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A B S T R A C T

Monitoring grassland plant communities is crucial for understanding and managing biodiversity. Previous stu-
dies indicate that mapping these natural habitats from single-date remotely sensed imagery remains challenging
because some communities have similar physiognomy. The recently launched Sentinel-2 satellites are a pro-
mising opportunity for monitoring vegetation. This article assesses the advantages of Sentinel-2 time-series for
discriminating plant communities in wet grasslands. An annual Sentinel-2 time-series was compared respectively
to single-date and single-band datasets derived from this time-series for mapping grassland plant communities in
a temperate floodplain located near Mont-Saint-Michel Bay, which is included in the long-term ecological re-
search network “ZA Armorique” (France). At this 475 ha site, 123 vegetation relevés were collected and assigned
to seven plant communities to calibrate and validate the Sentinel-2 data. Satellite images were classified using
support vector machine (SVM) and random forest (RF) classifiers. Results show that the SVM classifier performs
slightly better than the RF classifier (overall accuracy 0.78 and 0.71, respectively). They highlight that accuracy
is lower when using single-date (0.67) or single-band images (0.70). The results also reveal that discrimination of
plant communities is more sensitive to temporal resolution (Δ=0.34 in overall accuracy) than spectral re-
solution (Δ=0.12 in overall accuracy).

1. Introduction

Plant communities, defined as frequently co-occurring plant species
(Biondi, 2011), are considered the fundamental unit of natural habitats
(Rodwell et al., 2018). Monitoring plant communities is crucial for
managing biodiversity. Plant communities, which are a static and
visible expression of biotic and abiotic dynamics, are commonly con-
sidered relevant indicators of ecosystem health (Maltby and Barker,
2009). More precisely, plant communities are suitable for mapping
ecosystem services (Lavorel et al., 2011) or assessing the conservation
status of a site (Berg et al., 2014), especially in wetlands, which perform
many hydrological, biogeochemical and ecological functions and ser-
vices (Maltby and Acreman, 2011). Plant communities can have short-
term (i.e. annual) spatio-temporal dynamics related to hydrological
management and agricultural practices (Dumont et al., 2012). Conse-
quently, regular monitoring of plant communities is required to assess
impacts of conservation plans on floristic biodiversity. Time-consuming
field-based approaches - using aerial photographs as a basis for map-
ping - are still the most common methods used to map plant

communities (Zlinszky et al., 2014), make annual updates infeasible for
areas larger than a few hundred hectares and raise obvious issues about
mapping consistency (Ullerud et al., 2018), while remote sensing data
remain underused by environmental managers (Vanden Borre et al.,
2011).

Over the past decade, very high spatial resolution remote sensing
data were assessed for mapping wetland vegetation (Guo et al., 2017).
Many studies have highlighted that plant formations (i.e. vegetation
units with similar physiognomy such as woods, shrubs, fens, and
grasslands) can be mapped with high accuracy (Kappa index > 0.8)
using single-date multispectral imagery (Rapinel et al., 2014) or LiDAR
data (Chasmer et al., 2014). Nevertheless, plant formations often en-
compass many plant communities that are distributed according to
environmental variables such as soil moisture (Marion et al., 2010) or
grazing intensity (Dumont et al., 2012). Consequently, mapping plant
formations is inappropriate for monitoring natural habitats because
many plant communities are merged into the same vegetation unit.
Conversely, multispectral single-date data have been shown unsuitable
for accurately mapping plant communities; for example, Martínez-
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López et al. (2014) obtained a Kappa index of ~0.5 using a Landsat-5
TM image, while Kumar and Sinha (2014) achieved an overall accuracy
of 42% using a Quickbird image. However, plant communities can be
accurately mapped using single-date hyperspectral imagery (Burai
et al., 2015; Roelofsen et al., 2014), but its expensive acquisition costs
limit its application to small sites. The reflectance of plant communities
measured with very high spatial resolution images is also associated
with standing biomass, soil cover, and water content (Feilhauer and
Schmidtlein, 2011). In addition, plant communities are distributed in
small patches with similar physiognomy, which smooths out the spec-
tral variability between them (Rocchini et al., 2013) making their dis-
crimination using cost-effective and single-date remote sensing imagery
data challenging. To address this issue, recent studies have highlighted
advantages of very high spatial resolution time-series for mapping plant
communities, not directly from specific plant species' spectral re-
flectance, but indirectly from phenology seasonality or flood duration.
For example, a phenology seasonality criterion was used to discriminate
plant communities from field spectroscopy time-series (Bratsch et al.,
2016; Féret et al., 2015), multispectral RapidEye time-series (Schuster

et al., 2015) and bi-seasonal Worldview-2 imagery (Tomaselli et al.,
2016), while a flood duration criterion derived from TerraSAR-X time-
series was relevant for mapping wet grassland communities (Betbeder
et al., 2015). However, repeated acquisition of such remote sensing
data remains expensive for scientists and environmental managers and
precludes their application to larger sites.

