Ajay Kattepur
email: ajay.kattepur@tcs.com

Balamuralidhar

RoboPlanner: Towards an Autonomous Robotic Action Planning Framework for Industry 4.0

Keywords: Ajay Kattepur, Balamuralidhar Picker Robot (e, g, KUKA KMR Quantec) Industry 4, 0 Warehouse

whether they are published or not. The documents may come L'archive ouverte pluridisciplinaire

Introduction

Advances in robotics, cyber-physical systems and industrial automation has come to the forefront with Industry 4.0 [START_REF] Lasi | Industry 4.0. Business & Info[END_REF], with the following key requirements:

1. Interoperability: Machines, Internet of Things (IoT) [Greengard, 2015] enabled devices and humans connected and coordinating with each other. 2. Information transparency: Physical systems enhanced with sensor data to create added value information systems. 3. Technical Assistance: Use of intelligent devices to aid in informed decision making. Robotic automation may be identified to perform repetitive, unsafe or precise tasks. 4. Decentralized Decisions: The ability of such systems to make autonomous decisions; only critical cases will involve human intervention.

A fundamental characteristic required in Industry 4.0 deployments is the ability of autonomous robotic devices to self-configure in dynamic goal and deployment conditions. Autonomic computing [Huebscher and McCann, 2008] models have been proposed to create self-aware robotic systems that respond to both high level goals as well as external stimuli [START_REF] Faniyi | Architecting self-aware software systems[END_REF]. This has led to the development of Cognitive Robotic Architectures [START_REF] Levesque | [END_REF]Lakemeyer, 2010][Beetz et al., 2010], that are at the intersection of robotics, IoT and Artificial Intelligence [START_REF] Russell | Artificial Intelligence: A Modern Approach[END_REF].

Cognitive robots are able to intelligently execute tasks based on high level goals, dependent on world model knowledge and sensory perceptions to generate efficient actions [START_REF] Levesque | Cognitive robotics[END_REF]. In order to be deployed in dynamic Industry 4.0 environments, the robots must be autonomous and adaptive to runtime changes. Given a high level task such as "pick ball from warehouse rack", the autonomous robot must identify appropriate action plans to perform this task. As the robots are intended to be learning world models, knowledge bases are needed to populate information about the world, object, perception and action sequences needed. Any runtime anomalies are dealt with through further queries and eventual exception handling.

Distilling these high level requirements, an autonomous planning module for robots should include: (i) Knowledge Bases that efficiently capture relationships between world models, objects, robot actions and tasks (ii) Action Plans that are efficiently decomposed from a high level goal task; this involves querying the knowledge base as well as triggering perceptions in case of knowledge mismatch (iii) Techniques to Reconfigure actions at runtime, when plans cannot be executed due to constraints (iv) Rules for consistent Updates to the world model, which allows multiple robots to coordinate or analyze exceptions during execution. While individual modules may have been developed in the robotic and embedded software communities, integrating these features into a common framework for industrial deployments remains a challenge.

In this paper, we propose RoboPlanner, a structured technique to generate design time action plans for autonomous robots. In order to enable autonomy in de-ployments, we integrate knowledge bases, design time action planning and runtime adaptation modules. Knowledge representation and queries are enabled using efficient graph database technologies [START_REF] Angles | Survey of graph database models[END_REF]. Design time action plans as provided using the formal concurrent programming knowledge Orc [START_REF] Kitchin | The orc programming language[END_REF], that allows structured composition of action plans. To take care of runtime adaptation, we provide general rules for triggering perception and exception handling. An integrity check is also provided to update the graph database with runtime knowledge. This framework is implemented over a realistic industrial use case involving autonomous picking robots employed in Industry 4.0 warehouses [START_REF] Wurman | Coordinating hundreds of cooperative, autonomous vehicles in warehouses[END_REF].

Principal contributions of this paper:

1. RoboPlanner Knowledge Base module that formally models robotic world models, capabilities, object descriptions and task templates. 2. RoboPlanner Action Planner that uses design-time queries/updates to knowledge graph databases, including exception handling. 3. RoboPlanner Runtime simulation, adaptation and performance analysis of action plans using graph queries. This may be used to generate executable task templates for physical robots. 4. RoboPlanner integrity checks for runtime updates to the knowledge base. 5. Demonstration of the framework over an Industry 4.0 warehouse automation task. The rest of this paper is organized as follows: Section 2 provides an overview of Industry 4.0 warehouse automation and the autonomous robots deployed in them. The RoboPlanner modules are described in Section 3. Details of knowledge base representation using graph databases are covered in Section 4. Section 5 describes the techniques used for action plan generation. Simulation, performance analysis and knowledge updates in autonomous robot deployments are presented in Section 6. The paper ends with related work and conclusions.

Warehouse Automation

In this section, we introduce Industry 4.0 warehouse automation tasks that may be fulfilled by autonomous robots. A high level description of autonomous robots is also introduced, which is used to build the RoboPlanner framework in proceeding sections.

Industry 4.0 Warehouses

Industrial warehouses are employed as buffers in supplychains to maintain excess product, when there are variations in procurement/customer demand [START_REF] Bartholdi | Warehouse and Distribution Science[END_REF]. Considerable effort has gone in reducing the stowing and procurement times in such warehouses, with automated picking robots [Zhang and et al., 2016] being throughput of pick & place tasks.

