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Abstract—In mobile robotics, scan matching of point clouds
using Iterative Closest Point (ICP) allows estimating sensor
displacements. It may prove important to assess the associated
uncertainty about the obtained rigid transformation, especially
for sensor fusion purposes. In this paper we propose a novel
approach to 3D ICP covariance computation that accounts for
all the sources of errors as listed in Censi’s pioneering work,
namely wrong convergence, underconstrained situations, and
sensor noise. Our approach builds on two facts. First, ICP
is not a standard sensor: owing to wrong convergence the
concept of ICP covariance per se is actually meaningless, as
the dispersion in the ICP outputs may largely depend on the
accuracy of the initialization, and is thus inherently related
to the prior uncertainty on the displacement. We capture this
using the unscented transform, which also reflects correlations
between initial and final uncertainties. Then, assuming white
sensor noise leads to overoptimism: ICP is biased, owing to
e.g. calibration biases, which we account for. Our solution is
tested on publicly available real data ranging from structured
to unstructured environments, where our algorithm predicts
consistent results with actual uncertainty, and compares very
favorably to previous methods. We finally demonstrate the
benefits of our method for pose-graph localization, where our
approach improves accuracy and robustness of the estimates.

Index Terms—ICP, covariance estimation, localization

I. INTRODUCTION

Point clouds and the Iterative Closest Point (ICP) algorithm
play a crucial role for localization and mapping in modern
mobile robotics [1]. ICP computes an estimate

T̂icp = icp
(
P,Q, T̂odo

)
(1)

of the 3D rigid transformation T ∈ SE(3) that aligns a
reference point cloud P to a reading point cloud Q (or more
generally a model or a surface). The algorithm starts with
a first transformation estimate T̂odo ∈ SE(3), and repeats -
until convergence - point association and least-square min-
imization. Note that in mobile robotics initialization T̂odo

is naturally provided by odometry [2,3], based on wheel
speeds, inertial sensors, or stereo vision. The point associ-
ation matches points between the two clouds by generally
associating each point ofQ to its closest point in P . Then, the
algorithm minimizes a metric [4] between the matched points
that provides an update of the current estimate T̂icp. In spite
of thresholding on point density, random sub-sampling and
weighting that are broadly used during the alignment of point
clouds, a.k.a. registration, ICP is subject to errors stemming
from sensor noises, underconstrained environments that result
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Fig. 1. Horizontal translation according to ICP (T̂icp, red dots) for
various initial estimates (T̂odo, black dots) and ground-truth (T, square)
for registering two scans of the real data sequence Stairs of [8], where we
sample 1000 initial estimates from two distributions reflecting accurate (left)
and dispersed (right) ICP initialization and that respectively correspond to
the easy and medium scenarios of [9]. We see the uncertainty on the ICP
estimate, that is, dispersion of red points, wholly depends on the accuracy
of initialization. There is no “covariance of ICP” per se.

in unobservable directions, and the fact that the algorithm is
prone to local minima [5]–[7].

A. Sources of ICP Uncertainty

The pioneering work of Censi [6] identifies the following
sources of error for ICP registration: wrong convergence (not
handled by Censi’s formula), underconstrained situations, and
sensor noise. As indicated by preliminary remarks in [10,11]
we believe a fourth important source is missing: the one that
stems from sensor biases. In the present paper we consider
indeed the following sources of error:

1) Initial Transformation: ICP is subject to error due to
wrong initialization that makes the algorithm converge to a
local minimum out of the attraction basin of the true solution,
as largely observed in practice, see e.g. [7,12] and Figure 1
(right). In practice it often proves to be the dominant error.

2) Sensor White Noise: each point measured in P and
Q is affected by an independent random sensor noise of
centimetric magnitude which is a function of point depth and
beam angle [5,13].

3) Sensor Bias Noise: the observed points in P or in
Q share common errors that stem from: temperature drift
effect, i.e. stability of the laser [13]; observed material [5];
incidence and beam angles resulting in large bias [14]; or
wrong calibration, e.g. [15] found a distortion of 0.22 deg of



the scan point clouds due to intrinsic calibration process. This
correlated noise, a.k.a. bias, strictly limits the confidence we
may have in the ICP estimate. To our best knowledge this
is often omitted with a few exceptions: e.g., [14] removes
bias on point measurements due to sensor beam angle, and
preliminary ideas may be found in [10,11].

4) Intern ICP Algorithm: ICP is generally configured
with random processes [1], e.g. sub-sampling, such that two
solutions with exactly the same inputs would differ.

In the following we address uncertainty coming from 1),
2) and 3) and do not consider 4), which should be marginal.