The method used to classify remote sensing data also influences the
accuracy of the vegetation map (Maxwell et al., 2018). Among the
multitude of existing classifiers, the literature indicates the superiority
of a machine learning classifier over a traditional parametric classifier
(Khatami et al., 2016), especially when the sample size is small (Burai
et al., 2015; Sanchez-Hernandez et al., 2007). Accordingly, the per-
formance of machine learning classifiers relies upon a reliable tuning
configuration (Mahdavi et al., 2017). Support vector machine (SVM) is
the machine learning classifier most commonly used for remote sensing
mapping and is well suited for a sparse calibration dataset with no
underlying assumptions of statistical distribution (Mountrakis et al.,
2011). Another popular machine learning classifier is random forest
(RF), which constructs decision trees and can manage many variables

Fig. 1. Study site location and distribution of field vegetation plots. Color composite of Sentinel-2 time-series (©ESA): blue=band 8, 22 May 2017; green=band 8,
9 Apr 2017 and red= band 8, 13 Mar 2017. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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(Mutanga et al., 2012).
In recent years, the Sentinel-2 mission, which is based on a con-

stellation of two satellites (Sentinel-2A and Sentinel-2B, launched in
2015 and 2017, respectively), continuously and extensively monitor the
Earth with a high temporal frequency (revisit time of 10 days). Sentinel-
2 sensors acquire multispectral images in 13 bands. These freely
available data, with unprecedented fine spatial, spectral, and temporal
resolutions, have great potential for wide use by environmental man-
agers to monitor plant biodiversity. Recent studies indicate a great
advantage of Sentinel-2 data for mapping tree species (Förster et al.,
2017; Immitzer et al., 2016; Karasiak et al., 2017; Ng et al., 2017), but
their application to mapping grassland habitats remains poorly in-
vestigated. Recently, Shoko and Mutanga (2017a) showed advantages
of a single-date Sentinel-2 image for mapping two herbaceous growth
patterns (i.e. C3 and C4 grasses) and encouraged future research to
investigate the use of Sentinel-2 time-series to discriminate grass spe-
cies.

The aim of this study was to assess the potential of Sentinel-2 time-
series for discriminating plant communities in wet grasslands. We hy-
pothesized that wet grassland plant communities can be discriminated
based on their specific phenological phases and flood durations. In this
study, we compared an annual time-series to single-date Sentinel-2
multispectral imagery. We defined a detailed plant community ty-
pology based on field sampling. We classified remote sensing data with
the most efficient machine-learning algorithms. The strengths and
shortcomings of the methods implemented are then discussed.

2. Materials and methods

2.1. Study site

The study focuses on a 475 ha site in the Couesnon floodplain, near
Mont-Saint-Michel Bay, in the long-term ecological research network
“ZA Armorique”, France (48°32′0″N, 1°31′0″W). This site is included
within the boundaries of European Union Natura 2000 (1992/43/EEC)
and international Ramsar environmentally protected areas. The topo-
graphy is flat, with elevation ranging from 6 to 7m NGF (“Nivellement
Général de la France”, the elevation above the mean Mediterranean Sea
level). Land cover in the floodplain consists of wet grasslands. The study
site includes two distinctive marshes separated by the Couesnon River
(Fig. 1): the Sougéal marsh (203 ha) on the western side of the river and
the Boucey marsh (272 ha) on the eastern side of the river. The two sites
differ in agricultural and water management. Sougéal marsh is desig-
nated for biological conservation: managers retain flood inflow in the
marsh for water birds and pike reproduction. Agricultural activities
include cattle grazing from March to November (Fig. 2). Boucey marsh
includes less extensive farming, with intensive drainage throughout the
year. Grasslands are managed exclusively for mowing or alternate
grazing/mowing cycles. Few crops are grown in the northern portion of
Boucey marsh. Although the two marshes have similar vegetation
physiognomy (i.e. grasslands), many distinctive plant communities are
distributed according to flood duration and agricultural practices.

2.2. Satellite data pre-processing

2.2.1. Acquisition of remote sensing data
We looked for Sentinel-2 images that were cloud-free, at least in the

study area, during an annual vegetation cycle. A time-series of 12
Sentinel-2 images from 3 November 2016 to 27 August 2017 was ob-
tained from the French space agency (CNES) website (theia.cnes.fr)
(Fig. 2). All images were acquired by the Sentinel-2A sensor, except for
that from 6 July 2017 (Sentinel-2B sensor). The images were geome-
trically rectified, and pixel values were converted into surface re-
flectance (Level 2) using the multi-sensor atmospheric correction and
cloud screening algorithm (MAACS) (Hagolle et al., 2015). Sentinel-2
images included four spectral bands at 10m spatial resolution in blue

(b2: 497 nm), green (b3: 560 nm), red (b4: 664 nm), and infrared (b8:
835 nm) spectra. They also included six bands at 20m spatial resolution
in red-edge (b5: 704 nm, b6: 740 nm, b7: 782 nm), near-infrared (NIR)
(b8a: 865 nm), and short-wave infrared (SWIR) (b11: 1614 nm, b12:
2202 nm) spectra. The three atmospheric bands (b1, b9 and b10) were
excluded from the analysis.

2.2.2. Resampling and stacking Sentinel-2 images
The 20m bands of each Sentinel-2 image were subsampled to a

10m grid using the nearest neighbor approach. Then, these subsampled
bands were stacked with the other 10m bands (b2, b3, b4 and b8) into
a temporary raster file. Finally, the 12 images were stacked into a
matrix raster with 120 layers at a 10m spatial resolution to obtain the
correct format for classification analysis.