Fig. 1 presents a high level view of operations taking place in automated warehouses. Once a delivery order is received, the products are procured from the warehouse. As shown in Fig. 1, autonomous Picker robots (such as KUKA KMR Quantec1) are being proposed for Industry 4.0 automating pick & place tasks. The robots are intended to be autonomous, with adaptation seen for varying pick-up locations, product dimensions and rates of procurement. When the required products are procured, they are collated and checked for final packing and product shipment.

In order to successfully integrate robotic entities into complex industrial deployments, it is crucial to develop a unified modeling framework for autonomous robots.

Autonomous Robots

To model the robotic components in warehouses, we make use of the Autonomous Robot abstraction, inspired by intelligent agents [START_REF] Russell | Artificial Intelligence: A Modern Approach[END_REF]. Typical activities, for instance with a pick & place robot in a smart warehouse, include:

1. Goals: Understanding goals of each task and subtask, such as, placing correct parts into correct bins within the given time constraints.

2. Perception: Object identification and obstacle detection using camera and odometry sensors that sense the environment. This aids the robot in object detection and identification. Robot location, view and environment may also be perceived.

Actions:

Identifying granular actionable subtasks, such as, moving to particular location, picking up parts of orders or sorting objects. Constraints may be placed on the robot capabilities, motion plans and accuracy in performing such actions.

4. Knowledge Base: Using domain models of the world for goal completion, such as warehouse environment maps, rack type and product features. The robot capabilities and necessary algorithms should enable completion of goals.

Algorithm 1 presents an overview of an intelligent robot's perception and action via a Knowledge Base [START_REF] Russell | Artificial Intelligence: A Modern Approach[END_REF]. The knowledge base coordinates the appropriate action in relation to an individual robot's perception. The knowledge base should also include descriptions of domain ontology, task templates, algorithmic implementations and resource descriptions. To integrate the above elements into robotic interactions for Industry 4.0, we propose the RoboPlanner autonomous architecture framework.

RoboPlanner Modules

In this section, we provide details about the various modules to be integrated within RoboPlanner. These modules cover the principal requirements of cognitive robotic architectures [START_REF] Levesque | [END_REF]Lakemeyer, 2010][Beetz et al., 2010], including knowledge representation, action planning, reconfiguration and knowledge updates. Fig. 2 provides an overview of the modules that are integrated within RoboPlanner:

• Design Time Action Planning Module: This module is responsible for generating efficient action plans, when input with a high level goal. The module decomposes the goal into atomic tasks, and applies workflow specification languages (such as Orc [START_REF] Kitchin | The orc programming language[END_REF]) to complete the goal task. Action planning involves querying the Knowledge Graph Database Module to ascertain requirements for goal completion. Robot perception may also be triggered to acquire further information for action planning.

• Knowledge Graph Database Module: An integral part of all autonomous/cognitive robotic architectures is the knowledge base. We model this using graph databases [START_REF] Angles | Survey of graph database models[END_REF], that maintain relationships between data in a graphical form. Entities such as the world model, robotic algorithms and task templates are stored in the database. The knowledge database is queried both at design time for action generation and at runtime for knowledge updates.

• Runtime Execution Module: The action plans are executed by one or multiple autonomous robots to complete the task. Translation of the action plan to a robot specific middleware language such as ROS 2 may be done. The execution module may be aided by robotic perception. Knowledge that is gained during the execution is to be updated to the graph knowledge database, after satisfying some integrity constraints.

• Adaptation Monitoring Module: This modules monitors runtime deployments of intelligent robots 2 http://www.ros.org/ to estimate plan completion. While robotic perception may be used to aid in unforeseen circumstances, more severe exceptions may require replanning. Performance degradation (leading to noncompletion of plans), may also trigger re-planning. Knowledge of instances that trigger re-planning are learnt and updated.

The following sections dive further into the modeling and implementation of these modules.

Robotic Knowledge Base

The robotic knowledge base is modeled using property graphs, with data stored in graph databases. Queries using the Gremlin graph query language are also studied.

Knowledge Graphs

In order to model knowledge bases inherent in intelligent automation, we make use of property graphs [START_REF] Angles | Survey of graph database models[END_REF]. Property graphs are attributed, labeled, directed graphs. This is an alternative to semantic ontologies [START_REF] Grimm | Knowledge representation and ontologies[END_REF] and tuple datastores that are use in implementations such as Knowrob [START_REF] Tenorth | Knowrob -a knowledge processing infrastructure for cognition-enabled robots[END_REF] and CRAM [START_REF] Beetz | Cram: A cognitive robot abstract machine for everyday manipulation in human environments[END_REF]. Our knowledge base has the following knowledge graphs included:

• World Models: Describes the environment map and layout, including object locations.

• Object Templates: Describes the target objects of interest, including shape, size, colour and location.

• Robot Capabilities: Provides robot models, capabilities, sensors and actuators that are integrated to perform tasks.

• Robotic Algorithms: Navigation, manipulation and task allocation algorithms that are used within robotic actions.

• Task Templates: High level task requirements and corresponding outputs are provided.

