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Introduction

A measure preserving dynamical system is given by a transformation T or a ow (Y t ) t≥0 preserving a measure. When the measure is a probability, the study of the stochastic properties of such a dynamical system consists in studying the probabilistic properties of families of stationary random variables of the form (φ • T k ) k≥0 or (φ • Y t ) t≥0 for reasonnable observables, with a particular interest in the study of the Birkho sums, which are given by

S n φ = n-1 k=0 φ • T k or S t φ = t 0 φ • Y s ds.
When the measure is a probability, the study of these quantities have been intensively studied in the last half a century, with an always increasing interest. A rst question is the law of large number (LLN), that is the almost sure convergence of (S t φ/t) t>0 to the integral I(φ) of φ as t → +∞, which happens to be true for any integrable function f as soon as the system is ergodic (due to the Birkho-Khinchin theorem). A second natural question is the establishment of central limit theorems (CLT), i.e. of the convergence in distribution of S t φ/ √ t t ( as t → +∞) to a Gaussian random variable for centered square integrable observables φ, or, even more, the functional CLT (FCLT) that is the convergence of the family of processes (S st φ/ √ t) s t to a Brownian motion (B s ) s , as t → +∞. In practice, CLT and FCLT hold true for smooth observables when the system is chaotic enough (satisfying nice mixing properties, see [23,13,14], etc.).

When the measure is innite, it is natural to adress analogous questions, but the results are of dierent nature (we refer to [1] for a general reference on dynamical systems preserving an innite measure). The rst analogue of the LLN is given by the Hopf theorem, which states the almost everywhere convergence of (S t φ/S t ψ) n to the ratio I(φ)/I(ψ) of the integrals of φ and ψ, for all couples of integrable functions (φ, ψ) with ψ ≡ 0, as soon as the system is conservative ergodic. A second analogue of the LLN is the convergence in distribution in the strong sense of (S t φ/a t ) t to a random variable (convergence in distribution in the strong sense means convergence in distribution with respect to any probability measure absolutely continuous with respect to the invariant measure). Note that, due to the Hopf theorem, it is enough to prove this result for a specic function φ ≡ 0 to extend it to any integrable function. This second kind of analogue of LLN requires additional assumptions on the dynamical system. Analogues of CLT for dynamical systems preserving an innite invariant measure are non-degenerate limit theorems for (S t φ) t for null integral observables f . A classical analogue to the CLT in this context consists in establishing the convergence in distribution of S t φ/a 1 2 t t

to some random variable, with a t as in the above second analogue of the LLN.

The case of dynamical systems that can be represented by a Z d -extension over a probability preserving dynamical system is of particular interest. As mentionned in [27,28,29,22], in this specic context, the question of the behaviour of Birkho sums is related to the study of occupation times of d-dimensional random walks or Markov chains (see [11,16,17,19]). Indeed, in the case of a transformation T , when the observable DateX eptemer WD PHIWF φ depends only on the Z d -label in the Z d -extension, the ergodic sum S n φ is the exact analogue of additive functionals of d-dimensional random walks or Markov chains. Outside the cases of random walks or Markov chains, rst results have been obtained by the second-named author [27,28,29] for Pomeau-Manneville maps, for Z d -extensions of Gibbs-Markov maps, for geodesic ows on a Z d -cover of a compact Riemannian variety with negative curvature. In [22], we established CLT in a general context of Z d -extensions of a dynamical system with nice spectral properties, including the Z 2 -periodic billiard model, but for observables depending only on the Z d -label.

The aim of the present paper is to study ergodic sums of Hölder observables of the Z 2 -periodic Sinai billiard and of the Z 2 -periodic Lorentz process, both with nite horizon. A rst step in this direction is the property of conservativity and ergodicity which comes from [7,26] (thanks to [24,5,4]) and which, combined with the Hopf theorem, ensures the above mentioned rst analogue to the LLN. A second step is the proof by Dolgopyat,Szász and Varjú in [10] of the above mentioned second analogue to the LLN, that in this context is

∀φ ∈ L 1 , S t φ ln t =⇒ I(φ) E , as t → +∞ , (1.1)
where E is an exponential random variable and where =⇒ means the convergence in distribution in the strong sense. A third step in this direction is the CLT with a normalization in √ ln t obtained in [22] for the billiard map and for observables depending only on the Z d -level. In the present paper, our main result is a CLT and even a FCLT for Hölder observables φ (with null expectation) of the Z 2 -periodic Sinai billiard and of the Z 2 -periodic Lorentz process of the following form

S t φ ln(t) =⇒ σ φ √ E N , as t → +∞ ,
with E as in (1.1) and with N a standard gaussian random variable independent of E, where σ φ is given by a Green-Kubo formula. The above convergence result holds true providing φ satises some decay property at innity. So it holds true at least for compactly supported Hölder functions with null integral. More precisely, under the same assumptions and for any integrable function ψ, we prove the following joint FCLT for φ, φ 0 two Hölder observables decaying quickly enough at innity, with I(φ 0 ) = 1. Note that, contrarily to the case of the classical FCLT, the limit we obtain is a process constant in time. To prove our results, we use two methods producing dierent formulas for the "asymptotic variance" σ 2 φ appearing in the CLT. First, using the method of [22], we establish a general FCLT for Z 2 -extensions over a dynamical system satisfying general nice spectral properties (namely such that the step function satises a spectral local limit theorem). The fact that we restrict our study to Z 2 -extension with square integrable step functions (satisfying a classical limit theorem) simplies greatly the proof, makes its ideas appear much clearer than in [22] and allows the generalization to Hölder functions, without adding technical complications. Second, applying the method of [27,28,29], we obtain another way, based on induction, to prove the CLT for Hölder observables of the Z 2 -periodic billiard, under a slightly weaker assumption.

S
The article is organized as follows. In Section 2, we present our context and results. We start by introducing in Section 2.1 our general context of Z 2 -extensions of dynamical systems (in discrete time as well as in continuous time). In Section 2.2, we introduce the Z 2 -periodic Lorentz gas (in discrete time as well as in continuous time). The rest of Section 2 is devoted to the exposure of our main results, with a discussion on our technical assumptions. In Sections 3 and 4, we prove our FCLT by the rst method for dynamical systems (rst in the case of transformations in Section 3 and then in the case of ows in Section 4). In Section 5, we prove the CLT via the second method (using induction).

Context and main results

2.1. General context. Given a probability preserving dynamical system (A, µ, T ) and a function F : A → Z 2 , we consider the innite measure preserving dynamical system ( A, µ, T ) given by the Z 2 -extension of (A, µ, T ) with step function F , i.e. A := A × Z 2 , µ = µ ⊗ m, where m is the counting measure on Z 2 and T (x, a) = (T (x), a + F (x)). Then, for all (x, a) in A and n ≥ 0,

T n (x, a) = (T n (x), a + S n F (x)) ,
where S n F is the ergodic sum:

S n F := n-1 k=0 F • T k .
We are interested in the asymptotic behaviour of the ergodic sums

S n f := n-1 k=0 f • T k , for observables f : A → R in the particular case when A f d µ = 0.
In the context of this article, the system (A, µ, T ) shall be chaotic in a strong sense. More precisely, we shall assume that (S n F ) n satises a standard central limit theorem and, even more, a spectral local limit theorem (see Assumption (2.2) below), which is a strengthening of the more classical local limit theorem:

µ(S n F = a) ∼ Φ(a/ √ n) n for all a ∈ Z 2 ,
where Φ is the density of the Gaussian that is the limit distribution of (S n F/ √ n) n . By Lemma 2.7, Assumption (2.2) holds when the transfer operator P of T , dual to the Koopman operator, acts nicely on a Banach space B of integrable functions or distributions. This assumption is, in particular, satised by the collision map for Sinai billiards.

We shall also consider continuous-time versions of this problem, in two ways. The rst way consists in dening the ergodic sums S t f for real t > 0 by linearization:

S t f := ( t + 1 -t)S t f + (t -t )S t +1 f = S t f + (t -t )f • T t ,
which can be used to state functional limit theorems.

The second way consists in working directly with a continuous-time system. Given a measurable function τ : A → (0, +∞), the suspension ow

( M, ν, ( Y t ) t ) of ( A, µ, T ) with roof function (x, a) → τ (x) is the system:      M := {(x, a, s) ∈ A × Z 2 × (0, +∞) : s ∈ (0, τ (x))} , ν := ( µ ⊗ Leb) | M , Y t (x, a, s) := T n t+s (x) (x, a), s + t -S n t+s (x) τ (x) ,
where Leb is the Lebesgue measure on (0, +∞) and n u (x) := max{n ≥ 0 : S n τ (x) ≤ u} for every u ≥ 0. In this case, we dene:

S t f := t 0 f • Y s ds .
2.2. Z 2 -periodic Lorentz gas. We consider the displacement of a particle moving at unit speed in R 2 with elastic reection on a Z 2 -periodic conguration of dispersing obstacles, in nite horizon. More precisely the billiard domain is given by R 2 \ a∈Z 2 I i=1 (O i + a), with obstacles {O i + a ; i = 1, . . . , I, a ∈ Z 2 } for some I ≥ 2. We assume that (O i ) 1≤i≤I is a nite family of precompact open convex sets in R 2 , whose boundaries are C 3 with non vanishing curvature. We assume that the closure of the sets O i + a are pairwise disjoint. We assume moreover that Q contains no line (nite horizon assumption).

We are interested in the behaviour of a point particle moving in Q at unit speed, going straight inside Q and obeying the Descartes reection law at reection times o ∂Q = a∈Z 2

I i=1 (∂O i + a).
A conguration is a couple position-speed (q, v) ∈ Q×S 1 . To avoid ambiguity, we allow only post-collisional vectors at reection times, so that the conguration space is

M := {(q, v) ∈ Q × S 1 : q ∈ ∂Q ⇒ n q , v ≥ 0} ,
where n q denotes the unit vector normal to ∂Q at q oriented into Q.

