are selected such that a good fine segmentaticesult, we select the feature set that specifies a mitoctabnd

result can be obtained. region mainly based on texture features and some basic
Two examples of fine segmentation results are illustratedfiegional properties as shown in Fig. 6.

Fig. 5c and 5f. It can be seen that the fine segmentation sesult

are largely improved compared to coarse segmented versions

of these objects which are shown in Fig. 5a and 5b. 1) Orientation adaptive Gabor filter and Gabor features:
Gabor filter is selected for extracting textural feature ahhi
I1l. DETECTION objects to ridge structure of mitochondria. The reason for

choosing Gabor filter is due to the fact that Gabor filtering
is well-known as an invariant and effective method for ex-
Extracting an efficient feature set is a crucial for angracting textural features [19]-[22]. Furthermore, Gafilber
detection algorithm. A good feature set will provide a goo convinced to be well-adapted to fiber or ridge textural
classification result. In this work, the feature set is méi extraction which was contained in variety applicationshsuc
for determining whether a coarse segmented region contaassfingerprint classification [26], [27], Iris recognitioBg]—
mitochondria. The best feature for discriminating a miteehh  [30], prostate cancer image segmentation and recogniibl [
dion from other types of organelles is the ridge textureuigat [32], blood vessel detection [25], character recognitidg]]
formed by the cross section of cristae. In addition, sinee tfi24]. This effectiveness can be explained by the property of
coarse segmented regions can be any types of organelles, sbath frequency and orientation selective which providesira j
basic features such as intensities, perimeter, area, atc, optimal resolution in both frequency and spatial domain.

A. Feature extraction

4



is selected by [19]:

T+ \/ln—Q
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The Gabor filter after defined will be convoluted with the ihpu
imagel(X,Y’). The magnitude of Gabor coefficient at a pixel
is computed as follows:

NS

%
Gy (X,)Y) = I(X+2,Y +y)gronq (z,y)

W w
T=—3 Y=773

(10)
where[ is a window of sizew x w.

In general, the Gabor coefficient of a pixel can be calculated
as a square root combination of coefficients determined by
multiple Gabor filters with different orientations. Howeve
this computation method will decrease the regional contras
Fig. 5. Fine segmentation examplgg) Detected coarse mitochondrial of output coefficients since “out-of-orientation” Gaboreto
segmentation object 1(b) Retrieved original cropped region containingficients will cause a reduction on the “in-orientation” ones
object l.(c) Fine'segmented' of objept_ 1d) Detected coarse mitp(_:hondr_ial which is usually the biggest Gabor coefficient. Furthermore
3?%3)1 T:?;aencs)ggﬂeencttegf)o?gg;:\é?g.Ongmal cropped region containing obiech i, o riented ridge texture is frequently appeared in ofitm-

drial regions, while do not exist in other organelles’ regio
Therefore, determinating a correct orientati@nfor Gabor

Original e el filter is necessary for enhancing the discrimination betwee
X segmented regions ) . . . .
image - o mitochondrial and non-mitochondrial regions.
Basic / Mean Intensity \\ In this paper, we propose an orientation adaptive Gabor filte
: 1§ . . .y
— ) P'OPeﬂ'eSt P Perimeter/Area for such textural feature extraction. Output Gabor coeffiti
measuremen B . . . .
reskaliing : p e g of a pixel is computed by a Gabor filter of which the
I_LI T M vae orientation 4., is calculated based on to the pixel's local
N aximum value

High pass filter Gabor filter M Standard deviation gradient orientationp,, in (3) as follows:

}l

Gradient

/ Maximum value il
boundary Gabor filter | ) exy = Pzy + —. (11)
\ Standard deviation , 2

