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a b s t r a c t 

A model is proposed, where the evolution of the orientation of each fiber is coupled to the orientations of the 
surrounding fibers in the flow of a fiber-filled fluid and includes the effects of the fiber volume fraction and aspect 
ratio. This is performed by accounting for the effective behavior of the fiber-filled fluid, which is anisotropic 
although the fibers are embedded in an isotropic Newtonian fluid. The rotation of a fiber in these conditions is 
predicted by a dumbbell model, which allows an extension of Jeffery’s equation to anisotropic cases. This involves 
the numerical evaluation of the drag force applied on a sphere in an orthotropic incompressible fluid, which is 
evaluated by finite element simulations. A simple fit is proposed for the practical use of the coupled model, which 
is applied finally to the orientation kinematics of a population of fibers in a simple shear flow, and the results 
are compared with the ones given by the standard uncoupled approach. 
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. Introduction

In our former works we addressed the kinematics of rods, simulating
hort rigid straight fibers involved in reinforced plastics, by assimilat-
ng them to dumbbells with hydrodynamic forces applied on the dumb-
ell beads [1] . Such a modeling framework allows recovering the Jef-
ery equation for a prolate spheroid with infinite aspect ratio [2] , as
hown below. This rationale has been extended to study rigid [3] and
eformable [4] clusters composed of rods, to address confinement ef-
ects [5,6] , to include higher-order gradients [7] , to consider viscoelas-
ic surrounding fluids [8] , or to account for rods inertia [9] . Moreover,
n [3] the authors proved that the Jeffery equation for general ellip-
oids is recovered by using a rigid tri-dumbbell analog. All these devel-
pments leading to the equivalence between ellipsoids and dumbbells
ere performed under the assumption that the particle is immersed

n an isotropic fluid. When the particles volume fraction increases,
he so-called semi-dilute regime is reached, where direct contacts be-
ween fibers can still be neglected but hydrodynamic interactions come
nto play as referred in the papers above (and the abondant references
herein) or as addressed within a thermodynamic setting in [10] . This
nduces an anisotropic effective behavior of the fluid surrounding a par-
icle and should alter its orientation kinematics, which is expected to
eviate from the standard Jeffery prediction. 

To our knowledge, the effects of this anisotropy on the rod kine-
atics has never been addressed, and all theories and models giving

he orientation kinematics rely on an isotropic environment, in opposi-
ion with what is expected from self-consistent approaches, for instance.
herefore, the present work aims at developing an approximate model
∗ Corresponding author. 
E-mail addresses: Pierre.Gilormini@ensam.eu (P. Gilormini), Francisco.Chinesta@

a  
or the rotation of rigid spheroids with large aspect ratios (representing
lender rods and fibers accurately) that takes into account the effective
uid behavior resulting from a population of fibers with a non-isotropic
istribution of orientations. Since no analytical solution is available in
he anisotropic case for the problem solved by Jeffery in isotropic condi-
ions, a slender spheroid will first be assumed equivalent to a dumbbell,
he orientation kinematics will be solved for the latter in the anisotropic
ase, and a direct comparison with a finite element simulation will val-
date the equivalence with a slender spheroid. Finally, the model will
e applied to the orientation kinematics of a whole population of fibers
uspended in a fluid submitted to a simple shear in order to emphasize
he effects of taking anisotropy into account in the flow of fiber-filled
lastics. 

. Rod kinematics in an anisotropic medium

To derive the dumbbell-based model, we start by revisiting the kine-
atics of a slender rod of length 2 L immersed in an isotropic Newtonian
uid with viscosity 𝜂, where the kinematics described by the velocity
eld v ( x ) is assumed unperturbed by the presence of the rod, whatever

ts orientation. The latter is defined by the unit vector p , and inertia
ffects are neglected in the sequel. If we assume the rod can be repre-
ented by the dumbbell depicted in Fig. 1 and that hydrodynamic forces
pply on the two (identical) beads only, each being proportional to the
ifference between the velocity of the fluid 𝐯 0 + ∇ 𝐯 𝐩 𝐿 (with v 0 the ve-
ocity of the fluid at the dumbbell centroid G ) and the velocity of the
ead 𝐯 𝐺 + �̇� 𝐿 (with v G the velocity of the dumbbell centroid), the force
cting on the bead at p L (the origin of coordinates is taken at G ) reads
ensam.eu (F. Chinesta). 
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Fig. 1. Hydrodynamic forces applied on a dumbbell immersed in a Newtonian 
fluid. 
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 ( 𝐩 𝐿 ) = 𝜁 ( 𝐯 0 + ∇ 𝐯 𝐩 𝐿 − 𝐯 𝐺 − �̇� 𝐿 ) , (1)

here 𝜁 is the drag coefficient in the isotropic fluid, and the force on
he opposite bead at − 𝐩 𝐿 is 

 (− 𝐩 𝐿 ) = 𝜁 ( 𝐯 0 − ∇ 𝐯 𝐩 𝐿 − 𝐯 𝐺 + �̇� 𝐿 ) . (2)

dding these two forces and enforcing the linear momentum balance
 ( 𝐩 𝐿 ) + 𝐅 (− 𝐩 𝐿 ) = 𝟎 leads to 𝐯 0 = 𝐯 𝐺 , that is, the dumbbell centroid
oves with the unperturbed fluid velocity. As the resulting torque must

lso vanish, the only possibility is that the forces act along the direction
f p , that is 𝐅 ( 𝐩 𝐿 ) = 𝜆𝐩 , with 𝜆 a real number: 

𝐩 = 𝜁 𝐿 (∇ 𝐯 𝐩 − �̇� ) . (3)

aking the scalar product of both sides with p provides the 𝜆 value: 

= 𝜁 𝐿 𝐩 𝑇 ∇ 𝐯 𝐩 , (4)

ince 𝐩 𝑇 𝐩 = 1 and consequently 𝐩 𝑇 �̇� = 0 , and (3) gives 

𝐿 

(
𝐩 𝑇∇ 𝐯 𝐩 

)
𝐩 = 𝜁 𝐿 (∇ 𝐯 𝐩 − �̇� ) (5)

eading finally to the rotation rate of the dumbbell: 

̇
 = ∇ 𝐯 𝐩 − 

(
𝐩 𝑇 ∇ 𝐯 𝐩 

)
𝐩 (6)

hich coincides with the well known Jeffery’s equation for a rigid
pheroid with an infinite aspect ratio. Therefore, the rotation of a slen-
er fiber in an isotropic Newtonian fluid is equal to the rotation of a
igid dumbbell, and this remarkable coincidence, which was unrecog-
ized in the early papers where rigid dumbbells were studied (see [11] ,
or instance), has been stressed in [1] . 