Fig. 3 provides the property graph models for world models, task templates, object templates, robot capabilities and robot algorithms. To describe properties between edges, we limit ourselves to four relations: isOfType, hasProperty, requires and produces. isOfType provides hierarchical sub-class relationships; hasProperty extends property descriptions using keyvalue pairs; requires provides pre-conditions to extract knowledge from the graph; requires provides post condition effects of executing the node. These relationships may be queried to extract information from the knowledge base. Fig. 3a provides the capabilities of a Pick Robot that Robot Model, Capabilities, Perception; it requires Target, World Model, Algorithms and produces the Pick, Place Actions.

Algorithms necessary for the robotic executions are provided in Fig. 3d, with path planning, image template matching and grasp manipulation algorithms included. Explicit definitions of each task is provided in Fig. 3b, for instance with the Place task, which requires World Model, Target Object, Picker Robot and produces Placed Object. Note that the property graph modeling approach provides extensibility and reuse of information across multiple autonomous robotic deployments.

Graph Database Queries

Semantic ontologies typically store data in tuple datastores that reduce expressivity provided in graph representations [START_REF] Angles | Survey of graph database models[END_REF]. Scalability is another hindrance in representation, update and query of large ontologies. Graph databases are emerging as an appropriate tool to model interconnectivity and topology of relationships among large knowledge data sets [START_REF] Angles | Survey of graph database models[END_REF]. Principal advantages include: (i) Being able to keep all the information about an entity in a single node and show related information by arcs connected to it; (ii) Queries can refer directly to this graph structure, such as finding shortest paths or determining certain subgraphs; (iii) Graph databases provide efficient storage structures for graphs, thus reducing computational complexity in operations. Graph databases are also emerging as high-performance back end stores when making use of complex dialogue and chatbot engines [M. Maro and Origlia, 2017].

To implement the property graphs in Section 4.1, we make use of the multi-modal OrientDB database3 . Ori-entDB uses a generic vertex persistent class V and a class for edges E. Unlike ontologies that store data using triple stores, graph databases maintain the graphical structure with vertices and edges. In the graph data model, nodes are physically connected to each other via pointers, thus enabling complex queries to be executed faster and more effectively than in a relational data model [START_REF] Angles | Survey of graph database models[END_REF]. Properties are represented as Key-Value pairs that may be queried.

An example graph database (of the World Model in Fig. 3e) with vertices, edges and properties in OrientDB is presented below: In order to query this graph, we use Gremlin4 , a domain-specific (DSL) open source programming language focusing on graph traversal and manipulation. The following types of queries may be made:

1. Filtering: Filter out vertices or edges according to given property labels. For instance, the query may g.v().Name be used to filter out properties such as Name of a vertex. 2. Complex Queries: Queries can combine multiple vertices, edges and properties. Queries can also provide range or equality constraints to numeric property values.

For instance, the complex query g.V.has('Name', 'Warehouse').out('hasProperty').map matches the vertex with property key-value pair (Name, Warehouse), output edge with property hasProperty and produces an output of the vertices. gremlin> g.V.has('Name', 'Warehouse').

out('hasProperty').map ==>{Rack=RackConfig, Layout=WarehouseLayout, Aisles=AislesConfig, Name=Map} ==>{Properties=ObjectProperties, Name=Objects, Location=ObjectLocation}

Graph Traversal:

Another advantage of storing data using graph databases is the ability to traverse graphs.

For instance, the query g.v().outE.inV.name.path traverses the output edges (outE) of a vertex, and provides the path traversed. While we have made use of Gremlin as the language for explicit graph database querying, this can also be a backend for an efficient dialogue/chatbot implementation [M. Maro and Origlia, 2017]. Questions such as "Where is the target?" or "What are the target's properties?" or "Can the robot lift this?" can be translated into efficient knowledge base queries as defined above. It is of interest to translate this knowledge to efficient action plans for the robot to act upon, which is explored next.

Action Plan Generation

In order to study the design time action planning module, we formalize the interaction between the planner and knowledge base. An overview of the concurrent programming language Orc is also provided, that is later used to simulate action planning.

Orc Language

In order to implement robotic action plans, we make use of the formal specification language Orc. The Orc concurrent programming language is grounded on formal process-calculi to specify complex distributed computing patterns [START_REF] Kitchin | The orc programming language[END_REF]. The execution of programs in Orc makes use of Expressions, with the atomic abstraction being a site. To create complex expressions based on site invocations, Orc employs the following Combinators:

• Parallel Combinator (|): Given two sites s 1 and s 2 , the expression s 1 | s 2 invokes both sites in parallel.

• Sequential Combinator (>x>,): In the expression s 1 >x> s 2 (shorthand s 1 s 2), site s 1 is evaluated initially, with every value published by s 1 initiating a separate execution of site s 2 .

• Pruning Combinator (<x<,): In the expression s 1 <x< s 2 (shorthand s 1 s 2), both sites s 1 and s 2 execute in parallel. If s 2 publishes a value, that value is bound to x and the execution of s 2 is terminated.

• Otherwise Combinator (;): The expression s 1 ; s 2 first executes site s 1 . If s 1 publishes no value and halts, then s 2 is executed instead.

