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A FULLY SPACE-TIME LEAST-SQUARES METHOD FOR THE UNSTEADY

NAVIER-STOKES SYSTEM

JÉRÔME LEMOINE AND ARNAUD MÜNCH

Abstract. We introduce and analyze a space-time least-squares method associated to the

unsteady Navier-Stokes system. Weak solution in the two dimensional case and regular solution

in the three dimensional case are considered. From any initial guess, we construct a minimizing

sequence for the least-squares functional which converges strongly to a solution of the Navier-

Stokes system. After a finite number of iterates related to the value of the viscosity constant,

the convergence is quadratic. Numerical experiments within the two dimensional case support

our analysis. This globally convergent least-squares approach is related to the damped Newton

method when used to solve the Navier-Stokes system through a variational formulation.

Key Words. Unsteady Navier-Stokes system, Space-time Least-squares approach, Damped

Newton method.

1. Introduction

Let Ω ⊂ Rd, d = 2, 3 be a bounded connected open set whose boundary ∂Ω is Lipschitz. We

denote by V = {v ∈ D(Ω)d,∇ · v = 0}, H the closure of V in L2(Ω)d and V the closure of V in

H1(Ω)d. Endowed with the norm ‖v‖V = ‖∇v‖2 := ‖∇v‖(L2(Ω))d2 , V is an Hilbert space. The

dual V ′ of V , endowed with the dual norm

‖v‖V ′ = sup
w∈V , ‖w‖V =1

〈v, w〉V ′×V

is also an Hilbert space. We denote 〈·, ·〉V ′ the scalar product associated to the norm ‖ ‖V ′ .
Let T > 0. We note QT := Ω× (0, T ) and ΣT := ∂Ω× [0, T ].

The Navier-Stokes system describes a viscous incompressible fluid flow in the bounded domain

Ω during the time interval (0, T ) submitted to the external force f . It reads as follows :

(1.1)


yt − ν∆y + (y · ∇)y +∇p = f, ∇ · y = 0 in QT ,

y = 0 on ΣT ,

y(·, 0) = u0, in Ω,

where y is the velocity of the fluid, p its pressure and ν is the viscosity constant. We refer to

[13, 19, 21].

In the case d = 2, we recall (see [21]) that for f ∈ L2(0, T,V ′) and u0 ∈ H, there exists a

unique weak solution y ∈ L2(0, T ;V ), ∂ty ∈ L2(0, T ;V ′) of the system

(1.2)


d

dt

∫
Ω

y · w + ν

∫
Ω

∇y · ∇w +

∫
Ω

y · ∇y · w = 〈f, w〉V ′×V , ∀w ∈ V

y(·, 0) = u0, in Ω.

This work is concerned with the approximation of solution for (1.2), that is, the explicit

construction of a sequence (yk)k∈N converging to a solution y for a suitable norm. In most of
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2 JÉRÔME LEMOINE AND ARNAUD MÜNCH

the works devoted to this topic (we refer for instance to [8, 16]), the approximation of (1.2) is

addressed through a time marching method. Given {tn}n=0...N , N ∈ N, a uniform discretization

of the time interval (0, T ) and δt = T/N the corresponding time discretization step, we mention

for instance the unconditionally stable backward Euler scheme

(1.3)
∫

Ω

yn+1 − yn

δt
· w + ν

∫
Ω

∇yn+1 · ∇w +

∫
Ω

yn+1 · ∇yn+1 · w = 〈fn, w〉V ′×V , ∀n ≥ 0, ∀w ∈ V

y0(·, 0) = u0, in Ω

with fn := 1
δt

∫ tn+1

tn
f(·, s)ds. The piecewise linear interpolation (in time) of {yn}n∈[0,N ] weakly

converges in L2(0, T,V ) toward a solution y of (1.2) as δt goes to zero (we refer to [21, chapter

3, section 4]). Moreover, it achieves a first order convergence with respect to δt. For each n ≥ 0,

the determination of yn+1 from yn requires the resolution of a steady Navier-Stokes equation,

parametrized by ν and δt. This can be done using Newton type methods (see for instance

[17, Section 10.3]) for the weak formulation of (1.3). Alternatively, this can be done using least-

squares method which consists roughly in minimizing (the square of) a norm of the state equation

with respect to yn+1. We refer to [2, 7] where a so-called H−1(Ω) least-squares method has been

introduced, and recently analyzed and extended in [12]. In [12], the convergence of the method

is proved and leads in practice to the so-called damped Newton method, more robust and faster

than the usual one.

The main reason of this work is to explore if the analysis performed in [12, 10] for the steady

Navier-Stokes system can be extended to a full space-time setting. More precisely, following

the terminology of [2], one may introduced the following L2(0, T ;V ′) least-squares functional

Ẽ : (H1(0, T ;V ′) ∩ L2(0, T ;V ))→ R+

(1.4) Ẽ(y) :=
1

2
‖yt + νB1(y) +B(y, y)− f‖2L2(0,T ;V ′)

where B1 and B are defined in Lemmas 2.2 and 2.3. The real quantity Ẽ(y) measures how

the element y is close to the solution of (1.2). The minimization of this functional leads to a

so-called continuous weak least-squares type method. Least-squares methods to solve nonlinear

boundary value problems have been the subject of intensive developments in the last decades,

as they present several advantages, notably on computational and stability viewpoints. We

refer to the book [1] devoted to the analysis of least-squares methods to solve discrete finite

dimensional systems. We notably mention [3] where steady fluids flows are approximated in the

two dimensional case of the lid-driven cavity. We show in the present work that some minimizing

sequences for this so-called error functional Ẽ do actually converge strongly to the solution of

(1.2).

This approach which consist in minimizing an appropriate norm of the solution is refereed

to in the literature as variational approach. We mention notably the work [15] where strong

solution of (1.1) are characterized in the two dimensional case in term of the critical points of a

quadratic functional, close to Ẽ. Similarly, the authors in [14] show that the following functional

Iε(y) =

∫ ∞
0

∫
Ω

e−t/ε
{
|∂ty + y · ∇y|2 + |y · ∇y|2 +

ν

ε
|∇y|2

}
admits minimizers uε for all ε > 0 and, up to subsequences, such minimizers converge weakly to

a Leray-Hopf solution of (1.1) as ε→ 0.

The paper is organized as follows. We start in Section 2 in the two dimensional case with the

weak solution of (1.2) associated to initial data u0 in H and source term f ∈ L2(0, T,V ′). We

introduce our least-squares functional, quoted by E, in term of a corrector variable v. We show

in two steps that any minimizing sequence for E strongly converges to the solution (see Theorem

2.8). This is achieved in two steps: first, we obtain a coercivity type property which show that
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E(y) is an upper bound of the distance of y to a solution of (1.2). Then, we introduce a bounded

element Y1 in (2.13) along which the differential E′ of E is parallel to E (see (2.20)). The use of

the element −Y1 as a descent direction allows to define iteratively a minimizing sequence {yk}k>0

which converges with a quadratic rate (except for the first iterates) to the solution of (1.2). It

turns out that the underlying algorithm (2.21) coincides with the one derived from the damped

Newton method when used to find solution of (1.2). In Section 3, in the three dimensional case,

we employ the same methodology to approximate regular solution of (1.2) associated to u0 ∈ V

and f ∈ L2(QT )3. We obtain similar results of convergence. Numerical experiments in Section

4 confirm the efficiency of the method based on the element Y1, in particular for small values of

the viscosity constant ν. Section 5 concludes with some perspectives.

2. Space-time least squares method: the two dimensional case

Adapting [12], we introduce and analyze a so-called weak least-squares functional allowing to

approximate the solution of the boundary value problem (1.2).

2.1. Preliminary technical results. In the following, we repeatedly use the following classical

estimate.

Lemma 2.1. Let any u ∈H, v, w ∈ V . There exists a constant c = c(Ω) such that

(2.1)

∫
Ω

u · ∇v · w ≤ c‖u‖H‖v‖V ‖w‖V .

Proof. If u ∈ H, v, w ∈ V , denoting ũ, ṽ and w̃ their extension to 0 in R2, we have, see [4] and

[20] ∣∣∣∣∫
Ω

u · ∇v · w
∣∣∣∣ =

∣∣∣∣∫
Ω

ũ · ∇ṽ · w̃
∣∣∣∣ ≤ ‖ũ · ∇ṽ‖H1(R2)‖w̃‖BMO(R2) ≤ c‖ũ‖2‖∇ṽ‖2‖w̃‖H1(R2)

≤ c‖u‖2‖∇v‖2‖w‖H1(Ω)2 ≤ c‖u‖H‖v‖V ‖w‖V .

�

Lemma 2.2. Let any u ∈ L∞(0, T ;H) and v ∈ L2(0, T ;V ). Then the function B(u, v) defined

by

〈B(u(t), v(t)), w〉 =

∫
Ω

u(t) · ∇v(t) · w ∀w ∈ V , a.e in t ∈ [0, T ]

belongs to L2(0, T ;V ′) and

(2.2) ‖B(u, v)‖L2(0,T ;V ′) ≤ c
(∫ T

0

‖u‖2H‖v‖2V
) 1

2 ≤ c‖u‖L∞(0,T ;H)‖v‖L2(0,T ;V ).

Moreover

(2.3) 〈B(u, v), v〉V ′×V = 0.

Proof. Indeed, a.e in t ∈ [0, T ] we have (see (2.1)), ∀w ∈ V

|〈B(u(t), v(t)), w〉| ≤ c‖u(t)‖H‖v(t)‖V ‖w‖V

and thus, ∫ T

0

‖B(u, v)‖2V ′ ≤ c
∫ T

0

‖u‖2H‖v‖2V ≤ c‖u‖2L∞(0,T,H)‖v‖
2
L2(0,T,V ) < +∞.

We also have a.e in t ∈ [0, T ] (see [21])

〈B(u(t), v(t)), v(t)〉V ′×V =

∫
Ω

u(t) · ∇v(t) · v(t) = 0.

�
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Lemma 2.3. Let any u ∈ L2(0, T ;V ). Then the function B1(u) defined by

〈B1(u(t)), w〉 =

∫
Ω

∇u(t) · ∇w ∀w ∈ V , a.e in t ∈ [0, T ]

belong to L2(0, T ;V ′) and

(2.4) ‖B1(u)‖L2(0,T ;V ′) ≤ ‖u‖2L2(0,T,V ) < +∞.

Proof. Indeed, a.e in t ∈ [0, T ] we have

|〈B1(u(t)), w〉| ≤ ‖∇u(t)‖2‖∇w‖2 = ‖u(t)‖V ‖w‖V

and thus, a.e in t ∈ [0, T ]

‖B1(u(t))‖V ′ ≤ ‖u(t)‖V

which gives (2.4). �

We also have (see [21, 13]) :

Lemma 2.4. For all y ∈ L2(0, T,V ) ∩H1(0, T ;V ′) we have y ∈ C([0, T ];H) and in D′(0, T ),

for all w ∈ V :

(2.5) 〈∂ty, w〉V ′×V =

∫
Ω

∂ty · w =
d

dt

∫
Ω

y · w, 〈∂ty, y〉V ′×V =
1

2

d

dt

∫
Ω

|y|2

and

(2.6) ‖y‖2L∞(0,T ;H) ≤ c‖y‖L2(0,T ;V )‖∂ty‖L2(0,T ;V ′).

We recall that along this section, we suppose that u0 ∈ H, f ∈ L2(0, T,V ′) and Ω is a

bounded lipschitz domain of R2. We also denote

A = {y ∈ L2(0, T ;V ) ∩H1(0, T ;V ′), y(0) = u0}

and

A0 = {y ∈ L2(0, T ;V ) ∩H1(0, T ;V ′), y(0) = 0}.

Endowed with the scalar product

〈y, z〉A0
=

∫ T

0

〈y, z〉V + 〈∂ty, ∂tz〉V ′

and the associated norm

‖y‖A0 =
√
‖y‖2L2(0,T ;V ) + ‖∂ty‖2L2(0,T ;V ′)

A0 is an Hilbert space.

We also recall and introduce several technical results. The first one is well-known (we refer to

[13] and [21]).

Proposition 2.5. There exists a unique ȳ ∈ A solution in D′(0, T ) of (1.2). This solution

satisfies the following estimates :

‖ȳ‖2L∞(0,T ;H) + ν‖ȳ‖2L2(0,T ;V ) ≤ ‖u0‖2H +
1

ν
‖f‖2L2(0,T ;V ′),

‖∂tȳ‖L2(0,T ;V ′) ≤
√
ν‖u0‖H + 2‖f‖L2(0,T ;V ′) +

c

ν
3
2

(ν‖u0‖2H + ‖f‖2L2(0,T ;V ′)).

We also introduce the following result :
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Proposition 2.6. For all y ∈ L2(0, T,V ) ∩H1(0, T ;V ′), there exists a unique v ∈ A0 solution

in D′(0, T ) of

(2.7)



d

dt

∫
Ω

v · w +

∫
Ω

∇v · ∇w +
d

dt

∫
Ω

y · w + ν

∫
Ω

∇y · ∇w

+

∫
Ω

y · ∇y · w =< f,w >V ′×V , ∀w ∈ V

v(0) = 0.

