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Automated Detection and Segmentation of
Mitochondrial Images based on Gradient
Enhancement and Adaptive Gabor Filter

Nhan Nguyen-Thanh, Tuan D. Pham and Kazuhisa Ichikawa

Abstract—Information of cellular organelles location and mor-
phology is essential for cancer simulation. In order to obtain such
information, the segmentation of the organelles from electronic
microscopy intracellular image is crucial. In this paper, we
focus on the automatic segmentation of mitochondria organelle
which is one of the most important organelles tightly related
to the form of cancer. A simple three-stage strategy which
includes coarse segmentation, detection and fine segmentation
is proposed for fully automatic mitochondria segmentation. The
local gradient calculation provides a weight factor matrix and
a orientation matrix. The weight factor matrix will improve
the contrast of organelle boundary of intracellular imagesand
hence facilitate both coarse and fine mitochondria segmentation.
The orientation matrix will be used for enhancing the Gabor
feature extraction which make the mitochodrial detection process
more accurate. Machine learning-based classifiers including k-
nearest neighbor (k-NN), support vector machine (SVM)-based
and neural network (NN)-based classifiers, are considered to
learn with eight extracted features for mitochondrial detection.
Experimental results on focused ion beam (FIB) and scanning
electron microscope (SEM) images of cancer cellular of human
head and neck squamous cell carcinoma (SCC-61) have shown
the effectiveness of proposed method.

Index Terms—cell organelles, image segmentation, image pro-
cessing, mitochondria, gradient boundary enhancement, orienta-
tion adaptive, Gabor filter, SCC-61, cancer cell.

I. I NTRODUCTION

In cell biology, mitochondrion is one of the main organelles
that can be found in most eukaryotic cells. This type of
organelle concerns with the roles of energy supply, signaling
and control of cellular differentiation, growth and death.It
is reported that there is a strong link between the function
of mitochondria and cancer. [1]. For example, the function
of mitochondria of cancer cell is believed to be altered for
resistance apoptosis [2], [3]. This leads the research to target
on mitochondria for cancer therapy by changing mitochondrial
metabolism or stimulating mitochondrial membrane perme-
abilization [4]. In addition, it is convinced that there area
relation of mitochondrial morphology and molecular control-
ling mechanisms during cell death [5], [6] and a connection
of mitochondrial dynamics to key signaling cascades [7].
Therefore, obtaining information of location and morphology
of mitochondria in intracellular space is very useful for cancer
simulation.

Recent progresses on super-resolution electronic mi-
croscopy enable us to obtain this information through intracel-
lular image. Some earlier methods such as ion-abrasion (IA)
or serial block-face (SFB) can be combined with scanning

electron microscopy (SEM), which is well-known for captur-
ing surface characteristics and morphology, to obtain a lower
resolution of both intercellular and intracellular space.Lately,
the detail complex structure of the cell can be acquired withthe
combination of SEM and focused ion beam (FIB) technique,
which increase the resolution of the scan. As a result, the
integrated imaging system FIB-SEM has now been a powerful
scientific instrument for the study of biological specimensand
soft materials [14].

Automatically analyzing and understanding such kind of
intracellular electron microscopy images are not a trivialtask
since the space of cellular contains a complicated system
with variety of organelles possessing various shapes and
sizes. There are some recent works that succeeds in seg-
mentation of mitochondria [11]–[13] as well as some other
cell organelles [8]–[10]. In detail, in [13], a textural-based
Gentle-Boot classifier is trained for detecting mitochondria in
electron microscopy images of brain tissue. Similarly, in [12],
multiple classifiers includingk-nearest neighbor algorithm (k-
NN), support vector machine (SVM) and adaptive boosting
algorithm (Adaboost) are used for detecting mitochondria
and other organelles of highly pigmented human melanoma
(MNT-1) cell based on textural feature. These works were
said to be under-utilization of image information, i.e., shape
information, and were improved in [11] by considering a graph
partitioning scheme incorporated with a learn shape feature
method. Though the results of these research are reasonable,
the huge load works for training the system could be the most
difficulty for implementation.

