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A scheme is proposed to solve the structure of incommensurate interfaces, starting from high-
resolution images of electron microscopy, supplemented by adapted simulation techniques and com-
plemented by theoretical tools. Direct silicon bonding is a way to produce artificial interfaces, in
particular incommensurate ones. We focus on a technology-driven tilt grain boundary in silicon.
While the Fibonacci sequence, linked to the golden ratio, is a prototype of the quasicrystalline
structures, a silver-ratio sequence allows us to analyze this incommensurate interface. The four-fold
coordination of the Si atoms is kept at the interface.

INTRODUCTION

Direct wafer bonding1,2 is a pathway to produce grain
boundaries that may not occur naturally. In particular,
attractive structures for semiconductor technology can
be produced by bonding together a Si{011} wafer and a
Si{100} one, with the [001] direction of the first wafer
aligned with the [110] direction of the second one3–7. In-
deed, in this system with mixed orientations, the hole mo-
bility and the electron mobility have opposite enhance-
ment in the wafers, leading to important technological
advancements8.

However, the resulting 90°〈1 1 0〉 tilt boundaries are in-
commensurate, since the two aligned directions [001] and

[110] have periodicities with a ratio
√

2 between them.
Because of this lack of periodicity of the grain boundaries,
solving their atomic structures is not simple, though nec-
essary to fully understand their properties. Several at-
tempts have already been conducted5,9, but without con-
sidering their incommensurate nature.

Although more complex than the periodic cases, the
theoretical background to describe incommensurate grain
boundaries was quickly provided as an extension of the
quasicrystal understanding10–15. However, nowadays,
high-resolution electron microscopes, as well as mature
and precise simulation techniques16–18, can be pursued
to give accurate characterizations and quantitative anal-
yses of the incommensurate grain boundaries.

In this work, we focus on the 90°〈1 1 0〉 tilt bound-
ary, but the approach is general to incommensurate in-
terfaces in covalent materials. Our purpose is not to com-
pletely explain the atomic structure of the 90°〈1 1 0〉 tilt
grain boundary by energy considerations19, but rather to
extract the local atomic structures from high-resolution
experiments. Indeed, through pattern matching, the
characteristics of the interface are highlighted and two-
dimensional coordinates are extracted. In principle, for
a non periodic interface, a large area of the material

should be analyzed to determine the subtle crystalline-
site distortions at the interface. In our case however,
two elemental units can be selected and arranged to pro-
duce infinite sequences relative to the silver ratio 1+

√
2,

thanks to the quasicrystalline framework (see section VI).
From the 2D coordinates extracted from the experimen-
tal images of these units, we introduce a two-step energy
minimization to retrieve the tridimensional atomic coor-
dinates of the interface elements (see section IV). The
atomic structures are then refined by nowadays precise
DFT calculations (density functional theory).

Finally a complete atomic description of this incom-
mensurate grain boundary in silicon is given. Note that a
similar but metallic incommensurate boundary has been
described with the same level of details20. However, we
address here a different class of incommensurate grain
boundaries where the structural unit model14,15 is well
adapted to describe them.

I. GRAIN-BOUNDARY DESCRIPTION

A 90°〈1 1 0〉 tilt grain boundary in a cubic material is an
interface between two crystalline grains having a common
crystallographic direction 〈1 1 0〉 but where one grain is
rotated by 90°with respect to the other one, around this
common axis. Because the cubic cell of side a is projected
into a rectangle of sides a and

√
2a onto a {1 1 0} plane,

the two grains have no coincidence site lattice in this
plane. If there was one, the site coordinates of this lattice
expressed respectively in both 2D rectangular cells would
imply relations na = m

√
2a with n and m being integers.

The grain boundary is thus called incommensurate.
The orientation of the boundary itself is fixed by the

grain bonding. In this study, the interface is parallel to
the common axis and to one of the sides of the 2D rect-
angular cells (see figure 1). More precisely, [1 1̄ 0] is the
common axis of the two grains and taken as our z axis.
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FIG. 1. Crystalline grain orientations on both side of the
grain boundary. The Miller indices are relative to the cubic
cell. The plan view is perpendicular to [1 1̄ 0], which is the
common direction of both grains (z-axes here). The shades of
the spheres indicate their altitude z = 0 or z = a/(2

√
2). The

light-shade rectangles of sides a and a/
√

2 represent the silicon
orthorhombic cells with the lattice vectors corresponding to
[001], [110], and [1 1̄ 0]. The cubic cell is projected onto (1 1̄ 0)
as a rectangle of sides a (side of the cube) and

√
2a (diagonal

of the face). The vector [001] of one of the crystal is parallel to
the vector [110] of the other one, and thus the grain boundary
is incommensurate. In this study, the interface is parallel to
the xz-plane.

This axis is therefore a commensurate direction of the
interface. The interface contains the [110] direction of
one grain, let’s say grain I, and thus contains the [001]
direction of grain II. This direction is the incommensu-
rate direction of the interface and is chosen to be our x
axis. The y axes is perpendicular to the interface.

II. APPROXIMANTS

The periods of grains I and II along the incommensu-
rate direction (x) are denoted s and `, respectively (s for
short and ` for long). Grains I and II are, respectively,
the lower and upper grains in figure 1. In the ideal incom-
mensurate grain boundary, s = a/

√
2 and ` = a, where

a is the cubic lattice parameter of silicon. However, the
atomic configurations considered for computation usually
correspond to periodic approximants of the incommensu-
rate grain boundary. In the same way that a sequence of
rational numbers ns/n` can tend to an irrational num-
ber, a sequence of periodic approximants can approach
better and better an incommensurate structure. In the
context of this article, a “ns:n` approximant” is a pe-
riodic boundary where ns periodic cells of grain I are
facing n` cells of grain II. The best matches between the
two grains are obtained when the ideal lengths n` ` and
ns s have close values. This corresponds precisely to the
strong condition to be verified by ns and n` for ns/n` to
be among the best rational approximations of the ideal