The Lorentz process is the ow ( Y t ) t on M such that Y t (q, v) = (q t , v t ) is the conguration at time t of a point particle that has conguration (q, v) at time 0. This ow preserves the restriction ν on M of the Lebesgue measure Leb on R 2 × S 1 , normalized so that:

Leb([0, 1[ 2 ×S 1 ) = π I i=1 |∂O i | .
This normalization will allow us to identify canonically this ow with a Z 2 -periodic suspension ow over a Z 2 -extension of a chaotic probability preserving dynamical system, as described in Subsection (2.1).

The dynamics at reection times is the Z 2 -periodic billiard system A, µ, T , that is the rst return map of the ow Y to the Poincaré section ∂Q × S 1 . Let A := {(q, v) ∈ M : q ∈ ∂Q} be the set of congurations of post-collisional vectors o ∂Q. The map T : A → A is the billiard transformation mapping a post-collisional conguration to the next post-collisional conguration. The measure µ is given by:

d µ(q, v) = cos ϕ 2 I i=1 |∂O i | dr dϕ , (2.1)
where r is the curvilinear absciss of q on ∂Q, and ϕ is the angular measure in [-π/2, π/2] of the angle ( n q , v).

This Z 2 -periodic billiard system A, µ, T is a Z 2 -extension of the corresponding Sinai billiard system (A, µ, T ). This Sinai billiard is the quotient of A, µ, T modulo the action of Z 2 on the position. 
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More explicitely, the conguration set A is the image of A by p : R 2 ×S 1 → T 2 ×S 1 given by p(q, v) = (q, v) where q = q+Z 2 ∈ T 2 := R 2 /Z 2 . By Z 2 -periodicity of Q, there exists a map T : A → A such that T •p = p• T , which is the billiard map in the domain Q ⊂ T 2 image of Q by the canonical projection R 2 → T 2 . The measure µ has the same expression as in Equation (2.1).

The function F : A → Z 2 giving the size of the jumps is dened by F (q, v) = b -a whenever T (q, v, a) ∈ I i=1 (∂O i + b) × S 1 ; the Z 2 -periodicity of the billiard table ensures that this function is well-dened. Let τ : A → R * + be the free path length of a particle on Q : τ (q, v) = min{s > 0 : q + s v ∈ ∂Q} .

By Z 2 -periodicity of Q, the function τ : (q, v, a) → τ (q, v) dened on A is the free path length of a particle on Q. The Lorentz gas M, ν, (Y t ) t is then canonically identied with the suspension ow over A, µ, T with roof function τ .

2.3. Results for transformations. We state our main limit theorem under abstract conditions; our other results applications to billiards or to continuous-time systems will follow from that.

Theorem 2.1. Assume that ( A, µ, T ) is conservative and ergodic. Let η > 0 and p, p * ∈ [1, ∞] such that

p -1 + (p * ) -1 = 1. Let (B,
• B ) be a Banach space (of functions or distributions) containing 1 := 1 A and such that

• either p = 1 (so p * = ∞) and E µ [•] is continuously extended from B ∩ L 1 (A, µ) to B;
• or p > 1 and B → L p (A, µ) (where → is a continous injection). Assume moreover the following spectral local limit condition:

sup a∈Z d , h∈B : h B ≤1 P 1 {S F =a} h - Φ a √ E µ [h] B = O( -1-η ) , (2.2)
where Φ is a two-dimensional non-degenerate Gaussian density function. Let f , g : A → R be such that:

• a∈Z 2 (1 + |a| κ ) f (•, a) × • L(B,B) < +∞ for some κ > 0; • a∈Z 2 f (•, a) L p * (A,µ) < +∞; • A f d µ = 0; • g ∈ L 1 ( A, µ).
Then the following sum over k is absolutely convergent:

σ2 (f ) := A f 2 d µ + 2 k≥1 A f • f • T k d µ.
(2.3)

Moreover, for every 0 < T 1 < T 2 , as n → +∞,

S nt g ln(n) , S nt f ln(n) t∈[T 1 ,T 2 ] -→ A g d µ Φ(0)E, σ(f ) Φ(0)E N t∈[T 1 ,T 2 ] (2.4) in distribution in C([T 1 , T 2 ]
), with respect to any probability measure absolutely continuous 1 with respect to µ, and where E and N are two independent random variables, with respectively standard exponential and standard Gaussian distributions.

Note that, since 1 ∈ B, the condition .

a∈Z 2 (1 + |a| κ ) f (•, a)× L(B,B) < +∞ implies that a∈Z 2 (1 + |a| κ ) f (•, a) B < +∞.
We shall prove Theorem 2.1 using the method of moments. The same strategy was used in [22]. However, our setting provides some welcome simplications, allowing us to apply our method to more general observables f than the ones considered in [22]. These simplications come namely from the summability in in Equation (2.2), as well as the summability of other error terms.

As proved in Lemma 2.7, the hypothesis (2.2) is satised under quite general spectral assumptions, which are stated in Hypothesis 2.6. In particular, Hypothesis 2.6 holds for the collision map associated with Sinai billiards [8], from which we deduce: 1 he property of onvergene in distriution with respet to ny solutely ontinuous proility mesure is sometimes lled strong convergence in distribution IF Corollary 2.2. Let ( A, µ, F ) be the Z 2 -periodic billiard system presented in Subsection 2.2. Let f , g : A → R be such that:

• f is η-Hölder on the continuity domain of T for some η > 0;

• a∈Z 2 |a| κ f (•, a) η < +∞ for some κ > 0;

• A f d µ = 0; • g ∈ L 1 ( A, µ),
where • η is the maximal η-Hölder norm with respect to the euclidean metric on M on the continuity domains of T .

Then

S n g ln(n) , S n f ln(n) -→ A g d µ 2π det(Σ 2 ) E, σ(f ) √ 2π(det(Σ 2 )) 1 4 √ E N ,
in distribution with respect to any probability measure absolutely continuous with respect to µ, and where E and N are two independent random variables, with respectively standard exponential and standard Gaussian distributions, with σ2 (f ) given by Equation (2.3) and with Σ the invertible symmetric positive matrix such that

Σ 2 = k∈Z E F ⊗ (F • T k ) .
Proof. This corollary is a direct consequence of Theorem 2.1 and Lemma 2.7 thanks to [8, Theorem 3.17] (ensuring Hypothesis 2.6 with p = 1) and to [9, Lemma 5

.3] or [8, Lemma 4.5] (ensuring that f (•, a)× L(B,B) ≤ C f (•, a) η ).
While the results above are proved using the method of moments, we shall also show how to prove similar propositions using induced systems. The strategy follows closely that of [29, Proposition 6.12], which was in the setting of geodesic ows in negative curvature, with some improvements from [22]. The main dierence in the present article is that, in the context of Sinai billiards, we use Young tower in order to introduce a symbolic coding of the trajectories.

Proposition 2.3. Let ( A, µ, T ) be the Z 2 -periodic billiard system presented in Subsection 2.2. Let f : A → R be such that:

• f is η-Hölder on the continuity domains of T , with a uniformly bounded η-Hölder norm, for some

η > 0; • a∈Z 2 (1 + ln + |a|) 1 2 +κ f (•, a) ∞ < +∞ for some κ > 0; • A f d µ = 0.
Then

S n f ln(n) -→ σ(f ) √ 2π(det(Σ 2 )) 1 4 L ,
in distribution with respect to any probability measure absolutely continuous with respect to µ, where L follows a centered Laplace distribution of variance 1, with σ(f ) given by Equation (5.2) and with Σ the invertible symmetric positive matrix such that

Σ 2 = k∈Z E F ⊗ (F • T k ) .
In addition, σ(f ) = 0 if and only if f is a coboundary.

Comparing the conclusions of Corollary 2.2 and Proposition 2.3, one has σ(f ) = σ(f ) whenever f satises the assumptions of Corollary 2.2. This equality has a deep dynamical consequences [22].

The assumptions of Proposition 2.3 are slightly weaker than those of Corollary 2.2. The conclusions of the former are also weaker, dealing with the limit distribution of S n f and not the limit joint distribution of (S n g, S n f ). The stronger result should hold under the assumptions of Proposition 2.3, but one would start from [27, Theorem 1.7], which is beyond the scope of this article. On the other hand, it should also be possible to weaken the assumptions of Corollary 2.2 (dynamically Hölder observables satisfying a weaker decay condition expressed only in terms of supremum norm), with a less direct and more technical proof (using approximations).

2.4. Results for ows. Theorem 2.1 admits a version for semiows: Theorem 2.4. Assume that ( A, µ, T ) is conservative and ergodic. Let η > 0 and p, p

* ∈ [1, ∞] such that p -1 + (p * ) -1 = 1. Let (B, • B )
be a Banach space satisfying the assumptions of Theorem 2.1.

Let φ, ψ : M → R be such that:

• a∈Z 2 (1 + |a| κ ) G(φ)(•, a) × • L(B,B) < +∞ for some κ > 0; • a∈Z 2 G(|φ|)(•, a) L p * (A,µ) < +∞; • M φ d µ = 0; • ψ ∈ L 1 ( M, ν).
Then, for every 0 < s 1 < s 2 , as t → ∞,

S ts ψ ln(t) , S ts φ ln(t) s∈[s 1 ,s 2 ] -→ M ψ d ν Φ(0)E, σ(G(φ)) Φ(0)E N s∈[s 1 ,s 2 ] , (2.5) in distribution in C([s 1 , s 2 ], R)
with respect to any probability measure absolutely continuous with respect to ν. In Equation (2.5), E and N are two independent random variables with respectively standard exponential and standard Gaussian distributions.

As Theorem 2.1 was applied to the collision map for Sinai billiards, so does Theorem 2.4 to the ow on Sinai billiards (i.e. to the two-dimensional Lorentz gas model). In order for the Lorentz gas to t our setting, we see it as a suspension ow of height τ over its collision map ( A, µ, T ), which was the object of Corollary 2.2.

Corollary 2.5. Let ( M, ν, ( Y t ) t ) be the Z 2 -periodic Lorentz gaz described above. Let η, κ > 0, and denote by • η the η-Hölder norm on M.