2.3. Analysis of vegetation data

2.3.1. Field sampling
Vegetation relevés were collected from May to June 2017 during the

annual vegetation peak. To fit with the 10m spatial resolution of
Sentinel-2 imagery, field sampling was done in patches larger than
100m2 with an a priori homogeneous plant community. Homogeneous
vegetation patches were visually identified based on the identification
of dominant species and consistent micro-topography. Next, plots were
established (each an equilateral triangle with 10m sides), and vegeta-
tion relevés in 2m×2m areas were carried out in each angle of the
triangle. For each vegetation relevé, the traditional phytosociological
protocol was applied. An exhaustive inventory of plant species with
their abundance expressed using the Braun-Blanquet index was con-
ducted. The center of each relevé was geo-referenced using differential
GPS (horizontal accuracy < 0.5m). Jaccard and Sorensen species
dissimilarity indices were calculated for the three relevés in each plot to
confirm the homogeneity of species composition (Table A1). Finally,
123 vegetation relevés from 41 plots were collected and input into the
TURBOVEG vegetation database (Hennekens and Schaminée, 2001).
TURBOVEG is a comprehensive database management system designed
for the storage, selection, and export of vegetation data (relevés). One
of its advantages is that it checks and corrects the taxonomy of plant
species based on the French national reference TAXREF (Gargominy
et al., 2012).

2.3.2. Unsupervised classification of vegetation relevés
We developed a typology of plant communities via an unsupervised

classification of the vegetation relevés based on their species compo-
sition. To group these vegetation relevés into consistent clusters (i.e.
plant communities), a numerical approach was applied using JUICE
software (Tichý, 2002). Unsupervised classification of each relevé was
conducted using the modified hierarchical TWINSPAN algorithm (Hill,
1979). We applied the TWINSPAN classification to the 123 vegetation
relevés rather than the 41 averaged plots to preserve the variance of the
data. The TWINSPAN algorithm was run with default parameter set-
tings (i.e. pseudospecies cut level: 3; values of cut levels: 0, 5, 25;
minimum group size: 3). The final number of divisions was chosen
based on expert-based validation. The compactness and distinctiveness
of clusters were statistically assessed using the average silhouette width
(Kaufman and Rousseeuw, 1990), a standard measure of cluster isola-
tion. Specifically, the silhouette width, ranging from −1 to 1, is a
measure of how similar a vegetation relevé is to its clusters, with ne-
gative values indicating misclassified relevés. For each plot, we as-
signed the majority cluster label to its 3 constituent relevés (Table B1).
A summary table, which describes the percentage frequency of each
species per cluster, was created, and correspondence between clusters
and European Nature Information System (EUNIS) habitat types
(Davies et al., 2004) was determined for clearer interpretation.
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2.4. Analysis of satellite data

2.4.1. Creation of spectral signature files
The sample plot vector layer and the Sentinel-2 time-series were

subsequently overlaid in a GIS environment. Pixels included in at least
1/3 of plot areas were manually selected in each dataset. Then, the
median spectral value of each band was assigned to the plot.

2.4.2. Dimension reduction
Because the Sentinel-2 time-series contained many spectral bands

(n=12 dates× 10 bands), the number of dimensions was decreased
using recursive feature elimination (RFE) to retain the most dis-
criminating bands. We applied the well-established RFE method de-
veloped by Kuhn (2012) and implemented in the R package “caret”
using an SVM algorithm with 10 repeated 3-fold cross-validation.
Variation in classification accuracy that considered the number of
spectral bands of the Sentinel-2 time-series selected retained 26 of the
120 bands (Fig. C1).

2.4.3. Supervised classification
We mapped plant communities through supervised classification of

the Sentinel-2 images, using the spectral values of the 41 field plots as
basis for the model calibration. Two machine learning classifiers, SVM
(with a linear and radial kernel) and RF, were applied to the Sentinel-2
time-series data and subsequently to the 12 single-date dataset (i.e. the
10 spectral bands from each date) and the 10 single-band dataset (i.e.
the 12 dates for each spectral band), which were then compared.
Classification models were calibrated and validated using 10 repeated
3-fold cross-validation. More folds were not possible due to the sparse
calibration dataset (n= 41). For the Sentinel-2 time-series classifica-
tion, the SVM algorithm was applied to the 26 most discriminating
spectral bands assigned from the RFE, while the RF algorithm, which
included an internal band selection procedure, was applied to all 120
spectral bands. A mean overall accuracy (OA) index and a Kappa index
(and their respective standard deviations (SD)) were calculated for each
remote sensing dataset and for each classifier. A cross-validated

confusion matrix representing the error distribution per class among the
10 repeats was performed for the Sentinel-2 time-series classification to
obtain the most accurate classifier. A map of grassland plant commu-
nities was derived from the classification of Sentinel-2 time-series: non-
wetland and non-grassland areas were masked using ancillary thematic
layers (Inglada et al., 2017; Rapinel et al., 2015b).

All remote sensing analyses were performed in the R 3.4.3 statistical
environment (R. Core Team, 2017) using the packages “raster” v 2.6–7
(Hijmans, 2015) and “caret” v 6.0–79 (Kuhn, 2008).

3. Results

3.1. Floristic typology

The 123 vegetation relevés were clustered using TWINSPAN into
seven plant communities. The quality of clustering was considered sa-
tisfactory given the positive average silhouette widths (Fig. D1). The
seven plant communities were distributed along flood duration and
grazing gradients (Table 1). All plant communities belonged to EUNIS
E2.2 (low and medium elevation hay meadows) and E3.4 (seasonally
wet and wet grasslands) classes.