FIG. 2. Scanning transmission electron microscopy (STEM)
image of the incommensurate grain boundary. Si atoms, indi-
vidual or in adjacent pairs (dumbbells), are all resolved in this
image. More precisely, each spot corresponds to an atomic
column perpendicular to the plane view. Vertical lines indi-
cate a possible decomposition into 7:5 and 10:7 approximants
of the grain boundary (thinner and thicker strips, respec-
tively). Note the good atomic match between atomic pat-
terns at the different line locations making possible periodic
boundary conditions for each approximant, or combinations
of several 7:5 and 10:7 approximants.

value of `/s, i.e.
√

2 here:

∆ [ns, n`] ≡
∣∣∣n`√2− ns

∣∣∣ < ∣∣∣q√2− p
∣∣∣ (1)

for any rational number p/q so long as q < n`. With this
condition, the best approximations are the continued-
fraction convergents of

√
2. These convergents are 1/1,

3/2, 7/5, 17/12, and more generally pk/qk = (2pk−1 +
pk−2)/(2qk−1 + qk−2) at step k > 2. In our calculations,
the period P of the ns:n` approximant is the arithmetic
mean of the corresponding ideal grain periods:

P = a (n` + ns/
√

2)/2 (2)

The residual strains in grains I and II in the approximant
are then respectively

εx,I = (P − nss)/(nss)= (
n`
ns
− 1√

2
)/
√

2 (3)

εx,II = (P − n``)/(n``)= (
ns
n`
−
√

2)/(2
√

2)

= −εx,I +O
(

(
ns
n`
−
√

2)2
)

and thus the minimal strains are also obtained by the
best rational approximations ns/n` of

√
2. Note that a

convergent ns/n` of
√

2 corresponds to the convergent

n`/ns of 1/
√

2.

III. ELECTRON MICROSCOPY RESULTS

Figure 2 is an electron-microscopy (STEM) image of
the grain boundary observed along the common [11̄0] di-
rection of the two grains. The experimental details are
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given in reference [5]. An atomistic model of the periodic
7:5 approximant of this grain boundary had already been
proposed5. Indeed, a repeating pattern can be recognized
with a pseudo periodicity corresponding to n` = 5 peri-
ods of grain II and ns = 7 periods of grain I. However,
even if 7/5 is only 1 % smaller than

√
2, this would cor-

respond to a tensile strain in grain I and a compressive
strain in grain II of ±5 × 10−3 (equation 3), impossible
for the material to sustain macroscopically. In fact, a
similar but longer pattern can also be identified in the
microscopy images. It corresponds to a 10:7 approxi-
mant, i.e., ns = 10 and n` = 7. While 10/7 does not

belong to the best approximations of
√

2, this approxi-
mant has about the same strain amount than the 7:5 one,
but with an opposite sign for each grain. Thus, combin-
ing them together, as in figure 2, can reduce the strains
to ±9×10−4. Indeed, 17/12 = (7+10)/(5+7) is the next
best rational approximation after 7/5. In the following,
we will consider the 7:5 and the 10:7 approximants as
the structural units of the grain boundary. Their 3D
structures will be solved by combining image analyses
and numerical energy minimizations. The general way
to combine them in a sequence of best approximants and
thus to describe the infinite grain boundary will be dis-
cussed in section VI.

IV. FROM 2D TO 3D

Pattern recognition

The resolution of the experimental images is high
enough to deduce with a good precision the x and y
atomic coordinates of the Si atomic columns perpendicu-
lar to the image plane. To automatically extract a large
number of coordinates, a pattern recognition technique21

based on cross-correlation functions has been used. From
the experimental image, three small portions representa-
tive of three material characteristics are selected: the in-
dividual atomic column and the two possible orientations
of Si dumbbells composed of two columns. Three cross-
correlation functions are first calculated between the im-
age and each of the three templates. As described in [21],
three smoother patterns are obtained by averaging im-
age sections located at high correlation maximums (see
figure 3). A second set of correlation functions is then
calculated. Taking advantage of the three-dimensional
nature of the color image coding, we introduce here a
way to gather these three functions and get a direct vi-
sualization of the information. For all pixels, each color
component red, green, or blue, is associated with the
value of one of the cross-correlation functions. Figure 3
shows that the different constituents of the grain bound-
ary are now clearly identified. Then, isolated columns,
or pairs of them, are associated with Gaussian functions
that are fitted on the initial image using the locations
of the correlation maxima as initial guesses. To improve
the recognition of the atom positions, the low intensity

FIG. 3. (Color online) Illustration of the pattern recognition
technique. (Top-left) Small part of an image, with grain II
on top of grain I. (Top-right) Three patterns corresponding
to grains I, II, and to isolated atomic columns. (Bottom-
left) Color image representing the three correlation functions
corresponding to the three patterns. Each correlation func-
tion represents one component of the RGB image coding (red-
green-blue). A gamma correction of 4 has been applied to en-
hance the highest values of the correlations, i.e., a power-law
function with exponent 4 is applied to the components (nor-
malized between 0 and 1). (Bottom-right) x and y atomic
positions obtained by fitting, in the first image, individual or
paired Gaussian functions, initially located at the maximum
of the correlation functions. The individual atomic columns
are distinguished by the color cyan.

around each image spot was assigned to zero thanks to
an apodization function. The 2D Si positions finally ex-
tracted from the experimental image are also shown in
Figure 3.