Let φ, ψ : M → R be such that:

• a=(a 1 ,a 2 )∈Z 2 |a| κ φ |[a 1 ,a 1 +1]×[a 2 ,a 2 +1] η < +∞; • M φ d ν = 0; • ψ ∈ L 1 ( M, ν);
Then, for every 0 < s 1 < s 2 , as t → +∞,

S ts ψ ln(t) , S ts φ ln(t) s∈[S 1 ,S 2 ] -→ M ψ d ν 2π det(Σ 2 ) E, σ(G(φ)) √ 2π(det(Σ 2 )) 1 4 √ E N s∈[s 1 ,s 2 ] , (2.6) with σ(G(φ)) 2 := k∈Z A G(φ) • G(φ) • T k d µ .
2.5. Spectral hypotheses. All the results above hold whenever Assumption (2.2) is satised. To nish this introduction, we now relate this assumption to more classical spectral conditions on the transfert operator associated with (A, µ, T ).

The transfer operator P is dened, for f ∈ L 1 (A, µ), by:

A P (f ) • g dµ = A f • g • T dµ ∀g ∈ L ∞ (A, µ) . Recall that F : A → Z 2 . Let T 2 := R 2 /(2πZ) 2 .
We dene a family of twisted transfer operators (P u ) u∈T 2 by: P u (h) := P (e i u,F h) for all h ∈ L 1 (A, µ). Note that:

P k u (h) = P k e i u,S k F h . (2.7)
The idea to study the spectral properties of P u to establish limit theorems goes back to the seminal works by Nagaev [20,21] and Guivarc'h [13] and has been deeply generalized by Keller and Liverani in [18]. We refer to the book by Hennion and Hervé [14] for an overview of the important results that can be proved by this method.

The more usual spectral conditions are:

Hypothesis 2.6 (Spectral hypotheses). There exists a complex Banach space (B, • B ) of functions or of distributions dened on A, on which P acts continuously, and such that:

• 1 ∈ B and E µ [•] extends continuously from B ∩ L 1 (A, µ) to B;
• for every a ∈ Z 2 , the multiplication by f (•, a) belongs to L(B, B);

• There exist an open ball U ⊂ T 2 containing 0, two constants C > 0 and r ∈ (0, 1), continuous functions λ

• : U → C and Π • , R • : U → L(B, B) such that P n u = λ n u Π u + R n u (2.8)
with:

Π u -E µ [•] L(B,B) ≤ C|u| ∀u ∈ U, (2.9) sup u∈U R k u L(B,B) + sup u∈T 2 \U P k u L(B,B) ≤ Cr k , (2.10)
• there exists an invertible positive symmetric matrix Σ and ε > 0 such that, as u → 0,

λ u = e -Σ 2 u,u 2 + O |u| 2+ε . (2.11) Lemma 2.7. Assume that the Hypotheses 2.6 hold. Let Φ(x) = e -Σ -2 x,x 2 2π √ det(Σ 2 )
and η ∈ (0, ε/2]. Then Equation (2.2) holds:

sup a∈Z 2 , h∈B h B ≤1 P 1 {S F =a} h - Φ a √ E µ [h] B = O( -1-η ) .
Proof. Let Q ,a be the operator acting on any h ∈ L 1 (A, µ) by:

Q ,a (h)(x) := P 1 {S F =a} h (x) .
Due to Equation (2.7),

Q ,a (h) = 1 (2π) 2 T 2 e -i u,a P u (h) du ,
(2.12) and in particular Q ,a acts on B. From Hypothesis 2.6, and up to taking a smaller neighborhood U , there exist constants C 0 , c 0 > 0 such that P u L(B,B) ≤ C 0 and

max |λ u |, e -Σ 2 u,u 2 ≤ e -c 0 |u| 2
for all u ∈ U . Due to Equations (2.12) and (2.10),

sup a∈Z 2 Q ,a - 1 (2π) 2 U e -i u,a λ u Π u du L(B,B) = O(r ).
(2.13)

In addition, there exists C 1 > 0 such that, for every u ∈ U ,

λ u Π u -e -Σ 2 u,u 2 Π 0 L(B,B) ≤ |λ u | Π u -Π 0 L(B,B) + λ u -e -Σ 2 u,u 2 Π 0 L(B,B) ≤ C 1 (|u| + |u| 2+ε )e -c 0 |u| 2 2 ,
due to the asymptotic expansion of u → λ u and to Equation (2.9). Hence, using the change of variable

u = v/ √ , sup a∈Z 2 1 (2π) 2 U e -i u,a λ u Π u du - 1 (2π) 2 U e -i u,a e -Σ 2 u,u 2 Π 0 du L(B,B) ≤ C 1 U (|u| + |u| 2+ε )e -c 0 |u| 2 2 du ≤ C 1 R 2 |v| √ + |v| 2+ε 1+ ε 2 e -c 0 |v| 2 2 dv = O 1 1+ ε 2 .
(2.14)

Finally, using the same change of variable,

sup a∈Z 2 1 (2π) 2 U e -i u,a e -Σ 2 u,u 2 du - 1 Φ a √ = sup a∈Z 2 1 (2π) 2 √ U e -i v,a √ e -Σ 2 v,v 2 dv - 1 (2π) 2 R 2 e -i v,a √ e -Σ 2 u,u 2 dv ≤ 1 (2π) 2 R 2 \ √ U e -Σ 2 v,v 2 dv = O -2 .
(2.15)

The lemma follows from Equations (2.13), (2.14) and (2.15).

Proof of Theorem 2.1

This section is devoted to the proof of Theorem 2.1. We proceed in two steps. First, we prove the convergence in distribution for t = 1 and then we shall extend the convergence in distribution to a functional convergence. The method we use here is close to the one used in [22]. In [22], we considered a wide family of dynamical systems (Z d -extensions with d ∈ {1, 2} and (S n F ) n satisfying a standard or nonstandard central limit theorem involving a stable distribution), but we considered also a specic family of observables f (which were assumed to be constant on each cell, i.e. satisfying f (x, a) = f (y, a) for every x, y ∈ A). In the present paper, we focus on more specic dynamical systems (with d = 2 and (S n F ) n satisfying a standard central limit theorem), which includes the Lorentz process. This more strigent context allows signicative simplications (due to summable error terms) which make much clearer the understanding of our argument and allow us to generalize the method used in [22] to more general observables.

3.1. Convergence in distribution for t = 1. This section is devoted to the proof of Theorem 2.1 for t = 1. In other words, under the hypotheses of Theorem 2.1, we shall show that:

S n g ln(n) , S n f ln(n) -→ A g d µ Φ(0)E, σ(f ) Φ(0)E N , as n → +∞ , (3.1)
where the convergence is in distribution as n → +∞, with respect to any absolutely continuous probability measure.

Proof of Theorem 2.1 for t = 1. Since T is ergodic, due to Hopf's ergodic theorem [15, 14, Individueller Ergodensatz für Abbildungen], we assume without any loss of generality that g(x, a) = 1 0 (a), which shall signicantly simplify the computations in the proof of Lemma 3.2. Set a n = ln(n), so that a n ∼ n k=1 k -1 as n → +∞. Due to [31, Theorem 1], it is enough to prove the convergence in distribution with respect to T * (µ ⊗ δ 0 ), i.e. the convergence in distribution of ( Zng an , Znf √ an ) n with respect to µ, where:

Z n h(x) := ( S n h) • T (x, 0) = n k=1 h T k x, S k F (x) .
The convergence in distribution of ( Zng an , Znf √ an ) n is equivalent to the convergence in distribution of α Zng an +β Znf √ an for every α, β ∈ R. Let us x α, β ∈ R for the remainder of the proof.

We use the method of moments. Setting h n (x, a) := α an g(x, a)+ β √ an f (x, a), due to Carleman's criterion [12, Chap. XV.4], it is enough to prove that, for all m ≥ 0,

lim n→+∞ E µ [(Z n h n ) m ] = E (αΦ(0)E + β Φ(0)E σ(f )N ) m . (3.2)
Let us x an integer m ≥ 0 for the remainder of the proof. Then, for all n:

E µ [(Z n h n ) m ] = E µ n k=1 (h n (T k (•), S k F (•)) m = n k 1 ,...,km=1 d 1 ,...,dm∈Z 2 E µ m s=1 h n (T ks (•), d s )1 {S ks F (•)=ds} .
Gathering the terms for which the k s (with their multiplicities) are the same, we obtain

E µ [(Z n h n ) m ] = m q=1 N j ≥1 N 1 +•••+Nq=m c N A n;q,N , (3.3) 
where N = (N j ) 1≤j≤q , where c N is the cardinal of the set of maps φ : {1, . . . , m} → {1, . . . , q} such that |φ -1 ({j})| = N j for all j ∈ {1, . . . , q}, and where

A n;q;N := 1≤n 1 <...<nq≤n a∈(Z 2 ) q E µ   q j=1 h n (T n j (•), a j ) N j 1 {Sn j F (•)=a j }   = 1≤n 1 <...<nq≤n a∈(Z 2 ) q E µ   q j=1 h n (T n j (•), a j ) N j 1 {Sn j F (•)-Sn j-1 F (•)=a j -a j-1 }   = a∈(Z 2 ) q   ∈Eq,n E µ   q j=1 h n (T j (•), a j ) N j 1 {S j F (•)=a j -a j-1 } • T 1 +...+ j-1 (•)     ,
with the notations a = (a 1 , . . . , a q ), n 0 := 0, a 0 := 0 and

E q,n =    = ( 1 , . . . , q ) ∈ {1, . . . , n} q : q j=1 j ≤ n    ; j corresponds to n j -n j-1 .
As in the proof of Lemma 2.7, for all ∈ N and a ∈ Z 2 , we dene operators Q ,a and Q ,a,b,N,n acting on B by:

Q ,a (G)(x) := P 1 {S F (x)=a} G (x) , Q ,a,b,N,n (G)(x) := h n (x, a) N Q ,a-b (G)(x) . Using E µ [•] = E µ [P 1 +...+ q (•)] and using repeatedly P k (G • T k • H) = G • P k (H), we obtain A n;q;N = a∈(Z 2 ) q ∈Eq,n E µ Q q ,aq,a q-1 ,Nq,n • • • Q 1 ,a 1 ,0,N 1 ,n (1) .
(3.4)

We further split the operators Q ,a :

Q ,a = Q (0) ,a + Q (1) ,a with Q (0) ,a := Φ(0) E µ [•] . (3.5)
We assume without loss of generality that η = κ/4 ≤ 1. Note that

