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A New Approach to 3D ICP Covariance Estimation

Martin Brossard!, Silvére Bonnabel!, and Axel Barrau

Abstract—In mobile robotics, scan matching of point clouds
using Iterative Closest Point (ICP) allows estimating sensor
displacements. It may prove important to assess the associated
uncertainty about the obtained rigid transformation, especially
for sensor fusion purposes. In this paper we propose a novel
approach to 3D uncertainty of ICP that accounts for all the
sources of error as listed in Censi’s pioneering work [1], namely
wrong convergence, underconstrained situations, and sensor
noise. Our approach builds on two facts. First, the uncertainty
about the ICP’s output fully depends on the initialization
accuracy. Thus speaking of the covariance of ICP makes
sense only in relation to the initialization uncertainty, which
generally stems from odometry errors. We capture this using the
unscented transform, which also reflects correlations between
initial and final uncertainties. Then, assuming white sensor noise
leads to overoptimism as ICP is biased owing to e.g. calibration
biases, which we account for. Our solution is tested on publicly
available real data ranging from structured to unstructured
environments, where our algorithm predicts consistent results
with actual uncertainty, and compares favorably to previous
methods.

Index Terms—probability and statistical methods, localization

I. INTRODUCTION

OINT clouds and the Iterative Closest Point (ICP) algo-

rithm play a crucial role for localization and mapping
in modern mobile robotics [2,3]. ICP computes an estimate
of the 3D rigid transformation that aligns a reading point
cloud to a reference point cloud (or more generally a model
or a surface). The algorithm starts with a first transformation
estimate, and repeats - until convergence - point association
and least-square minimization, where initialization is natu-
rally provided in mobile robotics by odometry [4,5] based
on wheel speeds, inertial sensors, or vision. The point asso-
ciation matches points between the two clouds by generally
associating each point of the second cloud to its closest
point in the first one. Then, the algorithm minimizes a user-
chosen metric between the matched points that provides an
update of the current estimate. In spite of robust filtering
that are broadly used during the alignment of point clouds,
a.k.a. registration, ICP is subject to errors stemming from
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Fig. 1. Horizontal translation estimates according to ICP (Ticps red dots) for
various initial estimates (T'jy;, black dots) and ground-truth (T'¢;ye, square)
for registering two scans of the sequence Stairs of [8], where we sample
1000 initial estimates from two distributions reflecting accurate (a) and
dispersed (b) ICP initialization and that respectively correspond to the easy
and medium scenarios of [9]. We see the uncertainty on the ICP estimate, that
is, dispersion of red points, wholly depends on the accuracy of initialization.
There is no “uncertainty of ICP” per se.

sensor noises, underconstrained environments that result in
unobservable directions, and local minima [1,6,7].

A. Sources of ICP Uncertainty

The pioneering work of Censi [1] identifies the following
sources of error for ICP registration: wrong convergence (not
handled by Censi’s formula), underconstrained situations, and
sensor noise. As indicated by preliminary remarks in [10,11]
we believe a fourth important source is missing: the one that
stems from sensor biases. In the present paper we consider
indeed the following sources of error:

1) Initial Transformation: 1CP is subject to error due to
wrong initialization that makes the algorithm converge to a
local minimum out of the attraction basin of the true solution,
as largely observed in practice, see e.g. [7,12] and Figure 1.
In practice it often proves to be the dominant error.

2) Sensor White Noise: each point measured in a point
cloud is affected by an independent random sensor noise of
centimetric magnitude which is a function of point depth and
beam angle [6,13].

3) Sensor Bias Noise: the observed points share common
errors that stem from: temperature drift effect, i.e. stability
of the laser [13]; observed material [6]; incidence and beam
angles resulting in large bias [14]; or wrong calibration, e.g.
[15] found a distortion of 0.22 deg of the scan point clouds
due to intrinsic calibration process. This correlated noise,
a.k.a. bias, strictly limits the confidence we may have in the
ICP estimate. To our best knowledge this is often omitted
with a few exceptions: e.g., [14] removes bias on point
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measurements due to sensor beam angle, and preliminary
ideas may be found in [10,11].

4) Randomness Inherent to the ICP Algorithm: ICP is
generally configured with random filtering processes [2], e.g.
sub-sampling, such that two solutions with exactly the same
inputs would differ.

In the following we address uncertainty coming from 1),
2) and 3) and do not consider 4), which should be marginal.