Moreover, for all t ∈ [0, T ],

‖v(t)‖2H + ‖v‖2L2(0,t;V ) ≤ ‖f −B(y, y)− νB1y − ∂ty‖2L2(0,t;V ′)

and

‖∂tv‖L2(0,T ;V ′) ≤ ‖v‖L2(0,T,V ) + ‖f −B(y, y)− νB1y − ∂ty‖L2(0,T ;V ′)

≤ 2‖f −B(y, y)− νB1y − ∂ty‖L2(0,T ;V ′).

The proof of this proposition is a consequence of the following standard result (see [20, 13]).

Proposition 2.7. For all z0 ∈H and all F ∈ L2(0, T ;V ′), there exists a unique z ∈ L2(0, T,V )∩
H1(0, T ;V ′) solution in D′(0, T ) of

(2.8)


d

dt

∫
Ω

z · w +

∫
Ω

∇z · ∇w =< F,w >V ′×V , ∀w ∈ V

z(0) = z0.

Moreover, for all t ∈ [0, T ],

(2.9) ‖z(t)‖2H + ‖z‖2L2(0,t;V ) ≤ ‖F‖
2
L2(0,t;V ′) + ‖z0‖2H

and

(2.10) ‖∂tz‖L2(0,T ;V ′) ≤ ‖z‖L2(0,T,V ) + ‖F‖L2(0,T ;V ′) ≤ 2‖F‖L2(0,T ;V ′) + ‖z0‖H .

Proof. (of Proposition 2.6) Let y ∈ L2(0, T,V ) ∩H1(0, T ;V ′). Then the functions B(y, y) and

B1(y) defined in D′(0, T ) by

〈B(y, y), w〉 =

∫
Ω

y · ∇y · w and 〈B1(y), w〉 =

∫
Ω

∇y · ∇w, ∀w ∈ V

belong to L2(0, T ;V ′) (see Lemma 2.2 and 2.3).

Moreover, since y ∈ L2(0, T,V )∩H1(0, T,V ′) then, in view of (2.5), in D′(0, T ), for all w ∈ V

we have :

d

dt

∫
Ω

y · w = 〈∂ty, w〉V ′×V .

Then (2.7) may be rewritten as
d

dt

∫
Ω

v · w +

∫
Ω

∇v · ∇w =< F,w >V ′×V , ∀w ∈ V

v(0) = 0,

where F = f − B(y, y) − νB1y − ∂ty ∈ L2(0, T,V ′); Proposition 2.6 is therefore a consequence

of Proposition 2.7. �
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2.2. The least-squares functional. We now introduce our least-squares functional E : H1(0, T,V ′)∩
L2(0, T,V )→ R+ by putting

(2.11) E(y) =
1

2

∫ T

0

‖v‖2V +
1

2

∫ T

0

‖∂tv‖2V ′ =
1

2
‖v‖2A0

where the corrector v is the unique solution of (2.7). The infimum of E is equal to zero and

is reached by a solution of (1.2). In this sense, the functional E is a so-called error functional

which measures, through the corrector variable v, the deviation of y from being a solution of the

underlying equation (1.2).

Beyond this statement, we would like to argue why we believe it is a good idea to use a

(minimization) least-squares approach to approximate the solution of (1.2) by minimizing the

functional E. Our main result of this section is a follows:

Theorem 2.8. Let {yk}k∈N be a sequence of A bounded in L2(0, T,V ) ∩ H1(0, T ;V ′). If

E′(yk) → 0 as k → ∞, then the whole sequence {yk}k∈N converges strongly as k → ∞ in

L2(0, T,V ) ∩H1(0, T ;V ′) to the solution ȳ of (1.2).

As in [12], we divide the proof in two main steps.

(1) First, we use a typical a priori bound to show that leading the error functional E down

to zero implies strong convergence to the unique solution of (1.2).

(2) Next, we show that taking the derivative E′ to zero actually suffices to take E to zero.

Before to prove this result, we mention the following equivalence which justifies the least-

squares terminology we have used in the following sense: the minimization of the functional E is

equivalent to the minimization of the L2(0, T,V ′)-norm of the main equation of the Navier-Stokes

system.

Lemma 2.9. There exists c1 > 0 and c2 > 0 such that

c1E(y) ≤ ‖yt + νB1(y) +B(y, y)− f‖2L2(0,T ;V ′) ≤ c2E(y)

for all y ∈ L2(0, T,V ) ∩H1(0, T ;V ′).

Proof. From Proposition 2.6 we deduce that

2E(y) = ‖v‖2A0
≤ 5‖yt + νB1(y) +B(y, y)− f‖2L2(0,T ;V ′).

On the other hand, from the definition of v,

‖yt + νB1(y) +B(y, y)− f‖L2(0,T ;V ′) = ‖vt +B1(v)‖L2(0,T ;V ′)

≤ ‖vt‖L2(0,T ;V ′) + ‖B1(v)‖L2(0,T ;V ′) ≤
√

2‖v‖A0
= 2
√
E(y).

�

We start with the following proposition which establishes that as we take down the error E to

zero, we get closer, in the norm L2(0, T ;V ) and H1(0, T ;V ′), to the solution ȳ of the problem

(1.2), and so, it justifies why a promising strategy to find good approximations of the solution

of problem (1.2) is to look for global minimizers of (2.11).

Proposition 2.10. Let ȳ ∈ A be the solution of (1.2), M ∈ R such that ‖∂tȳ‖L2(0,T,V ′) ≤ M

and
√
ν‖∇ȳ‖L2(QT )4 ≤ M and let y ∈ A. If ‖∂ty‖L2(0,T,V ′) ≤ M and

√
ν‖∇y‖L2(QT )4 ≤ M ,

then there exists a constant c(M) such that

(2.12) ‖y − ȳ‖L∞(0,T ;H) +
√
ν‖y − ȳ‖L2(0,T ;V ) + ‖∂ty − ∂tȳ‖L2(0,T,V ′) ≤ c(M)

√
E(y).
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Proof. Let Y = y − ȳ. The functions B(Y, y), B(ȳ, Y ) and B1(v) defined in D′(0, T ) by

〈B(Y, y), w〉 =

∫
Ω

Y ·∇y·w, 〈B(ȳ, Y ), w〉 =

∫
Ω

ȳ·∇Y ·w and 〈B1(v), w〉 =

∫
Ω

∇v·∇w ∀w ∈ V

belong to L2(0, T ;V ′) (see Lemma 2.2 and 2.3), and from (1.2), (2.7) and (2.5) we deduce that
d

dt

∫
Ω

Y · w + ν

∫
Ω

∇Y · ∇w = −〈∂tv +B1(v) +B(Y, y) +B(ȳ, Y ), w〉V ′×V , ∀w ∈ V

Y (0) = 0,

and from (2.9), (2.10), (2.2), (2.3) and (2.4) we deduce that for all t ∈ [0, T ]∫
Ω

|Y (t)|2 + ν

∫
Qt

|∇Y |2 ≤ 1

ν

∫ t

0

‖∂tv +B1(v) +B(Y, y)‖2V ′

≤ 4

ν
(‖∂tv‖2L2(0,T,V ′) + ‖v‖2L2(0,T,V ) + c

∫ t

0

‖Y ‖22‖y‖2V )

≤ 4

ν
(2E(y) + c

∫ t

0

‖Y ‖22‖y‖2V ).

Gronwall’s lemma then implies that for all t ∈ [0, T ]∫
Ω

|Y (t)|2 + ν

∫
Qt

|∇Y |2 ≤ 8

ν
E(y) exp

( c
ν

∫ t

0

‖y‖2V
)
≤ 8

ν
E(y) exp(

c

ν2
M2)

which gives

‖Y ‖L∞(0,T ;H) +
√
ν‖Y ‖L2(0,T ;V ) ≤

4
√

2√
ν

√
E(y) exp(

c

ν2
M2) ≤ C(M)

√
E(y).

Now
‖∂tY ‖L2(0,T,V ′) ≤ ‖∂tv +B1(v) + νB1(Y ) +B(Y, y) +B(ȳ, Y )‖L2(0,T ;V ′)

≤ ν‖Y ‖L2(0,T,V ) + ‖∂tv‖L2(0,T,V ′) + ‖v‖L2(0,T,V )

+ c‖Y ‖L∞(0,T ;H)‖y‖L2(0,T ;V ) + c‖ȳ‖L∞(0,T ;H)‖Y ‖L2(0,T,V )

≤
√
E(y)

(
2
√

2 exp(
c

ν2
M2) + 2

√
2 + cM

4
√

2

ν
exp(

c

ν2
M2)

)
and thus

‖∂tY ‖L2(0,T,V ′) ≤ c(M)
√
E(y).

�

We now proceed with the second part of the proof and would like to show that the only critical

points for E correspond to solutions of (1.2). In such a case, the search for an element y solution

of (1.2) is reduced to the minimization of E.

For any y ∈ A, we now look for an element Y1 ∈ A0 solution of the following formulation

(2.13)



d

dt

∫
Ω

Y1 · w + ν

∫
Ω

∇Y1 · ∇w +

∫
Ω

y · ∇Y1 · w

+

∫
Ω

Y1 · ∇y · w = − d

dt

∫
Ω

v · w −
∫

Ω

∇v · ∇w, ∀w ∈ V

Y1(0) = 0,

where v ∈ A0 is the corrector (associated to y) solution of (2.7). Y1 enjoys the following property:

Proposition 2.11. For all y ∈ A, there exists a unique Y1 ∈ A0 solution of (2.13). Moreover if

for some M ∈ R, ‖∂ty‖L2(0,T,V ′) ≤M and
√
ν‖∇y‖L2(QT )4 ≤M , then this solution satisfies

‖∂tY1‖L2(0,T,V ′) +
√
ν‖∇Y1‖L2(QT )4 ≤ c(M)

√
E(y)

for some constant c(M) > 0.
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Proof. As in Proposition 2.10, (2.13) can be written as

(2.14)
d

dt

∫
Ω

Y1 · w + ν

∫
Ω

∇Y1 · ∇w +

∫
Ω

y · ∇Y1 · w +

∫
Ω

Y1 · ∇y · w = −〈∂tv +B1(v), w〉V ′×V , ∀w ∈ V

Y1(0) = 0.

(2.14) admits a unique solution Y1 ∈ A0. Indeed, let y1 ∈ L2(0, T,V ) ∩ C([0, T ];H). Moreover,

there exists (see [21]) a unique z1 ∈ A0 solution of

(2.15)
d

dt

∫
Ω

z1 · w + ν

∫
Ω

∇z1 · ∇w +

∫
Ω

y · ∇z1 · w +

∫
Ω

y1 · ∇y · w = −〈∂tv +B1(v), w〉V ′×V , ∀w ∈ V

z1(0) = 0.

Let T : y1 7→ z1. Then if z2 = T (y2), z1 − z2 is solution of
d

dt

∫
Ω

(z1 − z2) · w + ν

∫
Ω

∇(z1 − z2) · ∇w +

∫
Ω

y · ∇(z1 − z2) · w +

∫
Ω

(y1 − y2) · ∇y · w = 0, ∀w ∈ V

(z1 − z2)(0) = 0,

and thus, for w = z1 − z2

1

2

d

dt

∫
Ω

|z1 − z2|2 + ν

∫
Ω

|∇(z1 − z2)|2 = −
∫

Ω

(y1 − y2) · ∇y · (z1 − z2).

But∣∣∣ ∫
Ω

(y1−y2) ·∇y ·(z1−z2)
∣∣∣ ≤ c‖y1−y2‖2‖y‖V ‖∇(z1−z2)‖2 ≤ c‖y1−y2‖22‖y‖2V +

ν

2
‖∇(z1−z2)‖22

so that
d

dt

∫
Ω

|z1 − z2|2 + ν

∫
Ω

|∇(z1 − z2)|2 ≤ c‖y1 − y2‖22‖y‖2V ,

and for all t ∈ [0, T ]

‖z1 − z2‖2L∞(0,t,H) + ν

∫ t

0

∫
Ω

|∇(z1 − z2)|2 ≤ c‖y1 − y2‖2L∞(0,t,H)

∫ t

0

‖y‖2V .

Since y ∈ L2(0, T ;V ), there exists t′ ∈]0, T ] such that
∫ t′

0
‖y‖2V ≤ 1

2c . We then have

‖z1 − z2‖2L∞(0,t′,H) + ν

∫ t′

0

∫
Ω

|∇(z1 − z2)|2 ≤ 1

2
‖y1 − y2‖2L∞(0,t′,H)

and the map T is a contraction mapping on X = C([0, t′];H) ∩ L2(0, t′;V ). So T admits a

unique fixed point Y1 ∈ X. Moreover, from (2.15) we deduce that ∂tY1 ∈ L2(0, t′,V ′). Since the

map t 7→
∫ t

0
‖∇y‖22 is a uniformly continuous function, we can take t′ = T .

For this solution we have, for all t ∈ [0, T ], since
∫
Qt
y · ∇Y1 · Y1 = 0

1

2

∫
Ω

|Y1(t)|2 + ν

∫
Qt

|∇Y1|2 = −
∫ t

0

〈B(Y1, y) + ∂tv +B1(v), Y1〉V ′×V .