B. Brief Literature Review
Various approaches exist for estimating the covariance of

the ICP algorithm, each of which being a trade-off between
accuracy and execution time. Monte-Carlo algorithms, e.g.
[12,16], sample noisy scans (from a reference scan) and ICP
initializations to compute a large number of ICP registration
results, define the covariance of the sampled results as the
covariance estimation, and use the estimated covariance for
all future registration with the reference scan, thus getting
a covariance function of the reference scan only. Another
category of covariance estimation methods relies on closed-
form expressions [6,17]–[19], whose underlying assumption
consists in linearizing the objective function used in ICP
around the convergence point, ruling out the possibility for
wrong convergence and the uncertainty that stems from it.
Albeit still used in practice, Censi’s pioneering formula [6]
is widely considered as overoptimistic, see e.g. [20] for pose-
graph based on ICP measurements. Recently, [7] leveraged
learning based approaches to estimate ICP uncertainty stem-
ming from inaccurate ICP initialization.

C. Contributions and Paper’s Organization
Our approach introduced in Section II extends existing

works in three ways: 1) we consider ICP uncertainty com-
ing both from sensor errors and ICP initialization (wrong
convergence). 2) we raise an important point which is that
ICP uncertainty in itself is meaningless as it is inherently
related to uncertainty in the initialization point (unless there
is a global minimum). This is supported by experiments
displayed in Figure 1. We address this problem by outputting
a covariance matrix of larger dimension that also reflects the
correlation between ICP final and initial estimates. And 3)
we estimate in Section III the ICP uncertainty combining
a closed-form expression using [6,17] accounting for sensor
biases, and deterministic derivative-free methods using the
unscented transform of [21,22], which comes at a lower
computational cost than Monte-Carlo runs.

Besides, we evaluate and compare our approach on
the dataset of [8] in Section IV, where our approach
obtains consistent estimates and achieves better results
than existing methods. Building upon our larger covari-
ance matrix, we derive in Section V a specific pose-
graph where factors account for correlations between odom-
etry and ICP, see Figure 2. It leads to more accurate
and robust results compared to standard pose-graph meth-
ods. The code to reproduce the results of the paper
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Fig. 2. ICP computes rigid transformation T̂icp that may serve as a laser
odometry sensor which is combined with other types of odometry based
on inertial sensors and/or differential wheel speeds, that provide relative
transformation T̂odo [2,3]. To perform fusion for localization one may use,
e.g., pose-graph optimization like GTSAM [23] or g2o [24], that requires
evaluating odometry uncertainty Qodo and ICP uncertainty Qicp. Whereas
the naive approach consists in considering T̂icp and T̂odo as independent
measurements, we note ICP estimate is a function of odometry estimate, see
(1), since our best guess for ICP initialization is T̂odo, see also [1,7], and
T̂icp and T̂odo are thus correlated. In the above diagram, poses x1 and
x2 are linked by odometry (IMU or wheel speeds) and ICP. Our algorithm
takes T̂odo and Qodo as inputs and computes ICP covariance Qicp of T̂icp

but also cross-covariance Qcross of T̂icp and T̂odo. In terms of graph, we
replace two links by one with larger associated covariance matrix.

is made publicly available at: https://github.com/
CAOR-MINES-ParisTech/3d-icp-cov.

Throughout the article, we configurate the ICP as sug-
gested in [9] with a point-to-plane error metric.

II. PROPOSED APPROACH

In this section we introduce a novel approach to ICP
uncertainty.

A. Statistical Insight

Assume a wholly unknown noise free vector x must be
estimated from two noisy measurements y1 = x + w1 and
y2 = x + Jw1 +Gw2, where w1 and w2 are independent
centered Gaussian noises with covariance matrices Q1 and
Q2. To assess uncertainty about the maximum likelihood
estimate of x in the light of y1 and y2 we write:
[
y1

y2

]
= Ax+w, cov(w) =

[
Q1 Q1J

T

JQ1 JQ1J
T +GQ2G

T

]
,

(2)

where A = [1 1]
T . The covariance matrix P of

the maximum likelihood estimate of x satisfies P−1 =
AT cov(w)−1A. We also note that cov(y2) = JQ1J

T +
GQ2G

T .

B. Uncertainty Representation for Poses

Since the true pose T and estimate T̂icp live in SE(3)
which is not a vector space, we opt for the uncertainty
representation (named concentrated Gaussian) [22,25]–[29]

T = exp (ξ) T̂, where ξ ∼ N (0,Q) , (3)

with exp(·) the exponential map in SE(3), ξ ∈ R6 a random
variable, and N (·, ·) the standard Gaussian distribution in R6.
The pose covariance matrix is Q ∈ R6×6 and T̂ the “best” or
average estimate. We note this distribution T ∼ NR(T̂,Q).

https://github.com/CAOR-MINES-ParisTech/3d-icp-cov
https://github.com/CAOR-MINES-ParisTech/3d-icp-cov


C. Proposed Uncertainty Simple Model

Suppose T denotes the true transformation. Assume T =
exp(ξodo)T̂odo, where T̂odo denotes a first available esti-
mate stemming from odometry, either based on an Inertial
Measurement Unit (IMU), wheel speeds, stereo vision, or
pure Brownian motion assumption in the absence of odom-
etry sensor, and cov(ξodo) = Qodo its (known) associated
uncertainty. Note that as ξodo is centered we may write
exp(ξodo)T = T̂odo without changing Qodo. ICP’s final
estimate T̂icp from (1) may be actually rewritten as a function
T̂icp = f(T̂odo,wsensor), where wsensor denotes scan sensor
noise that induces small fluctuations in the point clouds P,Q,
and also that stems from unknown biases which depend on
the calibration process and drift with temperature [13]. Thus
the ICP estimate has the following form