In order to reduce the computation of the orientation adap-
tive Gabor filter, the orientation for Gabor filter at eachgbix
Fig. 6. Feature extraction scheme. 0, is linearly quantized to a certain set &f orientations
{0}, as follows:

enhancer

I

The general 2D Gabor filter function is defined by

1 [/z2 o2 2r
gro (z,y) = exp (—5 (0—2 - 0—92 exp =0

Y

(N-1)=

g o R, < k=1,.N -1 12)
(6) o 0 Ozy >

) Due to the the matching of orientation between Gabor filter
wherezy = zcosf +ysinf andyy = —xsinf+ycosb, A 4nd mitochodrial ridge texture, the maximum value of Gabor
the wavelength of the sinusoidal plarfeis the orientation of ¢oefficients of a mitochodrial region will be higher thanttha
the Gabor filter, and, ando, are the standard deviations Ofst other non-mitochondrial regions. Furthermore, sincesmo
the Gaussian envelope along the x axis and y axis, resplctivgs textures of non-mitochondrial regions have more unvagyi
The Gabor filter can be analyzed into even and odd parts §itripution than that of mitochodrial regions, the standa
gxe = 955" + g5 Denotey = oy /o, ando =0, =79y deviation of Gabor coefficients of mitochondria regionsden
then the odd and even parts of the Gabor filter are to be higher than that of non-mitochondrial ones. For that

» 22 + 2 o0 reason, we consider the maximum and the standard deviation
936, (T,y) = exp (T) cos <Tﬂf9) (7)  values of Gabor coefficients are the most distinctive festur
for detecting mitochondria.
and In order to implement Gabor features extraction for mito-
oo w2 . [2m chondirgl detection, as shown_ in Fig. 6,_We adopt adapFive
950~ (z,y) = exp <T) sin (—Ze) (8) Gabor filters to the high pass filtered version and the gradien
boundary enhanced version of intracellular images. Theorea
respectively. The half-response spatial frequency badiithw?  for this utilization can be explained by the fact that thetweal



regions of mitochondria in high pass filtered version and IV. EXPERIMENTS
gradient boundary enhanced version are more highlightet th e experiments are conducted with FIB-SEM intracellular
that in the original intracellular image. images collected from the cancer cell line of a human head

2) Basis regional featuresComplementing to textural fea- 54" heck squamous cell carcinoma (SCC-61). Fig. 4a shows
tures, we utilize some other basic quantitative paraméers . o ample FIB-SEM scan of a cancer cell SCC-61. Compared
the feature set. Fo_r dlstlngm_shlng mitochondrial regioonf o images of CAL hippocampus and striatum tissues [11]
some darker or brighter regions of other organellgs suc_:h Bfich are also captured by FIB-SEM system, the studied
vesicles, cytoskeleton, etc, the mean value of the inlewdit 65 images are more complicated. Moreover, due to higher
coarse s_egment.ed region 1 added to thg feature.set. resolution, the mitochodrial segmentation task for thelistd

In addition, since ridges and boundaries of mitochondrig|g_gem images of SCC-61 cancer cell are more difficulty
formed by brighter pixels compared to the remainders, afig;, the mitochodrial segmentation task for IA-SEM imagfes o
thinner than those of other organelles, the ratio of me NT-1 cells [12], [33], [34] and SBF-SEM images of mouse
original intensity of pixels belonging to Otsu thrgsholdey‘erebe”um’ dentate gyrus, and CA3 hippocampus [35].
gradient boundary enhanced coarse segmented regionsdiivid | | general, the performance of the proposed three-stage

by that belonging to Otsu thresholded high pass filter coarsg, . ondrial segmentation method is mainly decided in the
segmented regions is extracted as a feature for d'St'n@g'Shaccuracy of the detection stage. Therefore, we focus on
mitochondrial and non-mitochondrial regions. We denots th ’