Q (1) ,a L(B,B) = O((1 + |a| 2η ) -1-η ) (3.6)
by Hypothesis (2.2) and using the fact that |Φ(x) -Φ(0)| ≤ c min(x 2 , 1) ≤ cx 2η for some c > 0. Thus, for all N ≥ 1,

h n (•, a) N Q (1) ,a-b L(B,B) ≤ C 1 + |a -b| κ 2 a N 2 n 1+η 1 0 (a) a N 2 n + f (•, a) × • N L(B,B) .
We introduce these operators

Q (0)
,a and Q

(1)

,a into (3.4), creating new data we need to track: the index of the operator we use at each point in the weighted path. Fix n, q and N. Given ε = (ε 1 , . . . , ε q ) ∈ {0, 1} q and s ∈ Z 2 , write:

B ε s, ,N (G) := a 0 ,...,aq∈Z 2 a 0 =s h n (•, a q ) Nq Q (εq) q ,aq-a q-1 • • • h n (•, a 1 ) N 1 Q (ε 1 ) 1 ,a 1 -a 0 (G) , b ε s, ,N (G) := a∈(Z 2 ) q E µ h n (•, a q ) Nq Q (εq) q ,aq-a q-1 . . . h n (•, a 1 ) N 1 Q (ε 1 ) 1 ,a 1 -s (G) = E µ B ε s, ,N (G) , A ε n;q;N := ∈Eq,n b ε 0, ,N (1) 
, so that:

A n;q;N = ε∈{0,1} q A ε n;q;N = ε∈{0,1} q ∈Eq,n b ε 0, ,N (1) 
.

The goal is now to understand which combinatorial data (N, ε) is negligible as n → +∞, and which represent the majority of the m-th moment. The following properties are directly implied by the denitions.

Properties 3.1. Consider a single linear form b ε s, ,N . For all 1 ≤ i ≤ q, the terms on the right side of

Q (ε i )
i ,a i -a i-1 depend only on a 1 , . . . , a i-1 , and the terms on its left side only depend on a i , . . . , a q . Hence: (I) Since Q (0) ,a does not depend on a, the value of b (0,ε) s,( 0 , ),(N 0 ,N) does not depend on s. Without loss of generality, we shall choose s to be 0 when ε 1 = 0. ), and:

(II) b (0) s,( ),(N ) (•) = Φ(0) a∈Z 2 E µ [h n (•, a) N ]E µ [•] for all , N ≥ 1, so: b (0) s,( ),(1) (•) = Φ(0)α a n E µ [•] , b (0) s,( ),(2) (•) = Φ(0)β 2 a n   a∈Z 2 E µ [f (•, a) 2 ]E µ [•] + O 1 √ a n   . (III) b (ε,0,ε ) s,( , 0 , ),(N,N 0 ,N ) = E µ [B (0,ε ) 0,( 0 , ),(N 0 ,N ) (1)]E µ [B ε s, ,N (•)], i.e. b (ε,0,ε ) s,( , 0 , ),(N,N 0 ,N ) (•) = b (0,ε ) 0,( 0 , ),(N 0 ,N ) (1)b ε s, ,N (•) . (IV) In particular, b (ε,0) s,( , 0 ),(N,1) = Φ(0)α an b ε s, ,N (•
b (ε,0,0,ε ) s,( , 0 , 0 , ),(N,1,N 0 ,N ) = b (0,ε ) 0,( 0 , ),(N 0 ,N ) (1)b (0) 0,( 0 ),(1) (1)b ε s, ,N (•) = Φ(0)α 0 a n b (0,ε ) 0,( 0 , ),(N 0 ,N ) (1)b ε s, ,N (•) . (V) b (0,1,...,1)
s,( 1 ,..., q ),(N 1 ,N 2 ,...,Nq) (1) = Φ(0)

1 a 1 ∈Z 2 b (1,...,1)
a 1 ,( 2 ,..., q ),(N 2 ,...,Nq) (h n (•, a 1 ) N 1 ).

In particular, we can estimate the coecients corresponding to ε = (0, 1) and N = (1, 1), which will play an important role later on. Lemma 3.2. Under the hypotheses of Theorem 2.1 and with the notations of its proof,

b (0,1) s,( , ),(1,1) (1) = Φ(0)β 2 a n A f • T • f d µ + O 1 1+η a 3 2 n . (3.7) Proof of Lemma 3.2. Applying Point (V ) of Properties 3.1, b (0,1) s,( , ),(1,1) (1) = Φ(0) a,b∈Z 2 E µ h n (•, b)Q (1)
,b-a (h n (•, a)) .

Recall that

h n = α an g + β √ an f with g(x, a) = 1 0 (a). By Equation (3.6), Q (1) ,a L(B,B) = O((1 + |a| 2η ) -1-η ), therefore Φ(0) a,b∈Z 2 E µ α a n g(•, b)Q (1) ,b-a (h n (•, a)) = O   1 1+η a n a∈Z 2 (1 + |a| 2η ) h n (•, a) B   = O   1 1+η a n a∈Z 2 (1 + |a| 2η ) 1 0 (a) a n + f (•, a) B √ a n   = O 1 1+η a 3 2 n , (3.8) 
since a∈Z 2 (1 + |a| 2η ) f (•, a) B < ∞.
In the same way,

Φ(0) a,b∈Z 2 E µ β √ a n f (•, b)Q (1) ,b-a (h n (•, a)) = Φ(0)β 2 a n a,b∈Z 2 E µ f (•, b)Q (1) ,b-a (f (•, a)) + Φ(0)αβ a 3 2 n b∈Z 2 E µ f (•, b)Q (1) ,b (1) = Φ(0)β 2 a n a,b∈Z 2 E µ f (•, b)Q ,b-a (f (•, a)) + Φ(0)αβ a 3 2 n b∈Z 2 f (•, b) × • L(B,B) O 1 + |b| 2η 1+η = Φ(0)β 2 a n A f • T • f d µ + O 1 1+η a 3 2 n ,
where we used the fact that a,b∈Z

2 E µ f (•, b)Q (0) ,b-a (f (•, a)) = Φ(0) A f d µ 2 = 0.
The claim follows from this, combined with Equation (3.8).

Given a sequence ε ∈ {0, 1} q , we can iterate Point (III) of Properties 3.1 to cut b ε s, ,N into smaller pieces, for which 0 may only appear at the beginning of the associated sequences of indices, and then use Point (V ) to transform the heading

ε i = 0. Let m 1 < m 2 < • • • < m K be the indices i ∈ {1, . . . , q} such that ε i = 0.
We use the conventions that m K+1 := q + 1 and ε q+1 := 0, that b ε s, ,N ≡ 1 if q = 0, and that an empty product is also equal to 1. Then:

b ε s, ,N (1) = b (1,...,1) s,( 1 ,..., m 1 -1 ),(N 1 ,...,N m 1 -1 ) (1) K i=1 b (0,1,...,1)
0,( m i ,..., m i+1 -1 ),(Nm i ,...,N m i+1 -1 ) (1)

= (Φ(0)) K b (1,...,1)
s,( 1 ,..., m 1 -1 ),(N 1 ,...,N m 1 -1 ) (1)

× K i=1 1 m i a∈Z d b (1,...,1)
a,( m i +1 ,..., m i+1 -1 ),(N m i +1 ,...,N m i+1 -1 ) (h n (•, a) Nm i ) .

We sum over ∈ E q,n , and get:

A ε n,q,N ≤ ∈{1,...,n} q b ε 0, ,N (1) 
≤ (Φ(0)) K      ( 1 ,..., m 1 -1 ) ∈{1,...,n} m 1 -1 b (1,...,1) 0,( 1 ,..., m 1 -1 ),(N 1 ,...,N m 1 -1 ) (1)      (3.9) × K i=1      ( m i ,..., m i+1 -1 ) ∈{1,...,n} m i+1 -m i 1 m i a∈Z d b (1,...,1) a,( m i +1 ,..., m i+1 -1 ),(N m i +1 ,...,N m i+1 -1 ) (h n (•, a) Nm i )      . (3.10)
Now, let us bound the terms (3.9) and (3.10); our goal is to nd conditions on the combinatorial data ensuring that these terms are negligible. Starting with (3.9), b

(1,...,1) 0,( 1 ,..., m 1 -1 ),(N 1 ,...,N m 1 -1 ) B * = O   ( 1 . . . m 1 -1 ) -1-η a N 1 +...+N m 1 -1 2 n a 1 ,...,a m 1 -1 ∈Z 2 m 1 -1 j=1 (1 + |a j -a j-1 | 2η ) 1 0 (a j ) + f (•, a j ) × • N j L(B,B)   = O   ( 1 . . . m 1 -1 ) -1-η a N 1 +...+N m 1 -1 2 n m 1 -1 j=1 a∈Z 2 (1 + |a| 4η ) 1 0 (a) + f (•, a) × • N j L(B,B)   .
Therefore, (3.9) is bounded, and converges to 0 as n → +∞ if m 1 = 1. Focusing now on (3.10),

a∈Z d b (1,...,1)
a,( m i +1 ,..., m i+1 -1 ),(N m i +1 ,...,N m i+1 -1 ) (h n (•, a) Nm i )

B * = O   ( m i +1 . . . m i+1 -1 ) -1-η a Nm i +...+N m i+1 -1 2 n a 0 ,...,a m i+1 -m i -1 ∈Z 2 m i+1 -m i -1 j=1 (1 + |a j -a j-1 | 2η ) × m i+1 -m i -1 k=0 1 0 (a k ) + f (•, a k ) × • N m i +k L(B,B)   = O   ( m i +1 . . . m i+1 -1 ) -1-η a Nm i +...+N m i+1 -1 2 n m i+1 -1 j=m i a∈Z 2 (1 + |a| 4η ) 1 0 (a) + f (•, a) × • N j L(B,B)   .
Therefore the i-th term appearing in (3.10) is in