FIB-SEM intracellular images reveal a great detail structure
of the cellular space which includes variety types of organelles
such as nucleus, mitochondria, golgi apparatus, endoplasmic
recticulum, cytoskeleton, vesicle, etc., with differencesizes,
shapes, texture and brightness. The solid distribution of these
organelles leads the segmentation task for intracellular images
to be very complicated. Furthermore, in cases of images of
abnormal cellulars such as cancer cells derived from malignant
tumor, the structure and other characteristics of organelles tend
to be more sophisticated which can cause the hard segmenta-
tion task to be harder. In this paper, images of a cancer cellular
of human head and neck squamous cell carcinoma (SCC-61)
[15], [16] captured by FIB-SEM system are investigated for
segmentation mitochondria for a further cancer simulation. In
order to perform this purpose, we consider a simple three-stage
strategy, as shown in Fig. 1, for automatically identifyingand
segmenting mitochondria in intracellular images.
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Fig. 1. Mitochondrial segmentation strategy

First, an initial identification for mitochondria is imple-
mented by coarse segmentation stage. The purpose of this
coarse segmentation stage is to identify potential regions
which mostly contain mitochondria. This initial identification
is mainly based on the characteristic of mitochondrial shape.
In other words, the output of this coarse segmentation stageare
isolated areas of which the shapes are similar to the shapes of
mitochondria,i.e., circular and elliptical forms derivedfrom the
cross sections of tubular mitochrodrial structures. As a result,
the regions of very small and isolated organelles, which could
belong to cytoplasm, free protein or small vesicle, and the
regions of complex and sticky filament structures, which can
originate from endoplasmic reticulum, golgi apparatus or cy-
toskeleton organelles, should be excluded principally. Since it
is just a coarsely initial segmentation, the requirement ofaccu-
racy is not too strict. A simple combination of morphological
operators are adopted to perform this task. For facilitating this
coarse mitochondrial segmentation stage, a gradient bound-
ary enhancement process, which is implemented based on a
weight factor matrix formulated by the gradient magnitude
of the mean transformed intracellular image, is additionally
considered.

Second, the coarse segmented or candidate regions are fur-
ther identified to mitochondrial and non-mitochondrial regions
based on detection stage. The Gabor features and some basis
features such as intensity, perimeter, and areas are extracted
for mitochondrial detection stage. The gradient orientation
of the mean transformed intracellular image is utilized for
extracting orientation adaptive Gabor features which makes
the mitochodrial detection process more accurate. In order
to combine the eight proposed features for mitochondrial
detection, we consider multiple types of machine learning-
based classifiers includingk-nearest neighbor (k-NN), support
vector machine (SVM)-based and neural network (NN)-based
classifiers. Since the accuracy of the three-stage segmentation
method is decided in this stage, the main contribution of this
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Fig. 2. Mitochondrion picture [38]

paper is concentrated on this part.
Third, the detected coarse mitochondrial regions are finely

segmented by fine segmentation stage. The task of this fine
segmentation stage is to improve the mitochondrial segmen-
tation by removing non-mitochondrial pixels which touch in
coarse mitochondrial regions. Since the input coarse seg-
mented regions of this stage are quite isolated and small,
various kind of segmentation methods can be adopted for
this stage. Herein, we adopt similar gradient boundary en-
hancement and combination of morphological operators, used
in previous coarse segmentation stage, for performing this
improving segmentation task.

The remainder of this paper is organized as follows. In
section II, the coarse segmentation stage is described. In
section III, the mitochondrial detection strategy is presented in
detail. In section IV, the fine segmentation stage is explained.
In section V, experiment results are discussed. Finally, in
section VI, conclusions are drawn.

II. COARSE AND FINE SEGMENTATION

Fig. 2 illustrates structure of a mitochondrion. It can be
seen that the thin outer membrane and cristae, formed by inner
membranes will create thin boundaries and ridge structuresin
mitochondrial scans. An example of cropped FIB-SEM image
of intracellular space, as shown in Fig. 4a, reveals that the
space is filled by various types organelles with different sizes,
shapes and brightness. These organelles are mixed together
and their boundaries may not be clear. As a result, the bound-
ary separation or boundary enhancement should be considered
as a pre-processing step to facilitate the segmentation task
for these organelles. Herein, we focus on thin mitochondrial
boundary enhancement by adopting gradient transform.

A. Gradient transform and gradient boundary enhancement

An imageI is firstly transformed such that the boundary of
interested region is still preserved while the texture inside that
region is suppressed. The mean filter, which is computed by

µw (Ixy) =
1

w2

∑

w

∑

w

Ixy, (1)

wherew is the window size, satisfies this requirement since it
smooths texture regions while provides an average intensity
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Fig. 3. Gradient boundary(A) and ridge(B) detection examples

level at the intersection boundary between two difference
neighbor textural regions.