o analyzing the effectiveness of the proposed detection adeth
term asMeanH PF/MeanGrad. in Fig. 6. in this section
Another feature of the regional ratio of perimeter dividec!1 '
by area, which can help to recognize the filament struc-
tures derived from endoplasmic reticulum, golgi apparatfs Parameters selection for feature extraction
or cytoskeleton organelles, is also utilized. Normallyg th There is a resonance effect of spacial frequencies of mi-
ratio of regional perimeter and area of a mitochondrion iechondrial ridge texture and Gabor filter. As a result, the
higher than that of a filament region. We signify this ratio aselection of spacial frequency for Gabor filter is very intpat
Perimeter/Area in Fig. 6. for making an accurate mitochondrial detector. Herein, we
Besides, it is obvious that the solidity, which is defineddopt Fourier transform-based frequency analysis metbod f
by ratio of binary regional area divided by convex area, @fetermining spacial frequency of ridge textures of mito-
a mitochondrial region is differ from the solidity of most ofchondria. The determination process is illustrated in Fig.
other organelles’ regions, except some special toucheddité A slice cut of a single mitochondrial region, e.g., the solid
regions. Furthermore, since the filled area of a mitoch@ahdriine as shown in Fig. 7a, is extracted. Fig. 7b plots the spaci
region is almost equivalent to its convex area while thedilleintensity series of the slice cut in Fig. 7a. Adopting Fourie
areas of some of special touched filament regions differ fromansform to the spacial series, we obtain the magnitude
their convex areas, the replacement of convex area by fillsgectrum of the spacial series as shown in Fig. 7c. The dpacia
area will increase the distinction of the solidity featuetveen frequency of the ridge texture is determined to be equaléo th
mitochondrial regions and some special touched filament st order harmonic component, i.e., the peak at 5 in Fig.
gions. Therefore, the modified solidity which is re-defingd b7c.
the ratio of binary regional area divided by filled regionarie |t should be noted that the slice cut n Fig. 7a is intentignall
also utilized for detecting mitochondrial regions. We taie  selected such that the cut is orthogonal with the ridge textu
this modified solidity asArea/FilledArea in Fig 6. orientation. In case of a cut slice is “out-of-orientation”
with ridge texture, the output frequency may be distorted.
B. Machine learning-based mitochondrial detection Consequently, the output of Gabor filter will strongly degen
In order to detect mitochondrial regions, we consider mubn the local orientation of mitochondrial ridge texture.isTh
tiple types of classifier includind-NN, SVM and neural effect also shows the validity and potential of the proposed
network (NN). The coarse segmented regions is divided inidea on using Gabor filter with adaptive orientation.
a training set and a testing set. Extracted feature set of theéDbviously, the proposed adaptive Gabor filter is designed
training set is combined with validation data in a learninfpr resonant with mitochondrial ridge texture. However, a
process. The output system of that learning process, whiobarse mitochondrial region can also contain some touched
will be used for detecting mitochondrial regions, is evéddia parts of other organelles, which can create low values of
based on the testing set. Gabor coefficient. As a result, the best Gabor feature for
It should be noticed that the proposed feature set foritochondrial detection is the maximum value of Gabor
mitochondrial detection is only contained in an 8-dimenaio coefficients of coarse segmented region. Next, we investiga
space. Therefore, the resources for training task of the ptbe influence of parameters on the mitochondrial detection
posed method is much lower than those of many of previoafficiency of the key detection factor of maximum value of
works [11], [12]. However, the proposed feature set stitegional Gabor coefficients. Hereafter, we consider higsspa
ensure good coverage for detecting mitochondrial regioridtered version of original intracellular space scans foe t
since both basis geometrical features and textural femtofre investigation. The results are shown in Fig. 8. In order to
coarse segmented regions are utilized. Therefore, theopeap present the effectiveness of detection parameters, wigeutil
method is simple in machine learning implementation aspentceiver operating characteristic (ROC) curves, whichhis t
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Fig. 7. Spacial frequency determination exam§. A mitochondrial region with a horizontal slice cyb) Intensity of pixels on the slice cufc) Fourier
transform of intensity series(b).

plot of true positive rate (TPR) and false positive rate (FPRection of the maximum Gabor coefficient features of the both
In this paper, TPR is defined by the ratio of number of corre@abor filter will slightly increase along with the incremexit
detected mitochondrial regions divided by the total nunddfer orientation numbefV.

mitochondrial regions in the images. And FPR is defined by Particularly, it can be also seen in Fig. 8c that the mitoehon
the ratio of number of incorrect detected mitochondrialoeg drial detection accuracy of our proposed orientation adapt
divided by the total number of non-mitochondrial regions. Gabor filter is higher than that of conventional Gabor filter