Stillinger-Weber atomic interaction

The 2D atomic coordinates, say x and y, extracted
from experimental images need to be completed by the z
coordinates, corresponding to the hidden component per-
pendicular to the image plane. We introduce here a tech-
nique involving, in two steps, two energy-minimization
calculations. These calculations are done with the widely
used and successfully tested Stillinger-Weber potential22

and with the parametrization of [23].
Far from the interface, the crystal structures of both

grains are known and in particular the Si dumbbells cor-
respond to atoms with two different altitudes z along the
[1 1̄ 0] direction, common to both grains. The crystal pe-
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FIG. 4. (Color online) Electron microscopy images overlaid
by the atomic configurations of the 5:7 and 10:7 approximants
stable with the Stillinger-Weber interactions (respectively top
and bottom images). For the bottom image, two images has
been combined to get a sharper contrast. The light vertical
lines indicate the periodicity along the interface. The coor-
dinates z perpendicular to the images are color coded from
red (lower z) to yellow (higher z). All Si atoms are tetra-
coordinated. Atoms connected by bonds orthogonal to the
images are surrounded by cyan circles.

riod along this direction is s = a/
√

2. We first assign a
constant altitude z = 1/2 s to all atoms except for the Si
dumbbells far enough from the interface to clearly belong
to crystal sites. For these dumbbells, we set z = 1/4s and
z = 3/4 s to their respective two atoms. The isolated Si
columns in Figure 3 correspond to atoms linked by bonds
parallel to [1 1̄ 0] in order to be tetrahedrally bonded.
This is incompatible with a single-period structure along
this direction and instead the fourfold coordination sym-
metry implies a doubling of the period. To get the initial
atomic configuration, the atomic layers of two periods are
therefore stacked together along z, resulting in a period-
icity of 2s. Periodic boundary conditions are set along
the z-direction and free surface boundary conditions are
set for x and y.

Doing a mere energy minimization starting from this
configuration would be impossible because of the short
inter-atomic distances resulting from the unrealistic iden-
tical z value settings. The configuration would be unpre-
dictably destroyed during the minimization. In a first

step, we instead minimize the energy taking the z co-
ordinates as the only variables. Consequently, only the
forces along z are involved and they are initially zero by
symmetry except for the few atoms in the crystal grains
that have been given different z values. At the begin-
ning of the minimization, the surrounding of these few
particularized atoms start to move, and then all the z
coordinates are progressively revealed. When the z coor-
dinates were first assigned, it made no difference which
atom in a dumbbell is up and which atom is down as long
as they are coherently displaced in the crystal. However,
we have here two crystals and so we have a choice for
the second grain once the first one is set. Considering
the two possibilities, we have actually constructed two
initial configurations that both have had their energy
minimized with respect to the z coordinates. Despite
these two possibilities, only one correct configuration is
obtained. Depending on the cases, either both configu-
rations converge to the same final configuration, or one
can be easily discarded because of a residual antiphase
boundary inside one of the grains.

As a second step, a regular energy minimization with
respect to all coordinates is performed. This regularizes
the crystalline structure of the grains since the experi-
mental x and y data where extracted with some random
fluctuations around the equilibrium atomic positions.

With the result obtained from an entire experimental
image, two slices are cut from the final atomic configu-
ration. The first one corresponds to a 7:5 approximant,
the second one to a 10:7 approximant. For each struc-
ture, the slice width is chosen to be its ideal periodicity
P introduced above (Eq 2). Subsequent energy mini-
mizations are performed to adjust the atomic positions
to the new boundary conditions, but now with periodic
boundary conditions for the x and z directions and free
surface boundary conditions for y. As shown in Figure 4,
the final atomic configurations are in very good agree-
ment with the corresponding parts of the experimental
images. The coordinate files are available in Supporting
Information24. Our numerical method has been able to
resolve the pentagon and heptagon structures as well as
the connectivity of the atoms corresponding to individ-
ual spots in the images. All the atoms are now tetra-
coordinated.

V. FIRST-PRINCIPLE CALCULATIONS

BigDFT calculations

The approach presented in the previous section for re-
covering the atomic z coordinates can in principle be
done with first-principal calculations in the density func-
tional theory (DFT) framework. This is not possible in
this study because of the large number of atoms to con-
sider. However, the interface structure is far from the
regular lattice structure of silicon. For instance there
are pentagonal and heptagonal Si loops instead of the
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FIG. 5. Cross-section of the valence-electron density and ball-and-stick model of the 5:7 approximant. White and black in
the grayscale represent respectively the highest and the lowest electron density. Left: Oblique view showing the location of
the cross-section, which is perpendicular to the commensurate direction of the interface (common [11̄0] direction). Along this
direction, the periodicity of the structure is

√
2 a, where a is the cubic lattice parameter of silicon. Right: Plane view. The

horizontal axis is the [001] direction of the upper grain and the [110] direction of the lower one. It is the opposite for the vertical
axis. Along the incommensurate direction, P is the periodicity of the approximant. The logarithmic scale of the density plot is
indicated by the gray-scale bar. The average density is Ne/V = 196 nm−3. The lattice parameter a = 547 pm gives the length
scale. The free-surfaces are passivated by hydrogen atoms.

usual hexagonal loops. Thus, to confirm the stability of
the atomic configurations found with the effective inter-
action potential, we perform DFT calculations with the
two approximants. This will also give us reliable interface
energies. In this section, the configurations stable with
Stillinger-Weber interactions are now the starting points
for computing the electronic and atomic structures.

We have used BigDFT code17, which has the particu-
larity of expressing the electronic wave functions with a
set of wavelet basis functions. This characteristic makes
it possible to control the computational precision in a
systematic way, as with plane-wave basis functions, but
furthermore gives a local decomposition of the wave func-
tions. Besides the strong compression of the data and the
excellent efficiency for parallel calculations both made
possible by this locality, a variety of boundary conditions
can be used, from isolated molecules to periodic crystals.
This point is important here because we need to consider
periodic conditions along x and z, but free boundary con-
ditions along y. Indeed, the configurations are periodic
approximant along x, the direction z of the interface is
commensurate, and the y free boundary conditions corre-
spond to a material slab with surfaces parallel to the in-
terface. As usual, the perturbation by these external sur-
faces on the bulk electronic structure is minimized here
by terminating the dangling bonds with hydrogen atoms.
For the same purpose, no surface reconstruction is con-
sidered and the external Si atoms are set on their perfect
lattice sites. Keeping these atoms fixed on both surfaces
would be possible but would preclude any relative global
shift of the grains, which is an important parameter of

the grain-boundary structures. Instead, free-bloc condi-
tions are used, i.e., all H atoms and the Si atoms in the
two outermost external atomic layers at each surface are
fixed all together, but their center of gravity follows the
resultant of the forces applied to them. This feature has
been implemented in the BigDFT code25 for this study.