Next, the gradient transform vector of the mean transformed
image is calculated by

∇Ixy =

[

∂Ixy
∂x

,
∂Ixy
∂y

]

(2)

Consequently, the gradient orientation and magnitude at each
pixel are computed by

ϕxy = tan−1

(

∂Ixy
∂y

/

∂Ixy
∂x

)

(3)

and

|∇Ixy| =

√

(

∂Ixy
∂x

)2

+

(

∂Ixy
∂y

)2

, (4)

respectively. The low intensity variation of the smoothed
region causes a low gradient value while strong variation
between intersection boundary and both neighbor textural
region provides two new high gradient value boundaries which
limit the original intersection boundary. Therefore, the value
of w will determine the thickness of detected boundary. Fig.
3 illustrated the examples of gradient boundary and ridge
detection. It can be seen that the gradient transform magnitude
provides a good localization for boundaries between textural
regions.

In order to perform boundary enhancement, gradient mag-
nitude vector is adopted for formulating a weight factor matrix
as follows:

Wxy =



1−
|∇Ixy|

max
xy

(|∇Ixy|)





n

(5)

wheren is the power transform order, which amplifies the
contrast of gradient image. A larger value ofn provide a
higher contrast of weight factor matrix. The intensity of the
original image is directly adjusted by multiplying with the
weight factor matrix. In general, the value ofn determine the
separation level of boundary. A higher value ofn can lead to
more broken boundary. Therefore, the selection ofn is a trade
off between the separation of inter-organelle touched objects
and the integrity of intra-organelle parts.

B. Mitochondrial coarse segmentation

After adopting enhancement, intracellular images is pro-
cessed to obtain coarse segmented images by the following
steps:

• Convert to binary images.A threshold based on Otsu
method [18] is used for getting binary version of each
enhanced intracellular image.

• Remove small regions.Isolated small regions in binary
images which could belong to cytoplasm, free protein or
small vesicle are removed.

• Remove nucleus and cell membrane region.
• Apply combination of morphological operators.The com-

bination of morphology operators aiming to keep circular
and elliptical shape is described as follows:

– Fill holes,
– Apply opening operator with disk structuring ele-

ment,
– Remove small regions,
– Compute erosion by disk structuring element,
– Remove small regions,
– And compute dilation by disk structuring element.

Since the morphological operators are adopted to a large
area with various condition, the morphological operators is
principally selected such that the integrity of mitochondrial
organelles is warranty. This selection means that a level of
merged objects is acceptable.

Fig. 4 shows a comparison example of coarse mitochondrial
segmentation outputs for different enhancement types. Fig4b
is the coarse segmentation output of the original intracellular
image in Fig 4a. Fig 4c exhibits the enhanced version based
on contrast limited adaptive histograph equalization (CLAHE)
[37] of the original intracellular image. Fig 4d gives the coarse
segmentation regions obtaining by adopting the proposed
algorithm to Fig 4c. Similarly, Fig 4f displays the coarse
segmentation regions of the gradient boundary enhanced in-
tracellular image shown in Fig 4e. It can be seen that for
the same coarse segmentation algorithm, the gradient bound-
ary enhanced image provide a better coarse segmentation
result compared to original non-enhanced image and CLAHE-
based enhanced image. Furthermore, since mitochondria are
contained in most of coarse segmented regions, a further
identification for mitochondrial regions will be implemented
in the next detection stage.

C. Mitochondrial fine segmentation

The fine segmentation stage is executed for finely segment-
ing detected coarse segmented mitochondrial regions. Due
to the separation of detected coarse mitochondrial regions,
various segmentation method can be applied to provide a fine
segmented output without affecting other areas. Therefore,
the fine segmentation stage is totally opened for multiple
segmentation methods.

Herein, a similar gradient boundary enhancement and mor-
phological operator combination, used in previous coarse
segmentation stage, are performed for finely segmenting mito-
chondria. However, unlike coarse segmentation stage, of gra-
dient boundary enhancement and morphological operators are
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Fig. 4. Coarse segmentation comparison examples.(a) An original intracellular image.(b) Coarse segmentation of (a).(c) Enhanced image of (a) based on
CLAHE [37]. (d) Coarse segmentation of (c).(e) Enhanced image of (a) based on gradient boundary enhancement. (f) Coarse segmented image of (e).

only affect in small detected mitochondrial regions. Therefore,
the parameters are selected such that a good fine segmentation
result can be obtained.