Moreover, as in the proof of Proposition 2.10, we have

(2.16)

∫
Ω

|Y1(t)|2 + ν

∫
Qt

|∇Y1|2 ≤
8

ν
E(y) exp(

c

ν

∫ t

0

‖y‖2V )

and thus

√
ν‖Y1‖L2(0,T ;V ) ≤

2
√

2√
ν

√
E(y) exp(

c

ν

∫ T

0

‖y‖2V ) ≤ 2
√

2√
ν

√
E(y) exp(

c

ν2
M2) ≤ c(M)

√
E(y)
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and

(2.17)

‖∂tY1‖L2(0,T,V ′) ≤
√
E(y)(2

√
2 exp(

c

ν

∫ T

0

‖y‖2V ) + 2
√

2 + c‖y‖L2(0,T ;V )
2
√

2√
ν

exp(
c

ν

∫ T

0

‖y‖2V )

+ c‖y‖L∞(0,T ;H)
2
√

2

ν
exp(

c

ν

∫ T

0

‖y‖2V )) ≤ c(M)
√
E(y)

≤
√
E(y)

(
2
√

2 exp(
c

ν2
M2) + 2

√
2 + cM

4
√

2

ν
exp(

c

ν2
M2)

)
≤ c(M)

√
E(y).

�

Proposition 2.12. For all y ∈ A, the map Y 7→ E(y + Y ) is a differentiable function on the

Hilbert space A0 and for any Y ∈ A0, we have

E′(y) · Y = 〈v, V 〉A0
=

∫ T

0

〈v, V 〉V +

∫ T

0

〈∂tv, ∂tV 〉V ′

where V ∈ A0 is the unique solution in D′(0, T ) of

(2.18)



d

dt

∫
Ω

V · w +

∫
Ω

∇V · ∇w +
d

dt

∫
Ω

Y · w + ν

∫
Ω

∇Y · ∇w +

∫
Ω

y · ∇Y · w

+

∫
Ω

Y · ∇y · w = 0, ∀w ∈ V

V (0) = 0.

Proof. Let y ∈ A and Y ∈ A0. We have E(y + Y ) = 1
2‖V ‖

2
A0

where V ∈ A0 is the unique

solution of
d

dt

∫
Ω

V · w +

∫
Ω

∇V · ∇w +
d

dt

∫
Ω

(y + Y ) · w + ν

∫
Ω

∇(y + Y ) · ∇w +

∫
Ω

(y + Y ) · ∇(y + Y ) · w

− 〈f, w〉V ′×V = 0, ∀w ∈ V

V (0) = 0.

If v ∈ A0 is the solution of (2.7) associated to y, v′ ∈ A0 is the unique solution of
d

dt

∫
Ω

v′ · w +

∫
Ω

∇v′ · ∇w +

∫
Ω

Y · ∇Y · w = 0, ∀w ∈ V

v′(0) = 0

and V ∈ A0 is the unique solution of (2.18), then it is straightforward to check that V −v−v′−V ∈
A0 is solution of

d

dt

∫
Ω

(V − v − v′ − V ) · w +

∫
Ω

∇(V − v − v′ − V ) · ∇w = 0, ∀w ∈ V

(V − v − v′ − V )(0) = 0

and therefore V − v − v′ − V = 0. Thus

E(y + Y ) =
1

2
‖v + v′ + V ‖2A0

=
1

2
‖v‖2A0

+
1

2
‖v′‖2A0

+
1

2
‖V ‖2A0

+ 〈V, v′〉A0
+ 〈V, v〉A0

+ 〈v, v′〉A0
.

We deduce from (2.18) and (2.9) that

‖V ‖2L2(0,T,V ) ≤ c(‖∂tY ‖
2
L2(0,T,V ′)+ν

2‖B1(Y )‖2L2(0,T,V ′)+‖B(y, Y )‖2L2(0,T,V ′)+‖B(Y, y)‖2L2(0,T,V ′))

and from (2.4), (2.2) and (2.6) that

‖V ‖2L2(0,T,V ) ≤ c‖Y ‖
2
A0
.

Similarly, we deduce from (2.10) that

‖∂tV ‖2L2(0,T,V ′) ≤ c‖Y ‖
2
A0
.
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Thus

‖V ‖2A0
≤ c‖Y ‖2A0

= o(‖Y ‖A0
).

From (2.9), (2.10) and (2.2), we also deduce that

‖v′‖2L2(0,T,V ) ≤ ‖B(Y, Y )‖2L2(0,T,V ′) ≤ c‖Y ‖
2
L∞(0,T,H)‖Y ‖

2
L2(0,T,V ) ≤ c‖Y ‖

4
A0

and

‖∂tv′‖2L2(0,T,V ′) ≤ c‖Y ‖
2
L∞(0,T,H)‖Y ‖

2
L2(0,T,V ) ≤ c‖Y ‖

4
A0
,

thus we also have

‖v′‖2A0
≤ c‖Y ‖4A0

= o(‖Y ‖A0
).

From the previous estimates, we then obtain

|〈V, v′〉A0 | ≤ ‖V ‖A0‖v′‖A0 ≤ c‖Y ‖3A0
= o(‖Y ‖A0)

and

|〈v, v′〉A0
| ≤ ‖v‖A0

‖v′‖A0
≤ c
√
E(y)‖Y ‖2A0

= o(‖Y ‖A0
),

thus

E(y + Y ) = E(y) + 〈v, V 〉A0 + o(‖Y ‖A0).

Eventually, the estimate

|〈v, V 〉A0
| ≤ ‖v‖A0

‖V ‖A0
≤ c
√
E(y)‖Y ‖A0

gives the continuity of the linear map Y 7→ 〈v, V 〉A0
. �

We are now in position to prove the following result.

Proposition 2.13. If {yk}k∈N is a sequence of A bounded in L2(0, T,V )∩H1(0, T ;V ′) satisfying

E′(yk)→ 0 as k →∞, then E(yk)→ 0 as k →∞.

Proof. For any y ∈ A and Y ∈ A0, we have

E′(y) · Y = 〈v, V 〉A0 =

∫ T

0

〈v, V 〉V +

∫ T

0

〈∂tv, ∂tV 〉V ′

where V ∈ A0 is the unique solution in D′(0, T ) of (2.18). In particular, taking Y = Y1 defined

by (2.13), we define an element V1 solution of

(2.19)



d

dt

∫
Ω

V1 · w +

∫
Ω

∇V1 · ∇w +
d

dt

∫
Ω

Y1 · w + ν

∫
Ω

∇Y1 · ∇w +

∫
Ω

y · ∇Y1 · w

+

∫
Ω

Y1 · ∇y · w = 0, ∀w ∈ V

V1(0) = 0.

Summing (2.19) and the (2.13), we obtain that V1 − v solves (2.8) with F ≡ 0 and z0 = 0. This

implies that V1 and v coincide, and then

(2.20) E′(y) · Y1 =

∫ T

0

‖v‖2V +

∫ T

0

‖∂tv‖2V ′ = 2E(y), ∀y ∈ A.

Let now, for any k ∈ N, Y1,k be the solution of (2.13) associated to yk. The previous equality

writes E′(yk) · Y1,k = 2E(yk) and implies our statement, since from Proposition 2.11, Y1,k is

uniformly bounded in A0. �
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2.3. Minimizing sequence for E - Link with the damped Newton method. Very inter-

estingly, equality (2.20) shows that −Y1 given by the solution of (2.13) is a descent direction for

the functional E. Remark also, in view of (2.13), that the corrector V associated to Y1, given by

(2.18) with Y = Y1, is nothing else than the corrector v itself. Therefore, we can define, for any

m ≥ 1, a minimizing sequence {yk}(k∈N) for E as follows:

(2.21)


y0 ∈ A,
yk+1 = yk − λkY1,k, k ≥ 0,

E(yk − λkY1,k) = min
λ∈[0,m]

E(yk − λY1,k)

with Y1,k ∈ A0 the solution of the formulation

(2.22)



d

dt

∫
Ω

Y1,k · w + ν

∫
Ω

∇Y1,k · ∇w +

∫
Ω

yk · ∇Y1,k · w

+

∫
Ω

Y1,k · ∇yk · w = − d

dt

∫
Ω

vk · w −
∫

Ω

∇vk · ∇w, ∀w ∈ V

Y1,k(0) = 0,

where vk ∈ A0 is the corrector (associated to yk) solution of (2.7) leading (see (2.20)) to E′(yk) ·
Y1,k = 2E(yk). For any k > 0, the direction Y1,k vanishes when E(yk) vanishes.

Lemma 2.14. Let {yk}k∈N the sequence of A defined by (2.21). Then {yk}k∈N is a bounded

sequence of H1(0, T ;V ′) ∩ L2(0, T ;V ) and {E(yk)}k∈N is a decreasing sequence.

Proof. From (2.21) we deduce that, for all k ∈ N :

E(yk+1) = E(yk − λkY1,k) = min
λ∈[0,m]

E(yk − λY1,k) ≤ E(yk)

and thus the sequence {E(yk)}k∈N decreases and, for all k ∈ N: E(yk) ≤ E(y0). Moreover, from

the construction of the corrector vk ∈ A0 associated to yk ∈ A given by (2.7), we deduce from

Proposition 2.5 that yk ∈ A is the unique solution of

d

dt

∫
Ω

yk · w + ν

∫
Ω

∇yk · ∇w +

∫
Ω

yk · ∇yk · w =< f,w >V ′×V

− d

dt

∫
Ω

vk · w −
∫

Ω

∇vk · ∇w, ∀w ∈ V

yk(0) = u0,

and, using (2.4) and (2.2)

(2.23)

‖yk‖2L∞(0,T ;H) ≤ ‖u0‖2H +
1

ν
‖f − ∂tvk −B1(vk)‖2L2(0,T ;V ′)

≤ ‖u0‖2H +
2

ν
‖f‖2L2(0,T ;V ′) +

2

ν
‖∂tvk‖2L2(0,T ;V ′) +

2

ν
‖vk‖2L2(0,T ;V )

≤ ‖u0‖2H +
2

ν
‖f‖2L2(0,T ;V ′) +

4

ν
E(yk)

≤ ‖u0‖2H +
2

ν
‖f‖2L2(0,T ;V ′) +

4

ν
E(y0)

(2.24)
ν‖yk‖2L2(0,T ;V ) ≤ ‖u0‖2H +

1

ν
‖f − ∂tvk −B1(vk)‖2L2(0,T ;V ′)

≤ ‖u0‖2H +
2

ν
‖f‖2L2(0,T ;V ′) +

4

ν
E(y0)
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and

‖∂tyk‖L2(0,T ;V ′) ≤ ‖f − ∂tvk −B1(vk)−B(yk, yk)− νB1(yk)‖L2(0,T ;V ′)

≤ ‖f‖L2(0,T ;V ′) + ‖∂tvk‖L2(0,T ;V ′) + ‖vk‖L2(0,T ;V )

+ c‖yk‖L∞(0,T ;H)‖yk‖L2(0,T ;V ) + ν‖yk‖L2(0,T ;V )

≤ ‖f‖L2(0,T ;V ′) + 2
√
E(yk) +

√
ν‖u0‖H +

√
2‖f‖L2(0,T ;V ′) + 2

√
E(y0)

+ c

(
‖u0‖2H +

2

ν
‖f‖2L2(0,T ;V ′) +

4

ν
E(y0)

)
≤ 3‖f‖L2(0,T ;V ′) + 4

√
E(y0) +

√
ν‖u0‖H

+ c

(
‖u0‖2H +

2

ν
‖f‖2L2(0,T ;V ′) +

4

ν
E(y0)

)
.

�

Lemma 2.15. Let {yk}k∈N the sequence of A defined by (2.21). Then for all λ ∈ [0,m], the

following estimate holds

(2.25) E(yk − λY1,k) ≤ E(yk)

(
|1− λ|+ λ2 c

ν
√
ν

√
E(yk) exp(

c

ν

∫ T

0

‖yk‖2V )

)2

.

Proof. Let Vk be the corrector associated to yk − λY1,k. It is easy to check that Vk is given by

(1− λ)vk + λ2vk where vk ∈ A0 solves

(2.26)


d

dt

∫
Ω

vk · w +

∫
Ω

∇vk · ∇w +

∫
Ω

Y1,k · ∇Y1,k · w = 0, ∀w ∈ V

vk(0) = 0,

and thus

(2.27)

2E(yk − λY1,k) = ‖Vk‖2A0
= ‖(1− λ)vk + λ2vk‖2A0

≤ (|1− λ|‖vk‖A0
+ λ2‖vk‖A0

)2

≤ (
√

2|1− λ|
√
E(yk) + λ2‖vk‖A0

)2,

which gives

(2.28) E(yk − λY1,k) ≤
(
|1− λ|

√
E(yk) +

λ2

√
2
‖vk‖A0

)2

:= g(λ, yk).

From (2.26), (2.9), (2.10) and (2.2) we deduce that

‖vk‖L2(0,T ;V ) ≤ ‖B(Y1,k, Y1,k)‖L2(0,T ;V ′) ≤ c‖Y1,k‖L∞(0,T ;H)‖Y1,k‖L2(0,T ;V )

and
‖∂tvk‖L2(0,T ;V ′) ≤ ‖ −B1(vk)−B(Y1,k, Y1,k)‖L2(0,T ;V ′)

≤ ‖vk‖L2(0,T ;V ) + c‖Y1,k‖L∞(0,T ;H)‖Y1,k‖L2(0,T ;V )

≤ c‖Y1,k‖L∞(0,T ;H)‖Y1,k‖L2(0,T ;V ).