Plant communities 1–4 were distributed on mesophilic grasslands,
but could be distinguished by their grazing intensity. Plant community
1 was associated exclusively with mown grasslands, with typical species
such as Arrhenatherum elatius and Festuca arundinacea. Plant community
2 was found on grasslands with alternate of grazing and mowing, with
Anthoxanthum odoratum and Bromus racemosus species. Plant commu-
nities 3 and 4 were floristically similar and were located on more
continuously grazed grasslands. Plant community 3 was characterized
by Holcus lanatus, while plant community 4 was distributed in moister
mesophilic grasslands characterized by Poa trivialis, Cirsium arvense and
Trifolium repens. Plant community 5 corresponded to meso-hygrophilic
(i.e. transitional area between mesophilic and hygrophilic grasslands)
and grazed grasslands. Its species composition was characterized by
Alopecurus geniculatus, Oenanthe fistulosa and Eleocharis acicularis. Plant
communities 6 and 7 were floristically similar and representative of

Fig. 2. Sentinel-2 acquisition dates in relation to vegetation phenology, grassland management and hydrological management of the Couesnon marshes.
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hygrophilic and grazed grasslands. However, few differences were ob-
served in species composition: Ranunculus flammula and Eleocharis pa-
lustris were often observed in plant community 6 but not in plant
community 7.

3.2. Mapping plant communities

A plant community map was derived successfully from the Sentinel-
2 time-series regardless of the classifier used. In detail, the OA of the
classification of the full Sentinel-2 time-series assessed from 10 re-
peated 3-fold cross-validation ranged from 0.71 ± 0.08 (Kappa
index= 0.63 ± 0.09) for the RF classifier to 0.77 ± 0.06 (Kappa
index= 0.72 ± 0.07) and 0.78 ± 0.05 (Kappa index=0.73 ± 0.06)
for the SVM classifier with a radial and linear kernel, respectively. This
highlights the slight influence (Δ=0.07) of the classifier on OA.
Analysis of the confusion matrix for the SVM classifier with a linear
kernel (Table 2) shows that misclassification errors occurred mainly
within plant communities with similar species composition (e.g. plant
community 3 vs. plant community 4, plant community 5 vs. plant
community 6). Underdetection and overdetection errors were

acceptable (≤30%) for all plant communities except plant community
1 and plant community 7, which were influenced by moderate under-
detection (37%) and overdetection errors (38%), respectively. Con-
versely, plant community 2 was classified with greater accuracy since
the under- and overdetection errors were<15%.

The map of plant communities derived from the Sentinel-2 time-
series classification (Fig. 5) highlights a clear difference in plant com-
munity composition between the two marshes, which agreed with their
hydrological and grassland management. Plant communities 1 and 2 -
typical of mesophilic and mown grasslands - were abundantly present
in Boucey marsh (33% and 44% of total grassland area, respectively)
but absent in Sougéal marsh (2% and 5% of total grassland area, re-
spectively). Conversely, plant communities 5, 6, and 7 - indicators of
long-flooded and grazed grasslands - were well distributed in Sougéal
marsh (21%, 14%, and 15% of total grassland area, respectively) but
were rarely mapped in Boucey marsh (1%, 3%, and 0% of total grass-
land area, respectively). Plant communities 3 and 4 - indicators of
mesophilic and grazed grasslands - were located on the alluvial ridge
(higher elevations) of the Couesnon River.

3.3. Importance of date and spectral band to discriminating plant
communities

The influence of date and spectral band on the classification accu-
racy of plant communities is shown in Figs. 3 and 4, respectively. OA
was lower and varied significantly (Δ=0.34) when using a single-date
Sentinel-2 image. Accuracy was lowest during periods of vegetation
dormancy (3 November 2016 to 18 February 2017) and senescence (6
July to 27 August 2017), while it was highest during the growing period
(9 April to 21 June 2017). Specifically, maximum accuracy was
0.67 ± 0.07 (Kappa index=0.59 ± 0.09) on 9 May 2017, while
minimum accuracy did not exceed 0.33 ± 0.11 (Kappa
index= 0.17 ± 0.13) on 30 November 2016 with the linear SVM
classifier.

Unlike the date, the spectral band had a slight influence on variation
in accuracy (Δ=0.12). Accuracy was lowest in the b2 (blue) band
(0.58 ± 0.12, Kappa index=0.49 ± 0.15), while it was highest in
the b3 (green) band (0.70 ± 0.10, Kappa index=0.63 ± 0.12) with
the linear SVM classifier. Interestingly, b5 and b6 (red edge), b8 and
b8a (IR), and b11 and b12 (SWIR) bands had similar accuracies, ran-
ging from 0.60 (Kappa index=0.49) to 0.65 (Kappa index= 0.57).

Table 1
Summary table of the grassland plant communities in the Couesnon marshes.
Percentage frequency values of species in each plant community are derived
from TWINSPAN classification. Higher values are indicated in gray (≥60) and
dark gray (≥80).