Two examples of fine segmentation results are illustrated in
Fig. 5c and 5f. It can be seen that the fine segmentation results
are largely improved compared to coarse segmented versions
of these objects which are shown in Fig. 5a and 5b.

III. D ETECTION

A. Feature extraction

Extracting an efficient feature set is a crucial for any
detection algorithm. A good feature set will provide a good
classification result. In this work, the feature set is utilized
for determining whether a coarse segmented region contains
mitochondria. The best feature for discriminating a mitochron-
dion from other types of organelles is the ridge texture feature
formed by the cross section of cristae. In addition, since the
coarse segmented regions can be any types of organelles, some
basic features such as intensities, perimeter, area, etc, can

provide a certain accuracy level for detecting mitochondria. As
a result, we select the feature set that specifies a mitochondrial
region mainly based on texture features and some basic
regional properties as shown in Fig. 6.

1) Orientation adaptive Gabor filter and Gabor features:
Gabor filter is selected for extracting textural feature which
objects to ridge structure of mitochondria. The reason for
choosing Gabor filter is due to the fact that Gabor filtering
is well-known as an invariant and effective method for ex-
tracting textural features [19]–[22]. Furthermore, Gaborfilter
is convinced to be well-adapted to fiber or ridge textural
extraction which was contained in variety applications such
as fingerprint classification [26], [27], Iris recognition [28]–
[30], prostate cancer image segmentation and recognition [31],
[32], blood vessel detection [25], character recognition [23],
[24]. This effectiveness can be explained by the property of
both frequency and orientation selective which provides a joint
optimal resolution in both frequency and spatial domain.
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Fig. 5. Fine segmentation examples.(a) Detected coarse mitochondrial
segmentation object 1.(b) Retrieved original cropped region containing
object 1.(c) Fine segmented of object 1.(d) Detected coarse mitochondrial
segmentation object 2.(f) Retrieved original cropped region containing object
2. (g) Fine segmented of object 2.
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Fig. 6. Feature extraction scheme.

The general 2D Gabor filter function is defined by

gλ,θ (x, y) = exp

(

−
1

2

(

x2
θ

σ2
x

+
y2θ
σ2
y

))

exp

(

j
2π

λ
xθ

)

(6)

wherexθ = x cos θ+ y sin θ andyθ = −x sin θ+ y cos θ, λ is
the wavelength of the sinusoidal plane,θ is the orientation of
the Gabor filter, andσx andσy are the standard deviations of
the Gaussian envelope along the x axis and y axis, respectively.
The Gabor filter can be analyzed into even and odd parts by
gλ,θ = gevenλ,θ + jgoddλ,θ . Denoteγ = σy/σx andσ = σx = γσy

then the odd and even parts of the Gabor filter are

goddλ,θ,γ (x, y) = exp

(

−
x2
θ + γy2θ
2σ2

)

cos

(

2π

λ
xθ

)

(7)

and

geven
λ,θ,γ

(x, y) = exp

(

−
x2
θ + γy2θ
2σ2

)

sin

(

2π

λ
xθ

)

(8)

respectively. The half-response spatial frequency bandwidthB

is selected by [19]:

B = log2

σ
λ
π +

√

ln 2
2

σ
λ
π −

√

ln 2
2

(9)

The Gabor filter after defined will be convoluted with the input
imageI(X,Y ). The magnitude of Gabor coefficient at a pixel
is computed as follows:

Gθ (X,Y ) =

∣

∣

∣

∣

∣

∣

w
2

∑

x=−
w
2

w
2

∑

y=−
w
2

I (X + x, Y + y) gλ,θ,γ (x, y)

∣

∣

∣

∣

∣

∣

(10)
whereI is a window of sizew × w.

In general, the Gabor coefficient of a pixel can be calculated
as a square root combination of coefficients determined by
multiple Gabor filters with different orientations. However
this computation method will decrease the regional contrast
of output coefficients since “out-of-orientation” Gabor coef-
ficients will cause a reduction on the “in-orientation” ones
which is usually the biggest Gabor coefficient. Furthermore,
high-oriented ridge texture is frequently appeared in mitochon-
drial regions, while do not exist in other organelles’ regions.
Therefore, determinating a correct orientationθ for Gabor
filter is necessary for enhancing the discrimination between
mitochondrial and non-mitochondrial regions.