On the other hand, from (2.16) we deduce that

(2.29) ‖Y1,k‖2L∞(0,T ;H) + ν‖Y1,k‖2L2(0,T ;V ) ≤
16

ν
E(yk) exp

(
c

ν

∫ T

0

‖yk‖2V
)
.

Thus

‖vk‖L2(0,T ;V ) ≤
c

ν
√
ν
E(yk) exp

(
c

ν

∫ T

0

‖yk‖2V
)

and

‖∂tvk‖L2(0,T ;V ′) ≤
c

ν
√
ν
E(yk) exp

(
c

ν

∫ T

0

‖yk‖2V
)
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which gives

‖vk‖A0
=
√
‖vk‖2L2(0,T ;V ) + ‖∂tvk‖2L2(0,T ;V ) ≤

c

ν
√
ν
E(yk) exp

(
c

ν

∫ T

0

‖yk‖2V
)
.

From (2.28) we then deduce (2.25). �

Lemma 2.16. Let {yk}k∈N the sequence of A defined by (2.21). Then E(yk) → 0 as k → ∞.

Moreover, there exists a k0 ∈ N such that the sequence {E(yk)}k≥k0 decays quadratically.

Proof. We deduce from (2.25), using (2.24) that, for all λ ∈ [0,m] and k ∈ N? :

(2.30)
√
E(yk+1) ≤

√
E(yk)

(
|1− λ|+ λ2C1

√
E(yk)

)
where C1 = c

ν
√
ν

exp

(
c
ν2 ‖u0‖2H + c

ν3 ‖f‖2L2(0,T ;V ′) + c
ν3E(y0)

)
does not depend on yk.

Let us denote the polynomial pk by pk(λ) = |1 − λ| + λ2C1

√
E(yk) for all λ ∈ [0,m]. If

C1

√
E(y0) < 1 (and thus C1

√
E(yk) < 1 for all k ∈ N) then

min
λ∈[0,m]

pk(λ) ≤ pk(1) = C1

√
E(yk)

and thus

(2.31) C1

√
E(yk+1) ≤

(
C1

√
E(yk)

)2
implying that C1

√
E(yk)→ 0 as k →∞ with a quadratic rate.

Suppose now that C1

√
E(y0) ≥ 1 and denote I = {k ∈ N, C1

√
E(yk) ≥ 1}. Let us prove

that I is a finite subset of N. For all k ∈ I, since C1

√
E(yk) ≥ 1,

min
λ∈[0,m]

pk(λ) = min
λ∈[0,1]

pk(λ) = pk

( 1

2C1

√
E(yk)

)
= 1− 1

4C1

√
E(yk)

≤ 1− 1

4C1

√
E(y0)

< 1

and thus, for all k ∈ I,√
E(yk+1) ≤

(
1− 1

4C1

√
E(y0)

)√
E(yk) ≤

(
1− 1

4C1

√
E(y0)

)k+1√
E(y0).

Since
(

1 − 1

4C1

√
E(y0)

)k+1

→ 0 as k → +∞, there exists k0 ∈ N such that for all k ≥ k0,

C1

√
E(yk+1) < 1. Thus I is a finite subset of N. Arguing as in the first case, it follows that

C1

√
E(yk)→ 0 as k →∞.

�

Remark 2.17. In view of the estimate above of the constant C1, the number of iterates k1

necessary to achieve the quadratic regime (from which the convergence is very fast) is of the order

ν−3/2 exp

(
c
ν2 ‖u0‖2H + c

ν3 ‖f‖2L2(0,T ;V ′) + c
ν3E(y0)

)
, and therefore increases rapidly as ν → 0.

In order to reduce the effect of the term ν−3E(y0), it is thus relevant, for small values of ν,

to couple the algorithm with a continuation approach with respect to ν (i.e. start the sequence

{yk}(k≥0) with an element y0 solution of (1.2) associated to ν > ν so that ν−3E(y0) be at most

of the order O(ν−2)).

Lemma 2.18. Let {yk}k∈N the sequence of A defined by (2.21). Then λk → 1 as k →∞.

Proof. We have

2E(yk+1) = 2E(yk − λkY1,k) = (1− λk)2‖vk‖2A0
+ 2λ2

k(1− λk)〈vk, vk〉A0
+ λ4

k‖vk‖2A0

= 2(1− λk)2E(yk) + 2λ2
k(1− λk)〈vk, vk〉A0

+ λ4
k‖vk‖2A0

,
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and thus, as long as E(yk) 6= 0,

(1− λk)2 =
E(yk+1)

E(yk)
− λ2

k(1− λk)
〈vk, vk〉A0

E(yk)
− λ4

k

‖vk‖2A0

2E(yk)
.

Since

‖vk‖A0 ≤
c

ν
√
ν
E(yk) exp(

c

ν

∫ T

0

‖yk‖2V ),

we then have ∣∣∣ 〈vk, vk〉A0

E(yk)

∣∣∣ ≤ ‖vk‖A0
‖vk‖A0

E(yk)
≤ c

ν
√
ν

√
E(yk) exp(

c

ν

∫ T

0

‖yk‖2V )→ 0

and

0 ≤
‖vk‖2A0

E(yk)
≤ c

ν3
E(yk) exp(

c

ν

∫ T

0

‖yk‖2V )→ 0

as k → +∞. Consequently, since λk ∈ [0,m] and E(yk+1)
E(yk) → 0, we deduce that (1 − λk)2 → 0,

that is λk → 1 as k →∞. �

From Lemmas 2.14, 2.16 and Proposition 2.10 we can deduce that :

Proposition 2.19. Let {yk}k∈N the sequence of A defined by (2.21). Then yk → ȳ in H1(0, T ;V ′)∩
L2(0, T ;V ) where ȳ ∈ A is the unique solution of (1.2) given in Proposition 2.5.

Remark 2.20. The strong convergence of the sequence {yk}k>0 is a consequence of the coercivity

inequality (2.12), which is itself a consequence of the uniqueness of the solution y of (1.2).

Actually, we can directly prove that {yk}k>0 is a convergent sequence in the Hilbert space A as

follows; from (2.21) and the previous proposition, we deduce that the serie
∑
k≥0 λkY1k converges

in H1(0, T ;V ′)∩L2(0, T ;V ) and ȳ = y0 +
∑+∞
k=0 λkY1k. Moreover

∑
λk‖Y1k‖L2(0,T ;V ) converges

and, if we denote by k0 one k ∈ N such that C1

√
E(yk) < 1 (see Lemma 2.16), then for all

k ≥ k0, using (2.29), (2.24) and (2.31) (since we can choose C1 > 1), we have

(2.32)

‖ȳ − yk‖L2(0,T ;V ) = ‖
+∞∑
i=k+1

λiY1i‖L2(0,T ;V ) ≤
+∞∑
i=k+1

λi‖Y1i‖L2(0,T ;V )

≤ m
+∞∑
i=k+1

√
C1E(yi) ≤ m

+∞∑
i=k+1

C1

√
E(yi)

≤ m
+∞∑
i=k+1

(C1

√
E(yk0))2i−k0 ≤ m

+∞∑
i=0

(C1

√
E(yk0))2i+k+1−k0

≤ m(C1

√
E(yk0))2k+1−k0

+∞∑
i=0

(C1

√
E(yk0))2i

≤ cm(C1

√
E(yk0))2k+1−k0

.

From (2.17) we deduce that

‖∂tY1,k‖L2(0,T,V ′) ≤
√
E(yk)(2

√
2 exp(

c

ν

∫ T

0

‖yk‖2V ) + 2
√

2 + c‖yk‖L2(0,T ;V )
2
√

2√
ν

exp(
c

ν

∫ T

0

‖yk‖2V )

+ c‖yk‖L∞(0,T ;H)
2
√

2

ν
exp(

c

ν

∫ T

0

‖yk‖2V ))
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which gives, using (2.23) and (2.24)

(2.33)

‖∂tY1,k‖L2(0,T,V ′) ≤
√
E(yk)(2

√
2 exp(

c

ν

∫ T

0

‖yk‖2V ) + 2
√

2+

+
c

ν
√
ν

(
√
ν‖u0‖H +

√
2‖f‖L2(0,T ;V ′) + 2

√
E(y0)) exp(

c

ν

∫ T

0

‖yk‖2V )

≤ C2

√
E(yk)

where

C2 = c exp

(
c

ν2
‖u0‖2H+

c

ν3
‖f‖2L2(0,T ;V ′)+

c

ν3
E(y0)

)(
1+

1

ν
√
ν

(
√
ν‖u0‖H+

√
2‖f‖L2(0,T ;V ′)+2

√
E(y0))

)
.

Arguing as in the proof of Lemma 2.16, there exists k1 ∈ N such that, for all k ≥ k1

C2

√
E(yk+1) ≤

(
C2

√
E(yk)

)2
thus

(2.34)

‖∂tȳ − ∂tyk‖L2(0,T ;V ′) = ‖
+∞∑
i=k+1

λi∂tY1i‖L2(0,T ;V ′) ≤
+∞∑
i=k+1

λi‖∂tY1i‖L2(0,T ;V ′)

≤ m
+∞∑
i=k+1

√
C2E(yi) ≤ m(C2

√
E(yk1))2k+1−k1

+∞∑
i=0

(C2

√
E(yk1))2i

≤ mc(C2

√
E(yk1))2k+1−k1

.

Remark 2.21. Lemmas 2.14, 2.15, 2.16 and Proposition 2.19 remain true if we replace the

minimization of λ over [0,m] by the minimization over R+. However, the sequence {λk}k>0 may

not be bounded in R+ (the fourth order polynomial λ→ E(yk − λYk) may admit a critical point

far from 1. In that case, (2.32) and (2.34) may not hold for some m > 0.

Similarly, Lemmas 2.16, 2.18 and Proposition 2.19 remain true for the sequence {yk}k≥0

defined as follows

(2.35)


y0 ∈ A,
yk+1 = yk − λkY1,k, k ≥ 0,

g(λk, yk) = min
λ∈R+

g(λ, yk)

leading to λk ∈]0, 1] for all k ≥ 0 and limk→∞λk → 1−. The fourth order polynomial g is defined

in (2.28).

Remark 2.22. It seems surprising that the algorithm (2.21) achieves a quadratic rate for k large.

Let us consider the application F : A → L2(0, T,V ′) defined as F (y) = yt+νB1(y)+B(y, y)−f .

The sequence {yk}k>0 associated to the Newton method to find the zero of F is defined as follows:{
y0 ∈ A,
F ′(yk) · (yk+1 − yk) = −F (yk), k ≥ 0.

We check that this sequence coincides with the sequence obtained from (2.21) if λk is fixed equal to

one. The algorithm (2.21) which consists to optimize the parameter λk ∈ [0,m], m ≥ 1, in order

to minimize E(yk), equivalently ‖F (yk)‖L2(0,T,V ′) corresponds therefore to the so-called damped

Newton method for the application F (see [5]). As the iterates increase, the optimal parameter

λk converges to one (according to Lemma 2.18), this globally convergent method behaves like the

standard Newton method (for which λk is fixed equal to one): this explains the quadratic rate

after a finite number of iterates. Among the few works devoted to the damped Newton method

for partial differential equations, we mention [18] for computing viscoplastic fluid flows.
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3. The three dimensional case

Let Ω ⊂ R3 be a bounded connected open set whose boundary ∂Ω is C2 and let P be the

orthogonal projector in L2(Ω)3 onto H

We recall (see for instance [21]) that for f ∈ L2(QT )3 and u0 ∈ V , there exists T ∗ > 0 and a

unique solution y ∈ L∞(0, T ∗;V ) ∩ L2(0, T ∗;H2(Ω)3), ∂ty ∈ L2(0, T ∗;H) of the equation

(3.1)


d

dt

∫
Ω

y · w + ν

∫
Ω

∇y · ∇w +

∫
Ω

y · ∇y · w =

∫
Ω

f · w, ∀w ∈ V

y(·, 0) = u0, in Ω.

Following the methodology of the previous section, we introduce a least-squares method al-

lowing to approximate the solution of (3.1). Arguments are similar so that details are omitted.

3.1. Preliminary results. In the following, we repeatedly use the following classical estimates.

The first one is (see [20]) :

Lemma 3.1. Let any u ∈ H2(Ω)3. Then u ∈ L∞(Ω) and there exists a constant c = c(Ω) such

that

(3.2) ‖u‖∞ ≤ c‖u‖1/2V ‖∆u‖
1/2
2 .

We also have (see [19]):

Lemma 3.2. Let any u ∈ H2(Ω)3. There exists a constant c = c(Ω) such that

(3.3) ‖∆u‖2 ≤ c‖P (∆u)‖2.

and

Lemma 3.3. Let g ∈W 1,1(0, T ) and k ∈ L1(0, T ), ‖k‖L1(0,T ) ≤ k0 satisfying

dg

dt
≤ F (g) + k in [0, T ], g(0) ≤ g0

where F is bounded on bounded sets from R into R, that is

∀a > 0, ∃A > 0 such that |x| ≤ a =⇒ |F (x)| ≤ A.