O     m i ∈{1,...,n} 1 m i   a - Nm i +...+N m i+1 -1 2 n   = O a 1- Nm i +...+N m i+1 -1 2 n . (3.11) If m i+1 = m i + 1, then the i-th term in (3.10) is bounded by Point (II) of Properties 3.1. If m i+1 ≥ m i + 2, then N m i + . . . + N m i+1 -1 ≥ 2
, so the i-th term in (3.10) is still bounded by Equation (3.11). Furthermore, if N m i + . . . + N m i+1 -1 ≥ 3 for some i, then the i-th term converges to 0, and thus A ε n,q,N converges to 0 as n → +∞ by Equation (3.11). Hence, A ε n,q,N may not converge to 0 only if m 1 = 1 and N m i +. . .+N m i+1 -1 ≤ 2 for all i. To sum up, if:

m 1 = 1 and for all 1 ≤ i ≤ K, either    m i+1 = m i + 1 and N m i = 1 m i+1 = m i + 1 and N m i = 2 m i+1 = m i + 2 and N m i = N m i +1 = 1 , (3.12)
then (A ε n,q,N ) n≥0 is bounded; otherwise, (A ε n,q,N ) n≥0 converges to 0. In particular, E µ [Z n (h n ) m ] is bounded, and we only need to take into account the data (N, ε) satisfying Condition (3.12), which can be rewritten:

• N i ∈ {1, 2}; • N i = 2 ⇒ ε i = 0; • ε i = 1 ⇒ i ≥ 2, N i = N i-1 = 1, ε i-1 = 0.
We shall call such couples (N, ε) admissible. Given 1 ≤ q ≤ m, let G(q) be the set of admissible (N, ε) = ((N 1 , . . . , N q ), (ε 1 , . . . , ε q )) ∈ {1, 2} q × {0, 1} q . For (N, ε) ∈ G(q), we set:

• J 2 := {i ∈ {1, ..., q} : ε i = 0, N i = 2}; • J 1 := {i ∈ {1, ..., q} : (ε i , ε i+1 ) = (0, 0), N i = 1}; • J 1,1 := {i ∈ {1, ..., q -1} : (ε i , ε i+1 ) = (0, 1), (N i , N i+1 ) = (1, 1)} , recalling the convention ε q+1 = 0.
For instance, the data N = (1, 1, 1, 2, 1, 1, 2, 2, 1, 1), ε = (0, 0, 1, 0, 0, 1, 0, 0, 0, 0) is admissible, as it can be decomposed in blocs as follows:

N 1 1 1 2 1 1 2 2 1 1 ε 0 0 1 0 0 1 0 0 0 0 .

For this example, J 2 = {4, 7, 8}, J 1 = {1, 9, 10} and J 1,1 = {2, 5}.

Then:

b ε 0; ,N (1) =   i∈J 2 b (0) ( i ),(2) (1)     i∈J 1 b (0) ( i ),(1) (1)     i∈J 1,1 b (0,1) ( i , i+1 ),(1,1) (1)   . Note that m = 2|J 2 | + 2|J 1,1 | + |J 1 | while q = |J 2 | + 2|J 1,1 | + |J 1 |; in particular, |J 2 | = m -q.
Due to Point (II) in Properties 3.1 and Lemma 3.2, we obtain:

A ε n;q;N = ∈Eq,n   i∈J 2 Φ(0)β 2 a∈Z 2 E µ [f (•, a) 2 ] i a n     i∈J 1 Φ(0)α i a n   ×   i∈J 1,1 Φ(0)β 2 i a n A f • T i • f d µ   + o(1) = Φ(0) a n m+|J 1 | 2 β m-|J 1 | α |J 1 | ∈Eq,n   i∈J 2 a∈Z 2 E µ [f (•, a) 2 ] i   ×   i∈J 1 1 i     i∈J 1,1 1 i A f • T i • f d µ   + o(1) = Φ(0) a n m+|J 1 | 2 β m-|J 1 | α |J 1 | A f 2 d µ |J 2 | × 1 ,..., |J 1,1 | ≥1       i∈J 1,1 A f • T i • f d µ   ∈E q-|J 1,1 |,n- |J 1,1 | i=1 i q-|J 1,1 | i=1 1 i     + o(1) (3.13) Due to [22, Lemma 3.7], for all 1 , . . . , |J 1,1 | ≥ 1, as n → +∞, ∈E q-|J 1,1 |,n- |J 1,1 | i=1 i q-|J 1,1 | i=1 i -1 ∼ a q-|J 1,1 | n = a m+|J 1 | 2 n .
Hence, by the dominated convergence theorem,

A ε n;q;N = Φ(0) m+|J 1 | 2 β m-|J 1 | α |J 1 | A f 2 d µ |J 2 |   ≥1 A f • T • f d µ   |J 1,1 | + o(1) . If (N, ε) is admissible, then c N = 2 -|J 2 | m!. Applying Equation (3.
3), we obtain

E µ [Z n (h n ) m ] = m q=1 (N,ε)∈G(q) c N A ε n;q;N + o(1) = m! m q=1 2 -|J 2 | (N,ε)∈G(q)
A ε n;q;N + o(1) .

Let r := 2|J 1,1 | + 2|J 2 | and s := |J 2 |. Note that r is even, s ≤ r/2 and r ≤ m. We split the later sum depending on the value of r, and then depending on the value of s = m -q. Note that, once r and s are xed, the number of admissible (N, ε)

such that r = 2|J 1,1 | + 2|J 2 | and s = |J 2 | is m-r/2 r/2
• r/2 s . We get:

lim n→+∞ E µ [Z n (h n ) m ] = m! 0≤r≤m r∈2Z r/2 s=0 2 -s (N,ε)∈G(m-s) Φ(0) m-r/2 β r α m-r A f 2 d µ s   ≥1 A f • T • f d µ   r/2-s = m! 0≤r≤m r∈2Z m -r/2 r/2 Φ(0) m-r/2 β r α m-r r/2 s=0 r/2 s 2 -s A f 2 d µ s   ≥1 A f • T • f d µ   r/2-s = m! 0≤r≤m r∈2Z m -r/2 r/2 Φ(0) m-r/2 β r α m-r σ 2 (f ) 2 r/2 = 0≤r≤m r∈2Z m r α m-r (m -r/2)!Φ(0) m-r/2 r! 2 r/2 (r/2)! (β σ(f )) r = m r=0 m r α m-r E (Φ(0)E) m-r/2 E [(β σ(f )N ) r ] = E αΦ(0)E + β Φ(0)E σ(f )N m ,
where E has a standard exponential distribution, N a standard Gaussian distribution, and E, N are independent. This nishes the proof of Theorem 2.1 for t = 1.

3.2. Functional convergence. We nish the proof of Theorem 2.1, by extending the distributional limit theorem (for t = 1) to a functional limit theorem. This is made easier by the fact that, in dimension 2, the local time at step n is of the order of ln(n), which has slow variation.

End of the proof of Theorem 2.1. A crucial observation is given by the next lemma:

Lemma 3.3. Under Hypothesis 2.2, there exists C > 0 such that for every f : A → R, for every 0 < T 1 < T 2 and every

n ≥ T -1 1 , sup t∈(T 1 ,T 2 ) S nt f -S nT 1 f L 1 ( T * (µ⊗δ 0 )) ≤ C a∈Z 2 f (•, a) L p * (A,µ) log nT 2 nT 1 . (3.14)
Proof. Assume rst that p = 1. Let c a := f (•, a) ∞ and set h 0 (x, a) := c a . Using Hypothesis 2.2, there exists a constant C > 0 such that:

S k h 0 -S j h 0 L 1 ( T * (µ⊗δ 0 )) ≤ a∈Z 2 c a k m=j+1 µ(S m F = a) ≤ a∈Z 2 c a k m=j+1 E µ [Q m,a (1)] ≤ C a∈Z 2 c a k m=j+1 1 m . Since |f | ≤ h 0 , for every n ≥ T -1 1 . sup t∈(T 1 ,T 2 ) S nt f -S nT 1 f L 1 ( T * (µ⊗δ 0 )) ≤ S nT 2 h 0 -S nT 1 h 0 L 1 (µ⊗δ 0 ) ≤ C a∈Z 2 c a log nT 2 nT 1 .
When p > 1, using again Hypothesis 2.2, we get:

sup t∈(T 1 ,T 2 ) S nt f -S nT 1 f L 1 ( T * (µ⊗δ 0 )) ≤ a∈Z 2 nT 2 = nT 1 f (•, a)P (1 S F =a ) L 1 (A,µ) ≤ C a∈Z 2 f (•, a) L p * (A,µ) nT 2 = nT 1 Q ,a (1) B ≤ C   a∈Z 2 f (•, a) L p * (A,µ)   nT 2 = nT 1 1 Lemma 3.3 implies that sup t∈[T 1 ,T 2 ] S nt g 0 -S nT 1 g 0 ln(n) , sup t∈[T 1 ,T 2 ] S nt f -S nT 1 f ln(n)
converges in probability to (0, 0) with respect to µ ⊗ δ 0 . Hence, as n goes to +∞,

S nt g 0 ln(n) , S nt f ln(n) t∈[T 1 ,T 2 ] -→ Φ(0)E, σ(f ) Φ(0)E N t∈[T 1 ,T 2 ] , (3.15)
where the convergence is in distribution in

C([T 1 , T 2 ], R) with respect to µ ⊗ δ 0 .
Hence, the conclusion of Theorem 2.1 holds for f and g 0 , and where the convergence in distribution is with respect to µ ⊗ δ 0 . By [31, Theorem 1], the convergence in distribution actually holds with respect to any absolutely continuous probability measure. Finally, let us take any g ∈ L 1 ( A, µ). Since the system ( A, µ, T ) is conservative and ergodic, Hopf's ergodic theorem ensures that, µ-almost everywhere, S t g ∼ A g d µ•( S t g 0 ), so the convergence in distribution of Equation (3.15) also holds for g.

Limit theorem for flows

We now focus on the results for suspension ows over maps with good spectral properties. 4.1. General theorem for suspension semiows. We begin by deducing Theorem 2.4 from Theorem 2.1.