B. Brief Literature Review

Various approaches exist for estimating the covariance of
the ICP algorithm, each of which being a trade-off between
accuracy and execution time. Monte-Carlo algorithms, e.g.
[12,16], sample noisy scans (from a reference scan) and ICP
initializations to compute a large number of ICP registration
results, define the covariance of the sampled results as the
covariance estimation, and use the estimated covariance for
all future registration with the reference scan, thus getting
a covariance function of the reference scan only. Another
category of covariance estimation methods relies on closed-
form expressions [1,17]-[19], whose underlying assumption
consists in linearizing the objective function used in ICP
around the convergence point, ruling out the possibility for
wrong convergence and the uncertainty that stems from it.
Albeit still used in practice, Censi’s pioneering formula [1] is
widely considered as overoptimistic, see e.g. [20]. Recently,
[7] leveraged learning based approaches to estimate ICP
uncertainty stemming from inaccurate ICP initialization.

C. Contributions and Paper’s Organization

Our approach introduced in Section II extends existing
works in three ways: 1) we consider ICP uncertainty coming
both from sensor errors and ICP initialization. 2) we raise
an important point which is that ICP uncertainty in itself
is meaningless as it is inherently related to uncertainty in
the initialization pose (unless there is a global minimum).
This is supported by experiments displayed in Figure 1. We
address this problem by outputting a covariance matrix of
larger dimension that also reflects the correlation between
ICP final and initial estimates. And 3) we estimate in Section
IIT the ICP uncertainty combining a closed-form expression
using [1,18] accounting for sensor biases, and derivative-free
methods using the unscented transform of [21,22], which
comes at a lower computational cost than Monte-Carlo runs.

Besides, we evaluate, compare and discuss our approach on
the dataset of [8] in Sections IV and V, where our approach
obtains consistent estimates and achieves better results than
existing methods. The code to reproduce the results of the
paper is made publicly available at: https://github.
com/CAOR-MINES-ParisTech/3d-icp-cov.

Throughout the article, we configurate the ICP as sug-
gested in [9] with a point-to-plane error metric.

II. PROPOSED APPROACH
A. Pose Representation and Pose Uncertainty Representation

The true transformation between two point clouds and
its ICP-based estimate both live in the set of 3D rigid
transformations

SE@3) = {T _ PS‘ ﬂ e RYR € S0(3),t € R3} ,

and are thus represented by a matrix T (a.k.a. homogeneous
coordinates), where R denotes a rotation matrix and t a trans-
lation. Note that, it is consistent with matrix multiplication: if
T transforms a first point cloud into a second one, and then
Ty transforms the latter into a third cloud, then the matrix
T,T; € SE(3) encodes the transformation between the first
and the third clouds.

It is possible to linearize poses through the approximations
cos(a) ~ 1 and sin(@) ~ « for small «. For example, we
have for a small rotation around the x axis of angle «

1 0 0 1 0 0
R,o= |0 cos(a) —sin(a)| ~ [0 1 -«
0 sin(a) cos(a) 0 a 1
0 0 0 1
~I34+ (0 0 —a| =I3+a(|0])x, )
0 a O 0

where (b), € R3*3 denotes the skew symmetric matrix
associated with cross product with b € R3. Along those
lines, a full rotation R may be approximated as

1 — «
R~ |y 1 —a| =L+ (|8])x @)
- a 1 Y

for small rotations around the x, y and z axes. The identity
pose writes Id = I and a transformation being close to
identity may thus be linearized as T ~ I, + £ with

£A = |:(¢)>< p:| c R4X4,£ —_ |:¢:| ,(z) c R37p c RZS. (3)
0 0 p

This may serve as an uncertainty representation for poses as
follows. If £ is taken random, typically we take a Gaussian
¢ ~ N (0,Q), where Q € R®*6 is the covariance matrix,
then Iy + £” defines a small random pose close to identity,
i.e., a small transformation. In turn, for a given pose T, the
transformation T = T (I, +£") = T + T¢" denotes a
random transformation being close to T. T may be viewed
as the noise free mean of the random pose ’i‘ and Q encodes
the dispersion around the mean value T.

A further theoretical step in this direction consists in using
the notion of concentrated Gaussian distribution as advocated
in [23], see also [24]-[26],

T = Texp(€), where £ ~ N (0,Q) £ €R®,  (4)

with & a zero-mean Gaussian variable of covariance Q and
where exp(-) denotes the exponential map of SE(3). The
latter maps elements £ to poses. Albeit sounder from a
mathematical standpoint, this is very close to what we have
just presented since the exp(-) map has the property that
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exp(&) ~ I, +&” up to first order term in €. For uncertainty
representation (4), we adopt the notation T ~ A, (T, Q).
Note that, in (4), the vector & € R® may be viewed as the
error between T and T. Indeed the relative transformation
between poses T and T is encoded in &€ as T—'T = exp(§).