T̂icp = f(exp(ξodo)T,wsensor). (4)

Assuming ICP’s final estimate T̂icp to be also distributed as
T ∼ NR(T̂icp, Q̂icp), (4) rewrites as

ξicp = g(ξodo,wsensor), (5)

where g(ξ,w) := − log
(
T−1f(exp(ξ)T,w)

)
with log(·)

the logarithm map of SE(3) as defined in [26].
“Censi-like” formulas address only the dispersion owed to

wsensor and provide a way to linearize g(·, ·) with respect
to its second variable assuming correct convergence. This
amounts to postulating ξodo = 0 and closed formulas
yield approximation g(0,wsensor) ≈ g(0,0) + Gwsensor.
In turn this yields a covariance matrix (at convergence)
Q̂at

conv = GQsensorG
T with Qsensor = cov(wsensor) having

centimetric magnitude.
By contrast, the function relating ξodo to ξicp (assuming

wsensor to be fixed) is strongly dependent on the magnitude
of ξodo and cannot be captured by a closed form formula
based on a local approximation of g(·,0). Typically when
ξodo becomes larger than the attraction basin of the true
minimum, the algorithm gets trapped by local minima and
corresponding dispersion drastically jumps from a null value
to a potentially large value. Given a magnitude Qodo of
the odometry dispersion it is possible to “infer” a scale-
dependent Jacobian J, though, such that first order dispersion
writes g(ξodo,0) ≈ g(0,0)+Jξodo (in the present article we
advocate the use of the unscented transform to compute J, see
Section III-B). Contrary to linearization w.r.t. sensor noise,
each Qodo may yield a different J. This yields a covariance
Q̂wrong

conv = JQodoJ
T . The linearized model corresponding to

(5) finally writes:

ξicp = g(0,0) + Jξodo +Gwsensor. (6)

Recall the statistical results of Section II-A. The analogy
is as follows. We have a first observation y1 (odometry)
and then a second y2 (ICP) whose noise consists of two
components. The second component Gw2 is independent
from other variables but the first Jw1 is a function of
odometry uncertainty: in the directions where we have a
global minimum, odometry (i.e. initialization) uncertainty
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Fig. 3. ICP horizontal position initial estimates T̂odo, ICP final estimates
T̂icp and ground-truth T for registrations on the sequences Apartment
(top), Hauptgebaude (bottom left) and Gazebo summer (bottom right) of
[8], where we sample 1000 initial estimates. Formula (4) applies, where
wsensor is fixed at the particular realizations where point clouds were
recorded. Dispersion of black points are reflected by Qodo and of red
points by Q̂wrong

conv . Error of red points w.r.t. ground truth is encoded
in Q̂icp = Q̂wrong

conv + Q̂at
conv. Top left: example of global minimum,

Q̂wrong
conv = 0 and there is no dispersion of red points. Top right (zoom):

however there is a small error w.r.t. ground truth (since wsensor 6= 0)
whose magnitude is captured by Q̂at

conv. Bottom left: underconstrained
situation. In unobservable directions J is the identity as the algorithm
cannot improve initial estimate (whereas it is small along well observable
directions). Corresponding dispersion (red points) at least at a large scale is
thus the projection of initial dispersion on those directions. Bottom right:
presence of local minima. Red points are scattered and regroup at local
minima. Formula explains the situation as Q̂icp = Q̂wrong

conv + Q̂at
conv and

Q̂wrong
conv reflects wrong convergence dispersion indeed.

has no effect, whereas in the directions where we have no
information (e.g., corridor) ICP uncertainty is fully correlated
with odometry’s. Finally, in the directions where there are
local minima ICP uncertainty writes as some factor (we may
infer) J times odometry noise. So we finally get our first
main result relating uncertainties:

Q̂icp = Q̂wrong
conv + Q̂at

conv. (7)

with Q̂wrong
conv = JQodoJ

T and Q̂at
conv = GQsensorG

T . More-
over, the covariance of the maximum likelihood estimate
accounting for both ICP and odometry writes

Q̂−1odo+icp =

[
1
1

]T [
Qodo QodoJ

T

JQodo Q̂wrong
conv + Q̂at

conv

]−1 [
1
1

]
. (8)

Remark 1. It is important to distinguish between (7) that
computes the statistical dispersion of ICP estimate T̂icp stem-
ming from sensor noise and initial uncertainty and (8) that
reflects the information one has on the actual transformation
T in the light of both odometry and point clouds.