The val declaration in Orc binds variables to values.

The def declaration defines a function. Orc further contains built-in sites incorporating distributed computing paradigms such as channels, semaphores and synchronization primitives (further details available in the Orc website 5).

Action Planning Module

As specified in Fig. 2, action planning involves interacting with the knowledge base to efficiently plan manipulation, navigation and task planning actions. However, perception and exception handling must also be built in to take care of insufficient knowledge.

To formalize the process of generating action plans required to satisfy goals, we present Algorithm 2. Given an input goal (e.g. pick ball from rack using picker robot), the first step (lines 3, 4 in Algorithm 2) is to verify and subdivide goals from the task descriptions available (pick target, being an atomic subgoal). For each of these subgoals, there are pre-conditions to be satisfied (lines 6-8 in Algorithm 2): subgoals require (actions, targets), actions require (targets, object attributes, capabilities), targets require (object attributes). The object attributes of interest (environment rack, locations) can either be derived from the world model knowledge base or by querying robot perception (robot sensor observation and interpretation, environment point cloud). The target of interest (ball) can either be identified from the object templates knowledge base or by querying robot perception (robot sensor observation and interpretation, perception algorithms). The capability to complete goal (robot model, arm length, battery state) is also extracted from the robot capability knowledge base. Finally, the action (pick ball) needed to satisfy the subgoal is derived, dependent on the specified target, object attributes and capability (line 12 in Algorithm 2). The actions consist of both navigation (path planning) and manipulation (grasping, lifting) procedures. This process is used iteratively for each subgoal to derive the action plan needed to enact the goal (line 13, 14 in Algorithm 2). In case there are Exceptions observed within the subgoal planning, re-planning is triggered.

An example of such an action plan in presented in Fig. 4, wherein the high level input task of: information to identify targets (target?) or atomic actions (action?). Perception triggering and re-planning in case of exceptions are also provided. Such a process of decomposing high level expressions to actionable tasks has also been employed in the automated planning community with Hierarchical Task Networks [START_REF] Erol | Htn planning: Complexity and expressivity[END_REF].

Note that though we have represented this via graph queries, another view would be request-responses with a dialogue agent [A. Bordes and Weston, 2017], representing the knowledge base. The dialogue agent could be used to further clarify queries that may be ambiguous. A typical conversation instance could be: User: yes Such a system unifies the modeling of both knowledge acquisition from a central repository, robotic updates and queries that may be made to human participants. The action plans that are formulated result in valid goal fulfillment, due to varied knowledge sources incorporated.

To further generalize this action planning framework, we provide instances of multiple artifacts in Table 1. We emphasize that the procedure outlined in Algorithm 2 and Fig. 4 is structured to be generic, allowing action plans to be generated with various world models, robotic capabilities and task templates. Such a structured way of planning actions will prove valuable across multiple deployments.

Simulation and Analysis

In this section, we provide an end-to-end simulation of the design time planning and runtime adaptation process, with further analysis on performance aspects. Further constructs to ensure graph database integrity with knowledge base updates are provided.

Action Planning Simulation

Given a high level goal task such as "Pick Ball from Rack using Picker Robot", the first step is to decompose goals into appropriate sub-tasks. The tasks are mapped to appropriate Knowledge Bases (using the member function in Orc), depending on whether they represent actions, targets, robotic components or properties. The following code provides a map of the atomic terms to individual knowledge base elements (Line 12 in Knowledge Resolution). For instance, the term rack is located as a member of the World model knowledge base (Line 15 in Knowledge Resolution). --Input Goals 12 map (plan, [" pick " , " ball " , " rack " , " picker "]) 13 14 Once the appropriate knowledge base elements are recognized, Gremlin queries are used to obtain dependencies from the Graph database. We assume that the knowledge base is pre-populated with property graphs as described in Section 4. Terms used in Fig. 3, such as hasProperty and requires are used in conjunction with Gremlin graph database filtering and complex queries, to populate local robotic knowledge bases (Lines 9-20 in Knowledge Query). While we represent this as explicit queries, alternate implementations may use dialogue engines to extract necessary information from the knowledge base via question-answers [A. Bordes and Weston, 2017][M. Maro and Origlia, 2017]. We make use of the def class declaration that allows us to implement sites within Orc [START_REF] Kitchin | The orc programming language[END_REF], which provides encapsulation similar to classes in object-oriented programming. we make use of the Ref site in Orc, that creates a rewritable storage location. The following Orc code presents these aspects:

--Orc Output ---------------------------------------

--S e a r c h i n g D e p e n d e n c i e s for " rack "

23 val gremlin = gremlin () 24 gremlin.find (" Name " , " rack ") | g r e m l i n . h a s P r o p er t y (" Name " , " Objects ") | g r e m l i n . r e q ui r e s (" Name " , "

Map ") | g r e m l i n . i s O f T yp e (" Name " , " WorldModel ") >> World_model?