B. The Role of ICP Initialization

The ICP procedure seeks to estimate the transformation
Tiuwe € SE(3) that maps a first cloud of points P to a
second cloud (or a model) @ as follows [2,3]:

1) we have a first “guess” for the transformation we call
Tini, ak.a. initial or coarse alignment [3];

it) then we initialize the ICP algorithm by applying a

transformation T ! to the cloud Q. This way the

transformation the ICP seeks to estimate become the

relative pose T, := Ti_ni1 True. We thus get an estimate

Tl = icp (P, Ti;il ) for Tiel;

finally the estimate of T4, that the algorithm outputs

is Ticp = TiniTrel = Tiniicp (P; TﬁlQ)'

ini

i44)

Note tAhat if T,e is perfectly estimated we recover T4,y as
then Ticp = TiiTra = TiniTi;ithrue = Trye N0 matter
how far the initial guess Ty; is from Typye.

Let us introduce the various errors at play in ICP. In
robotics, the initial guess in ¢) is typically provided through
inertial sensors or wheeled odometry [4,5]. We have thus
an initialization error that stems from sensor imperfections,

encoded by a vector &;,;, and one may write

Tini = Ttrue €xp(&ini), i ~ N (0, Qini), (5

which is advocated in [23,27] to suit particularly well repre-
sent odometry errors in terms of pose. Then, ICP estimates
the relative transformation between Ti,,. and T;.;, that is,
outputs an estimate Trel of the actual initial error T,¢; which
writes

Trel = Ti:lletrue = eXp(_Sini)Tt_nlleTtrue

= exp(—&mi) ~ Iy — & (6)

C. ICP Estimate T\« of Relative Pose T\

At step 1) above, that is, once initialization is done, see [2],
ICP provides an estimate T, of the relative transformation
T,e of (6) as a function

Tye == icp (P, T;,1 Q) (7)
of the point clouds P and Q. Thus Trel appears as a function
f(Tra) € SE(3) of the true relative transformation T,
typically affected by the phenomena of wrong convergence.
Moreover, sensor (scanner) noise induces small fluctuations
in the point clouds that affects this estimation. This yields:

Trel = f(Trel) GXp(GW) = f(exp(_gini)) eXp(GW)7 (8)

where w € R%% encodes errors due to sensor noise on each
of the K pairs of points in the clouds, and Gw € RS the
resulting 6 degrees of freedom error made on T,¢. Sensor
noise stems from unknown parameters that depend upon the

1) ICP initialization: t;,; = ttrue + Eini [s€€ (5)]
ini

Ld tiMue

T

ii) ICP relative pose estimate: o) = f(tirue — tini, W)
trel = —&ini R
Ld timuc ti(tp
Erel ~ Id + J(ttrue - I/ini) + Gw

~ Jd — J&in + Gw [see (9)]
117) ICP final pose estimate: ﬂcp = tinj + frel [see (12)]

Ld ttl[ue ti‘jl’
T N_ "
Eicp “icp T ﬁtrue

= fAi(tI
~ (I — J)gini + Gw

Fig. 2. Schematic illustration of the ICP procedure, error definitions and
linearizations in the case of 1D translation ¢ € R (Id = 0).

calibration process and drift with temperature [13]. If the
ICP is initialized on the true pose T, then there is no
wrong convergence and the only error stems from noise, i.e.,
f(exp(0) = f(I4) = I4. Thus f(-) € SE(3) is close to 14,
and the model may be linearized around &;,; = 0, w = 0 as

f(exp(—&ini)) exp(Gw) =~ f(I4 — &) exp(Gw)
~ L+ (—J&mi + GW)",  (9)

where matrix J encodes the linear approximation of f(-).

D. ICP Final Pose Error

Let us now consider step ¢iz) of the ICP algorithm, i.e.,
the final estimate

Ticp = TiniTrcl (10)
= Ttrue eXp(Sini)f(eXp(_gini)) eXP(GW) (11)

(11) was obtained substituting (5) and (8) in (10). Lin-
earizing (11) by recalling (9) and keeping only the
first order in the small errors &;,; and w yields
Ticp =~ Ttruc [14 + (gini)/\] [14 + (_JEini + GW))/\] =~
Tirue (Lt + (&ini — J&mi + GW)/\) and thus in terms of un-
certainty representation (4) we approximately find:

~

Ticp =~ Tirye €Xp ((16 - J)Sini + GW) . (12)