Then, for every ε > k0, there exists T ∗1 = T ∗1 (F, g0, k0) > 0 independent of g such that

g(t) ≤ g0 + ε ∀t ≤ T ∗1 .

Proof. The proof is an adaptation of the proof given in [19, Lemma 6].

First, since g ∈W 1,1(0, T ), g is continuous. Let ε > k0, let m be the smallest real value such

that g(m) = g0 + ε (if m does not exist, we can take T ∗1 = T ) and let n be the largest real value

lower than m such that g(n) = g0. On [n,m] there holds F (g) ≤ A where A = sup{|F (x)| : g0 ≤
x ≤ g0 + ε} > 0. Then integrating by part we have

ε = g(m)− g(n) ≤
∫ m

n

A+ k(t)dt ≤ mA+ k0

thus m ≥ ε−k0
A > 0 and we can take T ∗1 = min( ε−k0A , T ). �

We also denote, for all 0 < t ≤ T

A(t) = {y ∈ L2(0, t;H2(Ω)3 ∩ V ) ∩H1(0, t;H), y(0) = u0}

and

A0(t) = {y ∈ L2(0, t;H2(Ω)3 ∩ V ) ∩H1(0, t;H), y(0) = 0}.
Endowed with the scalar product

〈y, z〉A0(t) =

∫ t

0

〈P (∆y), P (∆z)〉H + 〈∂ty, ∂tz〉H
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and the associated norm

‖y‖A0(t) =
√
‖P (∆y)‖2L2(0,t;H) + ‖∂ty‖2L2(0,t;H)

A0(t) is a Hilbert space.

We now recall and introduce several technical results. The first one is well-known (we refer

to [13, 21]).

Proposition 3.4. There exists T ∗ = T ∗(Ω, ν, u0, f), 0 < T ∗ ≤ T and a unique ȳ ∈ A(T ∗)

solution in D′(0, T ∗) of (1.2).

We also introduce the following result :

Proposition 3.5. For all y ∈ A(T ∗), there exists a unique v ∈ A0(T ∗) solution in D′(0, T ∗) of

(3.4)



d

dt

∫
Ω

v · w +

∫
Ω

∇v · ∇w +
d

dt

∫
Ω

y · w + ν

∫
Ω

∇y · ∇w

+

∫
Ω

y · ∇y · w =

∫
Ω

f · w, ∀w ∈ V

v(0) = 0.

The proof of this proposition is a consequence of the following standard result (see [21, 13]).

Proposition 3.6. For all z0 ∈ V , all ν1 > 0 and all F ∈ L2(QT∗)
3, there exists a unique

z ∈ L2(0, T ∗;H2(Ω)3 ∩ V ) ∩H1(0, T ∗;H) solution in D′(0, T ∗) of

(3.5)


d

dt

∫
Ω

z · w + ν1

∫
Ω

∇z · ∇w =

∫
Ω

F · w, ∀w ∈ V

z(0) = z0.

Moreover, for all t ∈ [0, T ∗],

(3.6) ‖z(t)‖2V + ν1‖P (∆z)‖2L2(0,t;H) ≤
1

ν1
‖P (F )‖2L2(Qt)3

+ ‖z0‖2V

and

(3.7) ν1‖z(t)‖2V + ‖∂tz‖2L2(0,t;H) ≤ ‖P (F )‖2L2(Qt)3
+ ν1‖z0‖2V .

Proof. (of Proposition 3.5) Let y ∈ A(T ∗). Then y · ∇y, ∆y and ∂ty belong to L2(QT∗)
3. Then

(3.4) may be rewriten as
d

dt

∫
Ω

v · w +

∫
Ω

∇v · ∇w =

∫
Ω

F · w, ∀w ∈ V

v(0) = 0,

where F = f − y · ∇y + ν∆y − ∂ty ∈ L2(QT∗)
3, Proposition 3.5 is therefore a consequence of

Proposition 3.6 with ν1 = 1.

Moreover, for all t ∈ [0, T ∗],

‖v(t)‖2V + ‖P (∆v)‖2L2(0,t;H) ≤ ‖P (f − y · ∇y + ν∆y − ∂ty)‖2L2(Qt)3

and

‖v(t)‖2V + ‖∂tv‖2L2(0,t;H) ≤ ‖P (f − y · ∇y + ν∆y − ∂ty)‖2L2(Qt)3
.

�
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3.2. The least-squares functional. We now introduce our least-squares functional E : A(T ∗)→
R+ by putting

(3.8) E(y) =
1

2

∫ T∗

0

‖P (∆v)‖2H +
1

2

∫ T∗

0

‖∂tv‖2H =
1

2
‖v‖2A0(T∗)

where the corrector v is the unique solution of (3.4). The infimum of E is equal to zero and is

reached by a solution of (3.1).

Theorem 3.7. Let {yk}k∈N be a sequence of A(T ∗) bounded in L2(0, T ∗;H2(Ω)3∩V )∩H1(0, T ∗;H).

If E′(yk) → 0 as k → ∞, then the whole sequence {yk}k∈N converges strongly as k → ∞ in

L2(0, T ∗;H2(Ω)3 ∩ V ) ∩H1(0, T ∗;H) to the solution ȳ of (3.1).

As in the previous section, we first check that leading the error functional E down to zero

implies strong convergence to the unique solution of (3.1).

Proposition 3.8. Let ȳ ∈ A(T ∗) be the solution of (3.1), M ∈ R such that ‖∂tȳ‖L2(QT∗ )3 ≤M
and
√
ν‖P (∆ȳ)‖L2(QT∗ )3 ≤M and let y ∈ A(T ∗). If ‖∂ty‖L2(QT∗ )3 ≤M and

√
ν‖P (∆y)‖L2(QT∗ )3 ≤

M , then there exists a constant c(M) such that

‖y − ȳ‖L∞(0,T∗;V ) +
√
ν‖P (∆y)− P (∆ȳ)‖L2(QT∗ )3) + ‖∂ty − ∂tȳ‖L2(QT∗ )3) ≤ c(M)

√
E(y).

This proposition establishes that as we take down the error E to zero, we get closer, in the

norm of A0(T ∗) to the solution ȳ of the problem (3.1), and so, it justifies to look for global

minimizers of (3.8).

Proof. Let Y = y− ȳ. Then Y ·∇y, ȳ ·∇Y , ∂tv and ∆v belong to L2(QT∗)
3, and from (3.1) and

(3.4) we deduce that
d

dt

∫
Ω

Y · w + ν

∫
Ω

∇Y · ∇w = −
∫

Ω

(∂tv + ∆v + Y · ∇y + ȳ · ∇Y ) · w, ∀w ∈ V

Y (0) = 0

and from (3.6) we deduce that for all t ∈ [0, T ∗]

‖Y (t)‖2V + ν

∫
Qt

|P (∆Y )|2 ≤ 1

ν

∫ t

0

‖∂tv + ∆v + Y · ∇y + ȳ · ∇Y ‖22

≤ 4

ν
(‖∂tv‖2L2(Qt)3

+ ‖∆v‖2L2(Qt)3
+ ‖Y · ∇y‖2L2(Qt)3

+ ‖ȳ · ∇Y ‖2L2(Qt)3
)

≤ c

ν

(
E(y) +

∫ t

0

(‖∇y‖23 + ‖ȳ‖2∞)‖Y ‖2V
)

≤ c

ν

(
E(y) +

∫ t

0

(‖P (∆y)‖22 + ‖P (∆ȳ)‖22)‖Y ‖2V
)
.

Gronwall’s lemma then implies that for all t ∈ [0, T ∗]

‖Y (t)‖2V + ν

∫
Qt

|P (∆Y )|2 ≤ c

ν
E(y) exp(

c

ν

∫ t

0

‖P (∆y)‖22 + ‖P (∆ȳ)‖22) ≤ c

ν
E(y) exp(

c

ν2
M2)

which gives

‖Y ‖2L∞(0,T∗;V ) + ν

∫
QT∗

|P (∆Y )|2 ≤ c√
ν

√
E(y) exp(

c

ν2
M2) ≤ C(M)

√
E(y).

Similarly, using (3.7) instead of (3.6), we also obtain

ν‖Y ‖2L∞(0,T∗;V ) +

∫
QT∗

|∂tY |2 ≤
c√
ν

√
E(y) exp(

c

ν2
M2) ≤ C(M)

√
E(y).

�
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For any y ∈ A(T ∗), we now look for an element Y1 ∈ A0(T ∗) solution of the following

formulation

(3.9)



d

dt

∫
Ω

Y1 · w + ν

∫
Ω

∇Y1 · ∇w +

∫
Ω

y · ∇Y1 · w

+

∫
Ω

Y1 · ∇y · w = − d

dt

∫
Ω

v · w −
∫

Ω

∇v · ∇w, ∀w ∈ V

Y1(0) = 0,

where v ∈ A0(T ∗) is the corrector (associated to y) solution of (3.4). Y1 enjoys the following

property.

Proposition 3.9. For all y ∈ A(T ∗), there exists an unique Y1 ∈ A0(T ∗) solution of (3.9).

Moreover if for some M ∈ R, ‖∂ty‖L2(QT∗ )3 ≤M , ‖y‖L∞(0,T∗;V ) ≤M and
√
ν‖P (∆y)‖L2(QT∗ )3 ≤

M , then this solution satisfies

‖∂tY1‖L2(QT∗ )3 + ‖Y1‖L∞(0,T∗;V ) +
√
ν‖P (∆Y1)‖L2(QT∗ )3 ≤ c(M)

√
E(y).

Proof. For all t ∈ [0, T ∗], X(t) = C([0, t];V )∩L2(0, t;H2(Ω)3) endowed with the norm ‖z‖X(t) =√
‖z‖2L∞(0,t,V ) + ν‖P (∆(z))‖2L2(0,t;H) is a Banach space. Let y1 ∈ X(T ∗). Then y1 · ∇y ∈

L2(QT∗)
3. As in Proposition 3.6, there exists a unique z1 ∈ A0(T ∗) ⊂ X(T ∗) solution of

(3.10)
d

dt

∫
Ω

z1 · w + ν

∫
Ω

∇z1 · ∇w +

∫
Ω

y · ∇y1 · w +

∫
Ω

y1 · ∇y · w = −
∫

Ω

(∂tv + ∆v) · w, ∀w ∈ V

z1(0) = 0.

Let T : y1 7→ z1. Then if z2 = T (y2), z1 − z2 is solution of
d

dt

∫
Ω

(z1 − z2) · w + ν

∫
Ω

∇(z1 − z2) · ∇w +

∫
Ω

y · ∇(y1 − y2) · w +

∫
Ω

(y1 − y2) · ∇y · w = 0, ∀w ∈ V

(z1 − z2)(0) = 0,

and thus, for all t ∈ [0, T ∗]

d

dt
‖z1 − z2‖2V + ν‖P (∆(z1 − z2))‖2H ≤

2

ν
‖y · ∇(y1 − y2) + (y1 − y2) · ∇y‖22.

But

‖y·∇(y1−y2)+(y1−y2)·∇y‖22 ≤ c(‖y‖V ‖P (∆y)‖H‖y1−y2‖2V +‖y‖2V ‖y1−y2‖V ‖P (∆(y1−y2))‖H)

so that

d

dt
‖z1−z2‖2V +ν‖P (∆(z1−z2))‖2H ≤

c

ν
(‖y‖V ‖P (∆y)‖H‖y1−y2‖2V +‖y‖2V ‖y1−y2‖V ‖P (∆(y1−y2))‖H)

and for all t ∈ [0, T ∗]

‖z1 − z2‖2L∞(0,t,V ) + ν‖P (∆(z1 − z2))‖2L2(0,t;H)

≤ c

ν
(‖y‖L∞(0,t;V )‖y1 − y2‖2L∞(0,t:V )

∫ t

0

‖P (∆y)‖H + ‖y‖2L∞(0,t;V )‖y1 − y2‖L∞(0,t;V )

∫ t

0

‖P (∆(y1 − y2))‖H

≤ c

ν
t
1
2 ‖y‖L∞(0,t;V )(‖P (∆y)‖L2(0,t;H)‖y1 − y2‖2L∞(0,t:V ) + ‖y1 − y2‖L∞(0,t:V )‖P (∆(y1 − y2))‖L2(0,t;H))

≤ c

ν
t
1
2 ‖y‖L∞(0,T∗;V )(1 + ‖P (∆y)‖L2(0,T∗;H))(‖y1 − y2‖2L∞(0,t:V ) + ‖P (∆(y1 − y2))‖2L2(0,t;H)).

Let now t′ ∈]0, T ∗] such that c
ν (t′)

1
2 ‖y‖L∞(0,T∗;V )(1 + ‖P (∆y)‖L2(0,T∗;H)) ≤ min( 1

2 ,
ν
2 ). We

then have

‖z1−z2‖2L∞(0,t′,V )+ν‖P (∆(z1−z2))‖2L2(0,t′;H) ≤
1

2
(‖y1−y2‖2L∞(0,t′,V )+ν‖P (∆(y1−y2))‖2L2(0,t′;H))
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and the map T is a contraction mapping on X(t′). We deduce that T admits a unique fixed point

Y1 ∈ X(t′). Moreover, from (3.10) we deduce that ∂tY1 ∈ L2(0, t′,H) and thus Y1 ∈ A0(t′).