To check the independence of the results on the slab
width, two different sizes along the y direction are consid-
ered. In the 5:7 approximant there are 48 H atoms and ei-
ther 312 or 408 Si atoms depending on the slab width. In
the 10:7 approximant there are 68 H atoms and either 440
or 576 Si atoms. Pseudopotentials26,27 are used to sim-
ulate the core electrons. The Perdew-Burke-Ernzerhof
(PBE) exchange correlation functional28 is used in the
calculation. The choice of the code, of the pseudopo-
tentials, and of the PBE functional has been assessed in
a general study16 and gives high precision results. The
k-point grid for calculations with the Si cubic cell is a
4 × 4 × 4 Monkhorst Pack mesh. A 6 × 4 × 6 mesh has
been used for the orthogonal cell with paramerters a/

√
2,

a and a/
√

2 (see Fig. 1). The real-space grid spacing be-
tween the wavelet-function centers, hgrid, is set to 21 pm
corresponding to a high length resolution. With these
conditions, the calculated value of the stable Si lattice
parameter is 0.5466 nm in agreement with the nowadays
DFT results16. For the grain-boundary calculations, the
model periodicity along the z axis corresponds to two
[1 1̄ 0] periods and thus three k-points are used in this
direction. Because of the large value of the periodicity
along x and the free-boundary conditions along y, no grid
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of k-points is necessary for both of these axes.

The density functional calculations consist in minimiz-
ing the energy with respect to both the atomic posi-
tions and the electronic structure. The energy minimiza-
tion is stopped when forces on the atoms are lower than
10 meV/Å. In the final configurations, all the Si atoms at
the interface have kept their covalent bonding. The elec-
tronic density of the relaxed 7:5 approximant is shown
in figure 5 and the coordinates of both approximants are
available in Supporting Information24.

The interface energy γI is estimated by removing the
other energy contributions from the total potential en-
ergy Epot of the configurations: bulk energy εSi, the resid-
ual elastic energies due to the residual strains (Eq. 3),
and hydrogenated-surface energies γH{1 0 0} and γH{1 1 0}.
To calculate the surface energies we also consider slab
geometries for each of the two grain orientations (see ap-
pendix and its figure 11). Along y, the thickness of the
slabs are similar to those of the grain-boundary config-
urations. Free surfaces are hydrogenated too. Complete
density functional calculations are done for all slabs. Now
by considering the same geometry for each grain, but
with additional atomic layers to thicken the slabs, we
can extract the bulk energy from their total energy dif-
ferences. This way, we finally get three estimates of the
bulk energy, one for each of the grain orientations plus
one calculated merely from the cubic cell. The maxi-
mum discrepancy between them is only 2 meV per atom.
This procedure is actually most useful to obtain all to-
gether bulk energy plus elastic energies of the slightly
constrained grains. Indeed, the elastic constrains on the
slabs are particular, with fixed strains along x and z
(corresponding to imposed periodic conditions) and null
stress along y (free-bloc conditions). Taking into account
these auxiliary calculations, the computed interface en-
ergies γI are 0.652 J/m² and 0.667 J/m², respectively for
the 7:5 and 10:7 approximants. The discrepancy between
the thickest and thinnest slabs is less then 0.007 J/m².
An estimate of γI for the infinite incommensurate grain
boundary, and not approximants, will be given in sec-
tionVI and table I.

Another quantity, the adhesion energy γA is the gain
per surface unit between the energy Epot of the configura-
tion and the energy it would have if the two grains would
be separated. So here, the higher energy γA, the more
stable is the interface. In our case, this last energy is de-
duced from slab calculations with a clean free surface on
one side and hydrogenated surface on the other side. No
complex surface reconstructions are taken into account,
except the inter-plane relaxations, which are direct out-
puts of the calculation. The adhesion energy γA is equal
to 3.26 J/m² for the 7:5 approximant. Though very close,
the gain corresponds to a lower energy than the reported
value γA = 3.2 J/m² for an alternate structure of the 7:5
approximant9. For the 10:7 approximant, γA is found
equal to 3.21 J/m². The energy γA for separating the
grains can be compared to the energies 4.65 J/m² and
3.38 J/m² obtained in this work for cleaving Si crystal at
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FIG. 6. Strip and projection method to generate a
√

2-tiling
from the square lattice. The gray strip has a slope equal to√

2 fixing the ratio NS/NL =
√

2. The lower limit of the strip
goes through the point (1, 0) and the upper limit through
(0,1). The strip is half-bounded with the upper limit excluded
here. The square edges and the sites of the square lattice in-
side the strip are selected. Once projected onto a straight
line, they correspond respectively to the tiles and vertices of
the tiling. If projected onto a line of slope

√
2 identical to

the slope of the strip, the length of the segments would be
in the ratio PL/PS = 1/

√
2. To get the ratio PL/PS =

√
2,

they are projected onto a line of slope 1/
√

2. The equivalence
with the cut method is also sketched: a line segment is peri-
odically set on every site of the lattice (for clarity only those
selected by the strip are drawn). The vertices of the tiling
are now the intersection points between all segments and the
line of slope

√
2 going through the origin. To get the cor-

rect length ratio, the segments are perpendicular to the line
with slope 1/

√
2. The common length of the segments is the

width of the strip along this direction. The white disks in-
side the strip correspond to the best rational approximations
NS/NL of

√
2, i.e. |NS/NL −

√
2| < |p/q −

√
2| , ∀ q≤NL.

Among them, those with a central black dot correspond to
the continued-fraction convergents, which are solutions of the
stronger condition Eq 1.

(1 0 0) and (1 1 0) surfaces respectively. These values are
similar to those found in [9].