Figure 2 recaps the computations for 1D translations. There
are a couple of situations of interest. Let us momentarily
assume sensor noise to be turned off, w = 0, for simplicity.
o If there is one global minimum, then the ICP sys-
tematically recovers the relative transformation (6) at
step 4¢) of the algorithm, i.e. ’i‘rel = T, and thus
f(Trcl) = Trcl- So f(exp(fgini)) =~ I4 - 51/1\11 and we
identify J = I; in this case. As a result the final estimate

(12) is True €xp(0) = Tirye indeed.
e On the other hand, in the directions where we have no
information, e.g. along hallways or in underconstrained
environment [1], the relative transformation will not be



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2019

affected in the corresponding directions meaning that
(along those directions) J = 0 and the final error
then has the form T{nlle’i‘icp = T{rllleTtme exp(&imi) =
exp(&ini), that is, the initialization error fully remains.
In intermediate cases (when there are local minima) the

remaining error is a fraction J&;,; of the initialization error.

E. Corresponding ICP Error Covariance

If we represent ICP uncertainties resorting to concentrated
GaussiAan (4) as ’i‘icp ~ N (Tirue, Qicp), .., we posit
TotTiep = exp(&icp), then the covariance matrix Qjcp
of &iop describes dispersion (hence uncertainty) of the ICP
error. Plugging the latter representation into (12), we have
&cp = (Is — J)&mni + Gw. As the initialization error is
assumed to have covariance matrix Q;i,; typically inferred
though an odometry error model [23,27] and by denoting
Qsensor the covariance of scan sensor noise w, the covari-
ances add up owing to independence of sensor noises, and
by squaring &icp, = (Is — J)&ini + Gw we find

Qicp = (16 - J)Qini(IG - J)T + GQsensorGT-

This is our first result about ICP covariance. The first term
related to the initialization uncertainty and that accounts for
wrong convergence, lack of constraints in the clouds and
unobservable directions, and the second one related to scan
noise and that may be computed through “Censi-like” [1]
formulas as we will show in section III.

13)

F. Discussion

Albeit not obvious, J actually heavily depends on Qjy;.
This is an insight of the present paper: uncertainty of ICP
does not exist in itself. Assume indeed there are various local
minima. If Q;y,; is very small, then all initializations Ty; fall
within the attraction basin of Ty,ye and thus f(Tye) = Trel
and we identify J = Is. But if Qu,; is large enough only
a fraction of initializations T,; lead to f(Tye) = Trel, the
ones that get trapped in other local minimas do not lead
to correct estimate of Tye and J # Ig. Thus J is not the
analytical Jacobian of function f(-), and may be viewed as
its “statistical linearization” [28]. This prompts the use of an
unscented transform [21] to compute it, see Section III-B.

G. Maximum Likelihood Fusion of Initial and ICP Estimates

T;,; and Ticp may be viewed as two estimates of Ty ye
associated with uncertainty respectively Qini = cov(&ini) and
Qicp = cov(&icp) where &icp = (I — J)&ini + Gw. The
corresponding pose fusion problem of finding the Maximum
Likelihood (ML) of a pose T4,,e given two uncertain pose
estimates was considered in [23], with the important differ-
ence that herein &;n; and §icp are not independent, they are
correlated, with joint matrix of initialization and ICP errors

Qini Qini(I - J)T

. Eini |\ _
Q o COV( |:£icp:|) B |:(I - J)Qini Qicp (14)

Using linearization as previously and following first-order
computations in [23], the maximum likelihood estimate of
Tue may be approximated as Tur = Tirue exp(&my,) with
cov(émr) = Qumr, with Qyr, defined through its inverse:

Q! = [I]T[ Qini Qini(I_J)T:| ' [I} (15)
ML I (I - J)Qini Qicp I-

The latter stems from classical linear estimation theory
and may be proved using the Kalman information filter:
to the first order ’i‘ini and Ticp are considered as two
noisy measurements of T, with joint covariance (14), the
measurement matrix is thus H := [I I}T and as T, ue
is initially totally unknown the prior covariance satisfies
P! = 0. The covariance of the Kalman estimate in the

light of measurements is thus updated in information form
asP '« 0+HTQ 'H.

III. PRACTICAL COVARIANCE COMPUTATION

This section describes our algorithm for estimating the
3D ICP uncertainty covariance (13) leveraging findings of
Section II. We propose to first compute the rightmost term
of (13) which is due to sensor noise.