Proof of Theorem 2.4. Let φ be as in the hypotheses of Theorem 2.4. Take ψ(x, a, u) := τ (x) -1 1 0 (a) and

µ 0 := τ -1 (x) dµ(x) ⊗ δ 0 (a) ⊗ du ∈ P( M ). Let 0 < s 1 < s 2 .
From the transformation to the ow Let θ : M → R. Recall that we dened G(θ)(x, a) = τ (x) 0 θ(x, a, t) dt. Assume that:

a∈Z 2 G(|θ|)(•, a) L p * (A,µ) < +∞,
a condition satised by both the functions φ and ψ.

Recall that we set n t (x) = max{n ≥ 0 :

S n τ (x) ≤ t}. let N t (x) := n t (x) + t- n t (x)-1 k=0 τ •T k (x) τ (T n t (x) (x))
, so that S Nt τ = t. Then, for all (x, a, u) ∈ M,

S t θ(x, a, u) -S Nt(x) G(θ)(x, a) ≤ G(|θ|)(x, a) + S n t+u (x)-nt(x)+1 G u (|θ|)( T nt(x) (x, a)) . (4.1)
It is straightforward that G(|θ|)(x, a)/ ln(t) → 0 as t → +∞. We need to control the last term in Equation (4.1).

Since ( A, µ, T ) is ergodic, so is (A, µ, T ), and thus, by Birkho's ergodic theorem, lim n→+∞ n -1 S n τ = A τ dµ almost surely for µ. Since S nt τ ≤ t < S nt+1 τ , we conclude that, µ-almost surely, n t ∼ t A τ dµ as t goes to +∞. Therefore, for ν-almost every (x, a, u) ∈ M, there exists

t 0 = t 0 (x, u) ≥ 0 such that t 2 A τ dµ ≤ n t (x) ≤ n t+u (x) + 1 ≤ 2t A τ dµ for every t ≥ t 0 . Then, on {t 0 ≤ s 1 t}, sup s∈[s 1 ,s 2 ] S n ts+u (x)-nts(x)+1 G(|θ|)( T nts(x) (x, a)) ≤ sup ts 1 2 A τ dµ ≤n≤n+m≤ 2ts 2 A τ dµ S m G(|θ|)( T n (x, a)).
By Lemma 3.3,

1 {t 0 ≤s 1 t} sup s∈[s 1 ,s 2 ] S n ts+u (x)-nts(x)+1 G(|θ|)( T nts(x) (x, a)) L 1 ( M ,µ 0 ) ≤ C   a∈Z 2 G(|θ|)(•, a) L p * (A,µ)   ln 4s 2 s 1 .
Hence, the random variable

1 {t 0 ≤s 1 t} sup s∈[s 1 ,s 2 ] G(|θ|)( T n ts+u (x) (x, a)) ln(t)
converges to 0 in probability on ( M , µ 0 ), while the random variable

1 {t 0 >s 1 t} sup s∈[s 1 ,s 2 ] G(|θ|)( T n ts+u (x) (x, a)) ln(t)
converges to 0 almost surely on ( M , µ 0 ).

Applying the above discussion to the functions ψ and φ respectively, the convergence in distribution in

C([s 1 , s 2 ], R), with respect to µ 0 , of S ts ψ ln(t) , S ts φ ln(t) s∈[s 1 ,s 2 ]
is equivalent to the convergence in distribution in C([s 1 , s 2 ], R), with respect to µ 0 , of

(x, a, v) → S Nts(x) G(ψ)(x, a) ln(t) , S Nts(x) G(φ)(x, a) ln(t) s∈[s 1 ,s 2 ]
.

Since this last process depends only on x (recall that a = 0 almost surely under µ 0 ), this is equivalent to the convergence in distribution of the process

x → S Nts(x) G(ψ)(x, 0) ln(t) , S Nts(x) G(φ)(x, 0) ln(t) s∈[s 1 ,s 2 ]
with respect to µ ⊗ δ 0 .

A time change

It remains to prove the convergence in distribution of

S N ts (•) G(ψ)(•,0) ln(t) , S N ts (•) G(φ)(•,0) √ ln(t) s∈[s 1 ,s 2 ] in C([s 1 , s 2 ], R)
with respect to µ. The main idea is that this process is a time change (by N t ) of a discrete-time process, for which we can apply Theorem 2.1.

We set T 1 := s 1 2 A τ dµ and T 2 := 2s 2 A τ dµ . By Theorem 2.1, as t goes to +∞, S t s G(ψ) ln(t) , S t s G(φ)

ln(t) s ∈[T 0 ,T 1 ] → A g d µ Φ(0)E, σ(f ) Φ(0)E N s ∈[T 0 ,T 1 ] , (4.2)
where the convergence is in distribution in

C([T 1 , T 2 ], R) with respect to µ ⊗ δ 0 . Since N t (•) ∼ t A τ dµ as t → +∞ almost surely for µ, lim t→+∞ sup s∈[s 1 ,s 2 ] N ts (•) t - s A τ d ν → 0
µ-almost surely. Thus, still µ-almost surely:

lim t→+∞ sup s∈[s 1 ,s 2 ] h t,s (•) - s A τ d ν → 0 , (4.3)
with:

h t,s (x) =        T 1 if Nts(x) t ≤ T 1 Nts(x) t if T 1 ≤ Nts(x) t ≤ T 2 T 2 if T 1 ≤ Nts(x) t .
Observe that h t,s takes its values in [T 1 , T 2 ] and is continuous in s. Therefore, by composition of Equations (4.3) and (4.2),

S Nts G(ψ) ln(t) , S Nts G(φ) ln(t) s∈[s 1 ,s 2 ] = S t ht,s G(ψ) ln(t) , S t ht,s G(φ) ln(t) s∈[s 1 ,s 2 ] converges in distribution in C([s 1 , s 2 ], R), as t goes to +∞, to A G(ψ) d µ Φ(0)E, σ(G(φ)) Φ(0)E N s∈[s 1 ,s 2 ]
.

Moreover A G(θ) d µ = M θ d ν for θ = ψ, ψ by denition of ν and of G(θ), and

σ 2 (G(φ)) = A G(φ) 2 d µ + 2 k≥1 A G(φ) • G(φ) • T k d µ.
This nishes the proof of Theorem 2.4 for ψ(x, a, u) := τ (x) -1 1 0 (a) and µ 0 := τ -1 (x) dµ(x)⊗δ 0 (a)⊗ du ∈ P( M ). The general case follows from the same ideas as in the proof of Theorem 2.1: [31, Theorem 1] extends the result to any probability measure absolutely continuous with respect to ν, while Hopf's ergodic theorem extends it to any ψ ∈ L 1 ( M , ν). 4.2. Proof for nite horizon Lorentz gases. We now derive an application to Lorentz gases, that is Corollary 2.5, from Theorem 2.4.

Proof of Corollary 2.5. There exists c > 0 such that ( M, c ν, ( Y t ) t ) can be represented as a ow as in Theorem 2.4, with (A, µ, T ) the corresponding Sinai billiard and τ the length of the free ight until the next collision. Let us write C p for the set of congurations in M whose last reection is on an obstacle corresponding to A × {a}. Since τ is uniformly bounded, the condition on φ ensures that

a∈Z 2 φ |Ca η < +∞ .
Again here T is the billiard transformation in the Z 2 -periodic billiard domain. Let x, y in the same continuity domain of T . Then there exists K such that

|G(φ)(x) -G(φ)(y)| = τ (x) 0 φ( Y s (x, a)) ds - τ (y) 0 φ( Y s (y, a)) ds ≤ min{τ (x),τ (y)} 0 φ( Y s (x, a)) -φ( Y s (y, a)) ds + |τ (x) -τ (y)| φ Cp ∞ ≤ τ ∞ φ |Cp η max 0≤s≤min{τ (x),τ (y)} d( Y s (x, a), Y s (y, a)) η + τ 1 2 φ |Ca ∞ d(x, y) 1 2 since τ is 1 2 -Hölder continuous on each continuity component of T . Since (x, s) → Y s (x, 0) is dierentiable on {(x, s) ∈ A × [0, +∞) : s ≤ τ (x)}, we conclude that f : (x, a) → τ (x) 0
φ(x, a, s) ds satises the assumptions of Corollary 2.2 with η replaced by min{η, 1/2}.

The assumption on the system can be checked as in the proof of Corollary 2.2: [8, Theorem 3.17] ensures that Hypothesis 2.6 is satised with p = 1, and [9, Lemma 5

.3] ensures that G(φ)(•, a)× L(B,B) ≤ C G(φ)(•, a) η .
All is left is to apply Theorem 2.4.

Limit theorems via induction

We now prove Proposition 2.3 using induced systems as in [27,29]. The strategy, in a nutshell, is as follows. In the present article, up to now, we worked with suspensions ows over an ergodic Z 2 -extension of a dynamical system (A, µ, T ), where the extension was given by a jump function F : A → Z 2 and the roof function τ : (x, a) → τ (x). The system (A, µ, T ) was a billiard map, and the suspension ow the Lorentz gas.

In [27,29], the setting is very similar, with the dierence that (A, µ, T ) has to be a Gibbs-Markov map (see e.g. [1, 4.6] for an introduction to these systems, which are Markov maps with a big image property). Using the symbolic coding of Axiom A ows by Bowen [2], a statement very close to that of Theorem 2.4 was obtained for geodesic ows in negative curvature [29, Proposition 6.12]. The case of Sinai billiards is more complex, as one has to use Young towers [30] to make them t the setting of Gibbs-Markov maps.