Fig. 8a presents ROC curves of the maximum value 8f all case of N. The proposed oriental adaption for Gabor
coarse segmented regional Gabor coefficients computed baf$ter following local orientation of mitochondrial ridgexture
on the proposed orientation adaptive Gabor filter corregporimproves the detection ability for Gabor filter.
ing to different spacial frequencies when the parameter ofFinally, in order to confirm the effectiveness of Gabor filter
window sizew and the orientation quantization levels are for mitochondrial detection, we compare the mitochondrial
fixed at 5 and 24, respectively. As shown in Fig. 8a, théetection ability of our proposed Gabor filter-based teadtur
mitochondrial detection ability of maximum regional Gabofeatures including the maximum and standard deviation val-
coefficient computed by the proposed method depends é@s of coarse segmented regions with other textural feature
the value of spacial frequency. Matching with the previougcluding homogeneity, contrast, correlation and entrdpy
analysis, the detection performance of maximum regiondved from famous gray level co-occurrence matrix (GLCM).
Gabor coefficient at spacial frequency af= 5, which is The results is presented in Fig. 8d. Obviously, our proposed
equal to the first order harmonic frequency component, fgatures of maximum and standard deviation values of coarse
higher than that at other frequencies. This observationgzro Segmented regions outperforms the textural featuresaatta
the effectiveness of choosing correct spacial frequency f@ased on GLCM for mitochondria detection.
mitochondrial detection.

Since for our proposed orientation adaptive Gabor filtez, tiB. Machine learning-based mitochondrial detection
calculation of local orientation of intracellular imageesgly  our experiments was conducted on 20 scans of a SCC-
affect to the output Gabor coefficients and hence the detectigy ce|l. Half of the images are used for training and the re-
performance of the maximum Gabor coefficient feature. Theggainders are used for evaluating the trained models. Meltip
are two parameters that influence on the calculation of loGakchine learning methods includikgNN-based, SVM-based
orientation of intracellular images. They are the windogesi ang NN-based classifier for mitochondria detection are con-
w for computing the local gradient orientation and the numbgfgered. Fork-NN classifiers, we tested with multiple values
of orientation quantization levels. of k including k = 5, 9 and 15. For SVM-based classifiers,

First, the impact of window size to the detection perfor- sequential minimal optimization (SMO) [36] and least sguar
mance of the maximum Gabor coefficient feature is present@ds) methods are considered for training SVMs. For NN-based
on Fig. 8b. From the ROC curves corresponding to three valg@ssifiers, we performed the training with four configurag
of w of 5, 7, and 9, it can be seen that the valuewflo not of feed-forward back-propagation neural networks, i.ag t
highly affect on the mitochondral detection performancthef configurations with one hidden layer including 10 nodes-(net
maximum Gabor coefficient feature since the ROC curves arg and 20 nodes (net-2) and two configurations with two
almost the same. hidden layers including 10 and 3 nodes (net-3), and 20 and 8

Second, we investigate the effect of number of orientatiorodes (net-4).

N on mitochondrial detection performance of the maximum The values of the spacial frequencdy and the number
Gabor coefficient features calculated by both the propdéedof orientationsN of Gabor filters for feature extraction are
guantized orientation adaptive and the conventional reedmm selected as 5 and 16, respectively, which are reasonahiesval
squareN orientations Gabor filter. The results are plotted ias analyzed in previous subsection. The value of window
Fig. 8c. It can be seen that the accuracy of mitochondrial dgze of w, which has shown a low influence to the detection
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Fig. 8. ROC curves of regional maximum Gabor coefficient imparison of (a) multiples space frequensyvalues, (b) conventional Gabor filter and

orientation adaptive Gabor filter, (c) different values ahdow sizew for determining orientation, (d) of other Gabor and grayelewo-occurence matrix
(GLCM) features.