D. Experimental Evidence Using Real Data

To get insight into the obtained formulas, we first propose
to consider the following simple cases:

1) Case of Global Minimum: no dispersion arises from
initial dispersion, thus we have J = 0. Information we
have on the displacement combining sensors satisfies then
Q̂−1odo+icp = Q−1odo + (Q̂at

conv)
−1 according to (8), which is

logical. Moreover the dispersion is exclusively owed to sensor
noise, leading to Q̂icp = Q̂at

conv from (7).
2) Presence of Local Minima: wrong convergence gener-

ates dispersion, and this tends to dominate the centimetric
dispersion reflected by Q̂at

conv.
3) Underconstrained Situation: the algorithm is “blind” in

some directions which are impossible to observe, typically
a corridor. In those directions J will be the identity (the
algorithm does not change initial estimate since in those
directions its cost function is flat). On the contrary, unobserv-
ability is well captured locally, and closed form formulas (in
theory) account for infinite eigenvalues of Q̂at

conv in those
directions. Then, applying (7) we see Q̂icp is infinite in
those directions indeed and cannot be trusted. However, in
those directions the odometry should be solely trusted so it is
logical that from (8) we see covariance of the best estimate
equals odometry covariance (along unobservable directions).

To provide experimental evidence, inspired from the recent
work [7] we focus on the role played by the ICP initialization
value T̂odo. Given real (fixed) point clouds P and Q (and
thus fixed wsensor), we massively sample T̂odo from a
coarse distribution around T whose standard deviation has
magnitude 0.2m and 10 deg, and compute ICP estimates,
see Figure 3.

III. COVARIANCE COMPUTATION

This section describes our algorithm for estimating the 3D
ICP uncertainty covariance leveraging previous findings.

A. Computation of Small Dispersion owing to Noise

We compute Q̂at
conv by inserting an unknown bias error on

each point measurement and following then the closed form
methodology of [6,17]. Assuming the ICP converges to the
true minimum, the estimated rotation matrix R̂icp ∈ SO(3)
and translation t̂icp ∈ R3 that compose T̂icp are obtained as

R̂icp, t̂icp = argmin
R,t

∑

k

‖wkn
T
k (Rp̂k + t− q̂k) ‖22, (9)

where p̂k ∈ R3 is the measured k-th point in P and q̂k ∈
R3 its associated point in Q, and wk a scalar weight for
considering robust filtering and depth sensor noise [5]. The
vector nk ∈ R3 represents the normal at p̂k, as we consider
the point-to-plane error metric recommended in [17].

Linearizing the ICP objective J(·) given in the right part
of (9) at R̂icp, t̂icp, i.e. at T̂icp, we get the cost JT̂icp

(·) as

JT̂icp
(ξ) := J

(
exp (ξ) T̂icp

)
(10)

≈
∑

k

‖Bkξ +Ckw + dk‖22, (11)

Algorithm 1: proposed computation of Q̂wrong
conv , Q̂cross

Input: P,Q, T̂odo,Qodo, T̂icp;
// set sigma points

1 ξjodo = col
(√

6Qodo

)
j
, j = 1, . . . , 6,

ξjodo = − col
(√

6Qodo

)
j−6 , j = 7, . . . , 12;

// propagate sigma points througth ICP

2 T̂j
icp = icp

(
P,Q, exp

(
ξjodo

)
T̂odo

)
, j = 1, . . . , 12;

3 ξ̂jicp = log
(
T̂j

icpT̂
−1
icp

)
, j = 1, . . . , 12;

// compute covariance

4 Q̂wrong
conv =

∑12
j=1

1
12 ξ̂

j
icpξ̂

jT
icp;

// infer cross-covariance

5 ξ̂icp =
∑12

j=1
1
12 ξ̂

j
icp;

6 Q̂cross =
∑12

j=1
1
12ξ

j
odo

(
ξ̂jicp − ξ̂icp

)T
;

Output: Q̂wrong
conv , Q̂cross;

where ξ ∼ N (0, Q̂at
conv) corresponds to the ICP uncertainty

at small scale, w ∈ Rl is the unknown bias of dimen-
sion l, Bk ∈ R1×6 and Ck ∈ R1×l are matrices, and
dk = wkn

T
k (R̂p̂k + t̂− q̂k) a scalar. Following least squares

covariance [6,17], we compute the covariance of ξ as

Q̂at
conv = A−1 +A−1B cov (w)BTA−1, (12)

where A =
∑

k B
T
kBk, and B =

∑
k BkC

T
k . We recover the

covariance A−1 of [6,17] w.r.t. sensor white noise, and a new
term, A−1B cov (w)BTA−1, that represents the covariance
w.r.t. the unknown bias w, that is, correlated noise. This
new additional term is paramount as A has magnitude
proportional to the number of points in the cloud hence A−1

is very small, typically less than millimeter, explaining that
Censi’s formula (based on A−1 only) seems overoptimistic
[20]. According to the law of statistics if the noise were white
multiplying the number of points by 2 would lead in a factor 2
variance decrease but we see in practice there’s a lower bound
on ICP accuracy (typically nanometer accuracy is beyond
reach no matter how many points in the cloud) owing to the
presence of a bias w arising from calibration, temperature
drift, laser stability [13], observed material [5], and incidence
of beams [14]. We assume the bias to be unknown with
cov(w) = σ2I, where σ is the standard deviation of the
depth bias, whose value is typically close to 5 cm in [5].
Derivation of Bk and Ck is provided in Appendix.