Plant community number 1 2 3 4 5 6 7 

Number of relevés 6 15 23 35 24 12 8 

Arrhenatherum elatius 100 – – – – – – 

Festuca arundinacea 100 7 4 – – – – 

Festuca rubra 83 – – – – – – 

Rumex acetosa 67 47 – – – – – 

Trifolium pratense 67 40 – – – – – 

Lathyrus pratensis 67 – – – – – – 

Leontodon autumnalis 67 40 – – – – – 

Anthoxanthum odoratum  – 93 4 – – – – 

Ranunculus acris 50 80 – 9 – – – 

Bromus racemosus – 80 – – – – – 

Alopecurus pratensis – 60 39 20 4 – – 

Cirsium arvense – – 35 69 21 – – 

Oenanthe fistulosa – – – 6 92 25 25 

Eleocharis acicularis – – – 6 83 17 13 

Cardamine pratensis – 20 4 6 75 – 13 

Potentilla anserina  – 13 – 23 75 8 13 

Ranunculus flammula – – – 3 42 83 25 

Eleocharis palustris – – 9 – 42 83 – 

Veronica scutellata – – – – – 8 75 

Lemna minor  – – – – – 25 63 

Hydrocotyle vulgaris – – – – 4 – 63 

Holcus lanatus 100 53 96 26 – – – 

Plantago lanceolata 100 67 – – – – – 

Taraxacum officinale 83 100 – – – – – 

Rumex crispus 17 – 61 51 67 – – 

Trifolium repens 17 – 4 71 83 – – 

Carex hirta – 33 30 60 71 8 – 

Alopecurus geniculatus – – 4 14 100 75 38 

Glyceria fluitans – – 4 – 54 92 100 

Galium palustre – 7 – – 38 83 88 

Lolium perenne 33 87 65 89 21 – – 

Persicaria amphibia – – – 3 75 83 75 

Poa trivialis 67 87 65 91 50 – – 

Ranunculus repens 67 93 78 63 88 8 – 

Agrostis stolonifera 50 100 100 100 88 83 75 

Table 2
Cross-validated (3-fold, repeated 10 times) confusion matrix between the sup-
port vector machine classification (linear kernel) of plant communities derived
from the Sentinel-2 time-series (lines) and field plots (columns). Entries are
percentages of average cell counts among repeats. The percentages of over-
detection (OD) and underdetection (UD) are given for per plant community.

References

Class name 1 2 3 4 5 6 7 OD

P
re

d
ic

ti
o

n

Plant community 1 1 4.5 0.7 13
Plant community 2 2 0.2 11.9 1.4 0.5 15
Plant community 3 3 11.7 3.1 21
Plant community 4 4 2.4 2.9 24.3 2.4 24
Plant community 5 5 0.7 13.8 2.1 2.1 26
Plant community 6 6 7.1 0
Plant community 7 7 2.9 0.2 5.0 38

UD 37 0 29 15 28 24 30

Accuracy (average) 0.78

Kappa (average) 0.73
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4. Discussion

4.1. Advantages of Sentinel-2 time-series for mapping grassland plant
communities

Sentinel-2 time-series, which combine high temporal, spectral and
spatial resolutions, provide an unprecedented view of impacts of hy-
drological and grassland management on the distribution of grassland
plant communities in the Couesnon marshes. Although Shoko and
Mutanga (2017a) highlighted the advantages of one single-date Sen-
tinel-2 imagery for mapping two herbaceous growth patterns, our study
goes further and demonstrates that a cost-effective Sentinel-2 time-
series can accurately map seven grassland plant communities
(OA=0.78, Kappa index=0.73). Previous studies reached similar
accuracies, but used expensive remote sensing data such as airborne
hyperspectral imagery (Burai et al., 2015; Neumann et al., 2015;
Oldeland et al., 2010), TerraSAR-X time-series (Schuster et al., 2015),
full-waveform LiDAR data (Zlinszky et al., 2014), or an unmanned
aerial vehicle (Kaneko and Nohara, 2014). Our analyses based on real
Sentinel- 2 satellite time-series confirm preliminary studies which
showed the potential of field-spectra-simulated Sentinel-2 time-series
for discriminating natural grasslands (Feilhauer et al., 2013; Féret et al.,
2015).

Facies of plant communities vary throughout the year according to
the specific phenology of each plant species. Most of the time, grassland
plant communities have similar physiognomy that smooths the spectral
difference between them (Rocchini et al., 2013); however, they can
appear distinct during a brief period (Feilhauer et al., 2013). Hence,
multi-temporal Sentinel-2 data has great value in identifying these
phenological differences; for example, Festuca and Themeda grass spe-
cies were clearly discriminated in summer but not in winter Sentinel-2
images (Shoko and Mutanga, 2017a, 2017b). In our study, plant

communities 5 and 6 were correctly discriminated from the Sentinel-2
time-series (only 2.1% of error between them, Table 2) despite having
similar floristic composition and both growing on long-flooded and
grazed grasslands. This low error may be due to the yellow flowers of
Ranunculus flammula (42% and 83% frequency in plant community 5
and 6, respectively) in April and the white flowers of Oenanthe fistulosa
(92% and 25% frequency in plant community 5 and 6, respectively)
from May–June.

The Sentinel-2 sensor provides spectral bands with a 10 or 20m
spatial resolution, which is coarser than the fine-grained pattern of
grassland plant communities (Marion et al., 2010). As suggested by
Roth et al. (2015), classification of Sentinel-2 time-series represents
only a coarse grain pattern of vegetation patches, in which small, long
or thin patches cannot be discerned. A higher spatial resolution (2–5m)
would be more appropriate for the fine-grained pattern of grassland
plant communities. Merging Sentinel-2 images with very high spatial
resolution satellite images is a potential solution for capturing small
plant community patches (Pereira et al., 2017), although it requires
multiple acquisitions at the higher resolution for each low-resolution
image (Chen et al., 2015).