25 26

--Output ---

27

[" WorldModel " , (" Map " , " W ar eh o us eL ay o ut ") ,

28

(" Objects " , " Obje ctLocati on " , " O b j e c t P r o p e r ti e s ") , " rack "]

Action planning with procedures outlined in Section 5 can now be performed, with the high level goals being enacted through decomposition. Queries are made to the knowledge base to determine if the query terms are located in the world or target models, the absence of which triggers perception (Lines 9-11 in Action Planner). Similarly, queries for the robot and action models are triggered, which can trigger runtime exceptions such as lack of robot capabilities (Lines 14-17 in Action Planner). We also introduce a function to trigger re-planning replan action, that looks for exceptions and may add capabilities such as a new robot model or action template (Lines 20-21 in Action Planner). The following Orc code presents these aspects: The output of a typical action plan is now presented, which is input goals that are similar to those planned at design time. Once the query results from various knowledge models are obtained, the action can be performed that includes navigation, manipulation and task completion (Lines 14-15 in Design Time Simulation). Such an execution is straightforward as neither external perception or exceptions are triggered. The following Orc code presents these aspects:

1 +++ Action Planner +++ 2 3

--K n o w l e d g e Base, P e r c e p t i o n and E x c e p t i o n P o i n t e r s

1 +++ Design Time Simulation +++ (" ball " , [" ball " , " cube "])

--Output ---

12

(" picker " , [" picker "])

13

(" rack " , [" warehouse " , " rack "]) 14 ((" navigation " , [" navigation " , " manipulation " , " task "]) , (" task " , [" navigation " , " manipulation " , " task "]) , (" manipulation " , [" navigation " , " manipulation " , " task "]))

15

Action Completed pick

Runtime Adaptation Simulation

An important aspect of autonomous robotic deployment is runtime adaptation to changes. The goals are modified with the robot type replaced by mover, action collect and the target object replaced by cylinder. As these requirements are not pre-populated into the graph knowledge base, adaptation and exception handling procedures are triggered in Algorithm 2. We notice that perception is triggered to identify the target cylinder (Lines 12-13 in Runtime Adaptation Simulation). Exceptions are also triggered for the lack of collect actions and mover robot capabilities, that are further added into the knowledge base (Lines 15-21 in Runtime Adaptation Simulation). Post this adaptation, the action execution is completed. The following Orc code presents these aspects:

1 +++ Runtime Adaptation Simulation +++ Updated KB ["collect", "pick", "drop", "assign"] 22 ((" navigation " , [" navigation " , " manipulation " , " task "]) , (" task " , [" navigation " , " manipulation " , " task "]) , (" manipulation " , [" navigation " , " manipulation " , " task "]))

--Output ---

23

Action Completed collect

ROS Smach Code Generation

To deploy the action plans to physical/virtual robots, we make use of the open source ROS Smach6 framework. This is a finite state machine where states and transition of the robot may be described with respect to complex tasks. We auto-generate this from the Orc task list, by referencing robot capabilities, world model and task templates seen in Fig. 3. An example of the ROS Smach code generated is presented below, that produces the output of each state transition as succeeded, aborted or preempted. The PERCEPTION task, if successful is followed by ROBOT ARM MOVEMENT; else an abort or preemption is triggered: Integrating RoboPlanner with physical robotic simulator for action planning, such as that shown in Fig. 5, is then done using ROS API calls mapped to each ROS Smach task. ROS also provides ROS bridge interfaces to call physical robot sensor-actuator APIs via the task planning framework. This presents an end-to-end system for autonomous robot action planning (refer to Fig. 2), with knowledge integration, design time action planning, runtime execution and adaptation.

Performance Analysis

Given that we propose the use of knowledge bases and Gremlin graph queries to retrieve the language, performance impact of the queries must be analyzed. This is specially important in the case of Industry 4.0 deployments, where automation is intended to improve throughput. To estimate query and update times in OrientDB graph databases, we run the following stress test on a Linux workstation with 4 core i5-6200U CPU @ 2.30GHz, 4 GB RAM, which simulates the hyperconnected graph traversal over 50 nodes: The average graph traversal latency is seen to be around 211 milliseconds, that outperforms conventional perception and object recognition algorithms (2300 milliseconds in [Zhang and et al., 2016]). Using these mean values for exponentially distributed latency outputs, Monte-Carlo runs are performed over 20, 000 runs. Fig. 6 demonstrates outputs for various cases with the Knowledge Base having 100%, 90% and 70% of the action planning information (triggering perception and exception handling in case of missing knowledge). For instance, over the base case of 70% plan information in the Knowledge Base, the 95% percentile latency improves by 56.5% (90% queries answered by knowledge base) and by 73.9% (90% queries answered by knowledge base). This demonstrates that continuous learning and runtime updates have a significant impact on autonomous robotic performance. Thus, it is crucial to maintain an updated knowledge base within the RoboPlanner framework.

Graph Database Integrity

While the multi-modal OrientDB satisfies ACID (Atomicity, Consistency, Isolation, Durability) properties for databases, integrity checks are to be maintained when updating the databases. Integrity constraints are rules which define the set of consistent database states or changes of state. Typically, three types of checks are performed [START_REF] Rabuzin | Implementing unique integrity constraint in graph databases[END_REF]:

1. Schema instance: Entity types and type checking integrity.

Referential integrity:

This checks that the nodes and edges are uniquely named and that the edges are provided with labels and start/end vertices.