Since the map t 7→ t
1
2 is a uniformly continuous function on [0, T ∗], we can take t′ = T ∗.

For this solution we have, for all t ∈ [0, T ],

d

dt
‖Y1‖2V + ν‖P (∆Y1)‖2H ≤

2

ν
‖y · ∇Y1 + Y1 · ∇y − ∂tv + P (∆v)‖22

≤ c

ν
(‖y‖V ‖P (∆y)‖H‖Y1‖2V + ‖Y1‖V ‖P (∆Y1)‖H‖y‖2V + ‖∂tv‖2H + ‖P (∆v)‖2H)

≤ ν

2
‖P (∆Y1)‖2H +

c

ν
(‖y‖V ‖P (∆y)‖H‖Y1‖2V +

1

ν2
‖Y1‖2V ‖y‖4V + ‖∂tv‖2H + ‖P (∆v)‖2H)

thus

d

dt
‖Y1‖2V + ν‖P (∆Y1)‖2H ≤

c

ν
(‖y‖V ‖P (∆y)‖H‖Y1‖2V +

1

ν2
‖Y1‖2V ‖y‖4V + ‖∂tv‖2H + ‖P (∆v)‖2H).

Gronwall’s lemma then implies that for all t ∈ [0, T ∗] :

(3.11)
‖Y1‖2V (t) + ν

∫ t

0

‖P (∆Y1)‖2H ≤
c

ν
E(y) exp

( c
ν

∫ t

0

(‖y‖V ‖P (∆y)‖H +
1

ν2
‖y‖4V

)
≤ c(M)E(y)

Similar arguments give

(3.12) ν‖Y1‖2V (t) +

∫ t

0

‖∂tY1‖2H ≤ c(M)E(y).

�

Proposition 3.10. For all y ∈ A(T ∗), the map Y 7→ E(y + Y ) is a differentiable function on

the Hilbert space A0(T ∗) and for any Y ∈ A0(T ∗), we have

E′(y) · Y = 〈v, V 〉A0(T∗) =

∫ T∗

0

〈P (∆v), P (∆V )〉H +

∫ T∗

0

〈∂tv, ∂tV 〉H

where V ∈ A0(T ∗) is the unique solution in D′(0, T ∗) of

(3.13)



d

dt

∫
Ω

V · w +

∫
Ω

∇V · ∇w +
d

dt

∫
Ω

Y · w + ν

∫
Ω

∇Y · ∇w +

∫
Ω

y · ∇Y · w

+

∫
Ω

Y · ∇y · w = 0, ∀w ∈ V

V (0) = 0.

Proof. Let y ∈ A(T ∗) and Y ∈ A0(T ∗). We have E(y + Y ) = 1
2‖V̄ ‖

2
A0(T∗) where V̄ ∈ A0(T ∗) is

the unique solution of

d

dt

∫
Ω

V̄ · w +

∫
Ω

∇V̄ · ∇w +
d

dt

∫
Ω

(y + Y ) · w + ν

∫
Ω

∇(y + Y ) · ∇w +

∫
Ω

(y + Y ) · ∇(y + Y ) · w

−
∫

Ω

f · w = 0, ∀w ∈ V

V̄ (0) = 0.

If v ∈ A0(T ∗) is the solution of (3.4) associated to y, v′ ∈ A0(T ∗) is the unique solution of
d

dt

∫
Ω

v′ · w +

∫
Ω

∇v′ · ∇w +

∫
Ω

Y · ∇Y · w = 0, ∀w ∈ V

v′(0) = 0
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and V ∈ A0(T ∗) is the unique solution of (3.13), it is easy to check that V̄ −v−v′−V ∈ A0(T ∗)

is solution of
d

dt

∫
Ω

(V̄ − v − v′ − V ) · w +

∫
Ω

∇(V̄ − v − v′ − V ) · ∇w = 0, ∀w ∈ V

(V̄ − v − v′ − V )(0) = 0

and therefore V̄ − v − v′ − V = 0. Thus

E(y + Y ) =
1

2
‖v + v′ + V ‖2A0(T∗)

=
1

2
‖v‖2A0(T∗) +

1

2
‖v′‖2A0(T∗) +

1

2
‖V ‖2A0(T∗) + 〈V, v′〉A0(T∗) + 〈V, v〉A0(T∗) + 〈v, v′〉A0(T∗).

We deduce from (3.13) and (3.6) that

‖V ‖2L∞(0,T∗;V ) + ‖P (∆V )‖2L2(0,T∗;H) ≤c
(
‖∂tY ‖2L2(0,T∗;H) + ν2‖P (∆Y )‖2L2(0,T∗;H)

+ ‖y · ∇Y ‖2L2(QT∗ )3 + ‖Y · ∇y‖2L2(QT∗ )3)

)
and, since

‖y · ∇Y ‖2L2(QT∗ )3 ≤
∫ T∗

0

‖∇Y ‖26‖y‖23 ≤ c‖y‖2L∞(0,T∗;L3(Ω)3)‖P (∆Y )‖2L2(0,T∗;H)

≤ c‖y‖2A0(T∗)‖Y ‖
2
A0(T∗)

and

‖Y · ∇y‖2L2(QT∗ )3) ≤ c‖y‖
2
A0(T∗)‖Y ‖

2
A0(T∗)

we deduce that

‖V ‖2L∞(0,T∗;V ) + ‖P (∆V )‖2L2(0,T∗;H) ≤ c‖Y ‖
2
A0(T∗).

In the same way, we deduce from (3.7) that

‖∂tV ‖2L2(0,T∗;H) ≤ c‖Y ‖
2
A0(T∗).

Thus

‖V ‖2A0(T∗) ≤ c‖Y ‖
2
A0(T∗) = o(‖Y ‖A0(T∗)).

From (3.6) and (3.7), we also deduce that

‖v′‖2L∞(0,T∗;V ) + ‖P (∆v′)‖2L2(0,T∗;H) ≤ ‖Y · ∇Y ‖
2
L2(QT∗ )3 ≤ c‖Y ‖

4
A0(T∗)

and

‖∂tv′‖2L2(0,T∗;H) ≤ c‖Y ‖
4
A0(T∗),

thus we also have

‖v′‖2A0(T∗) ≤ c‖Y ‖
4
A0(T∗) = o(‖Y ‖A0(T∗)).

From the previous estimates, we then obtain

|〈V, v′〉A0(T∗)| ≤ ‖V ‖A0(T∗)‖v′‖A0(T∗) ≤ c‖Y ‖3A0(T∗) = o(‖Y ‖A0(T∗))

and

|〈v, v′〉A0(T∗)| ≤ ‖v‖A0(T∗)‖v′‖A0(T∗) ≤ c
√
E(y)‖Y ‖2A0(T∗) = o(‖Y ‖A0(T∗)),

thus

E(y + Y ) = E(y) + 〈v, V 〉A0(T∗) + o(‖Y ‖A0(T∗)).

Eventually, the estimate

|〈v, V 〉A0(T∗)| ≤ ‖v‖A0(T∗)‖V ‖A0(T∗) ≤ cE(y)‖Y ‖A0(T∗)

gives the continuity of the linear map Y 7→ 〈v, V 〉A0(T∗). �

We are now in position to prove the following result :
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Proposition 3.11. If {yk}k∈N is a sequence of A(T ∗) bounded in L2(0, T ∗;H2(Ω)3 ∩ V ) ∩
H1(0, T ∗;H) satisfying E′(yk)→ 0 as k →∞, then E(yk)→ 0 as k →∞.

Proof. For any y ∈ A(T ∗) and Y ∈ A0(T ∗), we have

E′(y) · Y = 〈v, V 〉A0(T∗) =

∫ T∗

0

〈P (∆v), P (∆V )〉H +

∫ T∗

0

〈∂tv, ∂tV 〉H

where V ∈ A0(T ∗) is the unique solution in D′(0, T ∗) of (3.13). In particular, taking Y = Y1

defined by (3.9), we define an element V1 solution of

(3.14)



d

dt

∫
Ω

V1 · w +

∫
Ω

∇V1 · ∇w +
d

dt

∫
Ω

Y1 · w + ν

∫
Ω

∇Y1 · ∇w +

∫
Ω

y · ∇Y1 · w

+

∫
Ω

Y1 · ∇y · w = 0, ∀w ∈ V

V1(0) = 0.

Summing (3.14) and the (3.9), we obtain that V1 − v solves (3.5) with F ≡ 0 and z0 = 0. This

implies that V1 and v coincide, and then

(3.15) E′(y) · Y1 =

∫ T∗

0

‖P (∆v)‖2H +

∫ T∗

0

‖∂tv‖2H = 2E(y), ∀y ∈ A(T ∗).

Let now, for any k ∈ N, Y1,k be the solution of (3.9) associated to yk. The previous equality

writes E′(yk) · Y1,k = 2E(yk) and implies our statement, since from Proposition 3.9, Y1,k is

uniformly bounded in A0(T ∗). �

3.3. Minimizing sequence for E. Equality (3.15) shows that −Y1 given by the solution of

(3.9) is a descent direction for the functional E. Remark also, in view of (3.9), that the corrector

V associated to Y1, given by (3.13) with Y = Y1, is nothing else than the corrector v itself.

Therefore, we can define, for any m ≥ 1, a minimizing sequence yk as follows:

(3.16)


y0 ∈ A(T ∗),

yk+1 = yk − λkY1,k, k ≥ 0,

E(yk − λkY1,k) = min
λ∈[0,m]

E(yk − λY1,k)

where Y1,k in A0(T ∗) solves the formulation

(3.17)



d

dt

∫
Ω

Y1,k · w + ν

∫
Ω

∇Y1,k · ∇w +

∫
Ω

yk · ∇Y1,k · w

+

∫
Ω

Y1,k · ∇yk · w = − d

dt

∫
Ω

vk · w −
∫

Ω

∇vk · ∇w, ∀w ∈ V

Y1,k(0) = 0,

and vk in A0(T ∗) is the corrector (associated to yk) solution of (3.4) leading (see (3.15)) to

E′(yk) · Y1,k = 2E(yk).

It is easy to check that the corrector Vk associated to yk − λY1,k is given by (1− λ)vk + λ2vk
where vk ∈ A0(T ∗) solves

(3.18)


d

dt

∫
Ω

vk · w +

∫
Ω

∇vk · ∇w +

∫
Ω

Y1,k · ∇Y1,k · w = 0, ∀w ∈ V

vk(0) = 0,

and thus

2E(yk − λY1,k) = ‖Vk‖2A0(T∗) = ‖(1− λ)vk + λ2vk‖2A0(T∗)

= (1− λ)2‖vk‖2A0(T∗) + 2λ2(1− λ)〈vk, vk〉A0(T∗) + λ4‖vk‖2A0(T∗).
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It is then easy to see that if vk 6= 0, E(yk − λY1,k) → +∞ as λ → +∞ and thus there exists

λk ∈ R+ such that E(yk − λkY1,k) = minλ∈R+ E(yk − λY1,k).

Lemma 3.12. Let {yk}k∈N the sequence of A defined by (3.16). Then {yk}k∈N is a bounded

sequence of H1(0, T ∗;H) ∩ L2(0, T ∗;H2(Ω) ∩ V ) and {E(yk)}k∈N is a decreasing sequence.

Proof. From (3.16) we deduce that, for all k ∈ N :

E(yk+1) = E(yk − λkY1,k) = min
λ∈R+

E(yk − λY1,k) ≤ E(yk)

and thus the sequence {E(yk)}k∈N decreases and, for all k ∈ N, E(yk) ≤ E(y0).

From the construction of the corrector vk ∈ A0(T ∗) associated to yk ∈ A(T ∗) given by (3.4),

we deduce from Proposition 3.4 that yk ∈ A(T ∗) is the unique solution of

d

dt

∫
Ω

yk · w + ν

∫
Ω

∇yk · ∇w +

∫
Ω

yk · ∇yk · w =

∫
Ω

f · w

− d

dt

∫
Ω

vk · w −
∫

Ω

∇vk · ∇w, ∀w ∈ V

yk(0) = u0.

For this solution we have the classical estimates

d

dt

∫
Ω

|∇yk|2 + ν

∫
Ω

|P (∆yk)|2 ≤ c

ν
‖∇yk‖62 +

2

ν
‖P (f − ∂tvk + ∆vk)‖22

≤ c

ν
‖∇yk‖62 +

4

ν
‖P (f)‖22 +

4

ν
(‖∂tvk‖22 + ‖P (∆vk)‖22)

Let us remark that∫ T∗

0

4

ν
‖P (f)‖22 +

4

ν
(‖∂tvk‖22 + ‖P (∆vk)‖22) ≤ 4

ν
‖f‖2L2(QT∗ )3 +

8

ν
E(yk)

≤ 4

ν
‖f‖2L2(QT∗ )3 +

8

ν
E(y0) = k0

thus we deduce from Lemma 3.3 that there exists T ∗1 = T ∗1 (Ω, ν, u0, E(y0), f), 0 < T ∗1 ≤ T ∗ such

that, for all t ∈ [0, T ∗1 ]∫
Ω

|∇yk|2(t) + ν

∫ t

0

∫
Ω

|P (∆yk)|2 ≤ ‖u0‖2V +
8

ν
‖f‖2L2(QT∗ )3 +

16

ν
E(y0).