Field vegetation plots were sampled from May–June 2017 to cali-
brate Sentinel-2 time-series acquired from November 2016 to August
2017. Unlike functional properties of vegetation (e.g. biomass, nitrogen
content), which evolve rapidly, the structural composition of vegetation
evolves more slowly (over± 2 years) (Dumont et al., 2012). As a result,
a one-year shift between field sampling and remote sensing data ac-
quisitions appears acceptable for classifying vegetation. Since the re-
mote sensing sensor does not adequately characterize vegetation when
grasslands have been recently mown or flooded, images should be ac-
quired during the period of peak vegetation when using a single-date
image (Feilhauer et al., 2013; Schmidtlein et al., 2007; Zlinszky et al.,
2014). This is less true for remote sensing time-series, in which

Fig. 4. Influence of spectral band on Sentinel-2 image classification accuracy per classifier (rf= random forest; svm.l= support vector machine (SVM) with a linear
kernel; svm.r= SVM with a radial kernel). Whiskers indicate the standard deviation of cross-validation replicates.
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detection of flooded or mown grassland can be a good proxy for char-
acterizing hydrological management (Betbeder et al., 2015) and
grassland management (Franke et al., 2012) and in fine for dis-
criminating natural vegetation units. Beyond differences in phenology,
the flood duration criterion helped to discriminate flooded plant com-
munities (5, 6, and 7) from non-flooded plant communities (1 and 2),
mainly located in Sougéal and Boucey marshes, respectively, while
discrimination among non-flooded plant communities (1, 2 and 3)
within Boucey marsh was due to differences in grassland management.

4.2. Influence of date, spectral band, and classifier on plant community
discrimination

We show that classification of Sentinel-2 time-series is more accu-
rate (OA=0.78, Kappa index=0.73) than those derived from a single-
date Sentinel-2 image (maximum OA=0.67, Kappa index=0.59) or
from a single-band Sentinel-2 image (maximum OA=0.70, Kappa
index= 0.63). We also highlight that date had a greater influence than
spectral band on classification accuracy (Δ=0.34 and 0.12 in OA, re-
spectively). These results confirm the assumption of Schuster et al.
(2015), who argued that high temporal resolution is more important
than sensor characteristics. More precisely, we show spring/early
summer (9 April 2017 to 21 June 2017) is the most informative period
for discriminating plant communities. Previous remote sensing-based
studies also indicated that this period is crucial and involves many
criteria, such as flood duration (Betbeder et al., 2015), plant phenology
(Franke et al., 2012; Schuster et al., 2015), and the annual vegetation
peak (Feilhauer et al., 2013; Féret et al., 2015; Schmidt et al., 2014;
Shoko and Mutanga, 2017b). From an ecological viewpoint, this period
is considered a “hot moment” because it is when (1) wet marshes dry
quickly within a few weeks, yielding clear spatial patterns due to flood
duration (Rapinel et al., 2018), and (2) wet grassland vegetation
reaches the annual peak in plant development (Maltby and Barker,
2009). Accordingly, the timing and extent of this “hot moment” for
discriminating plant communities may shift from year-to-year de-
pending on climate variations, as well as local hydrological and grass-
land management.

Although previous studies indicated that spectral band, such as red-
edge (Robinson et al., 2016; Shoko and Mutanga, 2017a), NIR
(Feilhauer et al., 2013), and SWIR (Davranche et al., 2010; Jacob et al.,
2014), had a clear influence on discrimination of natural vegetation,
spectral band influenced OA only slightly (Δ=0.12) in our study. This
could have been due to our having considered each spectral band over
all dates in the time-series, which could have “smoothed” differences
among the bands.

Our results showed that the SVM classifier slightly outperformed the
RF classifier (Δ=0.07 in OA). Based on the 10 repeated 3-fold cross-
validation (i.e. 30 replicates), we calculated a small SD for both clas-
sifiers (± 0.06). These results should be compared to those of previous
studies cautiously, since procedures (e.g. cross-validation type, sample
size, hyperparameter tuning) may differ (Maxwell et al., 2018). That
said, our results are similar to those of Burai et al. (2015) and Maxwell
et al. (2014), who highlighted that SVM outperformed RF by ~0.03 in
OA. Conversely, Adam et al. (2014) claimed that RF performed better
than SVM by ~2%, while Duro et al. (2012) concluded that results of
RF and SVM classifiers did not differ statistically.

4.3. Methodological considerations

Vegetation relevés were collected in floristically homogeneous
patches that were visually delineated in the field based on identifying
dominant plant species and consistent micro-topography. Since plant
communities in wet grasslands are distributed mainly in fine-grained
patterns (Marion et al., 2010), delineating large patches (> 100m2)
that met the required Sentinel-2 pixel size was challenging and time-
consuming. Nearly 80 h of fieldwork by two experienced scientists

(including automobile driving, identification of vegetation patches, and
plant species inventories) were required to collect the 123 vegetation
relevés from 41 plots on a well-known study site. This limitation should
be considered when planning a field campaign, even when using very
high spatial resolution (2 cm) unmanned aerial vehicle imagery, which
can help identify large and floristically homogeneous patches locally
(Yoshino et al., 2014). One limitation of the fieldwork was the short
duration (only 2months: May–June) of peak vegetation growth during
which vegetation relevés can be collected. Specifically, we expected to
perform more relevés in Boucey marsh, but some grasslands had al-
ready been mown in June.