3. Functional dependencies: Value restrictions on particular attributes. Defining minimum and maximum property value.

These checks are incorporated into the below Orc code for knowledge base updates. We notice that type checking (Line 4 in Database Update Integrity), redundancy [START_REF] Tenorth | Knowrob -a knowledge processing infrastructure for cognition-enabled robots[END_REF] ACT-R/E [START_REF] Trafton | Actr/e: An embodied cognitive architecture for human-robot interaction[END_REF] SOAR [START_REF] Laird | Cognitive robotics using the soar cognitive architecture[END_REF] OpenRobots Ontology (ORO) [START_REF] Lemaignan | Oro, a knowledge management platform for cognitive architectures in robotics[END_REF] Such integrity checks and superior performance aspects can prove useful in other applications such as intelligent chatbots and dialogue engines, where updated knowledge bases and real time responses are crucial.

RoboPlanner

Application

Domains

Cognitive

In summary, our work demonstrates the following:

1. RoboPlanner Knowledge Base module that formally models robotic world models, capabilities, object descriptions and task templates -Fig. 3 and inputs to Knowledge Resolution/Knowledge Query examples in Section 6. 2. RoboPlanner Action Planner that uses design-time queries/updates to knowledge graph databases, including exception handling -Algorithm 2, Fig. 4 and Action Planner/Design Time Simulation examples in Section 6. 3. RoboPlanner Runtime simulation, adaptation and performance analysis of action plans using graph queries -Runtime Adaptation Simulation example in Section 6 and Fig. 6. Executable task templates as ROS Smach codes as presented in Section 6.3. 4. RoboPlanner integrity checks for runtime updates to the knowledge base -Database Update Integrity example in Section 6. Such modules will prove useful across a host of Industry 4.0 deployments invoking autonomous robots.

Related Work

Industry 4.0 deployments [START_REF] Lasi | Industry 4.0. Business & Info[END_REF] propose the use of autonomous robotic entities to complete complex tasks. Commercial deployments have been used in warehouses [Bartholdi andHackman, 2016][Zhang andet al., 2016] to improve throughput of automated tasks. Amazon7 has deployed hundreds of autonomous robots to aid in reducing costs of warehouse logistics [START_REF] Wurman | Coordinating hundreds of cooperative, autonomous vehicles in warehouses[END_REF]. Inspiration is drawn from the use of autonomic computing technologies [Huebscher and McCann, 2008], that allow robotic runtime reconfiguration and adaptation. Architectures with self-aware, self-configuring and self-optimizing capabilities have also been proposed [START_REF] Faniyi | Architecting self-aware software systems[END_REF], that may be applied to such automation frameworks.

This has led to recent research on cognitive robotic systems [START_REF] Levesque | Cognitive robotics[END_REF], with architectures such as RoboEarth [START_REF] Tenorth | Knowrob -a knowledge processing infrastructure for cognition-enabled robots[END_REF] and CRAM [START_REF] Beetz | Cram: A cognitive robot abstract machine for everyday manipulation in human environments[END_REF] being proposed. While a few of these make use of semantic ontologies to represent knowledge, others make use of biological memory models to cache information. A review of cognitive architectures applied in multiple domains such as vision, learning, memory models and robotics have been provided in [START_REF] Kotseruba | 40 years of cognitive architectures: core cognitive abilities and practical applications[END_REF]. Table 2 provides a detailed comparison between RoboPlanner and other cognitive/autonomous robotic architectures. We notice that OWL based ontologies [START_REF] Grimm | Knowledge representation and ontologies[END_REF] and queries using SPARQL/Prolog are heavily used, which suffer from performance deterioration when the knowledge base is large. Automated planners such as ROSPlan [Cashmore and et al., 2015] make use of logical PDDL transitions at task design time, rather than runtime executions. In particular, runtime exception handling and consistent model updates have not been fully considered in these frameworks.

In RoboPlanner, we propose the use of graph databases [START_REF] Angles | Survey of graph database models[END_REF] for knowledge representation, which maintain graph relationships within the database. Efficient graph queries are useful in dialogue and chatbot engines as presented in [M. Maro and Origlia, 2017]. We also propose using the Orc concurrent programming language, that may be use in conjunction with industrial workflow specifications (redacted for double blind review). Aspects of the Orc framework are similar to Hierarchical Task Networks [START_REF] Erol | Htn planning: Complexity and expressivity[END_REF], with complex expressions being sub-divided into atomic tasks. Orc further provides granularity in controlling concurrency, temporal actions and runtime behavior, that is more suited for action planning in robotics. A related programming approach is the GOAL agent programming language [START_REF] Hindriks | Goal: A multi-agent programming language applied to an exploration game[END_REF], that makes use of belief-desire-intention approaches to programming intelligent agents. Aspects of knowledge modeling, action templates and goal functions may be mapped to similar axioms provided in our framework. Such an approach may be extended to multiple autonomous robotic deployments.

Conclusions

Autonomous robots are being increasingly used in Industry 4.0 deployments to solve problems via intelligent adaptive mechanisms. A central tenet in such deployments is eliciting efficient action plans that may be executed at runtime. In this paper, we generate action plans through graph knowledge base queries via the RoboPlanner framework. Knowledge about robotic world models and capabilities are encoded in efficient graph database models, that may be efficiently queried to extract information for task completion. Using the concurrent programming language Orc, action plans are generated that can handle robotic runtime exceptions and perception information. End-to-end design/runtime simulations and performance analysis demonstrate the advantages of maintaining the robotic knowledge base.