It may be noticed that the drag coefficient is absent in (6) , but this
oes not apply when the fluid is anisotropic, as we show now. In this
ase, the drag force is not necessarily aligned with the velocity of the
ead with respect to the fluid, unless possibly along a symmetry axis of
he fluid behavior, and an anisotropic drag tensor 𝜻 is introduced, simi-
arly to what has been done in [12] . This second-order tensor is positive
efinite, so that the drag force does dissipate energy, and therefore it
as an inverse. The hydrodynamic force acting on the bead at p L reads
ow 

 ( 𝐩 𝐿 ) = 𝜻( 𝐯 0 + ∇ 𝐯 𝐩 𝐿 − 𝐯 𝐺 − �̇� 𝐿 ) , (7)

nd, taking into account the positivity of 𝜻 , 𝐯 0 = 𝐯 𝐺 yields again from
he linear momentum balance. The angular momentum balance implies

(∇ 𝐯 𝐩 𝐿 − �̇� 𝐿 ) = 𝜆 𝐩 , (8)

hich, using the invertibility of 𝜻 , can also be written as 

 𝐯 𝐩 − �̇� = 

𝜆

𝐿
𝜻−1 𝐩 . (9)

aking the scalar product with p gives 

 

𝑇 ∇ 𝐯 𝐩 = 

𝜆

𝐿
𝐩 𝑇 𝜻−1 𝐩 , (10)

hich leads to the value of 𝜆: 

= 𝐿 

𝐩 𝑇 ∇ 𝐯 𝐩 
𝐩 𝑇 𝜻−1 𝐩

(11)
hat can be introduced into (9) and gives finally 

̇
 = ∇ 𝐯 𝐩 − 

𝐩 𝑇 ∇ 𝐯 𝐩 
𝐩 𝑇 𝜻−1 𝐩 

𝜻−1 𝐩 . (12)

ince 𝜻−1 appears at both the numerator and denominator, it can be
eplaced by a normalized inverse drag tensor 𝝃 where 𝜉11 + 𝜉22 + 𝜉33 = 1 ,
o that 

̇
 = ∇ 𝐯 𝐩 − 

𝐩 𝑇 ∇ 𝐯 𝐩 
𝐩 𝑇 𝝃 𝐩 

𝝃 𝐩 (13)

eneralizes (6) . This expression for the rotation of a rigid dumbbell in
n anisotropic fluid will be assumed below to govern also the rotation of
 prolate spheroid with infinite aspect ratio. In this sense, this extends
effery’s result to the anisotropic case. 

Of course, (6) is recovered in the isotropic case, where the normal-
zed inverse drag tensor reduces to 𝝃 = 𝜹∕3 ( 𝜹 denotes the second-order
dentity tensor), because the drag tensor 𝜻 simplifies to 𝜁 𝜹. By taking
he scalar product with p , it may also be checked that (13) does satisfy
he condition 𝐩 𝑇 �̇� = 0 to preserve the unit length of p . Before comparing
he kinematics (13) and (6) for a population of fibers, it is necessary to
ddress three main issues: the effective behavior of the fiber-filled fluid
ust be detailed, the associated second-order 𝝃 tensor must be com-
uted, and the extension of (13) to a fiber must be validated. This is
erformed in the following Sections. 

. Orthotropic behaviors considered

The effective viscous behavior of a Newtonian fluid filled with fibers
s deduced here by applying the Advani and Tucker [13] approach. This
wo-step procedure combines a model for the effective behavior when
ll fibers are aligned, and a closure relation applied to the symmetric
econd-order orientation tensor a otherwise. The latter is given by 

 = ∫(0 , 1) 𝐩 ⊗ 𝐩 𝜓( 𝐩 ) d 𝐩 (14)

here the orientation distribution function 𝜓( p ), defined over the sur-
ace (0 , 1) of the unit ball, gives the fraction of fibers that are parallel
o p and verifies the normality condition: 

(0 , 1) 
𝜓( 𝐩 ) d 𝐩 = 1 (15)

rom which 𝑎 11 + 𝑎 22 + 𝑎 33 = 1 results.
In the first step of the Advani–Tucker procedure, the Mori–Tanaka

odel [14] , as reformulated by Benveniste [15] , is used here for the case
here all fibers are aligned and represented as very elongated prolate

pheroids. This model was developed originally for composite materi-
ls, and was preferred by Tucker and Liang [16] at the end of their
eview of various models that predict the stiffness of short-fiber com-
osites. Taking advantage of the formal equivalence between the equa-
ions governing the deformation of an elastic solid at small strain and
hose governing the flow at a given time in a linear viscous fluid at low
eynolds number (see [17] , for instance), this model is extended read-

ly to fiber-filled fluids. For a volume fraction f of aligned rigid fibers
n an incompressible fluid of viscosity 𝜂, the effective behavior is trans-
ersely isotropic and defined by the following three material constants:
n elongational viscosity 

𝐸 = 3 
( 

1 + 

2
3 

𝑓

1 − 𝑓 

1 − 𝑤 

2 

ℎ ( 𝑤 ) − 2 𝑤 

2 + 2 ℎ ( 𝑤 ) 𝑤 

2 

) 