A. Computation of Dispersion Owing to Sensor Noise

We now focus on the computation of GQgensorG?. The
cost function of point-to-plane ICP after initialization writes
Jg (P, TiQ) = S (Trerpr — Gx) - nil|?, where the
dr’s denote the points of Ti;il Q and K is the number of pairs
of matched points. Linearizing on SE(3), we may linearize

the cost J4, | (e (P, T;,1 Q) :Aszzl | (Trcl exp (§) pr—

~

(jk) -ng||? w.rt. estimate Tyep at Ty = Trep as

K

Tg o exp(e) (P Tint Q) = > [ Br& — dil?,
k=1

(16)

with dj; a scalar being function of differences between pairs
of points and point normals. Least squares formulas yield an
optimal value £&* = A~! Zle BYdy, where we let A =
Zszl B7By. Each dy, is affected by k-th component w;
of previously introduced sensor noise w, and this induces
fluctuations in £* over various experiments. Let’s postulate
w; = b + v; with v; a white noise of variance ¢2, and b
and unknown calibration bias that is identical for all points
but varies from one experiment to the next. Following least
squares covariance, see [1,18], we end up with:

GQuensorGT = A7 + A7 'Beov (b)) BTA™Y,  (17)

where A = 21 BY By, and B = Y+ BY. We recover
the covariance o2A~! of [1,18] w.r.t. sensor white noise,
and a new term, A~!'Bcov (b) BT A~!, that represents the
covariance w.r.t. the unknown bias b, that is, correlated
noise. This new additional term is paramount as A has
magnitude proportional to K, hence A~! is very small,
explaining that Censi’s formula (based on A~! only) seems
overoptimistic [20]. For example A~! has trace 0.2 cm for
the registration displayed in Figure 1 whereas the covariance



BROSSARD et al.: A NEW APPROACH TO 3D ICP COVARIANCE ESTIMATION

Algorithm 1: Computation of matrix J in (13)
Input: P, Q, Tini, Qinis Ticp = Tiniicp (P, Ti,1 Q);
// set sigma points

1 f_ni :col(\/m%, j=1,...,6,

l = fcol(\/m%;ﬁ, j=17,...,12;
// propagate sigma points through

2 T). = Ty exp (gm) j=1,...,12;
T, = Thiep (P (T5,)71Q) , j =1,...,

€, = e (T, ), j=112
// compute covariance and infer J

4 (Is = J)Qini(Is — ) Z] 1 12 1cp€10p’

5 éiCD 2;21 112 fcp;

6 3= (225 (éy -~ bon) sml) Q! +1s:
Output: J, (Is — J)Qini(Is — I)T;

(7)

12;

w.r.t. the unknown bias has trace 2.6 cm. In practice b arises
from sensor calibration, laser stability [13], observed material
[6], and incidence of beams [14]. In the remainder we assume
bias standard deviation to be approximately 5cm as in [6].
Note that (17) captures the effect of underconstrained
situations like hallways. Indeed in unobservable directions
the cost Ji. 1() is constant, yielding small eigenvalues for
A and hence large covariance (17). Derivation of By and
extraction of G in (17) are available with paper code.

B. Computation of Dispersion owing to ICP Initialization

Computation of (I —J)Qini(Is —J)7 in (13) is of greater
importance as in practice it largely dominates G QuensorGT
We propose to compute it in a deterministic derivative-free
method, in which we adapt the unscented transform [21] for
pose by following [22,23]. The advantages of using our un-
scented based method rather than Monte-Carlo sampling are
fourfold: 1) it is deterministic; 2) it remains computationally
reasonable by adding only 12 ICP registrations; 3) it explic-
itly computes the cross-covariance matrix between Ticp and
T, as a by-product without extra computational operations;
and 4) it scales with Qjy;, i.e. our approach naturally self-
adapts to the confidence we have in initialization without
extra parameter tuning.

We compute the covariance as follows, see Algorithm 1:

. we consider the prior distribution Tprior ~
N (Tini, Qini)» which is approximated by a set
of so-called sigma-points £m1, see step 1);

o we approximate the propagated distribution Tp.op, =
Tprioricp(P, T ! Q) as

prior
Tprop = NL (Tini7 Qini) icp <P7NL (Tini7 Qini)i1 Q)
~ N (Tieps (I = ) Quui(Ts = )7

after propagating each sigma-point in steps 2) and 3),
where T, is the given ICP pose estimate. We compute

(18)

metric NNE KL div. NNE* KL div.*
trans. ‘ rot. trans. ‘ rot. trans. ‘ rot. trans. ‘ rot.
Qeensi 103 103 10* 10° 103 10°
Aymonte 3 2 4 4 3 3
carlo 10 10 10 10 10 10
proposed 4.2 34 102 102 31 98
Table 1. Results of ICP uncertainty estimation in term of Normalized