Figure 1 :

 1 Figure 1: Automation for Warehouse Pick & Place Tasks.

Figure 2 :

 2 Figure 2: RoboPlanner Design/Runtime Execution Modules.

Figure 3 :

 3 Figure 3: Knowledge Property Graphs for Autonomous Robots.

 Fig. 3e provides an example of the Warehouse world model, which hasProperty Map and Object. In order to extract the property of Object Location requires a Map of the area. Fig. 3c provides properties of objects in the world model, including their Location, Shape and Contour Map.

 gremlin> g.V.map ==>{Name=WorldModel} ==>{Name=Objects, Properties=ObjectProperties, Location=ObjectLocation} ==>{Name=Warehouse} ==>{Name=Map, Rack=RackConfig, Layout=WarehouseLayout, Aisles=AislesConfig} gremlin> g.E ==>e[#26:0][#10:0-isOfType->#9:0] ==>e[#29:0][#10:0-hasProperty->#11:0] ==>e[#30:0][#10:0-hasProperty->#9:1] ==>e[#33:0][#9:1-requires->#11:0]

 gremlin> g.v('10:0').Name ==>Warehouse gremlin> g.v('10:0').bothE ==>e[#26:0][#10:0-isOfType->#9:0] ==>e[#29:0][#10:0-hasProperty->#11:0] ==>e[#30:0][#10:0-hasProperty->#9:1]

 gremlin> g.v('10:0').outE.inV.name.path ==>[v[#10:0], e[#26:0][#10:0-isOfType->#9:0], v[#9:0], null] ==>[v[#10:0], e[#29:0][#10:0-hasProperty->#11:0], v[#11:0], null]

 a,b) = Ift member (a,head (b)) >> Println (a + " in " + head (head (b))) | Iff member (a,head (b)) >> search (a,tail (b)) 9 def plan (a) = search (a,b) 10 11

 e f e r e n c e store for r e t r i e v e d data v,D) = g.V.has (v,D) .map >v> 11 append_model (v) 12 def hasProperty (v,D) = g.V.has (v,D) .outE 13 (' hasProperty ') .inV.map >v> append_model (v) 14 def requires (v,D) = g.V.has (v,D) .outE 15 (' requires ') .inV.map >v> append_model (v) 16 def isOfType (v,D) = g.V.has (v,D) .outE 17 (' isofType ') .inV.map >v> append_model (v) 18 def produces (v,D) = g.V.has (v,D) .outE 19 (' produces ') .inV.map >v> append_model (v)

 for world and object t e m p l a t e s , with p e r c e p t i o n 9 def query1 (v,db) = Ift member (v,db) >> (v,db) | Iff member (v,db) >> perception.p := v >> perception.p? 10 def world (w) = query1 (w, world_model) 11 def target (o) = query1 (o, o bj ec t_ t em pl at e) 12 13 ---Queries for robot c a p a b i l i t i e s and a c t i o n s , with e x c e p t i o n s 14 def query2 (v,db) = Ift member (v,db) >> (v,db) | 15 Iff member (v,db) >> exception.ex := v >> add_c a p a b i l it i e s (v,db) 16 def robot (r) = query2 (r, robot_cap) 17 def action (a) = query2 (a, task_template) >> (query2 ((" navigation " , " task " , " manipulation ") ,robot_algo)) | replan_action (a)) 18 19 --R e p l a n n i n g p r o c e d u r e s for runtime e x c e p t i o n s 20 def add_capabi l i t i es (v,db) = merge (db, [v]) 21 def replan_action (a) = Ift (exception.ex? = null) >> stop | Iff (exception.ex? = null) >> exception.ex := null >> action (a)

 picker ") | action (" pick ") | object (" ball ") | world (" rack ") 5 6

 mover ") | action (" collect ") | target (" cylinder ") | world (" rack ") 5 6

Figure 5 :

 5 Figure 5: KUKA Picker Robot API Call Integration via ROS Smach.

Figure 6 :

 6 Figure 6: Latency Measurements dependent on Knowledge Base Queries.

 Starting workload GSP (concurrencyLevel=4)... -Workload in progress 100% [Shortest paths blocks (block size=50) executed: 50/50] -Total execution time: 2.768 secs -Executed 50 shortest paths in 2.762 secs -Path depth: maximum 8, average 5.286, not connected 0 -Throughput: 18.103/sec (Avg 55.240ms/op) -Latency Avg: 211.996ms/op (58th percentile) -Min: 55.838ms -99th Perc: 576.653ms -99.9th Perc: 576.653ms -Max: 576.653ms -Conflicts: 0

 i n f o r m a t i o n 4 type world_model = { . Name :: String, Colour :: String, Location :: (N u m b e r , N u m b e r , N u m b e r) . } 5 val new_world_ mo de l = Dictionary () a n c y _ ch e c k (key,value) = Ift (key = value) >> false | Iff (key = value) >> true 11 def value_check (key,range) = Ift (member (key,range)) >> true | Iff (member (key,range)) key,value) = Read (key) >aa> (i n t e g r i t y . r e d u n d a n c y _ c h e c k (key,value) , i n t e g r i t y . v a l u e _ c h e c k (key,value)) >> n ew _ w o r l d _ m o d e l . a a := value 16 stop