𝜂 (16)

 longitudinal shear viscosity 

𝐿 = 

( 

1 + 2 𝑓

1 − 𝑓 

1 − 𝑤 

2 

(1 + 𝑤 

2 )(2 − 3 ℎ ( 𝑤 )) 

) 

𝜂 (17)

nd a transverse shear viscosity 

𝑇 = 

( 

1 + 4 𝑓

1 − 𝑓 

1 − 𝑤 

2 

3 ℎ ( 𝑤 ) − 2 𝑤 

2 

) 

𝜂 (18)
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Fig. 2. (a) Mesh used in the finite element simulations to compute the viscous 
drag of a sphere moving in an orthotropic fluid. The sphere (in red), with a ve- 
locity parallel to the Y -axis (horizontal), is embedded in a 100 times larger fluid 
domain (in green), and one-fourth of the geometry is considered for symmetry 
reasons. (b) Enlarged view in the vicinity of the rigid moving sphere; to avoid 
meshing its volume, the velocities of all nodes at its surface are set equal and 
parallel to the Y -axis. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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here w > 1 denotes the fiber aspect ratio, and 

 ( 𝑤 ) = 

𝑤 

( 𝑤 

2 − 1) 3∕2 
(
𝑤 

√
𝑤 

2 − 1 − arccosh 𝑤 

)
. (19)

hen w →∞, it may be noted that h →1 (with already h ≥ 0.99 when
 ≥ 16), whereas 𝜂E →∞ but both 𝜂L and 𝜂T tend to (1 + 𝑓 ) 𝜂∕(1 − 𝑓 ) . 

In the second step of the Advani-Tucker procedure, non-aligned
bers are considered, and an evaluation of the anisotropic fluid behavior

s obtained by combining the above unidirectional case and information
bout the orientation distribution function. The latter is reduced to the
econd-order orientation tensor a , provided that a suitable closure rela-
ion is applied, which defines a fourth-order orientation tensor related
o a . Here, the IBOF closure proposed by Chung and Kwon [18] is used,
hich has been developed by fitting over a large set of flow simulations
nd a values. As a result, the effective behavior is orthotropic, with its
hree material symmetry planes being normal to the principal axes of
 . In the latter system of axes, six material parameters are defined for
n incompressible orthotropic fluid behavior: three elongational viscosi-
ies 𝜂11 , 𝜂22 and 𝜂33 , and three shear viscosities 𝜂12 , 𝜂23 and 𝜂31 . These
 parameters are deduced from the volume fraction f and aspect ratio
 of the fibers (to get the reference unidirectional case), and from the a

ensor (to include the orientation distribution) through the expressions
iven in [18] . The linear relation between the deformation rate D and
he stress deviator s (or extra-stress, such that the stress tensor is given
y 𝝈 = 𝐬 − 𝑝 𝜹, where p is a pressure) writes as follows in the principal
xes of orthotropy (the reverse expressions for the components of s in
erms of D are more involved): 

 11 = 

𝑠 11 
𝜂11 

+ 

( 

1 
𝜂33 

− 

1
𝜂11 

− 

1
𝜂22 

) 

𝑠 22 
2 

+ 

( 

1 
𝜂22 

− 

1
𝜂33 

− 

1
𝜂11 

) 

𝑠 33 
2 

 22 =
( 

1 
𝜂33 

− 

1
𝜂11 

− 

1
𝜂22 

) 

𝑠 11 
2 

+ 

𝑠 22 
𝜂22 

+ 

( 

1 
𝜂11 

− 

1
𝜂22 

− 

1
𝜂33 

) 

𝑠 33 
2 

 33 =
( 

1 
𝜂22 

− 

1
𝜂33 

− 

1
𝜂11 

) 

𝑠 11 
2 

+ 

( 

1 
𝜂11 

− 

1
𝜂22 

− 

1
𝜂33 

) 

𝑠 22 
2 

+ 

𝑠 33
𝜂33 

(20)

nd 𝐷 12 = 𝑠 12 ∕(2 𝜂12 ) , 𝐷 23 = 𝑠 23 ∕(2 𝜂23 ) , 𝐷 31 = 𝑠 31 ∕(2 𝜂31 ) for the shear
omponents, in agreement with Beaussart et al. [17] using different no-
ations. These relations are complemented by an objective evolution law
or the a tensor, which includes the rotation of the orthotropy axes and
nduces an updating of the six viscosities through the Advani–Tucker
odel. 

The special case of transverse isotropy about axis 1 that applies
hen all fibers are parallel is recovered when 𝜂11 = 𝜂𝐸 , 𝜂12 = 𝜂31 = 𝜂𝐿 ,

23 = 𝜂𝑇 , 𝜂22 = 𝜂33 = 4 𝜂𝐸 𝜂𝑇 ∕( 𝜂𝐸 + 𝜂𝑇 ) . In the limit isotropic case, where
 11 = 𝑎 22 = 𝑎 33 = 1∕3 , one has 𝜂11 = 𝜂22 = 𝜂33 = 3 𝜂12 = 3 𝜂23 = 3 𝜂31 . The
baqus [19] finite element code is employed in the simulations reported
elow, using again the equivalence between elastic solids and linear flu-
ds, which requires the addition of three Poisson’s ratios to the material
onstants. They were defined such that a Poisson’s ratio of 0.5 minus
0 −6 results in the isotropic case, which means that the incompressibil-
ty condition is approached extremely closely. 