VI. FROM APPROXIMANTS TO A COMPLETE
DESCRIPTION OF THE INTERFACE

Hyper-space description and substitution rules

The Fibonacci tiling, or Fibonacci word, is a proto-
type of 1D quasicrystals29. It is regularly presented to
illustrate the strip and projection method30,31, the cut
method32,33 or the inflation-rule method12,29,34. These
methods generate or describe the quasicrystalline struc-
tures. The Fibonacci tiling is closely related to the golden
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FIG. 7. Density plot of the strain εx,II in grain II for se-
quences made of NL tiles L and NS tiles S due to the misfit
between the periodicities along the incommensurate direction
of the two crystalline grains (see equations Eq. 3). Strain εx,I
in grain I is the opposite. The red line (bold polygonal curve)
represents S3 = LSSLSLSSLSLS (Eqs. 4), a sequence that
minimizes the strain field locally and on average.

ratio, i.e. the irrational number ϕ =
(
1 +
√

5
)
/2. Here,

to combine together replicas of the two approximants de-
scribed in the previous sections and get an incommensu-
rate grain boundary, we derive similar properties for a
tiling now based on

√
2 and associated with the silver

ratio δS = 1 +
√

2 instead of the golden ratio ϕ. To com-
ply with the usual notations and broaden the scope of
the discussion, we denote S = [7 : 5] and L = [10 : 7] the
two approximants now regarded as structural units, with
respective numbers NS and NL in a given sequence (S
for small and L for large).

First of all, why a grain boundary should be associ-
ated with such a tiling related to

√
2 ? The answer

is given by equations 3. They show that the sequence
of structural units should maintain, locally and glob-
ally, the ratio ns/n` the closest as possible to

√
2 in

order to minimize the strain and thus the stress in the
grains. It can be easily tested that for a sequence of
NS and NL units with NS + NL → ∞, the limit of
ns/n` = (7NS + 10NL)/(5NS + 7NL) is

√
2 when the

limit of NS/NL is itself
√

2. The lengths PL and PS of
the two units are identified with their periods along x
(see Eqs. 2) and the ratio PL/PS is equal to

√
2.

The strip and projection method is a method of choice
to generate an incommensurate tiling (or sequence) of S

and L units. To get a
√

2-tiling, a strip of slope
√

2 is
used to select points of coordinates (NL, NS) from a 2D
simple square lattice. This is illustrated in figure 6 with
the strip derived from the elementary lattice cell. This
correspond to a very simple algorithm using the deviation
∆ introduced in Eq. (1). Starting from no units, we add
them one by one with the following rule: from NS and NL

units, add one new S unit if ∆ [NS + 1, NL] < 1, if not
add a L unit. In the last case, the numbers satisfied the
relation ∆ [NS, NL + 1] ≤

√
2. These two inequalities

are linked to the strong condition for the best rational
approximation seen in section II. Fig. 7 shows the relation
between the strip-method and the residual strain due to
the lattice misfit at the interface.

In these
√

2 tilings, the units can be grouped into larger
tiles L1 and S1, which have a length ratio of

√
2 too. This

gives the substitution rules:

L→ L1 ≡ SLS (4a)

S→ S1 ≡ LS (4b)

where, in the context of this article, L1 and S1 are pe-
riodic grain boundaries corresponding to juxtapositions
of elementary periods of the grain boundaries L ≡ L0

and S ≡ S0. Grain boundary S1 corresponds to the con-
vergent structure [17 : 12] and L1 to the semi-convergent
structure [24 : 17]. Starting from an initial unit and iter-
ating the substitution rules (4) generates periodic tilings
of increasing period. Equivalent by construction, an al-
ternative method consists of using the recurrence rela-
tions

Ln=Sn−1Ln−1Sn−1 (5a)

Sn=Ln−1Sn−1 (5b)

and generating two sets of sequences in parallel. Since at
step zero the ratio PL/PS of the tile lengths is

√
2, these

relations show that the length ratio of Ln and Sn is still√
2 for any generation n, and that these lengths increase

by a factor δS = 1 +
√

2 after each substitution. The
original substitution rules leading to the Fibonacci tiling
are L → LS and S → L, with the transformation of the
numbers NS and NL from one generation to the other
strongly linked to the golden ratio ϕ. For the

√
2-tiling,

the matrix M that relates the column vector (NL;NS)
before and after one substitution is

M =

(
1 1
2 1

)
(6)

The two eigenvalues of M are the silver ratio δS =
1 +
√

2 and its conjugate 1 −
√

2 = −1/δS . Since they
are the solutions of a quadratic equation, i.e. the charac-
teristic equation (1− x)2 − 2 = 0, with a module greater
than unity for the first one and smaller than unity for the
second one, the eigenvalue δS is a Pisot number. This
property is coherent with the fact that we are construct-
ing a quasicrystalline tiling34–36. The vector

(
1,
√

2
)

is an
eigenvector of M corresponding to the largest eigenvalue
δS . Therefore the ratio NS/NL and thus the ratio ns/n`
tend to

√
2 when the number of successive substitutions

tends to ∞. Thus, in both grains and away from the
interface, the residual strain due to the lattice parameter
mismatch actually tends to zero [see Eq. (3)].

Note 1. The
√

2-sequence described in this work is
very closely related to the octonacci sequence37–40:

L′ → S′L′L′ and S′ → L′ (7)
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FIG. 8. Top: Overlay of the experimental image by a sequence of S and L tiles, i.e. respectively the [7 : 5] and [10 : 7]
approximants, each one calculated by DFT. The vertical lines indicate the tile boundaries. Bottom: Overlay of the experimental
image by a [41 : 29] approximant corresponding to the sequence S2, now relaxed with the Stillinger-Weber potential23. The
energy of the atoms with this potential is color coded (online version) from blue (bulk energy) to red and yellow (highest
energy). Note that the image contrast is correlated with the atom energies: when a high energy has been found the contrast
is lower, probably indicating structure perturbations like a higher vacancy concentration or larger atomic moves.