In this paper, we propose an orientation adaptive Gabor filter
for such textural feature extraction. Output Gabor coefficient
of a pixel is computed by a Gabor filter of which the
orientation θxy is calculated based on to the pixel’s local
gradient orientationϕxy in (3) as follows:

θxy = ϕxy +
π

2
. (11)

In order to reduce the computation of the orientation adap-
tive Gabor filter, the orientation for Gabor filter at each pixel
θxy is linearly quantized to a certain set ofN orientations
{θk}

N
k=1 as follows:

θ′xy =

{

kπ
N

(k−1)π
N

< θxy ≤ kπ
N
, k = 1, ..N − 1

0 θxy > (N−1)π
N

(12)

Due to the the matching of orientation between Gabor filter
and mitochodrial ridge texture, the maximum value of Gabor
coefficients of a mitochodrial region will be higher than that
of other non-mitochondrial regions. Furthermore, since most
of textures of non-mitochondrial regions have more unvarying
distribution than that of mitochodrial regions, the standard
deviation of Gabor coefficients of mitochondria regions tends
to be higher than that of non-mitochondrial ones. For that
reason, we consider the maximum and the standard deviation
values of Gabor coefficients are the most distinctive features
for detecting mitochondria.

In order to implement Gabor features extraction for mito-
chondiral detection, as shown in Fig. 6, we adopt adaptive
Gabor filters to the high pass filtered version and the gradient
boundary enhanced version of intracellular images. The reason
for this utilization can be explained by the fact that the textural
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regions of mitochondria in high pass filtered version and
gradient boundary enhanced version are more highlighted than
that in the original intracellular image.

2) Basis regional features:Complementing to textural fea-
tures, we utilize some other basic quantitative parametersfor
the feature set. For distinguishing mitochondrial region from
some darker or brighter regions of other organelles such as
vesicles, cytoskeleton, etc, the mean value of the intensity of
coarse segmented region is added to the feature set.

In addition, since ridges and boundaries of mitochondria,
formed by brighter pixels compared to the remainders, are
thinner than those of other organelles, the ratio of mean
original intensity of pixels belonging to Otsu thresholded
gradient boundary enhanced coarse segmented regions divided
by that belonging to Otsu thresholded high pass filter coarse
segmented regions is extracted as a feature for distinguishing
mitochondrial and non-mitochondrial regions. We denote this
term asMeanHPF/MeanGrad. in Fig. 6.

Another feature of the regional ratio of perimeter divided
by area, which can help to recognize the filament struc-
tures derived from endoplasmic reticulum, golgi apparatus
or cytoskeleton organelles, is also utilized. Normally, the
ratio of regional perimeter and area of a mitochondrion is
higher than that of a filament region. We signify this ratio as
Perimeter/Area in Fig. 6.

Besides, it is obvious that the solidity, which is defined
by ratio of binary regional area divided by convex area, of
a mitochondrial region is differ from the solidity of most of
other organelles’ regions, except some special touched filament
regions. Furthermore, since the filled area of a mitochondrial
region is almost equivalent to its convex area while the filled
areas of some of special touched filament regions differ from
their convex areas, the replacement of convex area by filled
area will increase the distinction of the solidity feature between
mitochondrial regions and some special touched filament re-
gions. Therefore, the modified solidity which is re-defined by
the ratio of binary regional area divided by filled region area, is
also utilized for detecting mitochondrial regions. We indicate
this modified solidity asArea/F illedArea in Fig 6.

B. Machine learning-based mitochondrial detection

In order to detect mitochondrial regions, we consider mul-
tiple types of classifier includingk-NN, SVM and neural
network (NN). The coarse segmented regions is divided into
a training set and a testing set. Extracted feature set of the
training set is combined with validation data in a learning
process. The output system of that learning process, which
will be used for detecting mitochondrial regions, is evaluated
based on the testing set.

It should be noticed that the proposed feature set for
mitochondrial detection is only contained in an 8-dimensional
space. Therefore, the resources for training task of the pro-
posed method is much lower than those of many of previous
works [11], [12]. However, the proposed feature set still
ensure good coverage for detecting mitochondrial regions,
since both basis geometrical features and textural features of
coarse segmented regions are utilized. Therefore, the proposed
method is simple in machine learning implementation aspect.