. Viscous drag in orthotropic fluids

.1. Preliminary validation tests 

The drag of a sphere translating in an unbounded isotropic incom-
ressible viscous fluid has been calculated in 1851 by Stokes in a famous
aper [20] , but an extension to the case of a finite domain has been per-
ormed by Lin et al. [21] . These authors have shown that when a sphere
f radius R moves with velocity v at the center of a spherical fluid do-
ain of radius qR , with zero velocity at the boundary, the drag force

an be expressed in closed form: 

 = 24 𝑞 5 + 𝑞 4 + 𝑞 3 + 𝑞 2 + 𝑞 

4 𝑞 5 − 5 𝑞 4 − 5 𝑞 3 + 5 𝑞 2 + 5 𝑞 − 4 
𝜋𝑅𝜂𝑣 (21)

hich recovers the well-known relation 𝐹 = 6 𝜋𝑅𝜂𝑣 derived by Stokes
hen q →∞. This result, which has been established originally for a
pherical inclusion displaced in a finite spherical elastic medium [21] ,
mplies that the drag force is 8% over Stokes’ value when 𝑞 = 30 , over
bout 5% when 𝑞 = 50 , and still over 2% when 𝑞 = 100 . This is an indi-
ect consequence of the slow r / R decrease of the velocity field in Stokes’
olution, where r denotes the radial coordinate. Since a precise evalu-
tion of the drag force in an unbounded orthotropic fluid is desired in
his study, a mesh extending from the moving sphere up to 100 times its
adius has been defined for the numerical simulations. More precisely,
ne fourth of the inner and outer spheres has been considered, which is
ounded by symmetry planes (see Fig. 2 a). The mesh has been generated
ith the Netgen mesh generator [22] , it contains 607, 852 nodes, 493,
84 quadratic 10-node tetrahedral elements using a hybrid formulation
i.e., where the displacements and the pressure are degrees of freedom),
hich results in 2, 262, 943 unknowns. As shown in Fig. 2 b, the mesh
as been refined at the two points where a singularity is expected, i.e.,
here a streamline ends onto the moving sphere, for symmetry reasons.

A unit displacement of the central spherical surface has been pre-
cribed along the Y axis, which corresponds to a unit velocity in terms
f the elasticity-viscosity equivalence, whereas the surface of the outer
phere was fixed, and the resulting force has been computed with
baqus. When the fluid is isotropic, with a unit 𝜂 value, the computed

orce on a sphere of unit radius is 19.2827, whereas a value of 19.2831 is
iven by (21) , i.e., 1.023 times Stokes’ value. This very good agreement
alidates the mesh and the finite element approach for computing the
rag force. Moreover, this suggests also that an error of about 2% might
e expected when the drag of a sphere in an unbounded anisotropic
uid will be evaluated from simulations with a mesh of finite size ex-
ending up to 100 times the sphere radius. Nevertheless, the results for
he components of the normalized inverse drag tensor may be even more
recise, since ratios between drag forces in different directions are in-
olved and errors may cancel out. For instance, the exact value of 1/3



Fig. 3. Component of the normalized inverse drag tensor 𝝃 parallel to the main 
symmetry axis of an incompressible transversely isotropic fluid where 𝜂𝐸 = 3 𝜂𝑇 . 
Finite element results (symbols) and analytical solution of Gómez-González and 
Álamo [23] (solid curve). 
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Fig. 4. Set of 45 ( a 11 , a 22 ) pairs used for the evaluation of the inverse drag 
tensor. 
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s obtained for each component in the isotropic case, although the drag
orce is overestimated by 2% in each direction. 

Another validation of the finite element modeling is provided by
omparing to the remarkable solution obtained by Gómez-González and
el Álamo [23] for the viscous drag of a sphere in a transversely isotropic
uid. Actually, the results of Gómez-González and Álamo [23] have been
btained in the more general case of a nematic fluid, but the case of
ncompressible transverse isotropy is obtained for a special choice of
he material variables: 𝛼1 = 4( 𝜂𝑇 − 𝜂𝐿 ) , 𝜂𝑎 = 𝜂𝑇 and 𝜂𝑏 = 𝜂𝑐 = 𝜂𝐿 in the
otations of Gómez-González and Álamo [23] . This corresponds to an
ncompressible transversely isotropic fluid where 𝜂𝐸 = 3 𝜂𝑇 , with 𝜂L / 𝜂T 

eft as a single anisotropy parameter, the isotropic case being recovered
hen 𝜂𝐿 ∕ 𝜂𝑇 = 1 . The quite complex expressions obtained for the drag

orce when the sphere is displaced either parallel ( 𝜁∥) or perpendicular
 𝜁⊥) to the direction of transverse isotropy are not repeated here, but
hey can be found in [23] . They allow to compute the component of the
ormalized inverse drag tensor along the axis of transverse isotropy: 

11 =
𝜁⟂

𝜁⟂ + 2 𝜁∥
(22)

ith 𝜉22 = 𝜉33 = (1 − 𝜉11 )∕2 , so that 𝜉11 + 𝜉22 + 𝜉33 = 1 . When the 𝜂L / 𝜂T

atio is varied from 0.1 to 10, the curve shown in Fig. 3 is obtained for

11 . The agreement between the finite element results (for a finite fluid
omain) and the analytical solution (for an unbounded fluid domain) is
uite good, and the discrepancy with respect to the analytical values is
t most −1 . 3 %. 

.2. Application to orthotropic fluids 

The evaluation of the viscous drag of a sphere in an incompress-
ble orthotropic fluid has already been addressed in the context of the
umbbell kinetic theory at the scale of the polymer molecule. Among
aly papers, Curtiss and Bird [12] introduced this concept, and Bird and
iest [24] reviewed various empirical formulae. More recently, Azaiez

25] proposed a linear combination of the identity tensor (which applies
o the isotropic case) and a , and the associated polymer-fiber interaction
arameter has been fitted to experimental results by Guo et al. [26] . The
oncern here is the viscous drag at the upper scale of a fiber, modelled
s a dumbbell, and a quantitative evaluation is sought by using finite
lement simulations. 