5.1. Young towers and Lorentz gas. To simplify our argument, we shall work with the discrete-time Lorentz gas (i.e. Z 2 -periodic billiard system). In order to emphasize the parallel constructions, we keep using the notations (A, µ, T ) and τ in this section, although we stress that they do not correspond to the billiard map and the free path length respectively, but to an underlying Gibbs-Markov map and to the height of the Young tower. Using a Young tower, there exist:

• a Gibbs-Markov map (A, µ, T ) with Markov partition Γ, • a function 2 τ : A → N + constant on each element of Γ, with µ(τ ≥ n) ≤ C ε e -εn for some ε, C ε > 0,
and a tower

(A τ , µ τ , T τ ) over (A, µ, T ) with roof function τ , • a hyperbolic map (A Y , µ Y , T Y )
, where each point in A Y has two coordinates (x u , x s ) (the base of the Young tower, which has a box structure indexed by Γ, the coordinate x u is the coordinate along the unstable manifold, and x s along the stable manifold; we write Γ Y for the corresponding partition of

A Y ), • a function τ Y : A Y → N + depending only on x u , and a tower (A Y,τ , µ Y,τ , T Y,τ ) over (A Y , µ Y , T Y ) with roof function τ Y , • a factor map π Y : A Y → A such that τ Y = τ • π Y ,
which lifts to a factor map on the towers: abusing notations,

π Y (x u , x s , k) = (π Y (x u , x s ), k) ∈ A τ for all (x u , x s , k) ∈ A Y,τ ,
• a factor map π from A Y,τ to the Sinai billiard table. These objects behave well when one works with Z 2 -extensions. Let F L be the function describing the jumps for the discrete-time Lorentz gas (i.e. F L is the function denoted F in Subsection 2.2) and F Y (x u , x s ) = 2 his funtion τ is the time of the next wrkovin return to the induing setY it is not the free pth lengthD s it used to e in usetion PFPF

τ Y (xu)-1 k=0 F L • π(x u , x s , k)
. By the construction of the Young tower, F L • π depends only on x u , and thus quotients through π Y to yield F : A → Z 2 , which is constant on each element of Γ.

Let ( A Y,τ , µ Y,τ , T Y,τ ) be the system dened by:

• A Y,τ = A Y,τ × Z 2 , • µ Y,τ = a∈Z 2 µ Y,τ ⊗ δ a , • T Y,τ (x u , x s , k, a) = (x u , x s , k + 1, a) if k < τ Y (x u ) -1, and otherwise T Y,τ (x u , x s , τ (x u ) -1, a) = (T Y (x u , x s ), 0, a + F Y (x u )).
In the same way, dene ( A τ , µ τ , T τ ) using the system (A τ , µ τ , T τ ) and the function F . Then there exist two factor maps π and π Y from ( A Y,τ , µ Y,τ , T Y,τ ), descending to the discrete-time Lorentz gas (i.e. the Z 2 -periodic billiard system A, µ, T dened in Subsection 2.2) and to ( A τ , µ τ , T τ ) respectively. This construction is summed up in the following diagram:

( A τ , µ τ , T τ ) ( A Y,τ , µ Y,τ , T Y,τ )
collision map for the Lorentz gas

(A τ , µ τ , T τ ) (A Y,τ , µ Y,τ , T Y,τ ) collision map for the Sinai billiard π Y π π Y π
In the diagram above, all the downward arrows consist in forgetting the Z 2 -coordinate, all the horizontal arrows are measure-preserving, and π Y (but not π) acts trivially on the Z 2 -coordinate. We shall also write, for x ∈ A:

ϕ(x) := inf{n ≥ 1 : S T n F (x) = 0} , ϕ(x) := ϕ(x)-1 k=0 τ • T k (x) ,
so that ϕ is the rst return time to A × {0} for the underlying Z 2 -extension of a Gibbs-Markov map, and ϕ the rst return time to A × {0} × {0} for T τ . Then the map T 0 := T ϕ τ acts on A × {0} A, and (A, µ, T 0 ) is a measure-preserving ergodic Gibbs-Markov map for some rened partition Γ 0 . In the same way, we dene T Y,0 := T ϕ Y,τ . Given an observable f dened on the state space of the Lorentz gas (Z 2 -periodic billiard map), we dene the sum of f along an excursion, either until it comes back to the base of the Young tower or to the basis of the cell 0 in A Y,τ . For (x u , x s ) ∈ A Y and a ∈ Z 2 , let:

G Y,τ (f )(x u , x s , a) := τ Y (xu)-1 k=0 f (x u , x s , k, a) G Y,ϕ (f )(x u , x s ) := ϕ(xu)-1 k=0 f • T k Y,τ (x, 0, 0) = ϕ(xu)-1 k=0 G Y,τ (f )(T k Y (x u , x s ), S T Y k F Y (x u )) ,
and dene in the same way G τ (f ) : A × Z 2 → C and G ϕ (f ) : A → C for functions f dened on A τ .

5.2. Proof of Proposition 2.3. The general strategy, close to that of [29, Proposition 6.12], is as follows:

• Take a function f dened on the state space of the discrete-time Lorentz gas, uniformly η-Hölder on the continuity components of the billiard map, with integral zero and such that a∈Z 2 (1 + ln + |a|)

1 2 +κ f (•, a) ∞ < +∞ for some κ > 0. Lift it to a function f • π dened on ( A Y,τ , µ Y,τ , T Y,τ ). • Add a bounded coboundary u • T -u to get f + • π Y = f • π + u • T -u (independent
from x s and thus going to the quotient through π Y , so that we only need to work with the Gibbs-Markov extension).

• Check that G Y,τ (f • π) satises some integrability conditions, then apply [22,Lemma 4.16] and [22,Lemma 2.7] to show that G ϕ (f + ) is also integrable enough (the precise conditions shall be described later). • Apply a version of [29, Corollary 6.10], together with [28, Remark 4.6], which states: Proposition 5.1 ([29]). Let ( A τ , µ τ , T τ ) be an ergodic and recurrent Markov Z 2 -extension of a Gibbs-Markov map (A, Γ, µ, T ), of roof function τ and of step function F : A → Z 2 . Assume that it is aperiodic, that τ and F belong to L 2 (A, µ A ), and that γ∈Γ µ(γ)|τ | Lip(γ) is nite. Under these hypotheses, the covariance matrix Σ 2 (F ) is positive denite, where, for all u and v in R 2 :

u, Σ 2 (F )v = lim N →+∞ 1 N A N -1 i=0 F • T i , u N -1 i=0 F • T i , v dµ.
Let f + be a real-valued, measurable function from A τ to R. Assume that:

• sup 0≤n≤ ϕ(x) n-1 k=0 f + • T k τ (•, 0, 0) ∈ L q (A, µ) for some q > 2, • A G ϕ (f + ) dµ = 0, • γ∈Γ 0 µ(γ) sup a∈Z d |G τ (f + )(•, a)| Lip(γ) is nite.
Then, for any probability measure ν absolutely continuous with respect to µ τ :

2π det(Σ 2 (F )) ln(n) 1 2 n-1 k=0 f + • T k → σ(f + )L,
where the convergence is in distribution when the left-hand side is seen as a random variable from ( A τ , ν) to R, where L follows a centered Laplace distribution of variance 1, and:

σ 2 (f + ) = A G ϕ (f + ) 2 dµ + 2 +∞ n=1 A G ϕ (f + ) • G ϕ (f + ) • T n 0 dµ,
where the limit is taken in the Cesàro sense.

Proof of Proposition 2.3. Let us go through the assumptions of Proposition 5.1 for the Young towers associated with Sinai billiards.

General assumptions on the system

The bidimensional Lorentz gas is ergodic and recurrent for the Liouville measure; by construction, so is ( A Y,τ , µ Y,τ , T Y,τ ). As a factor map, ( A τ , µ τ , T τ ) is then also ergodic and recurrent.

The theorem stays true if one drops the hypothesis of aperiodicity on the extension; the full reduction can be found in the proof of Proposition 2.11 in [22].

The roof function τ Y has an exponential tail, and as such belongs to L 2+ε (A, µ). Since the billiard has nite horizon, the function F L is uniformly bounded. Hence, the size of the jumps

F Y = S τ Y (F L • π) is in O(τ Y )
, and thus also belongs to L 2+ε (A, µ). By construction of the Young towers, τ Y is constant on the elements of the Markov partition. All these properties goes through the quotient to τ , and in particular

γ∈Γ µ(γ)|τ | Lip(γ) = 0.

Dening a coboundary

Let f be an observable of the collision section for the Lorentz gas which is uniformly η-Hölder on the continuity sets of the billiard map. The space A τ,Y has a box structure, with, by Young's construction, a distinguished piece of unstable manifold on the basis A Y . Let us choose the coordinates (x u , x s ) so that this piece of unstable manifold is {x s = 0}. Then we get a map:

p + : A Y,τ → {(x u , 0, k, a) : 0 ≤ k < τ (x u ), a ∈ Z 2 } (x u , x s , k, a) → (x u , 0, k, a) ,
The space A Y,τ is also endowed with a distance d Y,τ satisfying the properties (P3) and (P4a) in [30], namely, there exist constants C > 0 and α ∈ (0, 1) such that, for all x u , x s , x u , x s :

• d Y,τ (T n Y,τ (x u , x s , 0), T n Y,τ (x u , x s , 0)) ≤ Cα n (contraction along stable leaves),
• d Y,τ (T n Y,τ (x u , x s , 0), T n Y,τ (x u , x s , 0)) ≤ Cα s 0 (xu,x u )-n for 0 ≤ n < s 0 (x u , x u ) (backward contraction along unstable leaves), where s 0 is a separation time. In addition, up to working with some power of d Y,τ , we may assume that f

• π(•, •, •, a) is Lipschitz for d Y,τ uniformly in a ∈ Z 2 . The function f • π is dened on A Y,τ × Z 2 .
To get a function dened on A τ × Z 2 , we use a classical trick by Bowen [3], also used in the proof of [29,Proposition 6.12]. While we shall not repeat the computations, let us ouline the main arguments. Dene:

u(x u , x s , k, a) := +∞ n=0 f • π • T n Y,τ (x u , x s , k, a) -f • π • T n Y,τ • p + (x u , x s , k, a) .
The function u is zero on {x s = 0}, and the contraction along stable leaves implies that u is bounded. The function f + := f • π + u • T Y,τ -u also does not depend on the x s coordinate. Abusing notations, we may see f + as dened on A τ . Finally, there exists a constant C such that, for all x u , x u in the same element of Γ, for all x s and all a ∈ Z 2 :

|u(x u , x s , 0, a) -u(x u , x s , 0, a)| ≤ C α s 0 (xu,x u ) 2
.