Norm Error (NNE) and Kullbach-Leibler divergence (KL div.) divided
into translation and rotation parts. As the ICP error distributions are not
Gaussian [9], we provide robust statistics (starred, *) by removing both the
more and less accurate quantiles of each registration. The proposed method
outperforms the two others.

the covariance and infer the matrix J as a by-product in
respectively steps 4) and 6).
We derive the algorithm by following [22] for pose mea-
surement, zero-mean prior distribution, and where we set
a=1

IV. EXPERIMENTAL RESULTS
A. Dataset Description & ICP Algorithm Setting

This section evaluates the ability of the approach to
estimate ICP uncertainty on the Challenging data sets for
point cloud registration algorithms [8]. It comprises eight
sequences where point clouds are taken in environments rang-
ing from structured to unstructured, and indoor to outdoor.
Each sequence contains between 31 and 45 point cloud scans
along with ground-truth pose for each scan, that provides a
total of 268 scans and 1020 different registrations as we align
each scan with the three scans the following.

We configure the ICP as in [9] with 95% random sub-
sampling, kd-tree for data association, and point-to-plane er-
ror metric where we keep the 70% closest point associations
for rejecting outliers.

B. Compared Methods and Evaluation Metrics

This section evaluates the following methods:
chnsi : the close-form method of [1] adapted for the ICP
setting defined above;
Quonte . the covariance computed after sampling of 65

carlo

Monte-Carlo ICP estimates;

Qicp : our proposed approach detailed in Section III.
Each method assumes depth sensor white noise and bias with
5cm standard deviation, which is the mean value found in
[6] for the Hokuyo sensor used for these experiments, and all
methods know the initial uncertainty Q;,;, whose magnitude
0.1m and 10 deg corresponds to the easy scenario of [9].

We compare the above methods using two metrics:

1) Normalized Norm Error (NNE): that evaluates the

historically challenging [1,16] prediction of the covariance
scale, and is computed as

1/2

1 & .
NNE = (5= D [€all3/ trace(Qu)) =, (19)
n=1

true L) With is the transformation
error and Q,, the estimated uncertainty covariance matrix,
and averaged over N samples. This metric characterizes the

where £, = exp~ G N
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Fig. 3. Results on real data of [8] projected onto the ground plane for
visualization. Ellipses represent the 95% (30) confidence sets for each
uncertainty estimation method. (a): “true convergence situation”, the errors
are mainly caused by sensor noises and Censi’s formula should apply. (b):
however we see the Censi ellipse seems optimistic as ground truth is almost
outside it whereas it falls well within our ellipse (green). (c, d): “wrong
convergence”, the large errors are due ICP initialization. Only our approach
is consistent with ICP uncertainty in each environment and does not suffer
from overoptimism.

uncertainty as only the true registration is known (the exact
distribution of the point cloud is unknown). The target value
is one, below one the estimation is pessimistic, whereas a
value over one indicates an overoptimistic estimation.

2) Kullback-Leibler Divergence (KL div.): which is com-
puted between a pseudo-true distribution and the estimated
distribution. The pseudo-true distribution is computed after
sampling 1000 ICP estimates of the evaluated registration
over the initial position. As sensor noise is fixed in the point
clouds, this distribution represents the uncertainty stemming
from initialization errors.

C. Results

Results are averaged over 1000 initializations for each of
the 1020 considered pairs of point clouds, representing a
total of more than one million registrations, where the ICP
is initialized with a different estimate T;,; sampled from
N (Tirue, Qini)- Table 1 provides average results over the
eight sequences, and Figure 3 illustrates typical registrations
from structured to unstructured environments. We observe:

o Qccnsi is far too optimistic and unreliable for sensor-
fusion, as noted in [20]. Its centimetric confidence
interval makes sense only when ICP is very accurate;

Qronte s overoptimistic when the discrepancy arising
from ICP initialization remains negligible, see Figure 3

(b), for which the method predicts a confidence interval

with millimetric size. This is naturally explained as the
method assumes no error caused by sensor noises;

o the proposed method obtains the best results for both
metrics as displayed in Table 1. It notably outperforms
Qronte while deterministic hence more reliable, and
computationally much cheaper. The dominant term is
generally due to initial uncertainty. However in “global
minimum” cases the sensor bias used for computing
Qicp slightly inflates the covariance of [1], and more

closely captures actual uncertainty, see Figure 3 (a,b).
Besides outperforming the other methods, our method pro-
vides simple parameter tuning: we set the bias noise standard
deviation as having same magnitude as sensor white noise,
and the error stemming from ICP initialization does not need
to be tuned when Qi,; is an output of inertial, visual, or
wheeled odometry system [4,5].