B. Computation of Dispersion owing to Wrong Convergence

Computation of Q̂wrong
conv is of greater importance as in

practice it largely dominates Q̂at
conv. We propose to compute it

in a deterministic derivative-free method, in which we adapt
the unscented transform [21] for the pose T ∈ SE(3) by
following [22,26]. The advantages of using our unscented
based method rather than Monte-Carlo sampling are fourfold:
1) it is deterministic; 2) it keeps computationally reason-
able by adding only 12 ICP registrations which are easily
parallelisable; 3) it explicitly computes the cross-covariance



matrix between T̂icp and T̂odo as a by-product without extra
computational operations; and 4) it scales with Qodo, i.e. our
approach naturally self-adapts to the confidence we have in
odometry without extra parameter tuning.

We compute Q̂wrong
conv as follows, see Algorithm 1:

• we consider the prior distribution Tprior ∼
NR(T̂odo,Qodo), which is approximated by a set
of so-called sigma-points ξjodo, see step 1);

• we approximate the propagated distribution Tprop =
icp(P,Q,Tprior) as

Tprop = icp
(
P,Q,NR

(
T̂odo,Qodo

))
(13)

∼ NR

(
T̂icp, Q̂

wrong
conv

)
, (14)

after propagating each sigma-point in steps 2) and 3),
where T̂icp is the given ICP estimate, that requires
the computations of 12 additional registrations whereas
the rest of the algorithm is computationally negligible.
We compute Q̂wrong

conv and infer the cross-covariance
Q̂cross = JQodo between propagated and prior distri-
butions as a by-product in respectively steps 4) and 6).

We derive the algorithm by following [22] for pose mea-
surement, zero-mean prior distribution, and where we set
α = 1. Note that estimate ξ̂icp computed in step 5) allows
correcting or rejecting ICP registration failure, albeit beyond
the scope of the present paper concerned with ICP estimate
uncertainty assessment. We finally indicate that this part of
the method is highly versatile as independent to the chosen
metric: considering a different metric, see [4], requires no
modification.

IV. EXPERIMENTAL RESULTS

A. Dataset Description & ICP Algorithm Setting

This section evaluates the ability of the approach to
estimate ICP uncertainty on the Challenging data sets for
point cloud registration algorithms [8]. It comprises eight
sequences where point clouds are taken in environments rang-
ing from structured to unstructured, and indoor to outdoor.
Each sequence contains between 31 and 45 point cloud scans
along with ground-truth pose for each scan, that provides
a total of 268 different registrations as we register scans
acquired successively.

We configure the ICP as in [9] with 95% random sub-
sampling, kd-tree for data association, and point-to-plane er-
ror metric where we keep the 70% closest point associations
for rejecting outlier.

B. Compared Methods and Evaluation Metrics

This section evaluates the following methods:
Q̂censi : the close-form method of [6] adapted for the ICP

point-to-plane metric defined in (9);
Q̂monte

carlo : the covariance computed after sampling of 65
Monte-Carlo ICP estimates, which is more than five
times the execution time of the proposed approach;

Q̂icp : our proposed approach detailed in Section III.
Each method assumes depth sensor white noise and bias with
5 cm standard deviation, which is the mean value found in

metric
NNE KL div.

trans. rot. trans. rot.

Q̂censi 22 102 103 105

Q̂monte
carlo 3.6 15 103 103

Q̂icp (proposed) 0.6 3.7 46 102

Table 1. Results of ICP uncertainty estimation in term of Normalized
Norm Error (NNE) and Kullbach-Leibler divergence (KL div.) divided into
translation and rotation parts, and averaged over the eight sequences of [8].
The proposed method outperforms the two others.

[5] for the Hokuyo sensor used for these experiments, and all
methods know the initial uncertainty Qodo, whose magnitude
0.2m and 10 deg corresponds to the easy scenario of [9].

We compare the above methods using two metrics:
1) Normalized Norm Error (NNE): that evaluates the

historically challenging [6,16] prediction of the covariance
scale, and is computed as

NNE =
( 1
N

N∑

n=1

‖ξn‖22/ trace(Q̂n)
)1/2

, (15)

where ξn = log(T̂nT
−1) is the transformation error and Q̂n

the estimated uncertainty covariance matrix, and averaged
over N samples. This metrics characterizes the uncertainty
as only the true registration is known (the exact distribution of
the point cloud is unknown). The target value is one, below
one the estimation is pessimist, whereas a value over one
indicates an overoptimistic estimation.

2) Kullback-Leibler Divergence (KL div.): which is com-
puted between a pseudo-true distribution and the estimated
distribution. The pseudo-true distribution is computed after
sampling 1000 ICP estimates of the evaluated registration
over the initial position. As sensor noise is fixed in the point
clouds, this distribution represents the uncertainty coming
from poor initialization and evaluates the shape of the co-
variance estimates.