Algorithm 1 :

 1 Stateful Intelligent Robotic Agent. Knowledge Base ← Update(Knowledge Base, Perception); 5 Action ← Choose-Best-Action(Knowledge Base); 6 Robot State ← Update(State, Action); 7 Knowledge Base ← Update(Knowledge Base, Action);

1 Input: Robot Perception; Knowledge Base; Robot State; 2 Output: Robot Action; 3 Robot State ← Interpret(Perception); 4

 picker | pick | ball | rack is decomposed iteratively to complete the task. Queries to the knowledge base enable generating 5 https://orc.csres.utexas.edu/ Input Goal; Knowledge Base[World Model, Object Templates, Task Descriptions, Robot Capability, Algorithms]; 2 Output: Action Plan; 3 Goal ← Verify(Input Goal, Knowledge Base[Task Descriptions]);

	Algorithm 2: Generating Action Plans for Goals via Knowledge Bases.
	4 Subgoals ← Decompose(Goal, Knowledge Base[Task
		Descriptions]);
	5 for each Subgoal do
	6	(Action?, Target?) ← Requirements(Subgoal);
	7	(Target?, Object Attributes?, Capability?) ←
		Requirements(Action);
	8	Object Attributes? ← Requirements(Target);
	9	if Object Attributes? is a member of Knowledge
		Base[World Model] then
		Object Attributes ← Query(Object Attributes?,
		Knowledge Base[World Model]);
		else
		if Object Attributes? can be obtained by Perception
		then
		Object Attributes ← Perception(Object
		Attributes?, Knowledge Base[World Model, Robot
		Capability, Perception Algorithms]);
		else
		Exception ← Object Attributes?
	10	if Target? is a member of Knowledge Base[Object
		Templates] then
		Target ← Query(Target?, Knowledge Base[Object
		Templates]);
		else
		if Target? can be obtained by Perception then
		Target ← Perception(Target?, Knowledge
		Base[World Model, Robot Capability, Perception
		Algorithms]);
		else
		Exception ← Target?
		Attributes,
		Capability, Knowledge Base[Navigation/Manipulation
		Algorithms]);
		else
		Exception ← Action?

1 Input: 11 Capability ← Query(Capability?, Knowledge Base[Robot Capability]); 12 if Capability satisfies Action then Action ← Query(Action?, Target, Object 13 if Exception is null then Action Plan ← Update(Action); else Trigger Re-planning of Subgoal 14 return Action Plan satisfying Input Goal;

Table 2 :

 2 Autonomous / Cognitive Robotic Architectures.

		CRAM	[Beetz
		et	al.,	2010]
	Feature Modules	RoboEarth

 Line 0 in Database Update Integrity) and valid range of properties (Line 11 in Database Update Integrity) are included. When a robot produces a runtime update, the site update node(key,value) checks for integrity before pushing it to the knowledge base (Line 15 in Database Update Integrity).

		Service				
		Robots, Knowledge	Human-Robot	Autonomous Mobile	Cognitive	Service	Autonomous
		Sharing	among	Coordination		Robots	Robots	Robots
		Robots					
				Declarative knowl-			Graph Databases
	Knowledge Base	KnowRob [Tenorth and Beetz, 2013] OWL Ontologies	edge memories); (fact-based Proce-dural knowledge (rule-based memo-	Semantic Models -Symbolic Memory and Episodic	ORO OWL and RDF Triplestore	with Model, Capabilities, World Robot Al-gorithms and
				ries)				Task Templates
	Knowledge Queries	Knowrob queries, that can be (Prolog) extended to other ontology queries	High level model in-teractions	STRIPS [Russell and Norvig, 2015] like decision procedures	SPARQL Queries	Gremlin edge Queries	Knowl-Graph
		CRAM Plan Lan-					Orc Specifications
	Action Planning	guage (CPL) allow-ing concurrent, par-	Intentional module	(Goal)	Procedural memory module	CRAM integration with logical rules	with Base queries; ROS Knowledge
		allel processes						Smach Code
	Runtime tion Handling Excep-	COGNITO reason-ing system that processes failure traces	Utility based re-wards; Visual and Aural modules	Reenforcement Learning	Human expert inter-vention	Adaptation exception dling modules han-and
	Runtime Knowl-edge Base Up-dates	No Explicit Mention	Knowledge updated	chunks	Chunks of memory data updated	RDF Triple updates with consistency checks	Graph update with in-database tegrity checks
	Performance Eval-uation	No Explicit Mention	Accuracy tions with respect of Ac-to World Model changes	Cognitive Reactivity measured	ORO Server perfor-mance evaluation (updation, queries)	Graph performance, ex-database ception handling delay
	of input data (

1

+++ Database Update Integrity +++

https://www.kuka.com

https://orientdb.com/

http://tinkerpop.apache.org/

http://wiki.ros.org/smach

https://www.amazonrobotics.com/