In order to sample all possible a tensors for given fiber volume frac-
ion and aspect ratio, a set of 45 points is defined in the classical triangle
sed by Cintra and Tucker [27] , for instance, where a 11 ≥ a 22 ≥ a 33 (see
ig. 4 ). This ordering of the principal values of a and the associated def-
nition of axes (1,2,3) is kept from now on in this paper. Points A and
 correspond to isotropic ( 𝑎 11 = 𝑎 22 = 1∕3 ) and unidirectional ( 𝑎 11 = 1 )
istributions of fiber orientations, respectively, lines AB and AC include
he axisymmetric orientation distributions ( 𝑎 22 = 𝑎 33 along AB, 𝑎 11 = 𝑎 22
long AC), and line BC is defined by 𝑎 33 = 0 . The 44 non-trivial (i.e., not
orresponding to the isotropic case) points considered are aligned on a
.05 ×0.05 grid, as shown in Fig. 4 . Consequently, 132 finite element
imulations are required for given fiber volume fraction and aspect ratio:
ne per translation of the sphere along each of the 3 principal directions
f the orthotropic behavior associated with each of the 44 non-trivial
oints. Once the drag force ( F 1 , F 2 , or F 3 ) has been evaluated along
ach of the principal axes of the a tensor, where the inverse drag tensor
also is diagonal, the normalized components of the latter are given by

11 =
1 

1 + 

𝐹 1 
𝐹 2

+ 𝐹 1
𝐹 3

(23)

ith a similar relation for 𝜉22 , and 𝜉33 = 1 − 𝜉11 − 𝜉33 . Since 5 volume
ractions ( 𝑓 = 0 . 1 , 0.15, 0.2, 0.25, and 0.3) were considered, and 5 as-
ect ratios ( 𝑤 = 20 , 35, 50, 75, and 100) were used for each volume
raction, a total of 3, 300 finite element simulations were performed. 

No systematic simple trend could be found among the results, like

11 ≤ 𝜉22 ≤ 𝜉33 for instance, or a component always increasing or de-
reasing when f or w increases. The expression proposed by Azaiez
25] for the inverse drag tensor, after normalization and using slightly
ifferent notations, namely 

= 

𝜎

3 
𝜹 + (1 − 𝜎) 𝐚 (24)

hich recovers 𝝃 = 𝜹∕3 in the isotropic case ( 𝐚 = 𝜹∕3 ) whatever the
alue of 𝜎, or for any a tensor if 𝜎 = 1 , has been fitted to the set of re-
ults pertaining to fixed f and w values. In each case, 132 ( a 11 , 𝜉11 ), ( a 22 ,

22 ), or ( a 33 , 𝜉33 ) pairs (one set of three for each of the 44 non-trivial
 tensors) were considered for determining the optimal 𝜎 value. Fig. 5 a
llustrates that the linear law (24) is quite acceptable in the favorable
ase of a low volume fraction ( 𝑓 = 0 . 10 ) of moderately elongated fibers
 𝑤 = 20 ), but the agreement with the numerical results is less satisfac-
ory in the more extreme case of a high volume fraction ( 𝑓 = 0 . 30 ) of
ery elongated fibers ( 𝑤 = 50 ) shown in Fig. 5 b. Since a simple, though
rude, law may nevertheless be useful in practice, the 𝜎 values obtained
or the 25 combinations of f and w considered here are given in Table 1 ,
hich can be used to interpolate for intermediate fiber volume fractions

 and aspect ratios w . It may be noted that 𝜎 increases when either f or
 increases. 



Fig. 5. Linear fit (straight line) obtained with the set of ( a 11 , 𝜉11 ) (red circles), 
( a 22 , 𝜉22 ) (blue squares), and ( a 33 , 𝜉33 ) (yellow triangles) pairs obtained for 
𝑓 = 0 . 10 and 𝑤 = 20 (a), or for 𝑓 = 0 . 30 and 𝑤 = 50 (b). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Table 1

Values of the 𝜎 parameter obtained for various combinations of 
fiber volume fraction f and aspect ratio w . 

𝑓 = 0 . 10 𝑓 = 0 . 15 𝑓 = 0 . 20 𝑓 = 0 . 25 𝑓 = 0 . 30 

𝑤 = 20 1.182 1.218 1.242 1.260 1.274

𝑤 = 35 1.273 1.306 1.328 1.343 1.355

𝑤 = 50 1.327 1.357 1.376 1.389 1.399

𝑤 = 75 1.382 1.407 1.422 1.433 1.441

𝑤 = 100 1.415 1.437 1.450 1.459 1.466
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Fig. 6. The cubic volume (shown translucent) meshed for the study of the rota- 
tion of a tilted prolate spheroid (shown in light color). A simple shear is applied, 
which translates the upper and lower faces of the cube in opposite directions. 
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. Rotation of a prolate spheroid

When a rigid prolate spheroid is free to translate and rotate in an un-
ounded isotropic viscous fluid submitted to simple shear at infinity, the
olution detailed by Jeffery [2] gives the rate of rotation of its long axis.
he purpose of this Section is to evaluate this rotation when the fluid is
rthotropic, since no analytical result is available, and to compare with
he dumbbell model proposed in Section 2 . In order to test the validity
f this model, a few cases only are treated because the problem is de-
ned by 9 parameters: the aspect ratio of the spheroid, its orientation
ith respect to the plane and direction of simple shear, the orientation
f the principal axes of the second-order orientation tensor, two inde-
endent principal values of the latter, and the fiber volume fraction in
he fluid surrounding the fiber considered (assuming all fibers have the
ame aspect ratios). 
A mesh has been prepared, where a prolate rigid spheroid with a
ength of 20 and a diameter of 1 ( 𝑤 = 20 ) is embedded at the center of
 cube of side 60. The mesh has been refined in the vicinity of the sharp
nds of the spheroid, it has 427, 163 nodes, 311, 584 10-node quadratic
etrahedral hybrid elements, with a total of 1, 593, 076 unknowns. The
ides of the cube are normal to the Cartesian axes and parallel to the
ymmetry planes of the fluid orthotropy, the long axis of the fiber is
arallel to the (1,1,1) direction in order to avoid favoring an orthotropy
xis ( Fig. 6 ), and simple shear is applied in the X -direction parallel to
he XZ -plane. The origin of the coordinate system is taken at the center
f the cube and a velocity 𝑣 𝑋 = �̇�𝑌 , 𝑣 𝑌 = 𝑣 𝑍 = 0 is applied on all cube
aces. In these conditions, the analytical solution of Jeffery [2] for an
nbounded isotropic fluid domain gives the rotation rate of the unit
ector parallel to the long axis p of the spheroid as 