IV. EXPERIMENTS

The experiments are conducted with FIB-SEM intracellular
images collected from the cancer cell line of a human head
and neck squamous cell carcinoma (SCC-61). Fig. 4a shows
an example FIB-SEM scan of a cancer cell SCC-61. Compared
to the images of CA1 hippocampus and striatum tissues [11]
which are also captured by FIB-SEM system, the studied
images images are more complicated. Moreover, due to higher
resolution, the mitochodrial segmentation task for the studied
FIB-SEM images of SCC-61 cancer cell are more difficulty
than the mitochodrial segmentation task for IA-SEM images of
MNT-1 cells [12], [33], [34] and SBF-SEM images of mouse
cerebellum, dentate gyrus, and CA3 hippocampus [35].

In general, the performance of the proposed three-stage
mitochondrial segmentation method is mainly decided in the
accuracy of the detection stage. Therefore, we focus on
analyzing the effectiveness of the proposed detection method
in this section.

A. Parameters selection for feature extraction

There is a resonance effect of spacial frequencies of mi-
tochondrial ridge texture and Gabor filter. As a result, the
selection of spacial frequency for Gabor filter is very important
for making an accurate mitochondrial detector. Herein, we
adopt Fourier transform-based frequency analysis method for
determining spacial frequencyλ of ridge textures of mito-
chondria. The determination process is illustrated in Fig.7.
A slice cut of a single mitochondrial region, e.g., the solid
line as shown in Fig. 7a, is extracted. Fig. 7b plots the spacial
intensity series of the slice cut in Fig. 7a. Adopting Fourier
transform to the spacial series, we obtain the magnitude
spectrum of the spacial series as shown in Fig. 7c. The spacial
frequency of the ridge texture is determined to be equal to the
first order harmonic component, i.e., the peak atλ = 5 in Fig.
7c.

It should be noted that the slice cut n Fig. 7a is intentionally
selected such that the cut is orthogonal with the ridge texture
orientation. In case of a cut slice is “out-of-orientation”
with ridge texture, the output frequency may be distorted.
Consequently, the output of Gabor filter will strongly depend
on the local orientation of mitochondrial ridge texture. This
effect also shows the validity and potential of the proposed
idea on using Gabor filter with adaptive orientation.

Obviously, the proposed adaptive Gabor filter is designed
for resonant with mitochondrial ridge texture. However, a
coarse mitochondrial region can also contain some touched
parts of other organelles, which can create low values of
Gabor coefficient. As a result, the best Gabor feature for
mitochondrial detection is the maximum value of Gabor
coefficients of coarse segmented region. Next, we investigate
the influence of parameters on the mitochondrial detection
efficiency of the key detection factor of maximum value of
regional Gabor coefficients. Hereafter, we consider high pass
filtered version of original intracellular space scans for the
investigation. The results are shown in Fig. 8. In order to
present the effectiveness of detection parameters, we utilize
receiver operating characteristic (ROC) curves, which is the
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Fig. 7. Spacial frequency determination example.(a) A mitochondrial region with a horizontal slice cut.(b) Intensity of pixels on the slice cut.(c) Fourier
transform of intensity series(b).

plot of true positive rate (TPR) and false positive rate (FPR).
In this paper, TPR is defined by the ratio of number of correct
detected mitochondrial regions divided by the total numberof
mitochondrial regions in the images. And FPR is defined by
the ratio of number of incorrect detected mitochondrial regions
divided by the total number of non-mitochondrial regions.

Fig. 8a presents ROC curves of the maximum value of
coarse segmented regional Gabor coefficients computed based
on the proposed orientation adaptive Gabor filter correspond-
ing to different spacial frequencies when the parameter of
window sizew and the orientation quantization levelsN are
fixed at 5 and 24, respectively. As shown in Fig. 8a, the
mitochondrial detection ability of maximum regional Gabor
coefficient computed by the proposed method depends on
the value of spacial frequency. Matching with the previous
analysis, the detection performance of maximum regional
Gabor coefficient at spacial frequency ofλ = 5, which is
equal to the first order harmonic frequency component, is
higher than that at other frequencies. This observation proves
the effectiveness of choosing correct spacial frequency for
mitochondrial detection.