Then it suffices to take T ∗ = T ∗1 in Proposition 3.4.

We then have

(3.19) ‖yk‖2L∞(0,T∗;V ) ≤ ‖u0‖2V +
8

ν
‖f‖2L2(QT∗ )3 +

16

ν
E(y0),

(3.20) ν‖P (∆yk)‖2L2(0,T∗;H) ≤ ‖u0‖2V +
8

ν
‖f‖2L2(QT∗ )3 +

16

ν
E(y0)

and

‖∂tyk‖L2(0,T∗;H) ≤ ‖P (f − ∂tvk + ∆vk − yk · ∇yk + ν∆yk)‖L2(0,T∗;H)

≤ ‖f‖L2(QT∗ )3 + ‖∂tvk‖L2(0,T∗;H) + ‖P (∆vk)‖L2(0,T∗;H)

+ c‖yk‖
3
2

L∞(0,T∗;V )‖P (∆yk)‖
1
2

L2(0,T∗;H) + ν‖P (∆yk)‖L2(0,T∗;H)

≤ ‖f‖L2(QT∗ )3 + 2
√
E(yk) +

c

ν1/4
‖u0‖2V +

c

ν5/4
‖f‖2L2(QT∗ )3 +

c

ν5/4
E(y0)

+
1

ν1/2
‖u0‖V +

2
√

2

ν
‖f‖L2(QT∗ )3 +

4

ν

√
E(y0)

≤ ‖f‖L2(QT∗ )3 + (2 +
4

ν
)
√
E(y0) +

c

ν1/4
‖u0‖2V +

c

ν5/4
‖f‖2L2(QT∗ )3 +

c

ν5/4
E(y0)

+
1

ν1/2
‖u0‖V +

2
√

2

ν
‖f‖L2(QT∗ )3 .
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�

Lemma 3.13. Let {yk}k∈N be the sequence of A(T ∗) defined by (3.16). Then for all λ > 0, the

following estimate holds

(3.21)

E(yk−λY1,k) ≤ E(yk)

(
|1−λ|+λ2 c

ν5/4

√
E(yk) exp

( c
ν

∫ T∗

0

‖yk‖V ‖P (∆yk)‖H +
1

ν2
‖yk‖4V

))2

.

Proof. Since

2E(yk − λY1,k) = ‖Vk‖2A0(T∗) = (1− λ)2‖vk‖2A0(T∗) + 2λ2(1− λ)〈vk, vk〉A0(T∗) + λ4‖vk‖2A0(T∗),

it follows that

2E(yk − λY1,k) ≤ (1− λ)2‖vk‖2A0(T∗) + 2λ2|1− λ|‖vk‖A0(T∗)‖vk‖A0(T∗) + λ4‖vk‖2A0(T∗)

≤ (|1− λ|‖vk‖A0(T∗) + λ2‖vk‖A0(T∗))
2

≤ (
√

2|1− λ|
√
E(yk) + λ2‖vk‖A0(T∗))

2,

which gives

(3.22) E(yk − λY1,k) ≤
(
|1− λ|

√
E(yk) +

λ2

√
2
‖vk‖A0(T∗)

)2
.

From (3.18), (3.6) and (3.7) we deduce that

‖vk‖2L∞(0,T∗;V ) + ‖P (∆vk)‖2L2(0,T∗;H) ≤ ‖P (Y1,k · ∇Y1,k)‖2L2(0,T∗;H)

≤ c‖Y1,k‖3L∞(0,T∗;V )‖P (∆Y1,k)‖L2(0,T∗;H)

and

‖∂tvk‖L2(0,T∗;H) ≤ ‖P (∆vk − Y1,k · ∇Y1,k)‖L2(0,T∗;H)

≤ ‖P (∆vk)‖L2(0,T∗;H) + c‖Y1,k‖
3
2

L∞(0,T∗;V )‖P (∆Y1,k)‖
1
2

L2(0,T∗;H)

≤ c‖Y1,k‖
3
2

L∞(0,T∗;V )‖P (∆Y1,k)‖
1
2

L2(0,T∗;H).

On the other hand, we deduce from (3.11) that

(3.23)

‖Y1,k‖2L∞(0,T∗;V )+ν‖P (∆Y1,k)‖2L2(0,T∗;H) ≤
c

ν
E(yk) exp

( c
ν

∫ T∗

0

‖yk‖V ‖P (∆yk)‖H+
1

ν2
‖yk‖4V

)
.

Thus

‖P (∆vk)‖L2(0,T∗;H) ≤
c

ν5/4
E(yk) exp

( c
ν

∫ T∗

0

‖yk‖V ‖P (∆yk)‖H +
1

ν2
‖yk‖4V

)
and

‖∂tvk‖L2(0,T∗;H) ≤
c

ν5/4
E(yk) exp

( c
ν

∫ T∗

0

‖yk‖V ‖P (∆yk)‖H +
1

ν2
‖yk‖4V

)
which gives

‖vk‖A0(T∗) =
√
‖vk‖2L2(0,T∗;V ) + ‖∂tvk‖2L2(0,T∗;V )

≤ c

ν5/4
E(y) exp

( c
ν

∫ T∗

0

‖yk‖V ‖P (∆yk)‖H +
1

ν2
‖yk‖4V

)
.

From (3.22) we then deduce (3.21).

�

Lemma 3.14. Let {yk}k∈N the sequence of A(T ∗) defined by (3.16). Then E(yk)→ 0 as k →∞.
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Proof. Denoting C2 = ‖u0‖2V + 8
ν ‖f‖

2
L2(QT∗ )3 + 16

ν E(y0), we deduce from (3.21), using (3.19)

and (3.20) that, for all λ ∈ R+ :√
E(yk+1) ≤

√
E(yk)

(
|1− λ|+ λ2C1

√
E(yk)

)

where C1 = c
ν5/4 exp

(
c(C2

ν2 + (C2

ν2 )2)

)
does not depend on yk, k ∈ N∗.

Let us denote, for all λ ∈ R+, pk(λ) = |1 − λ| + λ2C1

√
E(yk). If C1

√
E(y0) < 1 (and thus

C1

√
E(yk) < 1 for all k ∈ N) then

min
λ∈R+

pk(λ) ≤ pk(1) = C1

√
E(yk)

and thus
√
E(yk+1) ≤ C1E(yk). This gives

(3.24) C1

√
E(yk+1) ≤

(
C1

√
E(yk)

)2
and then C1

√
E(yk)→ 0 as k →∞.

Suppose now that C1

√
E(y0) ≥ 1 and denote I = {k ∈ N, C1

√
E(yk) ≥ 1}. Let us prove

that I is a finite subset of N.

For all k ∈ I, since C1

√
E(yk) ≥ 1,

min
λ∈R+

pk(λ) = min
λ∈[0,1]

pk(λ) = pk

( 1

2C1

√
E(yk)

)
= 1− 1

4C1

√
E(yk)

≤ 1− 1

4C1

√
E(y0)

< 1

and thus, for all k ∈ I√
E(yk+1) ≤

(
1− 1

4C1

√
E(y0)

)√
E(yk) ≤

(
1− 1

4C1

√
E(y0)

)k+1√
E(y0).

Since
(

1 − 1

4C1

√
E(y0)

)k+1

→ 0 as k → +∞, there exists k0 ∈ N such that for all k ≥ k0,

C1

√
E(yk+1) < 1. Thus I is a finite subset of N. Arguing as in the first case, it follows that

C1

√
E(yk)→ 0 as k →∞. �

From Lemmas 3.12, 3.14 and Proposition 3.8 we can deduce that :

Proposition 3.15. Let {yk}k∈N the sequence of A(T ∗) defined by (3.16). Then yk → ȳ in

H1(0, T ∗;H) ∩ L2(0, T ∗;H2(Ω)3 ∩ V ) where ȳ ∈ A(T ∗) is the unique solution of (1.2) given in

Proposition 3.4.

From (3.16) and Proposition 3.15, we deduce that the serie
∑
λkY1k converges inH1(0, T ∗;H)∩

L2(0, T ∗;H2(Ω)3 ∩ V ) and ȳ = y0 +
∑+∞
k=1 λkY1k. Moreover

∑
λk‖Y1k‖A0(T∗) converges and, if

we denote k0 one k ∈ N such that C1

√
E(yk) < 1 (see Lemma 3.14), then for all k ≥ k0, using

(3.23), (3.20) and (2.31) (since we can choose C1 > 1)

‖ȳ − yk‖L∞(0,T∗;V ) = ‖
+∞∑
i=k+1

λiY1i‖L∞(0,T∗;V ) ≤
+∞∑
i=k+1

λi‖Y1i‖L∞(0,T∗;V ) ≤ m
+∞∑
i=k+1

√
C1E(yi)

≤ m
+∞∑
i=k+1

C1

√
E(yi) ≤ m

+∞∑
i=k+1

(C1

√
E(yk0))2i−k0 ≤ m

+∞∑
i=0

(C1

√
E(yk0))2i+k+1−k0

≤ m(C1

√
E(yk0))2k+1−k0

+∞∑
i=0

(C1

√
E(yk0))2i

= mc(C1

√
E(yk0))2k+1−k0
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and

‖P (∆(ȳ − yk))‖L2(0,T∗;H) =
1

ν
‖

+∞∑
i=k+1

λiP (∆Y1i)‖L2(0,T∗;H) ≤
1

ν

+∞∑
i=k+1

λi‖P (∆(Y1i)‖L2(0,T∗;H)

≤ 1

ν

+∞∑
i=k+1

√
C1E(yi) ≤

c

ν
(C1

√
E(yk0))2k+1−k0

.

A similar estimate can be obtained for ‖∂tȳ − ∂tyk‖L2(0,T?;H) (we refer to (2.34) for the 2D

case).

Remark 3.16. All the results of this section remain true in the 2D case with T ∗ = T ; in other

words, results of Section 2 are valid to approximate regular solution associated to u0 ∈ V and

f ∈ L2(QT )3 and E defined by (3.8).

Remark 3.17. In a different functional framework, a similar approach is considered in [15];

more precisely, the author introduces the functional E : V → R defined E(y) = 1
2‖∇v‖

2
L2(QT )

with V := y0 + V0, y0 ∈ H1(QT ) and V0 := {u ∈ H1(QT ;Rd), u(t, ·) ∈ V ∀t ∈ (0, T ), u(0, ·) = 0}
where v(t, ·) solves for all t ∈ (0, T ), the steady Navier-Stokes equation with source term equal to

yt(t, ·)− ν∆y(t, ·) + (y(t, ·) ·∇)y(t, ·)− f(t, ·). Strong solutions are therefore considered assuming

u0 ∈ V and f ∈ (L2(QT ))d. Bound of E(y) implies bound of y in L2(0, T ;V ) but not in

H1(0, T, L2(Ω)d). This prevents to get the convergence of minimizing sequences in V.

4. Numerical illustrations

4.1. Algorithm - Approximation. We detail the main steps of the iterative algorithm (2.21).

First, we define the initial term y0 of the sequence {yk}(k≥0) as the solution of the Stokes problem,

solved by the backward Euler scheme:

(4.1)


∫

Ω

yn+1
0 − yn0
δt

· w + ν

∫
Ω

∇yn+1
0 · ∇w = 〈fn, w〉V ′×V , ∀w ∈ V , ∀n ≥ 0,

y0
0(·, 0) = u0, in Ω.

for some ν > 0. The incompressibility constraint is taken into account through a lagrange

multiplier λ ∈ L2(Ω) leading to the mixed formulation

(4.2)

∫
Ω

yn+1
0 − yn0
δt

· w + ν

∫
Ω

∇yn+1
0 · ∇w +

∫
Ω

λn+1∇ · w = 〈fn, w〉V ′×V , ∀w ∈ (H1
0 (QT ))2, ∀n ≥ 0,∫

Ω

µ∇ · yn+1
0 = 0, ∀µ ∈ L2(Ω), ∀n ≥ 0,

y0
0 = u0, in Ω.

A conformal approximation in space is used for (H1
0 (Ω))2 × L2(Ω) based on the inf-sup stable

P2/P1 Taylor-Hood finite element. Then, assuming that (an approximation {ynh,k}{n,h} of) yk
has been obtained for some k ≥ 0, yk+1 is obtained as follows.

(i) From yk, computation of (an approximation of) the corrector vk through the backward

Euler scheme

(4.3)

∫
Ω

vn+1
k − vnk
δt

· w +

∫
Ω

∇vn+1
k · ∇w +

∫
Ω

yn+1
k − ynk
δt

· w + ν

∫
Ω

∇yn+1
k · ∇w

+

∫
Ω

yn+1
k · ∇yn+1

k · w =< fn, w >V ′×V , ∀w ∈ V , ∀n ≥ 0,

v0
k = 0.
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(ii) Then, in order to compute the term ‖vk,t‖L2(0,T ;V ′) of E(yk), introduction of the function

wk ∈ L2(V ) solution of

(4.4)

∫ T

0

∫
Ω

∇wk · ∇w + vk,t · w = 0, ∀w ∈ L2(V )

so that ‖vk,t‖L2(V ′) = ‖∇wk‖L2(QT ). An approximation of wk is obtained through the scheme

(4.5)

∫
Ω

∇wnk · ∇w +
vn+1
k − vnk
δt

· w = 0,∀w ∈ V , ∀n ∈ N.