̇
 = 𝛀𝐩 + 𝑘 𝐃 𝐩 − 𝑘 ( 𝐩 𝑇 𝐃 𝐩 ) 𝐩 (25)

here 𝛀 and D are the antisymmetric and symmetric parts of the veloc-
ty gradient ∇ v , respectively, and 𝑘 = ( 𝑤 

2 − 1)∕( 𝑤 

2 + 1) , with (6) being
ecovered when w →∞ (extremely elongated spheroids). Eq. (25) leads
o the following expressions for the components of �̇� in the case consid-
red here: 

̇ 𝑋 = 

�̇�√
3 

(1 
2 
+ 

𝑘

6 

)
, �̇� 𝑌 = 

�̇�√
3 

(
− 

1
2 
+ 

𝑘

6 

)
, �̇� 𝑍 = − 

�̇�√
3 
𝑘

3 
(26)

hich allows a validation of the finite element simulation. With the
esh described above, where 𝑘 = 0 . 995 because 𝑤 = 20 , the three val-
es of (26) have been recovered extremely precisely, with relative dif-
erences of less than 0.03%. 

Because of the large value of k involved in the finite element model,
he obtained rate of rotation is close to the value for w →∞, where �̇� 𝑋 =
2 ̇𝑝 𝑌 = −2 ̇𝑝 𝑍 = 2 ̇𝛾∕(3 

√
3 ) . Therefore, the components of �̇� obtained in

he numerical simulations with an orthotropic fluid can be compared to
he values given explicitly by the approximate dumbbell model (13) us-
ng the inverse drag tensor, namely: 

̇ 𝑋 = 

�̇�√
3 
(1 − 𝜉𝑋𝑋 ) , �̇� 𝑌 = − 

�̇�√
3 
𝜉𝑌 𝑌 , �̇� 𝑍 = − 

�̇�√
3 
𝜉𝑍𝑍 (27)

or a slender fiber tilted to the (1,1,1) direction with respect to the Carte-
ian axes. Note that in (27) the ( X, Y, Z ) axes are aligned with the prin-
ipal axes of a (and, therefore, of 𝝃), but three cases arise when either
 𝑋, 𝑌 , 𝑍) = (1 , 2 , 3) , or ( 𝑋, 𝑌 , 𝑍) = (3 , 1 , 2) , or ( 𝑋, 𝑌 , 𝑍) = (2 , 3 , 1) , leading
o three different rotations of the fiber. 

For instance, when the fluid surrounding the fiber contains a vol-
me fraction 𝑓 = 0 . 3 of fibers with an aspect ratio 𝑤 = 20 , two cases
re considered, which correspond to points B and C in Fig. 4 , i.e.,
here either 𝑎 = 1 (aligned fibers) or 𝑎 = 𝑎 = 1∕2 . The following
11 11 22 



Table 2

Components of �̇� given by the dumbbell model and by the finite element simulations for 
a spheroid with its long axis ( 𝑤 = 20 ) parallel to the (1,1,1) direction and immersed in an 
orthotropic fluid (where 𝑓 = 0 . 3 and 𝑤 = 20 , 𝑎 11 = 1 in case B, 𝑎 11 = 𝑎 22 = 1∕2 in case C) 
submitted to a simple shear. Three orientations of the fluid orthotropy with respect to the 
Cartesian axes are considered in each case. 

Case B Case C

( X, Y, Z ) Model �̇� 𝑋 ∕ ̇𝛾 �̇� 𝑌 ∕ ̇𝛾 �̇� 𝑍 ∕ ̇𝛾 �̇� 𝑋 ∕ ̇𝛾 �̇� 𝑌 ∕ ̇𝛾 �̇� 𝑍 ∕ ̇𝛾

(1,2,3) Spheroid 0.4888 −0 . 2448 −0 . 2440 0.4180 −0 . 1593 −0 . 2587 
Dumbbell 0.4790 −0 . 2395 −0 . 2395 0.4203 −0 . 1570 −0 . 2633 
Difference −0 . 0098 0.0053 0.0045 0.0023 0.0023 −0 . 0046 

(3,1,2) Spheroid 0.3326 −0 . 0886 −0 . 2440 0.3188 −0 . 1612 −0 . 1576 
Dumbbell 0.3379 −0 . 0984 −0 . 2395 0.3141 −0 . 1570 −0 . 1570 
Difference 0.0053 −0 . 0098 0.0045 −0 . 0047 0.0042 0.0006

(2,3,1) Spheroid 0.3318 −0 . 2455 −0 . 0863 0.4161 −0 . 2586 −0 . 1576 
Dumbbell 0.3379 −0 . 2395 −0 . 0984 0.4203 −0 . 2633 −0 . 1570 
Difference 0.0061 0.0060 −0 . 0121 0.0042 −0 . 0047 0.0006
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alues have been obtained with the finite element simulations reported
n Section 4.2 for the components of the normalized inverse drag ten-
or: 𝜉11 = 0 . 1704 and 𝜉22 = 𝜉33 = 0 . 4148 in case B, 𝜉11 = 𝜉22 = 0 . 2720 and

33 = 0 . 4560 in case C. They lead to the values reported in Table 2
hen the dumbbell model is applied. These results are compared in
able 2 with the rotations of the prolate spheroid given by the finite
lement simulations; they suggest that the dumbbell model evaluates
he components of �̇� to within ± 0.01. This validates the assumption
hat the solution to the Jeffery problem in the anisotropic case can be
pproximated reasonably well by a dumbbell model. 