C. Results

Results are averaged over 1000 initializations for each of
the 268 considered pairs of point clouds, representing a total
of 260 000 registrations, where the ICP is initialized with
a different estimate T̂odo sampled from NR(T,Qodo). As
the ICP error distributions are not Gaussian [9], we make
our statistic more robust by removing both the more and
less accurate quantiles of each registration. Table 1 provides
average results, and Figure 4 illustrates typical registrations
from structured to unstructured environments. We observe:
• Q̂censi is far too optimistic and unreliable for sensor-

fusion, as noted in [20]. Its centimetric confidence
interval makes sense only when ICP is very accurate;

• Q̂monte
carlo is overoptimistic when the discrepancy arising

from ICP initialization remains negligible, see Figure 4
(top and bottom left), for which the method predicts a
confidence interval with millimetric size. This is natu-
rally explained as the method assumes no error caused
by sensor noises;
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Fig. 4. Results on real data of [8] projected on the ground plane for
visualization. Ellipses represent the 95% (3σ) confidence sets for each
uncertainty estimation method. Top left, Apartment: “true convergence
situation”, the errors are mainly caused by sensor noises and Censi’s formula
should apply. Top right: zoom, however we see the red dotted ellipse (Censi)
seems optimistic as ground truth is almost outside it whereas it falls well
within our ellipse (green dashed). Bottom left, Hauptgebaude; bottom right,
Mountain: “wrong convergence”, the large errors are due ICP initialization.
Only our approach is consistent with ICP uncertainty in each environment
and does not suffer from overoptimism.

• the proposed method obtains the best results for both
metrics as displayed in Table 1. It notably outperforms
Q̂monte

carlo while deterministic hence more reliable, and
computationally much cheaper. We note the sensor
bias consideration using for computing Q̂at

conv slightly
inflates the covariance computed through [6], which
more closely reflects actual uncertainty in specific “true
convergence” cases, see Figure 4 (top), although the
dominant term is Q̂wrong

conv in general.
Besides outperforming the other methods, our method pro-
vides simple parameter tuning: we set the bias noise standard
deviation as having same magnitude as sensor white noise,
and the error stemming from ICP initialization does not need
to be tuned since Qodo is an output of inertial, visual, or
wheeled odometry system [2,3].

V. APPLICATION TO POSE-GRAPH LOCALIZATION

A pose-graph is a special case of a factor-graph where
all the variables being estimated are robot poses along the
robot trajectory [30], and the factors between these poses
are relative pose measurements. Each factor NR(T̂, Q̂) is
parameterized by a measurement T̂ and a covariance matrix
Q̂ (or equivalently with the inverse of the ICP covariance
matrix, a.k.a. information matrix) that assesses confidence
in the measurement. Our goal in this section is to combine
odometry with ICP relative transformations through pose

graph optimization for robot localization, and to show that
ICP and odometry sensors are complementary as odometry
may prevent ICP failures. We also demonstrate that correctly
assessing ICP uncertainty improves accuracy, robustness and
consistency of estimations.

A. Compared Methods and Evaluation Metrics

We compare on the sequences of [8] different pose-graphs
defined as follow:
odo. : based on pure odometry factors NR(T̂odo,Qodo);
CELLO-3D : reproduced results of [7], that proposes a learn-

ing based method for estimating the ICP covariance,
which is trained on environments similar to the tested
sequence. The results are indicative as the ICP setting
of [7] slightly differs from the setting of [9] we use;

odo.+ICP : combines odometry NR(T̂odo,Qodo) and ICP
NR(T̂icp, Q̂icp) measurements with our proposed co-
variance estimates considering them as independent
measurements, as in Figure 2 (left) and e.g. [2];

proposed : involves odometry NR(T̂odo,Qodo) and ICP
NR(T̂icp, Q̂icp) estimates along with the cross-
correlation term Q̂cross, see Figure 2 (right). Based on
Section II, we prune ICP registration from the pose-
graph using a Neyman-Pearson statistical test about dif-
ference between the ICP and odometry log(T̂−1icpT̂odo).

We set odometry errors with standard deviation magnitudes
0.15m and 4 deg. We compute the pose-graph based on [26]
through: 1) the fusion of the odometry and ICP estimates;
and 2) the compound of the covariances at two successive
scans with a closed-form expression from [26]. This novel
fusion scheme of two correlated poses is an independent
contribution, whose implementation is available online.

We evaluate the above methods using two metrics:
1) Mahalanobis Distance (Mah. dist.): between the final

trajectory estimates and the ground truth

Mah. dist. =
( N∑

n=0

ξTn Q̂
−1
n ξn

dim(ξn)N

)1/2
, (16)

where ξn = log(T̂nT
−1) is the true transformation error

and Q̂n the estimated uncertainty covariance matrix, and
averaged over N samples. As NNE, the target value is one,
below one the estimation is pessimistic, whereas a value over
one indicates optimistic estimate.