TABLE |
DETECTION ACCURACY COMPARISON

w=3, w=3 w=5 w=5 w=T7 w=7 w=9, w=9,
n=2 n=3 n=2 n=3 n=2 n=3 n=2 n=3
k-NN (k = 5) 78.94 77.1 76.89 78.94 81.6 81.8 79.55

79.35
k-NN (k =9) 80.16 76.89 78.32 79.14 81.19 80.78 81.19 80.16
k-NN (k = 15) 79.35 79.75 78.94 79.35 82.21 79.96 79.75 79.35
SVM (SMO) 86.3 85.89 87.12 86.50 89.37 89.98 88.75  88.96
SVM (LS) 86.91 86.71 88.75 88.14 90.18 89.78 88.55 89.57
NN (net-1) 85.89 83.84 87.73 86.30 89.78 87.73 86.09 86.50
NN (net-2) 86.50 85.89 85.28 87.53 87.53 85.28 88.14 87.12
NN (net-3) 84.66 84.25 87.93 86.71 83.03 78.53 85.48 87.12
NN (net-4) 84.66 84.25 87.93 86.71 83.03 78.53 85.48 87.12

performance of the key feature of maximum regional Gaboy the fact that the value af affect to both high pass filtered
coefficient extracted from high pass filtered versions afaint and gradient boundary enhanced versions of original scans
cellular scans, are set with four different values of 3, 5, While the value ofn only have an effect on the gradient
and 9 to consider its effect to the final detection accuradyoundary enhanced ones. Similar to spacial frequentlyere
Similar to w, the values of power order are also selected @&salso a better choice of window size where the detection

2 and 3 to evaluate its impact to the extracted features mérformance is higher, i.ewy = 7, in this experiment.
maximum and standard deviation values of regional Gabor

Hicients derived f dient bound h q .~ For all of investigated cases presented in Fig. I, it can be
coetncients derived rom gradient boundary enhancedoBsS! gooy that at least 76% of coarse segmentation regions are
of intracellular scans.

classified correctly. Obviously, the method of classifier do
The detection accuracy, which includes true positive amdfluence on the accuracy of detection, i.e., the detectam p

true negative rates, of multiple investigated classifiems aformance generally decreases in the order of SVM-based, NN-
shown in Table I. It can be seen that the influence on finbhsed an@-NN classifier. For training selection, it is favorable

detection performance of window size value is higher than to choose SVM-based classifier trained by LS method since the
that of power order. value. This observation can be explainedetection accuracy of this SVM method is almost the highest



TABLE Il a
AFFECT OFORIENTATION NUMBER ON DETECTIONACCURACY. e £ o

ACC TPR FPR

N =4 87.32 9191 20.56
N =8 89.37 92.88 16.67
N =16 90.18 92.88 14.44
N =24 8855 9223 17.78
N =32 89.16 9256 16.67

accurate classifier with approximate 90% of correct detacti

Next, we keepw = 7, n = 2, and A = 5 and change the
value of N in order to investigate the affect of orientatiol
number to final detection performance. As shown in Table
there is a saturation of final detection accuracy (ACC) wh
N larger than 8. The values of TPR and FPR in such cases
maintained as about 92% and 16%, respectively. These v
means that the error rate in identifying mitochondria regio
and non-mitochondrial regions are corresponding to ab%at |
and 16%.

Most of the cases that cause these inaccurate identifica
belong to the small mitochondrial regions which are false
merged with large neighbor organelles in coarse segmenta
stage, and small non-mitochondrial regions of which the te
ture can not be detectable. This observation is demondtiate Fig. 9. Mitochondrial detection exampléa) Coarse segmentation regions
Fig. 9 where the Fig. 9a indicates coarse segmentationrregigf an intracellular scan(b) Detected coarse mitochondrial regions, obtained

. . . y an SVM-based mitochondrial detector with= 5, v = 0.5, B = 1,
of an intracellularimage, and Fig. 9a expresses detect®®eo ,; — 7", '~ 2 and N — 16, where A and B are annotated for missing
mitochondrial regions obtained by an SVM-based mitochontochondrial regions due to the effect of large neighb@aoelles merging
drial detector with\ = 5,y = 0.5, B=1, w =7, n = 2 and With small mitochondrial regions.

N = 16. In detail, the small mitochondrial regions that are

missed due to the affect of large merged neighbor organelles ) ) L )
are annotated by (A) and (B). The small non-mitochondrigc/€nce. University of Tokyo, for providing cancer cell iges.
region that are falsely detected because of the similafif{so
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