(5.1)

Since S n f = S n f + • π + u • T n Y,τ -u and u is bounded, it is enough to prove the convergence in distribution 2π det(Σ 2 (F )) ln(n) 1 2 n-1 k=0 f + • T k τ → σ(f + ) √ EN ,
with respect to the probability distribution µ ⊗ δ 0 ⊗ δ 0 ∈ P( A τ ). The convergence

2π det(Σ 2 (F )) ln(n) 1 2 n-1 k=0 f • π • T k Y,τ → σ(f + ) √ EN ,
with respect to µ Y ⊗ δ 0 ⊗ δ 0 ∈ P( A Y,τ ) then follows, and the convergence with respect to any absolutely continuous probability measure on A Y,τ follows from [31, Theorem 1]. In addition, since f + -f • π is a bounded coboundary and adding a bounded coboundary does not change the asymptotic variance in the central limit theorem,

σ(f + ) = A Y G Y,ϕ (f • π) 2 dµ Y + 2 +∞ n=1 A Y G Y,ϕ (f • π) • G Y,ϕ (f • π) • T n Y,0 dµ Y . (5.2)
All is left is to check the integrability and regularity assumptions on f + .

Integrability of f +

We start with the rst condition on f + in Proposition 5.1, which is the hardest. Since

sup 0≤n≤ ϕ(x) n-1 k=0 f + • T k τ (•, 0, 0) = sup 0≤n≤ ϕ(x) n-1 k=0 (f • π + u • T Y,τ -u) • T k Y,τ (•, 0, 0) ≤ sup 0≤n≤ ϕ(x) n-1 k=0 f • π • T k Y,τ (•, 0, 0) + 2 u ∞ ≤ G Y,ϕ (|f • π|) + 2 u ∞ , it is enough to check that G Y,ϕ (|f • π|) ∈ L q (A Y , µ Y ) for some q > 2. For (x u , a) ∈ A × Z 2 , let: f (x u , k, a) := sup xs |f • π|(x u , x s , k, a). Then G Y,ϕ (|f • π|)(x u , x s ) ≤ G ϕ (f )(x u ), so it is enough to check that G ϕ (f ) ∈ L q (A Y , µ Y ) for some q > 2. For all a ∈ Z 2 \ {0}, let N a (x u ) := G ϕ (1 (A×{0}×{a}) )
be the number of times an excursion from A × {0} × {0} hits the basis of the Young tower at A × {0} × {a} before going back to A × {0} × {0}. Let A a := {N a = 0} ⊂ A, and

µ a := µ(A a ) -1 T A×{0,a} * µ |Aa ⊗ δ 0 ,
where T A×{0,a} is the map induced by T on A × {0, a}. In other words, µ a ∈ P(A × {a}) P(A) is the distribution of a point at which a trajectory starting from A × {0} enters A × {a}, conditioned by the fact that this trajectory enters A × {a} before going back to A × {0}. Then the distribution of N a -1 for µ(•|A a ) is the distribution of the rst non-negative hitting time ϕ -a of A -a for µ a .

By [22,Lemma 4.8], the densities dµ a /dµ are in L ∞ (A, µ) and uniformly bounded in a. We apply [22,Lemma 4.16] to the family of measures (µ a ) a∈Z 2 \{0} and the function 1 A . Note that α(a) = µ(A a ) = µ(A -a ) in the cited article. Hence, for all q ∈ (2, ∞), there exists a constant C > 0 such that, for all a ∈ Z 2 : ,µ) . By [22, Corollary 2.9] and [22, Proposition 2.6], with α = d = 2 and L ≡ 1,

G ϕ (f 1 Aτ ×{a} ) L q (A,µ) = µ(A a ) 1 q G ϕ (f 1 Aτ ×{a} ) L q (A,µ(•|Aa)) = µ(A a ) 1 q ϕ -a (x) k=0 G τ (f )( T k 0 (x), a) L q (A,µa) ≤ Cµ(A a ) 1 q -1 G τ (f )(•, a) L q (A
µ(A a ) = Θ 1 1 + ln + |a| .
Hence, up to taking a larger constant C,

G ϕ (f ) L q (A,µ) ≤ a∈Z 2 G ϕ (f 1 Aτ ×{a} ) L q (A,µ) ≤ C a∈Z 2 (1 + ln + |a|) 1-1 q G τ (f )(•, a) L q (A,µ) .
(5.3)

In addition, focusing on a single term G τ (f )(•, a) L q (A,µ) , we get:

G τ (f )(•, a) L q (A,µ) ≤ r≥1 1 {τ =r} r-1 k=0 f (•, a + S k F ) L ∞ ({τ =r}) L q (A,µ) = r≥1 1 τ =r r-1 k=0 a ∈Z 2 f (•, a ) ∞ 1 a =a+S k F L q (A,µ) ≤ a ∈Z 2 f (•, a ) ∞ r≥1 r-1 k=0 µ(τ = r, S k F = a -a) 1 q . (5.4) Set h q (a) := C(1 + ln + |a|) 1-1 q and g q (a) := r≥1 r-1 k=0 µ(τ = r, S k F = a)
1 q . Equations (5.3) and (5.4) together imply that:

G ϕ (f ) L q (A,µ) ≤ a∈Z 2 (h q * g q )(a) f (•, a) ∞ . (5.5) If S k F = a with k ≤ r -1, then r ≥ k ≥ |a|/ F ∞ . Since µ(τ ≥ k) ≤ C ε e -εk
, there exists a constant C (q, ε) such that:

g q (a) ≤ r≥|a|/ F ∞ r µ(τ = r) ≤ C (q, ε)e - ε|a| 2q F ∞ .
All is left is to estimate h q * g q . Let a ∈ Z 2 \ {0}. We split Z 2 into rings:

A n (a) = {a ∈ Z 2 : e n |a| ≤ |a | < e n+1 |a|},
with n ≥ 1, and a central disk A 0 (a). We have Card(A n (a)) = Θ(e 2n |a| 2 ) and, for all a ∈ A n (a),

h q (a ) ≤ h q (a) + C(1 -q -1 )(n + 1), g q (a -a ) ≤ C (q, ε)e - ε(e n -1)|a| 2q F ∞ .
Summing over all a ∈ Z 2 yields, for some constant C > 0:

h q * g q (a) = +∞ n=0 a ∈An(a) h q (a )g q (a -a ) ≤ a ∈Z 2 h q (a)g q (a -a ) + C(1 -q -1 ) a ∈A 0 (a) g q (a -a ) + C(1 -q -1 ) +∞ n=1 (n + 1) a ∈An(a) g q (a -a ) ≤ [h q (a) + C(1 -q -1 )] g q 1 (Z 2 ) + C +∞ n=1 (n + 1)e 2n |a| 2 e - ε(e n -1)|a| 2q F ∞ .
(5.6)

The sum in Equation (5.6) is nite for all a. Each term in the sum converges to 0 as a goes to innity (and thus is bounded). In addition, the function u → u 2 e -ε(e n -1)u 2q F ∞ is decreasing on [(4q F ∞ )/(e n -1), +∞), and thus on [1, +∞) for all large enough n. Hence, for all large enough n and all a ∈ Z 2 \ {0},

(n + 1)e 2n |a| 2 e - ε(e n -1)|a| 2q F ∞ ≤ (n + 1)e 2n e - ε(e n -1) 2q F ∞ ,
which is summable in n. Hence the sum is bounded in a. Since h q is bounded from below, we nally get h q * g q = O(h q ).

Let κ > 0, and f be such that sup a∈Z 2 (1 + ln + |a|)

1 2 +κ f (•, a) ∞ < +∞.
Without loss of generality, we assume that κ < 1/2. Taking q = 2 1-2κ , by Equation (5.5), the function G ϕ (f ) belongs to L q (A, µ).

Remaining conditions on f +

Let us focus on the last two conditions for G ϕ (f ). Since f is integrable and has integral zero, so does f • π. By Kac's formula, G Y,ϕ (f ) is integrable and:

A Y G Y,ϕ (f ) dµ Y = A τ,Y f d µ Y,τ = 0. Since G ϕ (f + ) -G Y,ϕ (f ) is a bounded coboundary, G ϕ (f + ) also has integral zero.
Finally, let us check the regularity condition on G ϕ (f + ). Summing the identity f

+ := f • π + u • T Y,τ -u on the height of the tower A Y,τ yields, for all x u ∈ A and a ∈ Z 2 , G τ (f + )(x u , a) = G τ (f • π)(x u , 0, a) + u(T Y (x u , 0), 0, a + F (x u )) -u(x u , 0, 0, a).
The space A can be endowed with a metric α s , where s is the separation time for the Gibbs-Markov map (A, µ, T ) and α ∈ (0, 1) is close enough to 1. As s ≤ s 0 , we have α s 0 ≤ α s , and α s 0 -τ ≤ α -1 α s if s 0 ≥ τ (so on each element of the partition Γ). Given x u , x u in the same element of Γ,

|G τ (f • π)(x u , 0, a) -G τ (f • π)(x u , 0, a)| ≤ C|f • π| Lip(d Y,τ ) τ (xu)-1 k=0 α s 0 (xu,x u )-k ≤ Cα 1 -α |f • π| Lip(d Y,τ ) α s 0 (xu,x u )-τ (xu) ≤ C 1 -α |f • π| Lip(d Y,τ ) α s(xu,x u ) , so the function x u → G τ (f • π)(x u , 0, a)
is Lipschitz for the distance α s on each element of Γ, uniformly in a ∈ Z 2 and in Γ. By Equation (5.1), the function u is uniformly 1/2-Hölder for the distance α s 0 (and thus for the distance α s ) on each unstable leaf in A Y × Z 2 . Up to increasing the value of α, we may assume that u is actually Lipschitz. Since applying T Y multiplies α s by at most α -1 , the function x u → u(T Y (x u , 0), 0, a + F (x u )) is also Lipschitz for the distance α s on each element of Γ, uniformly in a ∈ Z 2 and in Γ. Hence, f + is also Lipschitz for the distance α s on each element of Γ, uniformly in a ∈ Z 2 and in Γ, and thus G ϕ (f + ) satises the regularity condition of Proposition 5.1 by [29,Lemma 6.5].

Remark 5.2 (Innite horizon billiards). Young towers are still available for innite horizon Lorentz gases [6],

although the height of the tower only has a polynomial tail: µ(τ ≥ n) = O(n -2 ). In the nite horizon case, we used the facts that jumps in the billiard are bounded and that the tails of τ decay exponentially to control g q ; both fail in the innite horizon setting.
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