2) Root Mean Square Error (RMSE): which averages the
final pose error along each sequence trajectory and reveals
the accuracy of a given method.

B. Pose-Graph Localization Results

We average results over 40 different odometry trajectories
for each sequence, i.e. for a total of 160 sequences. Table
2 and Table 3 display numerical results for each metric and
illustrations from indoor to outdoor environments are shown
in Figure 5. We observe:
• the odometry estimation drifts and becomes hardly in-

formative at the end of each trajectory; hence its RMSE
is high;



sequence Apartment Hauptgebaude Stairs Mountain Gazebo summer Gazebo winter Wood summer Wood winter

Mah. dist. trans. rot. trans. rot. trans. rot. trans. rot. trans. rot. trans. rot. trans. rot. trans. rot.

CELLO-3D [7] 0.2 0.1 0.3 0.2 0.1 0.2 - - 0.2 0.2 0.1 0.2 0.1 0.3 0.1 0.3
odo.+ICP 3.5 15 1.9 3.2 1.1 4.2 1.5 1.2 1.1 2.1 1.9 3.7 1.5 4.6 1.2 4.8
proposed 2.3 9.8 1.8 2.9 1.1 4.2 1.2 1.2 1.0 2.3 1.8 3.7 1.5 4.7 1.2 4.2

Table 2. Pose-graph consistency results in term of Mahalanobis distance split into translation and rotation parts for the eight sequences of [8], where
Mountain is not considered in [7]. Odometry only computed using close-form expressions of [26] achieves close to 1 metric and is not shown since it does
not involve ICP. Our method obtains on average the best uncertainty assessment, albeit slightly optimistic.

sequence Apartment Hauptgebaude Stairs Mountain Gazebo summer Gazebo winter Wood summer Wood winter

RMSE trans. rot. trans. rot. trans. rot. trans. rot. trans. rot. trans. rot. trans. rot. trans. rot.

odo. 0.9 15 2.4 12 1.1 12 2.0 10 0.8 13 0.9 13 2.3 14 1.6 12
odo.+ICP 0.4 8.0 0.5 1.6 0.4 4.5 0.9 4.3 0.1 1.5 0.1 0.8 0.2 1.3 0.1 0.7
proposed 0.3 5.8 0.5 1.5 0.4 4.5 0.9 3.9 0.1 1.3 0.1 0.8 0.2 1.3 0.1 0.6

Table 3. Pose-graph accuracy results in term of root mean square error RMSE split into translation and rotation (in m and deg) for the eight sequences
of [8]. Correctly assessing covariance correlation slightly improves as a byproduct of better uncertainty assessment.

• odo.+ICP is subject to registration failures, see Figure
5 (top chart). Albeit locally consistent, these strong
failures highly degrade both metrics, particularly in the
sequence Apartment;

• CELLO-3D is the only pessimistic method, which es-
timates uncertainty ranging from 3 to 10 times higher
than actual uncertainty. It evidences how difficult it is
to asses ICP covariance;

• the proposed approach obtains in average the best re-
sults, regarding both accuracy and consistency. It obtains
similar estimates than odo.+ICP when the ICP algorithm
is accurate as in Figure 5 (bottom). However, in some
scenarios it better incorporates odometry than odo.+ICP
thanks to it accounting for measurement correlation, see
Figure 5 (middle). It even manages to reject some ICP
registration failures thanks to our simple and slightly
conservative outliers rejection threshold. However, some
ICP failures keep undetected, explaining thus the high
metrics, particularly for orientation, of the sequence
Apartment.

Preventing such ICP failures is difficult and constitutes a full
research topic, see e.g. [31], which is beyond the scope of the
present paper. Future work will address this problem by lever-
aging the approach and the discrepancy in the propagated
sigma points computed in Section III-B. As in Section IV, the
algorithm better captures translation than rotation uncertainty.

VI. CONCLUSION

This paper presents a novel method for real time estimation
of 3D uncertainty covariance matrix of the ICP algorithm.
The method relies on a careful study of the influence of
both sensor noises and algorithm initialization on the ICP
estimates, that we leverage in a deterministic scheme which
remains very simple in terms of parameter tuning. The core
of our approach is versatile as not restricted to an ICP
configuration, such that one can apply it to any choice of error
metrics and ICP setting with no modification. The approach
is successfully validated on individual pairs of point clouds
and over trajectories on challenging real datasets, where it
obtains consistent results that correctly reflect sampled trajec-

tories. We also apply the method to pose-graph localization,
and show it outperforms other fusion methods in terms of
accuracy, robustness and consistency of the estimates along
the full trajectory.

Future work will address the benefit of the method for pre-
venting ICP failures, particularly its coupling with learning-
based methods, and for fusing odometry, ICP and GNSS in
Kalman filtering and optimization-based schemes.