We defined a detailed habitat typology to explore the ability of the
Sentinel-2 time-series in depth. Existing habitat typologies (e.g.
CORINE Biotope, EUNIS, Natura 2000) are considered too broad and
inconsistent for European grassland plant communities (Dengler et al.,
2013). Consequently, we defined our typology using an unsupervised
hierarchical TWINSPAN classifier based only on our dataset of vege-
tation relevés. The summary table (Table 1) and silhouette index (Fig.
D1) indicate consistent vegetation units in the local context of grass-
lands in the Couesnon marshes. However, the sparse vegetation dataset
and small study site area (480 ha) may reduce the significance and
robustness of this typology at the regional scale (De Cáceres et al.,
2015). Integrating additional relevés from existing and comprehensive
databases, such as VegFrance (Bonis and Bouzillé, 2012) or WetVe-
gEurope (Landucci et al., 2015), and applying alternative classifiers,
such as semi-supervised algorithms (Tichý et al., 2014), is a suitable
solution for developing consistent classifications of European wet
grassland plant communities (Dengler et al., 2013).

Extracting pure spectral signatures from vegetation plots remains
challenging, especially when the pixel size is larger than field plot areas
(Hauglin and Ørka, 2016). In this study, plots were designed in the form
of a 10m triangle to meet the Sentinel-2 pixel size. However, most
pixels selected to calculate spectral signatures of plots could be con-
sidered “mixed pixels”, since they cover not only a part of the plot but
also surrounding areas. This issue is more critical for native Sentinel-2
20m bands resampled at a 10m resolution. In theory, the field plot
should have been>400m2 to account for the 20m Sentinel-2 bands,
but in practice, this size was not feasible since patches of plant com-
munities in grasslands were rarely so large. Nevertheless, because we
carefully designed plots within floristically homogeneous patches>
100m2, it is reasonable to assume that species composition observed
within the 10m plots is similar to that in surrounding areas. In-
cidentally, Jaccard and Sorensen dissimilarity indices of plant species
per plot tended to have low values (Table A1). An attractive alternative
is to downscale the vegetation unit from a single plant community to a
set of plant communities (Biondi et al., 2011) to conform to the 20m
Sentinel-2 bands. This approach was successfully applied to Atlantic
saltmarshes using 30m Landsat bands (Rapinel et al., 2015a) and merit
assessment with 10–20m Sentinel-2 bands and the future EnMAP
(Environmental Mapping and Analysis Program) hyperspectral images.

Despite substantial fieldwork, the number of field plots was small
(n= 41) given the number of grassland plant communities (n=7).
Therefore, overfitting was a legitimate concern. Unbiased and robust
performance evaluation is an important issue in machine learning re-
search (Cawley and Talbot, 2010). Robustness is influenced by over-
fitting, which occurs when a model fits the training data well but is not
generalizable (Maxwell et al., 2018). In other words, overfitting results
in estimated accuracy that has low bias (i.e. expected difference with
actual accuracy) but high variability (Wong, 2015). One obvious way to
detect overfitting is to use an independent test set. However, although
pre-existing vegetation plots were surveyed in 2008 in this long-term
ecological research network study site, we could not use them as an
independent validation dataset to assess the SVM and RF models since
plant communities' patterns may have changed within a decade. Even if
we could have done so, we would likely have used them to increase
accuracy of the models. Instead, we used 10 repeated 3-fold cross-
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validation to provide reasonable estimates of the expected error (Kuhn
and Johnson, 2013). Our statistical results - based on 30 replicates -
showed not only moderate average bias (0.22 in OA) but also low
variability (± 0.07). Accordingly, our small number of field plots
(n=41) resulted in overlapping training and test datasets during the
cross-validation procedure and in fine an underestimate of the varia-
bility (Refaeilzadeh et al., 2009; Wong, 2015). Beyond statistical vali-
dation, model robustness can be qualitatively assessed using the map
that results from applying the model to all pixels (Correll et al., 2018):
visual interpretation of the Sentinel-2 classification revealed consistent
spatial distribution of plant communities in the marshes (Fig. 5).

In accordance with previous studies (Burai et al., 2015; Karasiak
et al., 2017), our results highlighted that the SVM classifier consistently
outperformed the RF classifier in OA (±10 percentage points). How-
ever, the accuracy of SVM classification could be increased; we used a
traditional approach to analyze the Sentinel-2 time-series: the 120
spectral bands were stacked in one file and classified with classic

kernels that ignored the chronological order of the time-series. In
contrast, temporal kernels - such as dynamic time warping - have been
shown to help identify grassland management from remote sensing
time-series (Dusseux et al., 2013) and appear a promising solution for
monitoring plant communities from Sentinel-2 time-series. Never-
theless, temporal kernels are better suited for comparing time-series
with> 20 points/images (Betbeder et al., 2014), while our annual
Sentinel-2 time-series contained only 12 images. Betbeder et al. (2014)
compared linear and temporal kernels to map natural wet grasslands
using 6 SAR images and found that the linear kernel significantly out-
performed the temporal kernel (Kappa= 0.73 and 0.32, respectively).
Considering a longer period (2 years) and/or merging Sentinel-2 data
with SAR Sentinel-1 data would result in a denser time-series that is
well adapted for temporal kernels. Another alternative is to explicitly
add phenological parameters based on time-series analysis of Sentinel-2
data (Vrieling et al., 2018).

Although Sentinel-2 data have great potential for the calculation of
vegetation indices, we did not use vegetation indices as additional
variables since they slightly increased classification accuracy compared
to temporal or spectral resolutions (Khatami et al., 2016). However,
vegetation indices derived from Sentinel-2 data would be useful for
characterizing physical properties of vegetation in relation to functional
traits, such as annual net primary production and nitrogen content
(Lausch et al., 2016).