The rotation rate predicted by Jeffery’s equation for a slender fiber
s recovered when 𝜉𝑋𝑋 = 1∕3 in (27) , and therefore a rotation towards
he alignment of all other fibers (component �̇� 𝑋𝑋 ) is obtained faster
r slower than predicted by Jeffery’s equation when 𝜉XX is smaller or
arger than 1/3, respectively. The values of �̇� 𝑋𝑋 predicted by (27) when
sing values of 𝜉XX < 1/3 as obtained in Section 4.2 are confirmed by
he finite element simulations shown above ( Table 2 ), but they do not
gree with the predictions of Koch and Shaqfeh [28] . The latter authors
btained �̇� 𝑋𝑋 values lower than given by Jeffery’s equation by using
 direct evaluation and summation of hydrodynamic effects to evaluate
he rotation of a slender fiber when all other fibers immersed in the fluid
re aligned in a given direction. Since our finite element simulations
f a rotating fiber do not use the drag factor but merely rely on the
reliminary evaluation of the effective behavior of the fluid surrounding
he rotating fiber, we note that an agreement with Koch and Shaqfeh
28] might be obtained, at least qualitatively, with a different evaluation
f the effective behavior that would lead to a slower rotation in the finite
lement simulations and to 𝜉XX > 1/3 in Section 4.2 . At the present stage,
e may just observe that these two approaches, which are based on
ifferent evaluations of the effects of surrounding fibers in semi-dilute
uspensions, lead to opposite trends. It may also be recalled incidentally
hat [28] is limited to aligned fibers, whereas our approach is more
eneral. 

. Simulating the orientation kinematics of a population of rods

In this Section, the orientation kinematics of a population of initially
andomly oriented rods is computed when the surrounding Newtonian
uid is submitted to a simple shear ( 𝑣 𝑋 = �̇�𝑌 , 𝑣 𝑌 = 𝑣 𝑍 = 0 , like in the
revious Section). Two cases are considered, where the coupling of the
od orientation kinematics with the orientations of the surrounding rods
s either ignored or taken into account. In the former no-coupling case,
ach rod evolves independently from the others, and its orientation his-
ory is obtained readily by integrating the standard Jeffery’s Eq. (6) . In
he coupled case, the generalized Jeffery’s Eq. (13) is used for evolving
ach orientation and, by contrast, the whole population of orientations
ust be updated at every time step. 
At any time t in the integration procedure, the N rods involved in
he numerical simulation of the suspension are described by their orien-
ations 𝐩 𝑡 

𝑖 
(with 𝑖 = 1 , ⋯ , 𝑁), from which the second-order orientation

ensor is computed as a discrete counterpart of (14) : 

 

𝑡 = 

1
𝑁 

𝑁 ∑
𝑖 =1 

𝐩 𝑡 
𝑖
⊗ 𝐩 𝑡 

𝑖
. (28)

his tensor can then be used to compute the inverse drag tensor 𝝃𝑡 at
ime t through (24) , and finally (13) is applied to each rod in the popu-
ation to obtain its rate of rotation �̇� 𝑡 

𝑖 
in order to update the orientations

ith a mere explicit Euler scheme: 𝐩 𝑡 +Δ𝑡 
𝑖 

= 𝐩 𝑡 
𝑖 
+ Δ𝑡 �̇� 𝑡 

𝑖 
for 𝑖 = 1 , ⋯ , 𝑁 . The

ext time step can then be handled. This procedure is noticeably sim-
lified by the use of the appropriate, preliminarily fitted, and constant
value in (24) , which can be read from Table 1 when the aspect ratio
 of the fibers and their volume fraction f have been defined. Since the

ods considered in this discrete approach do not have a finite diame-
er (hence an infinite aspect ratio and a zero volume), the fiber volume
raction and aspect ratio are present through the value of 𝜎 only. This
xplains why the simulations described below use the same set of N rods
hen different f and w values are considered. Neither f nor w affects the
redictions of the uncoupled model, of course, since they are not present
n (6) . 

A population of 𝑁 = 5 , 000 rods is considered, with orientations
hich are initially distributed randomly and uniformly on the unit

phere, so that an almost isotropic orientation distribution is depicted.
ince the rods are expected to orient along the shear direction ( X -axis)
ecause both (6) and (13) predict �̇� = 𝟎 if all fibers are aligned along
his direction, the associated a XX component of the orientation tensor
hould approach the value of 1 at long times. This quantity is plotted
n Fig. 7 (where �̇� = 1 s −1 has been used) as predicted by the standard
effery model and by the coupled model that takes into account the
nisotropic effective medium. The predictions of the latter model de-
end on the fiber volume fraction and aspect ratio, and three cases are
onsidered: 𝑓 = 0 . 10 and 𝑤 = 20 , where 𝜎 = 1 . 182 applies according to
able 1 , 𝑓 = 0 . 20 and 𝑤 = 20 ( 𝜎 = 1 . 242 ) to demonstrate the effect of
he volume fraction, 𝑓 = 0 . 20 and 𝑤 = 50 ( 𝜎 = 1 . 376 ), to illustrate the
nfluence of the aspect ratio. Of course, the orientation distribution is
he same ( 𝑎 𝑋𝑋 = 1∕3 ) in all cases initially and tends to be the same
 𝑎 𝑋𝑋 = 1 ) at large times, but Fig. 7 shows that significant differences
an be observed at intermediate times, although all curves are still very
lose to each other at small times. At any time, the orientation is more
ronounced (less isotropic) with the coupled model than with the stan-
ard Jeffery prediction. Fig. 7 also shows that an increase in the fiber
olume fraction tends to increase a XX , but this effect is moderate (the
urve for 𝑓 = 0 . 30 and 𝑤 = 20 , not shown for clarity, would be very
lose to the 𝑓 = 0 . 20 and 𝑤 = 20 curve), whereas an increase of the fiber
spect ratio increases a more strongly. Thus, for shear flows of fiber-
XX 