APPENDIX

We detail the computation of matrices Bk and Ck in (9).
We define depth bias for each point cloud P and Q, and
further assume for simplicity that each frame is centered on
the laser sensor. Thus, each pair (pk,qk) of true points is
measured as

[
pk

qk

]
=

[
p̂k

q̂k

]
+

[
p̂k

‖p̂k‖2 0

0 q̂k

‖q̂k‖2

]
w, (17)

where p̂k/‖p̂k‖2 and q̂k/‖q̂k‖2 correspond respectively to
the direction to the points pk and qk. Linearising then the
ICP registration error as exp (ξ) T̂icp ≈ (I + (ξ)

∧
SE(3))T̂icp

and plugging it into (11), leads to

Bk = wkn
T
k

[
−
(
R̂p̂k + t̂

)∧
SO(3)

I

]
(18)

Ck = wkn
T
k

[
p̂k

‖p̂k‖2 − q̂k

‖q̂k‖2

]
, (19)

where (·)∧SE(3) and (·)∧SO(3) are respectively the overloaded
wedge operators as defined for SE(3) and SO(3) in [26],
where (·)∧SO(3) is also known as the skew symetric operator.

REFERENCES

[1] F. Pomerleau, F. Colas, and R. Siegwart, “A Review of Point Cloud
Registration Algorithms for Mobile Robotics,” Foundations and Trends
in Robotics, vol. 4, no. 1, pp. 1–104, 2015.

[2] R. Dube, A. Gawel, H. Sommer, J. Nieto, R. Siegwart, and C. Cadena,
“An Online Multi-robot SLAM System for 3D LiDARs,” in Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2017, pp. 1004–1011.

[3] P. Geneva, K. Eckenhoff, Y. Yang, and G. Huang, “LIPS: LiDAR-
Inertial 3D Plane SLAM,” in International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2018, pp. 123–130.



−2 −1 0 1 2 3 4 5 6

−4

−2

0

ICP faillure

y
(m

)

0 2 4 6 8 10 12
−2

0

2

4

y
(m

)

true trajectory odo. odo.+ICP proposed

−1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

x (m)

y
(m

)

Fig. 5. Results in the Apartment (top), Stairs (middle) and Gazebo
summer (bottom) sequences of [8], where the ICP algorithm gets respectively
some failure registrations, moderately accurate estimates, and fully accurate
estimates. Results are projected on the ground plane for visualization where
the “ellipses” represent the 95% (3σ) final confidence sets. The definition
of the uncertainty in the Lie algebra of SE(3) in (3) explains the shapes of
the “ellipses”, see e.g. [22,26]. The proposed method obtains more accurate
(proximity to ground truth) and consistent (discrepancy w.r.t. ground truth
well represented by the ellipse) results than the other methods.

[4] P. Babin, P. Giguère, and F. Pomerleau, “Analysis of Robust Functions
for Registration Algorithms,” in International Conference on Robotics
and Automation (ICRA). IEEE, 2019.

[5] F. Pomerleau, A. Breitenmoser, M. Liu, F. Colas, and R. Siegwart,
“Noise Characterization of Depth Sensors for Surface Inspections,” in
International Conference on Applied Robotics for the Power Industry
(CARPI). IEEE, 2012, pp. 16–21.

[6] A. Censi, “An Accurate Closed-form Estimate of ICP’s Covariance,” in
International Conference on Robotics and Automation (ICRA). IEEE,
2007, pp. 3167–3172.

[7] D. Landry, F. Pomerleau, and P. Giguère, “CELLO-3D: Estimating the
Covariance of ICP in the Real World,” in International Conference on
Robotics and Automation (ICRA), 2019.

[8] F. Pomerleau, M. Liu, F. Colas, and R. Siegwart, “Challenging Data
Sets for Point Cloud Registration Algorithms,” The International

Journal of Robotics Research, vol. 31, no. 14, pp. 1705–1711, 2012.
[9] F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat, “Comparing

ICP Variants on Real-world Data Sets: Open-source Library and
Experimental Protocol,” Auton. Robots, vol. 34, no. 3, pp. 133–148,
2013.

[10] M. Barczyk, S. Bonnabel, J.-E. Deschaud, and F. Goulette, “Invariant
EKF Design for Scan Matching-Aided Localization,” IEEE Trans.
Contr. Syst. Technol., vol. 23, no. 6, pp. 2440–2448, 2015.

[11] M. Barczyk and S. Bonnabel, “Towards Realistic Covariance Esti-
mation of ICP-based Kinect V1 Scan Matching: The 1D Case,” in
American Control Conference (ACC). IEEE, 2017, pp. 4833–4838.

[12] T. M. Iversen, A. G. Buch, and D. Kraft, “Prediction of ICP Pose
Uncertainties Using Monte Carlo Simulation with Synthetic Depth
Images,” in International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2017, pp. 4640–4647.

[13] Z. Wang, Y. Liu, Q. Liao, H. Ye, M. Liu, and L. Wang, “Characteriza-
tion of a RS-LiDAR for 3D Perception,” in International Conference on
Technology in Automation, Control, and Intelligent Systems (CYBER),
2018.
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