5. Conclusion

This study has demonstrated advantages of using Sentinel-2 time-
series to accurately map wet grassland plant communities. Beyond
phenology, mesophilic and hygrophilic plant communities were dis-
criminated based on differences in flood duration and saturation of the
topsoil, while mown and grazed plant communities were discriminated
based on differences in grassland management. Discriminant analysis
revealed that the spring/early summer season was the most informative
period for mapping plant communities in floodplains, while spectral
bands had little influence on accuracy. Sentinel-2 time-series dis-
criminated grassland plant communities better than a single-date or
single-band Sentinel-2 dataset. Future studies could focus on in-
tegrating temporal kernels in the classification process.
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Appendix A

Table A1
Jaccard and Sorensen dissimilarity indices of plant species per plot.

Dissimilarity index

Plot Jaccard Sorensen

1 0.39 0.24
2 0.38 0.25
3 0.52 0.36
4 0.56 0.39
5 0.41 0.26

Fig. 5. Map of plant communities derived from the classification of Sentinel-2
time-series using a linear kernel support vector machine classifier.
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Table A1 (continued)

Dissimilarity index

Plot Jaccard Sorensen

6 0.41 0.27
7 0.50 0.33
8 0.66 0.51
9 0.44 0.30
10 0.46 0.30
11 0.23 0.14
12 0.38 0.24
13 0.34 0.21
14 0.32 0.19
15 0.51 0.36
16 0.27 0.16
17 0.51 0.35
18 0.31 0.19
19 0.26 0.15
20 0.33 0.20
21 0.37 0.23
22 0.44 0.29
23 0.19 0.11
24 0.47 0.32
25 0.31 0.18
26 0.39 0.25
27 0.43 0.28
28 0.50 0.34
29 0.45 0.29
30 0.50 0.34
31 0.26 0.15
32 0.17 0.10
33 0.30 0.18
34 0.35 0.21
35 0.48 0.32
36 0.60 0.44
37 0.47 0.31
38 0.39 0.25
39 0.42 0.27
40 0.59 0.42
41 0.41 0.26

Appendix B

Table B1
List of cluster labels per relevé and plot (Microsoft® Excel file).

Plot ID Relevé ID Relevé cluster label Plot cluster label

1 1 2 2
2 2
3 2

2 4 2 2
5 2
6 2

3 7 2 2
8 2
9 2

4 10 2 2
11 2
12 2

5 13 1 1
14 1
15 1

6 16 1 1
17 1
18 1

7 19 2 2
20 2
21 2

8 22 3 3
23 3
24 3

9 25 4 4
26 4
27 4

(continued on next page)
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Table B1 (continued)

Plot ID Relevé ID Relevé cluster label Plot cluster label

10 28 3 3
29 3
30 3

11 31 3 3
32 3
33 3

12 34 3 3
35 3
36 3

13 37 3 3
38 3
39 3

14 40 4 4
41 4
42 4

15 43 4 4
44 4
45 4

16 46 4 4
47 4
48 4

17 49 3 4
50 4
51 4

18 52 4 4
53 4
54 4

19 55 4 4
56 4
57 4

20 58 4 4
59 4
60 4

21 61 3 3
62 3
63 3

22 64 3 4
65 4
66 4

23 67 3 3
68 3
69 3

24 70 4 4
71 4
72 4

25 73 4 4
74 4
75 4

26 76 5 5
77 5
78 5

27 79 5 5
80 5
81 5

28 82 5 5
83 5
84 5

29 85 4 4
86 4
87 4

30 88 6 6
89 5
90 6

31 91 4 5
92 5
93 5

32 94 5 5
95 5
96 5

33 97 5 5
98 5
99 5

34 100 5 5
101 5

(continued on next page)
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Table B1 (continued)

Plot ID Relevé ID Relevé cluster label Plot cluster label

102 5
35 103 7 7

104 7
105 7

36 106 7 7
107 7
108 7

37 109 6 6
110 6
111 6

38 112 6 6
113 6
114 6

39 115 5 5
116 5
117 5

40 118 6 6
119 6
120 6

41 121 7 7
122 7
123 6

Appendix C

Fig. C1. Variability in classification accuracy as a function of the number of spectral bands of the Sentinel-2 time-series considered. The black dot indicates the
number of variables retained for the subsequent classification process. Whiskers indicate the standard deviation of cross-validation replicates.
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Appendix D

Fig. D1. Silhouette plot of the TWINSPAN classification in which each vegetation relevé is ordered according to cluster (in color) as a horizontal bar. Clusters are
identified by their name j, followed by the number of relevés classified in the cluster nj, and the average “silhouette width” by cluster aveiϵCj Si. Silhouette plots assign
silhouette widths Si to each vegetation relevé i within a cluster with a value from−1 to 1. The silhouette width is calculated by comparing a vegetation relevé 's mean
similarity to other vegetation relevés within the cluster, followed by comparing its mean similarity to vegetation relevés within the nearest cluster. A silhouette width
of 1 means that within-cluster similarity is much higher than between-cluster similarity, indicating the vegetation relevé is a good fit with the cluster. A value of −1
means that between-cluster similarity is much higher than within-cluster similarity, indicating the vegetation relevé is a poor fit with the cluster.

Appendix E. Supplementary data

Supplementary data associated with this article can be found in the online version, at https://doi.org/10.1016/j.rse.2019.01.018. These data
include Google map of the most important areas described in this article.
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