(different orders in the tile concatenations in ref. 37, 39,
and 40). Indeed, both sequences have the recurrence re-
lation

Sn = Sn−2Sn−1Sn−1 (8)

deduced here from the equations (5a) and (5b). One
sequence is related to the other by choosing L′ = LS and
S′ = S. So, getting one or the other is a matter of the
choice of the two basic tiles, L in the

√
2-sequence being

smaller than L′. Since the elementary blocks L and S
are directly extracted from the electron micrographs, the√

2-sequence appears as a natural choice here.
Note 2. For simplicity in the Fibonacci tiling, the

length ratio of the L and S tiles are usually set to ϕ,
i.e. the same value as the tile proportion NL/NS. That
way, in the strip-and-projection method on a square 2D-
lattice, the strip selects the tiles and a projection orthog-
onal to it gives directly the tiles. Here, in the

√
2-tiling,

the length ratio is fixed to
√

2 by the periodicity of the
approximants L = [10 : 7] and S = [7 : 5] observed by
microscopy, while their proportion NL/NS is the inverse

1/
√

2 to minimize the strain in the Si crystals.. Thus, the
strip and the direction of the projection are not orthogo-
nal as shown in figure 6. Equivalently in the cut method,
the segment motif of the 2D-unit cell is not orthogonal
to the strip direction, as shown in figure 6 too. A similar
result could be obtained from a rhombic 2D-lattice.

Note 3. While the infinite quasicrystalline
√

2-tiling
corresponds to the slope

√
2, finite sequences Ln or Sn

can be obtained from the square 2D-lattice with slopes
NS/NL. That way, the strip-and-projection method
leads to periodic 1D-lattices with Ln or Sn as the unit
cells. Since in our case, the tiles L and S are periodic
approximants at the atomic scale, we can build atom-
istic structures with periodic boundary conditions along
the interface, These structures are thus well suitable for
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TABLE I. Interfaces energies (J/m²) obtained in this work
with DFT calculations and different parametrizations of the
Stilling-Weber potential: γI,[7:5], γI,[10:7], and γI,[577:408],
respectively, for the periodic interfaces [7:5], [10:7], and
[577:408]; γI for the incommensurate interface. Note: to
compute these energies the bulk terms have been removed,
in particular the elastic energy of the periodic approximants.
While γI,[7:5] < γI < γI,[10:7], the total energy is lower for
the incommensurate interface, which has no long range elas-
tic stress.

Atomic interactions γI,[7:5] γI,[10:7] γI,[577:408] γI

DFT 0.652 0.667 0.660
S-W – Stillinger-Weber22 0.921 0.953 0.939 0.937
S-W – Vink et al.23 1.038 1.075 1.058 1.056
S-W – Pizzagalli et al.41 1.019 1.064 1.044 1.042

simulations at the atomic level.
Note 4. From Fig. 7 we can deduce that a random

sequence of L and S units would increase the material
strain and thus its elastic energy. This would also be the
case, for instance, for sequences generated by the rules
L→ LSLSL and S→ SLSS whose substitution matrix
has the same eigenvectors than matrix M (Eq. 6) leading

to the same tile ratio NS/NL =
√

2. However its largest

eigenvalue, 3 +
√

2, is not a Pisot number; the small-
est, 3−

√
2, is larger than unity. As a consequence34–36,

the extension perpendicular to the strip diverges in the
square-lattice of Fig 7 and would thus correspond to a
material with a larger strain.

Application of the substitution rules

With the recurrence rules and the atomistic configu-
rations of the structural units, large models of the grain
boundary can now be generated. Figure 8 shows part of
a 41:29-approximant overlaying the experimental image
of figure 2 in a very satisfactory way (sequence LSSLS
equivalent to S2 by periodicity). These larger models can
be easily relaxed with the Stillinger-Weber potential23,
which we started with in section IV. The agreement is
satisfactory too and figure 8 shows a correlation between
the highest atomic energies and the fuzziness of the ex-
perimental spots.

The interface energy γI of the incommensurate grain
boundary can now be estimated too (see appendix). In-
deed, neglecting the correlation effects between struc-
tural units, the interface energies per 2D unit cell of the
7:5 and 10:7 approximants (section V) can be weighted

by their respective concentrations,
√

2/δS and 1/δS . The

2D-unit cell areas
√

2 aP 7:5 and
√

2 aP 10:7 are averaged
with the same respective weights (the z periodicity,

√
2 a,

corresponds to two [1 1̄ 0] periods because of the inter-
face reconstruction; the x periodicity corresponds to P in
equation 2). Dividing the weighted energy average by the

weighted area average yields to γI =0.660 J/m². Calcu-
lated in the same way, the calculated adhesion energy of
the incommensurate grain boundary is γA = 3.23 J/m².

For reference, we also have computed the interface en-
ergy γI obtained with the Stillinger-Weber potential23.
This value, as well as the value obtained with the origi-
nal parametrization by Stillinger and Weber22 are given
in table I. A recent potential parametrization41 has
also been tested and the result is included in table I.
Since much larger configurations can be considered using
Stillinger-Weber interactions than by DFT calculations,
the interface energy of the 577:408 approximant has also
been calculated for these interatomic potentials. This
approximant corresponds to the sequence S5 made of 41
S and 29 L units. It has a period P equal to 221.6 nm
along the incommensurate direction. This gives the op-
portunity to check the validity of partitioning the whole
grain boundary into S and L units to compute the inter-
face energy, while neglecting the correlation effects. In-
deed, the relative difference is only 0.2% between γI and
γI,[577:408] taking into account long range elastic stresses

as discussed in15 (see table I). With the large 577:408 ap-
proximant and the Stillinger-Weber potential23, we can
also test the energy difference resulting from alternative
sequences of S and L units. We have tested a random
sequence of 41 S and 29 L and the extreme case where
the S and L units are segregated. In both cases, the en-
ergy minimizations lead to a deformation of the layer due
to the strain. The interface is not flat anymore and the
buckling is larger for the segregated sequence than for the
random one. To avoid this artifact, the minimization has
been redone with constrains. The y and z coordinates of
the first layer at each surface have been fixed, while the
x coordinates were unconstrained to let the strain field
adjust to the S and L stacks along x. The incommen-
surate sequence has the lowest energy, while the random
and the segregated ones have a surplus of 1 mJ/m² and
7 mJ/m², respectively. These results are coherent with
the strain analysis illustrated in figure 7. The random
and the segregated sequences have excursions far from
the ideal S and L concentrations, the segregated one be-
ing the extreme case.

Hull plots

Sharing the same cubic misorientation than the present
Si grain boundary, the 90°〈1 1 0〉 tilt grain boundary in
gold is therefore also an incommensurate grain boundary.
For gold, it has been shown that this grain boundary has
a frictionless – or superglide – property20,43,44. Such a
property was first introduced for a unidimensional theo-
retical model of atoms in a periodic potential field45,46.
Then, it was theoretically studied and experimentally
found in several studies on friction42,43,47–61.