Since for our proposed orientation adaptive Gabor filter, the
calculation of local orientation of intracellular images strongly
affect to the output Gabor coefficients and hence the detection
performance of the maximum Gabor coefficient feature. There
are two parameters that influence on the calculation of local
orientation of intracellular images. They are the window size
w for computing the local gradient orientation and the number
of orientation quantization levels.

First, the impact of window sizew to the detection perfor-
mance of the maximum Gabor coefficient feature is presented
on Fig. 8b. From the ROC curves corresponding to three value
of w of 5, 7, and 9, it can be seen that the value ofw do not
highly affect on the mitochondral detection performance ofthe
maximum Gabor coefficient feature since the ROC curves are
almost the same.

Second, we investigate the effect of number of orientation
N on mitochondrial detection performance of the maximum
Gabor coefficient features calculated by both the proposedN
quantized orientation adaptive and the conventional root mean
squareN orientations Gabor filter. The results are plotted in
Fig. 8c. It can be seen that the accuracy of mitochondrial de-

tection of the maximum Gabor coefficient features of the both
Gabor filter will slightly increase along with the incrementof
orientation numberN .

Particularly, it can be also seen in Fig. 8c that the mitochon-
drial detection accuracy of our proposed orientation adaptive
Gabor filter is higher than that of conventional Gabor filter
in all case ofN . The proposed oriental adaption for Gabor
filter following local orientation of mitochondrial ridge texture
improves the detection ability for Gabor filter.

Finally, in order to confirm the effectiveness of Gabor filter
for mitochondrial detection, we compare the mitochondrial
detection ability of our proposed Gabor filter-based textural
features including the maximum and standard deviation val-
ues of coarse segmented regions with other textural features
including homogeneity, contrast, correlation and entropyde-
rived from famous gray level co-occurrence matrix (GLCM).
The results is presented in Fig. 8d. Obviously, our proposed
features of maximum and standard deviation values of coarse
segmented regions outperforms the textural features extracted
based on GLCM for mitochondria detection.

B. Machine learning-based mitochondrial detection

Our experiments was conducted on 20 scans of a SCC-
61 cell. Half of the images are used for training and the re-
mainders are used for evaluating the trained models. Multiple
machine learning methods includingk-NN-based, SVM-based
and NN-based classifier for mitochondria detection are con-
sidered. Fork-NN classifiers, we tested with multiple values
of k including k = 5, 9 and 15. For SVM-based classifiers,
sequential minimal optimization (SMO) [36] and least square
(LS) methods are considered for training SVMs. For NN-based
classifiers, we performed the training with four configurations
of feed-forward back-propagation neural networks, i.e., two
configurations with one hidden layer including 10 nodes (net-
1) and 20 nodes (net-2) and two configurations with two
hidden layers including 10 and 3 nodes (net-3), and 20 and 8
nodes (net-4).

The values of the spacial frequencyλ and the number
of orientationsN of Gabor filters for feature extraction are
selected as 5 and 16, respectively, which are reasonable values
as analyzed in previous subsection. The value of window
size ofw, which has shown a low influence to the detection
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Orientation Adaptive Gabor, N = 8
Orientation Adaptive Gabor, N = 24

Fig. 8. ROC curves of regional maximum Gabor coefficient in comparison of (a) multiples space frequencyλ values, (b) conventional Gabor filter and
orientation adaptive Gabor filter, (c) different values of window sizew for determining orientation, (d) of other Gabor and gray level co-occurence matrix
(GLCM) features.

TABLE I
DETECTION ACCURACY COMPARISON.

w = 3, w = 3, w = 5, w = 5, w = 7, w = 7, w = 9, w = 9,
n = 2 n = 3 n = 2 n = 3 n = 2 n = 3 n = 2 n = 3

k-NN (k = 5) 78.94 77.1 76.89 78.94 81.6 81.8 79.55 79.35
k-NN (k = 9) 80.16 76.89 78.32 79.14 81.19 80.78 81.19 80.16
k-NN (k = 15) 79.35 79.75 78.94 79.35 82.21 79.96 79.75 79.35
SVM (SMO) 86.3 85.89 87.12 86.50 89.37 89.98 88.75 88.96
SVM (LS) 86.91 86.71 88.75 88.14 90.18 89.78 88.55 89.57
NN (net-1) 85.89 83.84 87.73 86.30 89.78 87.73 86.09 86.50
NN (net-2) 86.50 85.89 85.28 87.53 87.53 85.28 88.14 87.12
NN (net-3) 84.66 84.25 87.93 86.71 83.03 78.53 85.48 87.12
NN (net-4) 84.66 84.25 87.93 86.71 83.03 78.53 85.48 87.12