Fig. 7. Time evolution of the a XX component of the orientation tensor when sim- 
ple shear is applied along the X -axis (with �̇� = 1 s −1 ) and the effective anisotropic 
fluid is either accounted for (solid lines) or ignored (standard Jeffery prediction, 
dashed line). Three combinations of fiber volume fractions f and aspect ratios w 

are considered, as indicated. 
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lled polymers, noticeable differences can be obtained in the final ori-
ntation state if the flow implies a significant anisotropy and if the total
pplied shear is not enough for reaching the fully aligned terminal state.

. Concluding remarks

A model has been proposed, where the evolution of the orientation
f each fiber is coupled to the orientations of the surrounding fibers in
he flow of a fiber-filled fluid and includes the effects of the fiber volume
raction and aspect ratio. This has been performed by accounting for the
ffective behavior of the fiber-filled fluid, which is anisotropic although
he fibers are embedded in an isotropic Newtonian fluid. The rotation
f a fiber in these conditions could be predicted by using a dumbbell
odel, which allowed an extension of Jeffery’s equation to anisotropic

ases. This involved the numerical evaluation of the drag force applied
n a sphere in an orthotropic incompressible fluid, and a simple fit has
een proposed for its practical use in the coupled model. The assumed
quivalence between the rotations of a fiber and of a dumbbell in a
nisotropic fluid has been validated directly by finite element simula-
ions. This work calls for the following remarks: 

(i) The proposed model relies on some important assumptions. First,
an effect of the fibers surrounding a given fiber is accounted for,
but merely through the anisotropy they induce, not by the direct
interactions they may have with the fiber considered. In other
words, fiber-to-fiber contacts are neglected here, and this may
be acceptable in two cases: when the fiber volume fraction is
not too large, and when the fibers are sufficiently aligned (a de-
crease of the number of contacts has been observed by Mezher
et al. [29] , for instance). The first condition is closely related to
the limit where the Mori-Tanaka model used here is reliable, so
that large fiber volume fractions should be considered cautiously,
and other homogenization models may be preferred in such cases.
The second circumstance is increasingly likely to occur when the
orientation distribution moves away from the isotropic case. For-
tunately, this is rapidly obtained in simple shear with the coupled
model. 

(ii) The use of the fitted coefficient 𝜎, as proposed in Section 4.2 , is
convenient in practice, because it leads to a simple and fast ap-
plication of the coupled model, but it may give a crude approx-
imation of the drag tensor in some circumstances, as illustrated
in Fig. 5 b. A direct use of the whole set of computed values of
the drag tensor (obtained with some uncertainty through a nu-
merical simulation, though) might be more satisfactory, but this
would lead to a more complex scheme. In particular, the drag
tensor would have to be updated at each time step, because the
orientation tensor evolves, whereas 𝜎 is constant. This might be
performed with a suitable interpolation procedure using the re-
sults of the finite element simulations. 

(iii) For practical reasons, the numerical simulation of the injection of
fiber-filled polymers relies on the second-order orientation tensor
to condense the orientation distribution function. As mentioned
in Section 3 , this has the consequence that the effective behavior
of the fiber-filled fluid is orthotropic, which simplifies the evalua-
tion of the drag tensor (reduced to 3 finite element simulations).
In general, complex, flows of fiber-filled fluids, the orientation
distribution function may not have three orthogonal symmetry
planes, and the effective behavior would not be orthotropic, but
of a more general anisotropy type instead. In these conditions, the
numerical evaluation and tabulation of the drag tensor would be
a formidable task. 

(iv) The fiber aspect ratio appears at two places in the present coupled
model. First, it has a strong effect on the effective anisotropic
behavior of the fiber-filled fluid, as shown in Section 3 , especially
through the elongational viscosity of the reference unidirectional
case. The effects induced on the drag tensor have been taken into
account in this study, and they are reflected by the variations of 𝜎
in each column of Table 1 . The aspect ratio comes also into play
through coefficient k in the general Jeffery equation (25) , but it
is missing in (13) , where an infinite aspect ratio is assumed. This
is justified by the negligible effect of w in (25) when reasonably
large values are used, as shown in Section 5 , and by the next point
below. 

(v) A tri-dumbbell model has been proposed in [3] , which reproduces
Jeffery’s equation for a general ellipsoid in an isotropic fluid, and
we explored its extension to the present context of an anisotropic
fluid like we did for the simple dumbbell in Section 2 , in order to
account for a finite aspect ratio. This involved extremely complex
analytical expressions (not reported here) with, finally, numerical
values for reasonably large aspect ratios very close to the predic-
tions of the considerably simpler mono-dumbbell model used in
the present paper. 

(vi) There is no two-dimensional analog to the effect of anisotropy
described in this paper. In such a simplified case, one would con-
sider a distribution of orientations along the unit circle rather
than on the unit sphere. This might appear as an ideal simple test
case, but taking into account the anisotropy of the fiber-filled
fluid would have no effect at all, unfortunately. The fundamen-
tal reason is that the viscosities along the two principal axes of
the orientation tensor would be equal, although the two prin-
cipal values of this tensor can have different values (with their
sum being equal to 1). This property of an incompressible two-
dimensional fluid has been shown by Fletcher [30] and, as a re-
sult, the drag tensor (and its inverse) has its two principal values
equal. In other words, the drag is isotropic in two dimensions.
Actually, the equivalent to the Jeffery solution is available for
a two-dimensional anisotropic problem: the rotation of a rigid
ellipse is merely independent of the surrounding anisotropy, as
shown in [30] . 
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