Regarding computational complexity and execution time,
step 2) of the algorithm requires 12 registrations which take
6s when registrations are computed parallely, whereas the
remaining part of the algorithm takes less than 0.1s. The 65
Monte-Carlo runs are more than five times more demanding
than the the proposed method.

V. COMPLEMENTARY EXPERIMENTAL RESULTS

This section provides an in-depth analysis of the method
in term of trajectory consistency, robustness to high and
misknown initial uncertainty, and discusses the advantages
and the validity of the approach.

A. Application to Trajectory Consistency

We asses the quality of the covariance estimation in Sec-
tion III over trajectories as follows. For each sequence of [8],
we compute the global pose estimate at scan [ by compound-
ing transformations such that T! = TO! . T!=L! whose
covariance is computed with the closed-form expressions of
[23] which are valid up to 4-th order approximation. We
compare three methods defined as:

CELLO-3D : reproduced results of [7], that proposes a learn-
ing based method for estimating the ICP covariance,
which is trained on environments similar to the tested
sequence. The results are indicative as the ICP setting
of [7] slightly differs from the setting of [9] we use;

ini.+ICP : combines initialization and ICP measurements
with the covariance estimate (15) without considering
cross-covariance terms, i.e., applying formulas of [23] ;

proposed : based on the full proposed covariance of the
maximum-likelihood estimate (15).

We set initial errors as in Section IV and evaluate the above
methods using the Mahalanobis Distance proposed in [7]
between final trajectory estimates and ground truth

Y rQ; e, )1/2

Mabh. dist. = (n_o dim(£,) N

(20)

where &, = exp '(Tp. T,) is the transformation error

and Q,, the estimated covariance matrix, averaged over N
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sequence H Apartment H Hauptgebaude H Stairs H Mountain H Gazebo summer H Gazebo winter H Wood summer H Wood winter

Mah. dist. || trans. | rot. || trans. rot. H trans. .|| trans. | rot. || trans. rot. || trans. rot. || trans. H trans. | rot.
CELLO-3D [7] 0.2 0.1 0.3 - -

ini.+ICP 3.5 15 1.9 4 2 1.5 1.2

proposed 2.3 9.8 1.2 1.2

Table 2. Trajectory consistency results in term of Mahalanobis distance (bold indicates best performance) split into translation and rotation parts for the
sequences of [8], where Mountain is not considered in [7]. Our method obtains on average the best uncertainty assessment, albeit slightly optimistic.

I I I I
L
[ ] meeeeeee true trajectory ini.+ICP
: ———  proposed
Py 1.
—~ | T T T
E | I I |
> | | I I
[ | | |
| | | |
Y R P Lol
| b l
[ | | |
| | | I
0 2 4 6
x (m)
Fig. 4. Results projected onto the ground plane for visualization in the

Stairs sequence of [8], where the “ellipses” (lines) represent the 95% (30)
final confidence sets.

samples. The target value is one, below one the estimation
is pessimistic, and above one the estimates are optimistic.

We average results over 40 different initial trajectories for

each sequence, which are numerically displayed in Table 2
and illustrated in Figure 4. We observe:

e CELLO-3D is the only pessimistic method, which es-
timates uncertainty ranging from 3 to 10 times higher
than actual uncertainty. It evidences how difficult it is
to asses ICP uncertainty in practice;

« the proposed approach obtains on average the best re-
sults. It obtains similar estimates than ini.+ICP when the
ICP algorithm is accurate (Gazebo and Wood). In more
difficult environments, e.g. Stairs, it better incorporates
initialization than ini.+ICP thanks to it accounting for
measurement correlation encoded in (14), see Figure 4.

These results confirm the ability of the method to compute

covariance estimates over trajectories also and the relevance
of correlation terms between ICP and initial estimates.

B. Role of Initial Uncertainties in Covariance Estimation

We evaluate the influence of Q;,; on the covariance estima-
tion in challenging situations where Qjy; is high, inaccurately
known (the estimation of Q;y; is in itself challenging), and
sensor noise is inflated. For each environment of [8], we
evaluate the method in 9 situations where initial uncertainty is
easy, medium and difficult with respectively 0.1, 0.5, 1 m and
10, 20, 50 deg standard deviation, see [9]. In each situation
we evaluate the algorithm with different magnitudes for Qjy;,
hence assessing its robustness to pessimistic and optimisitic
parametrization. We finally add white and depth bias noises
on already noisy point clouds with 5cm standard deviation.
Results are given in Table 3, and illustrated in Figure 5.