performance of the key feature of maximum regional Gabor
coefficient extracted from high pass filtered versions of intra-
cellular scans, are set with four different values of 3, 5, 7,
and 9 to consider its effect to the final detection accuracy.
Similar to w, the values of power order are also selected as
2 and 3 to evaluate its impact to the extracted features of
maximum and standard deviation values of regional Gabor
coefficients derived from gradient boundary enhanced versions
of intracellular scans.

The detection accuracy, which includes true positive and
true negative rates, of multiple investigated classifiers are
shown in Table I. It can be seen that the influence on final
detection performance of window sizew value is higher than
that of power ordern value. This observation can be explained

by the fact that the value ofw affect to both high pass filtered
and gradient boundary enhanced versions of original scans
while the value ofn only have an effect on the gradient
boundary enhanced ones. Similar to spacial frequencyλ, there
is also a better choice of window sizew where the detection
performance is higher, i.e.,w = 7, in this experiment.

For all of investigated cases presented in Fig. I, it can be
seen that at least 76% of coarse segmentation regions are
classified correctly. Obviously, the method of classifier do
influence on the accuracy of detection, i.e., the detection per-
formance generally decreases in the order of SVM-based, NN-
based andk-NN classifier. For training selection, it is favorable
to choose SVM-based classifier trained by LS method since the
detection accuracy of this SVM method is almost the highest
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TABLE II
AFFECT OFORIENTATION NUMBER ON DETECTIONACCURACY.

ACC TPR FPR
N = 4 87.32 91.91 20.56
N = 8 89.37 92.88 16.67
N = 16 90.18 92.88 14.44
N = 24 88.55 92.23 17.78
N = 32 89.16 92.56 16.67

accurate classifier with approximate 90% of correct detection.
Next, we keepw = 7, n = 2, andλ = 5 and change the

value of N in order to investigate the affect of orientation
number to final detection performance. As shown in Table II,
there is a saturation of final detection accuracy (ACC) when
N larger than 8. The values of TPR and FPR in such cases are
maintained as about 92% and 16%, respectively. These value
means that the error rate in identifying mitochondria regions
and non-mitochondrial regions are corresponding to about 8%
and 16%.

Most of the cases that cause these inaccurate identification
belong to the small mitochondrial regions which are falsely
merged with large neighbor organelles in coarse segmentation
stage, and small non-mitochondrial regions of which the tex-
ture can not be detectable. This observation is demonstrated in
Fig. 9 where the Fig. 9a indicates coarse segmentation regions
of an intracellular image, and Fig. 9a expresses detected coarse
mitochondrial regions obtained by an SVM-based mitochon-
drial detector withλ = 5, γ = 0.5, B = 1, w = 7, n = 2 and
N = 16. In detail, the small mitochondrial regions that are
missed due to the affect of large merged neighbor organelles
are annotated by (A) and (B). The small non-mitochondrial
region that are falsely detected because of the similarity of its
texture to mitochondrial small region’s texture is marked by
(C).

Since most of incorrect detected and miss detected regions
are small, the accuracy of our proposed algorithm computed in
pixel will be higher than 90%. Therefore, the accuracy of our
method can be comparable with the results in [11], [12], i.e.,
about 95%, while our proposed algorithm is much simpler.
Furthermore, it is possible to recovered or discarded correctly
the small incorrect detected and miss detected regions by
applying 3D reconstruct techniques to adjacent slices where
these regions appear clearer to be classified correctly.

V. CONCLUSIONS

We have presented a simple three-stage method for mito-
chondrial segmentation. The proposed method initially identify
mitochondria by coarse segmentation and further identify
by a machine learning-based detector. A gradient boundary
enhancement is utilize for facilitating the coarse segmentation.
A orientation adaptive Gabor filter is adopted for effectively
extracting features for mitochondrial detection. The proposed
method has illustrated an appropriately simple and high ac-
curacy implementation for the hard problem of segmentation
mitochrondria in intracellular space.
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