The frictionless property is unlikely for this silicon
interface, because of its reconstruction extension with
faceting clearly visible on the calculated-structure image
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FIG. 9. Atomic-configuration visualization highlighting the
calculation of the hull functions ∆x and ∆y plotted in fig-
ure 10. Only one atomic layer perpendicular to z is not shaded
by a transparent mask. Far from the interface, the atoms se-
lected by the two lowest horizontal lines are representative of
a crystalline atomic row, i, of grain I. In the same way, the
two highest horizontal lines correspond to an atomic row, ii,
of grain II. At the interface, the horizontal lines correspond
to an atomic row, iii, that has been chosen for calculating its
hull plots. Any atomic row could be selected, however this
one is the closest to the interface with atoms having the same
first-neighbor environment than those of grain I. That way,
the influence of grain II on grain I can be analyzed. The op-
posite would be possible by choosing an atomic row in grain
II. To simplify the discussion, row i has been chosen to se-
lect crystallographically equivalent lattice sites than those of
row iii. The atomic configuration has been relaxed with the
Stillinger-Weber potential23 to get atomic energies. These
energies are color coded with two successive color gradients.
From zero to 15 meV, the first scale shows the energy range in
rows iii. From 15 meV to 550 meV, the second scale highlights
the high energy spots at the interface.

(figure 9) as well as on the experimental images (figure 2
and in references [5, 6, and 19]). However, Aubry hull-
function analysis45,62 is the way to get a clear signature
of this dynamical property from the static structure of an
incommensurate atomic configuration. The hull function
characterizes the atomic relaxation from a periodic lat-
tice when the atoms are subject to a periodic potential
having a different and incommensurate periodicity. De-
pending on the strength of the interactions, two regimes
exist separated by an Aubry transition corresponding to
a “breaking of analyticity”45 when going from the un-
pinned states to the pinned one. Since the original unidi-
mensional Frenkel-Kontorova case, the hull function has
been generalized to more complex systems20,51,63.

At a grain boundary, each crystal row parallel to the
incommensurate direction is perturbed by the other crys-
tal and we consider the displacements of the atoms from
their ideal lattices positions. Thus, we need these lat-
tices positions, and a reference can be selected far from

-20

-10

 0

 10

 20

 0  0.2  0.4  0.6  0.8  1

Δ
x 

(p
m

)

χ  / a

[17:12] approximant  

[577:408] approximant

 0

 15

E 
(m

eV
)

-20

-10

 0

 10

 20

 0  0.2  0.4  0.6  0.8  1
Δ

y 
(p

m
)

χ  / a

[17:12] approximant  

[577:408] approximant

 0

 15

E 
(m

eV
)

FIG. 10. Hull plots of the first atomic row of grain I at
the incommensurate interface (see row iii of the lower grain
in figure 9). The lattice parameter a is also the periodicity `
of grain II. Top: atomic relaxation ∆x along the incommen-
surate direction. Bottom: relaxation ∆y perpendicular to the
interface. The ∆y origin corresponds to the average of the y
coordinates in row iii. These hull plots are calculated with
17 Si atoms of the [17:12] approximant (large circles) and 577
atoms of the [577:408] approximant (small dots). Function
discontinuities cannot be revealed by inspecting the [17:12] re-
sults. However, note that the atomic relaxations of the [17:12]
approximant are representative of those of the [577:408] one,
the small-model data following the trends of the large-model
ones. The discontinuities and the apparent fuzziness of the
[577:408] curves are intrinsic to this type of incommensurate
interface. The curves could be continuous for another ma-
terial, but here they are discontinuous everywhere. It is a
pinned-state characteristic42.

the interface. This is illustrated in figure 9 where rows
i and ii are representative of the lattice grain I and II
respectively.

To represent the hull modulation function ∆x (see fig-
ure 10), the atomic displacements are plotted versus the
place of their ideal sites relative to the perturbation, i.e.
the other lattice periodicity. In grain I with period s
along x, the ideal coordinate of an atom with a lattice
index j ∈ Z, is x0 j = j s + α. The shift α is the x co-
ordinate of one arbitrary atom of row i, the origin being
set here on one arbitrary atom of row ii. The relaxation
displacement of an atom in row iii, i.e. its modulation
from the ideal lattice site, is ∆xj = xj − x0 j . This dis-
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placement ∆xj is plotted versus χj = (x0 j modulo `),
where ` is the periodicity of grain II. The system being
invariant by a shift ` of grain I because of the grain II
periodicity, the modulo function wraps the complete re-
laxation behavior of the atoms in a function defined on
[0, `[. The relaxation ∆yj perpendicular to the interface
versus χj is also plotted in figure 10. Here, ∆yj = yj− ȳ,
where ȳ is the average of the yj in row iii. Using a lat-
tice reference rather than ȳ for calculating ∆yj is also
possible and would only result in a shift of the origin for
∆yj .

The discontinuous nature of the hull functions is clearly
visible in figure 10. An infinitesimal glide of grain I rel-
ative to grain II, would correspond to an infinitesimal
change of the coordinates x0 j and consequently to the
quantity χj (∈ [0, `[). Discontinuities of ∆x(χ) would
lead to finite jumps of the atomic displacements, and
thus the system would have to overcome energy barriers.
Therefore, this Si grain boundary has a pinned behavior
and not a superglide one. The “broken analyticity” is
particularly visible in the ∆y hull plot.