e The ICP algorithm obtains unreliable results for large
initial uncertainty, see Figure 5, whereas it obtains
centimetric errors for low levels of initial uncertainty.
As anticipated in Section II-B, significant ICP errors
are caused by inaccurate initialization;

(a) Stairs

(b) Gazebo winter

-l
|

medium

large

Fig. 5. ICP results (dots) and 95% (30) confidence sets (lines) following
our method for three levels of initial uncertainty. We see the latter highly
influences the ICP registrations and ICP covariance estimations accordingly.

o ICP final outputs are agnostic to initialization when a
global minimum exists, see e.g. the Gazebo and Wood
environments in Table 3 for levels of Q;,; corresponding
to easy and medium scenario. The method obtains cor-
rect estimates where the sensor noise terms numerically
dominate the estimated covariances, and J ~ I, see
Section II-D;

« another environments contain local minima, e.g. Haupt-
gebaude. Then the algorithm outputs reflect the pes-
simistic or optimistic belief about the initial uncertainty.
We recommend in these situations to set Q;y; sufficiently
high to favour conservatism;

« our method is able to detect inaccurate ICP registrations
by providing very high covariance estimates, although
it cannot accurately describe non Gaussian distributions,
see Figure 5 (a,b).

C. Discussion about the Proposed Approach

We finally examine the pros, cons, and fundamental as-
sumptions of the method. The main advantages are: it being
anchored in a mathematical theory, its efficiency to as-
sess uncertainty for acceptable levels of initial uncertainties,
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Qipitue) || easy | medium | difficult
Qim(algo) ‘ ‘ easy ‘ med. ‘ diff. ‘ easy ‘ med. ‘ diff. ‘ easy ‘ med. ‘ diff.
Appart. 1.6 | 1.5 | 106 1.8 | 1.7 | 100 | 10° | 10° | 0.6
Haupt. 1.8 0.3 1073 3.6 | 0.7 103 103 103 0.3
Stairs 0.7 0.2 1073 1.9 0.8 103 103 103 0.7
Montain 2.1 1.1 1073 3.3 1.8 103 103 103 4.0
Gazebo 1.1 1.0 107 1.3 1.2 1070 104 104 0.8
Wood 2.1 2.1 1073 2.2 | 2.2 1073 103 103 0.3
Table 3. NNE, see (19), for different levels of true and supposed initial

uncertainty. Difficult initial uncertainty leads to highly erroneous ICP outputs
that the proposed method detects if correctly parametrized.

its simplicity, while being computationally reasonable, see
Algorithm 1. The cross-covariance term in (15) may be
fruitful for increasing robustness of back-end systems, e.g.
pose-graph [20], as it correlates two previously supposed
independent measurements. Comparisons between diagonal
terms in (15) finally provides a way for trading-off between
initial odometry guesses and ICP estimates, see [29].

The Gaussian error assumption of the ICP estimates is the
core hypothesis of the method. We required this assumption
to obtain a tractable method able to provide a covariance
for a state estimator, e.g. a Kalman filter. However, if one
pursues a more accurate estimation of the ICP distribution,
we suggest massive sampling methods as an expansive al-
ternative, although our method largely proves sufficient to
detect problematic situations.

The method finally requires the covariance of the initial un-
certainty as an input. If the provided initialization confidence
is inexact, the method outputs may reflect the initial optimism
or pessimism in general situations. Nonetheless an insight of
the present paper, see Section II and e.g. Figure 5, is that
ICP errors intrinsically depend on the initial accuracy so that
a coarse idea of initial uncertainty is essential, whatever the
method one desires to use.

Finally, [23,26,27] show that concentrated Gaussian distri-
bution (4) faithfully describe robot odometry models, such
that methods like the Kalman filter are able to provide an
accurate (concentrated) Gaussian approximation to the true
initial uncertainty for which our approach has been designed.

VI. CONCLUSION

This paper presents a novel method for real time estimation
of 3D uncertainty covariance matrix of the ICP algorithm.
The method relies on a careful study of the influence of
both sensor noises and algorithm initialization on the ICP
estimates, that we leverage in a deterministic scheme which
remains very simple in terms of parameter tuning. The core
of our approach is versatile as one can apply it to various
choices of error metrics. However with point-to-point ICP
the closed form part of the covariance is not valid, see [18].
The approach is successfully validated on individual pairs
of point clouds and over trajectories on challenging real
datasets, where it obtains consistent results. Future work will
address the benefit of the method for preventing ICP failures,
particularly its coupling with learning-based methods, and
for fusing odometry, ICP and GNSS in Kalman filtering and
optimization-based schemes.
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