VII. CONCLUSION

A general description of an incommensurate grain
boundary in silicon has been given. While this paper
is focused on a precise structure, it illustrates a gen-
eral methodology for semi-conductors different from the
analysis of incommensurate boundaries in metals20,42,43.
This differences are mainly related to the behavior of
the atomic bindings. Because of the covalent bonds, the
boundary here is a quasicrystalline sequence of two el-
ementary units with opposite internal strains: the 7:5
approximant S and the 10:7 approximant L. First, these
units have been selected since they are present in the
experimental electron-microscopy images. Second, the
unit S corresponds to the ratio 7/5, one of the first best

rational approximants of
√

2, while the unit L is a kind of
complementary unit to S because of its almost opposite
residual strain. Unit L corresponds to the semiconver-
gent ratio 10/7 of

√
2. So, in the material, these two

units can be combined together in a suitable way to re-
duce the strain and stress resulting from the incommen-
surate periodicities of the crystals on both sides of the
boundary. For instance, concatenating L with S gives
LS, which corresponds to the next best rational approx-
imant 17/12.

For both elementary units, we have conducted a de-
tailed analysis of the 2D-images obtained by electron
microscopy. A pattern recognition technique has been
applied on high resolution images and has given reli-
able in-plane coordinates of the atomic spots. Taking
advantage of the three components of color coding, the
three correlation functions of the characteristic patterns
– two orthogonal dumbbells and one single spot – can
be combined together to give a comprehensive image of
the grain-boundary. The three-dimensional atomic co-

ordinates have been resolved with atomic-forces calcu-
lations using a Stilling-Weber potential and a two-step
method. A first energy minimization is conducted, re-
stricted only to the atomic coordinates perpendicular to
the plane view. Once the third coordinates are recovered,
the second step is an usual minimization that rectifies co-
herently all the coordinates of the structure. Finally, the
structure has been refined with electronic structure cal-
culations. The resulting S and L structures are fourfold-
coordinated silicon networks and are perfectly periodic
in the two dimensions of the boundary.

To give a complete atomic description of the incom-
mensurate boundary, the elementary units should form
a sequence that reduces the interface stress. With tools
adapted for quasicrystals, the atomic structures of S and
L units can be combined together. In particular, we have
given inflation rules related to the silver ratio and suitable
for S and L tilings. Si atoms are still fourfold-coordinated
in the resulting interfaces.

Suitable for incommensurate structures, the hull func-
tion of the grain boundary has been calculated, thanks to
the large systems that can be constructed with the infla-
tion rules. It demonstrates that no hypofriction property
can be expected here.

This paper describes a structure corresponding to a
perfect incommensurate interface minimizing the resid-
ual stress in the grains. However, defects of this ideal
structure should be present in real materials, depending
on the elaboration process. This is indeed what has been
observed by electron microscopy and a rich variety of sit-
uations can be imagined. It is however out of the scope
of this article to describe them here.
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SUPPLEMENTAL MATERIAL

The atomic coordinates of the S and L units are avail-
able as Supplemental Material24. The files are in plain
ascii format and their content are self-explanatory. All
coordinates are in Å unit and given in a Cartesian sys-
tem. Besides the comment lines, the first two lines give
the computer-box lattice parameters a, b, and c on the
form ax, bx, by, cx, cy, and cz, while ay = az = bz = 0.
Then, the following lines give for each atom the coordi-
nates x, y, z, and the element name.

Appendix: Interface-energy calculation

To extract the interface energy γI of a grain boundary
from the total energy Etotal of a configuration made of
two crystalline grains, one must separately compute the
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FIG. 11. Schematic view of the configurations constructed with grains I and II to compute the interface energy γI . The solid
lines represent the periodic boundary conditions. The dashed lines show the interfaces and the free surfaces of types (001) or
(110). Configurations a and b are the 7:5 and 10:7 approximants, respectively. The tensile and compressive residual strains
are shown in blue and red colors, respectively. These strains are due to the incommensurability between grain I and grain II
periodicities. For taking into account their effects on the elastic energy and on the surface energies, these strains have been
applied to configurations h to o. More precisely, the strains present in the 7:5 approximant (configuration a) have been used in
configurations h to k, while those of the 10:7 approximant (configuration b) have been used in l to o. The different layer widths,
for instance between configurations n and o, allow us to separately determine the strained-bulk energy and the strained-surface
energy. Indeed, only the numbers of bulk atoms are different, while the free-surface areas are identical. Configuration c is a
simple crystalline cell used to compute the reference bulk energy. Without applied strain too, configurations d to g provide us
with two other ways to compute the bulk energy, as well as the values of the surface energies γ{0 0 1} and γ{1 1 0}.

bulk energy εatom and the free surfaces ones γsurfaces to
remove their contributions from Etotal :

γI SI = Etotal −Ntotal εatom − γsurfaces SI

where SI is the area of the grain boundary and Ntotal

is the number of atoms in the configuration. In this pa-
per, we determine γI of an incommensurate grain bound-
ary from the contributions of its periodic grain-boundary
units. These units are slightly constrained due to the
incommensurate periodicities of the grains, while the in-
commensurate grain boundary itself has no intrinsic long
range strain. Thus, to carefully calculate γI , we must
generalize the previous equation. The configurations
taken into account are shown schematically in figure 11.
For instance, from the total energy Etotal of the 7:5 con-

figuration (“a” in figure 11) we calculate :

γI,[7:5] SI,[7:5] = Etotal

− NI εh,i −NII εj,k

− γh,i SI,[7:5] − γj,k SI,[7:5]
where εh,i and γh,i are the strained bulk and surface en-
ergies calculated from configurations “h” and “i” in fig-
ure 11. Similarly, εj,k and γj,k are derived from configu-
rations “j” and “k”. Area SI,[7:5] is the interface area of
the 7:5 unit. In the same way, γI,[10:7] can be calculated
with the energies of configurations “b” and “l” to “o”.

Finally, taking into account the respective frequencies
cS =

√
2/δS and cL = 1/δS of units S = 7:5 and L =

10:7, the interface energy of the incommensurate grain
boundary is

γI =
cS γI,[7:5] SI,[7:5] + cL γI,[10:7] SI,[10:7]

cS SI,[7:5] + cL SI,[10:7]
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55 Martin H. Müser and Mark O. Robbins, “Conditions for
static friction between flat crystalline surfaces,” Phys. Rev.
B 61, 2335–2342 (2000).

56 J.S. Ko and A.J. Gellman, “Friction anisotropy at
Ni(100)/Ni(100) interfaces,” Langmuir 16, 8343–8351
(2000).
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