(iii) Computation of an approximation of Y1,k solution of (2.22) through the scheme

(4.6)



∫
Ω

Y n+1
1,k − Y n1,k

δt
· w + ν

∫
Ω

∇Y n+1
1,k · ∇w +

∫
Ω

yn+1
k · ∇Y n+1

1,k · w +

∫
Ω

Y n+1
1,k · ∇y

n+1
k · w

= −
∫

Ω

vn+1
k − vnk
δt

· w −
∫

Ω

∇vn+1
k · ∇w, ∀w ∈ V , ∀n ≥ 0.

Y 0
1,k = 0.

(iv) Computation of the corrector function vk solution of (2.26) through the scheme

(4.7)


∫

Ω

v
n+1
k − vnk
δt

· w +

∫
Ω

∇vn+1
k · ∇w +

∫
Ω

Y n+1
1,k · ∇Y

n+1
1,k · w = 0, ∀w ∈ V , n ≥ 0,

vk(0) = 0.

(v) Computation of ‖vk‖2A0
, 〈vk, vk〉A0

and ‖vk‖2A0
appearing in E(yk − λY1,k) (see (2.27)).

The computation of ‖vk‖A0
requires the computation of ‖vk‖L2(V ′), i.e. the introduction of wk

solution of ∫ T

0

∫
Ω

∇wk · ∇w + vk,t · w = 0, ∀w ∈ L2(V )

so that ‖vk,t‖L2(V ′) = ‖∇wk‖L2(QT ) through the scheme

(4.8)

∫
Ω

∇wnk · ∇w +
v
n+1
k − vnk
δt

· w = 0, ∀w ∈ V , ∀n ∈ N.

(vi) Determination of the minimum λk ∈ (0,m] of

λ→ E(yk − λY1,k) = (1− λ)2‖vk‖2A0
+ 2λ2(1− λ)〈vk, vk〉A0

+ λ4‖vk‖2A0

through a Newton-Raphson method starting from 0 and finally update of the sequence yk+1 =

yk − λkY1,k.

As a summary, the determination of yk+1 from yk involves the resolution of four Stokes types

formulations, namely (4.3),(4.5),(4.7) and (4.8) plus the resolution of the linearized Navier-Stokes

formulation (4.6). This latter concentrates most of the computational times ressources since the

operator (to be inverted) varies with the indexe n.

Instead of minimizing exactly the fourth order polynomial λ → E(yk − λY1,k) in step (vi),

we may simpler minimize w.r.t. λ ∈ (0, 1] the right hand side of the estimate

E(yk − λY1,k) ≤
(
|1− λ|

√
E(yk) +

λ2

√
2
‖vk‖A0

)2

(appearing in the proof of Lemma 2.15) leading to λ̂k = min

(
1,

√
E(yk)√

2‖vk‖A0

)
. (see remark 2.21).

This avoids the computation of the scalar product 〈vk, vk〉A0 and one resolution of Stokes type

formulations.
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Remark 4.1. Similarly, we may also consider the equivalent functional Ẽ defined in (1.4). This

avoids the introduction of the auxillary corrector function v and reduces to three (instead of four)

the number of Stokes type formulations to be solved. Precisely, using the initialization defined in

(4.1), the algorithm is as follows :

(i) Computation of Ẽ(yk) = ‖hk‖L2(V ) = ‖∇hk‖L2(QT ) where hk solves∫ T

0

∫
Ω

∇hk · ∇w + (yk,t − ν∆yk + yk · ∇yk − f) · w = 0, ∀w ∈ L2(V )

through the scheme

(4.9)∫
Ω

∇hnk · ∇w+
yn+1
k − ynk
δt

·w+ ν∇yn+1
k · ∇w+ yn+1

k · ∇yn+1
k =< fn, w >V ′,V , ∀w ∈ V , ∀n ∈ N.

(ii) Computation of an approximation of Y1,k from yk through the scheme

(4.10)

∫
Ω

Y n+1
1,k − Y n1,k

δt
· w + ν

∫
Ω

∇Y n+1
1,k · ∇w +

∫
Ω

yn+1
k · ∇Y n+1

1,k · w +

∫
Ω

Y n+1
k · ∇yn+1

1,k · w

=

∫
Ω

yn+1
k − ynk
δt

· w + ν

∫
Ω

∇yn+1
k · ∇w

+

∫
Ω

yn+1
k · ∇yn+1

k · w− < fn, w >V ′×V , ∀w ∈ V , ∀n ≥ 0,

Y 0
1,k = 0.

(iii) Computation of ‖B(Y1,k, Y1,k)‖L2(0,T ;V ′) = ‖hk‖L2(V ) = ‖∇hk‖L2(QT ) where hk solves∫ T

0

∫
Ω

∇hk · ∇w + Y1,k · ∇Y1,k · w = 0, ∀w ∈ L2(V )

and similarly of the term 〈yk,t + νB1(yk) +B(yk, yk), B(Y1,k, Y1,k)〉L2(0,T ;V ′).

(iv) Determination of the minimum λk ∈ (0,m] of

λ→ Ẽ(yk − λY1,k) =(1− λ)2Ẽ(yk) + λ2(1− λ)〈yk,t + νB1(yk) +B(yk, yk)− f,B(Y1,k, Y1,k)〉L2(0,T ;V ′)

+
λ4

2
‖B(Y1,k, Y1,k)‖2L2(0,T ;V ′)

through a Newton-Raphson method starting from 0 and finally update of the sequence yk+1 =

yk − λkY1,k until Ẽ(yk) is small enough.

We emphasize one more time that the case λk coincides with the standard Newton algorithm

to find zeros of the functional F : A → L2(0, T ;V ′) defined by F (y) = yt + νB1(y) +B(y, y)− f .

In term of computational time ressources, the determination of the optimal descent step λk is

negligible with respect to the resolution in the step (ii).

4.2. 2D semi-circular driven cavity. We illustrate our theoreticals results for the 2D semi-

circular cavity discussed in [6]. The geometry is a semi-disk Ω = {(x1, x2) ∈ R2, x2
1 + x2

2 <

1/4, x2 ≤ 0} depicted on Figure 1. The velocity is imposed to y = (g, 0) on Γ0 = {(x1, 0) ∈
R2, |x1| < 1/2} with g vanishing at x1 = ±1/2 and close to one elsewhere: we take g(x1) =

(1−e100(x1−1/2))(1−e−100(x1+1/2)). On the complementary Γ1 = {(x1, x2) ∈ R2, x2 < 0, x2
1+x2

2 =

1/4} of the boundary the velocity is fixed to zero.

This example has been used in [12] to solve the corresponding steady problem (for which

the weak solution is not unique), using again an iterative least-squares strategy. There, the

method proved to be robust enough for small values of ν of the order 10−4, while standard

Newton method failed. Figures 2 depicts the streamlines of steady state solutions corresponding

to ν−1 = 500 and to ν−1 = i×103 for i = 1, · · · , 7. The figures are in very good agreements with

those depicted in [6]. When the Reynolds number (here equal to ν−1) is small, the final steady
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(−1
2, 0) (12, 0)

Γ0 : y = (1, 0)

Γ1 : y = (0, 0)

Figure 1. Semi-disk geometry.

state consists of one vortex. As the Reynolds number increases, first a secondary vortex then a

tertiary vortex arises, whose size depends on the Reynolds number too. Moreover, according to

[6], when the Reynolds number exceeds approximatively 6 650, an Hopf bifurcation phenomenon

occurs in the sense that the unsteady solution does not reach a steady state anymore (at time

evolves) but shows an oscillatory behavior. We mention that the Navier-Stokes system is solved

in [6] using an operator-splitting/finite elements based methodology. In particular, concerning

the time discretization, the forward Euler scheme is employed.

4.3. Experiments. We report some numerical results performed with the FreeFem++ package

developed at Sorbonne university (see [9]). Regular triangular meshes are used together with

the P2/P1 Taylor-Hood finite element, satisfying the Ladyzenskaia-Babushka-Brezzi condition of

stability. An example of mesh composed of 9 063 triangles is displayed in Figure 3.

In order to deeply emphasize the influence of the value of ν on the behavior of the algorithm

described in Section 4.1, we consider an initial guess y0 of the sequence {yk}(k>0) independent

of ν. Precisely, we define y0 as the solution of the unsteady Stokes system with viscosity equal

to one (i.e. ν = 1 in (4.1)) and source term f ≡ 0. The initial condition u0 ∈H is defined as the

solution of −∆u0 +∇p = 0,∇ · u0 = 0 in Ω and boundary conditions u0 = g on Γ0 and u0 = 0

on Γ1. u0 belongs actually to V .

Table 1 and 2 report numerical values of the sequences {
√

2E(yk)}(k>0), {λk}(k>0) and {‖yk−
yk−1‖L2(V )/‖yk‖L2(V )}(k>0) associated to ν = 1/500 and ν = 1/1000 respectively and T = 10.,

f = 0. The tables also display (on the right part) the values obtained when the parameter λk is

fixed constant equal to one, corresponding to the standard Newton method. The algorithms are

stopped when
√

2E(yk) ≤ 10−8. The triangular mesh of Figure 3 for which the discretization

parameter h is equal to 1.62 × 10−2 is employed. The number of degrees of freedom is 23 315.

Moreover, the time discretization parameter in δt is taken equal to 10−2.

For ν = 1/500, the optimal λk are close to one (maxk |1−λk| ≤ 1/5), so that the two algorithms

produce very similar behaviors. The convergence is observed after 6 iterations. For ν = 1/1000,

we observe that the optimal λk are far from one during the first iterates. The optimization of

the parameter allows a faster convergence (after 9 iterates) than the usual Newton method. For

instance, after 8 iterates,
√

2E(yk) ≈ 9.931×10−11 in the first case and
√

2E(yk) ≈ 5.669×10−5

in the second one. In agreement with the theoretical results, we also check that λk goes to one.

Moreover, the decrease of
√

2E(yk) is first linear, then (when λk becomes close to one) quadratic.

At time T = 10, the unsteady state solution is close to the solution of the steady Navier-

Stokes equation: the last element yk=9 of the converged sequence satisfies ‖yk=9(T, ·)−yk=9(T −
δt, ·)‖L2(Ω)/‖yk=9(T, ·)‖L2(Ω) ≈ 1.19 × 10−5. Figures 4 display the streamlines of the unsteady

state solution corresponding to ν = 1/1000 at time 0, 1, 2, 3, 4, 5, 6 and 7 seconds to be compared

with the streamlines of the steady solution depicted in Figure 2.
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Figure 2. Streamlines of the steady state solution for ν−1 =

500, 1000, 2000, 3000, 4000, 5000, 6000 and ν−1 = 7000.

Figure 3. A regular triangulation of the semi-disk geometry; ]triangles = 9

064; ]vertices = 4 663; size h ≈ 1.62× 10−2.
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]iterate k
‖yk−yk−1‖L2(V )

‖yk−1‖L2(V )

√
2E(yk) λk

‖yk−yk−1‖L2(V )

‖yk−1‖L2(V )
(λk = 1)

√
2E(yk) (λk = 1)

0 − 2.690× 10−2 0.8112 − 2.690× 10−2

1 4.540× 10−1 1.077× 10−2 0.7758 5.597× 10−1 1.254× 10−2

2 1.836× 10−1 3.653× 10−3 0.8749 2.236× 10−1 5.174× 10−3

3 7.503× 10−2 7.794× 10−4 0.9919 7.830× 10−2 6.133× 10−4

4 1.437× 10−2 2.564× 10−5 1.0006 9.403× 10−3 1.253× 10−5

5 4.296× 10−4 3.180× 10−8 1. 1.681× 10−4 4.424× 10−9

6 5.630× 10−7 6.384× 10−11 − − −
Table 1. ν = 1/500; Results for the algorithm (2.21).

]iterate k
‖yk−yk−1‖L2(V )

‖yk−1‖L2(V )

√
2E(yk) λk

‖yk−yk−1‖L2(V )

‖yk−1‖L2(V )
(λk = 1)

√
2E(yk) (λk = 1)

0 − 2.690× 10−2 0.6344 − 2.690× 10−2

1 5.138× 10−1 1.493× 10−2 0.5803 8.101× 10−1 2.234× 10−2

2 2.534× 10−1 7.608× 10−3 0.3496 4.451× 10−1 2.918× 10−2

3 1.345× 10−1 5.477× 10−3 0.4025 5.717× 10−1 5.684× 10−2

4 1.105× 10−1 3.814× 10−3 0.5614 3.683× 10−1 2.625× 10−2

5 8.951× 10−2 2.295× 10−3 0.8680 2.864× 10−1 1.828× 10−2

6 6.394× 10−2 8.679× 10−4 1.0366 1.423× 10−1 4.307× 10−3

7 1.788× 10−2 4.153× 10−5 0.9994 6.059× 10−2 9.600× 10−4

8 7.982× 10−4 9.931× 10−8 0.9999 1.484× 10−2 5.669× 10−5

9 2.256× 10−6 4.000× 10−11 − 9.741× 10−4 3.020× 10−7

10 − − − 4.267× 10−6 3.846× 10−11

Table 2. ν = 1/1000; Results for the algorithm (2.21).

For lower values of the viscosity constant, precisely ν ≤ 1/1100 approximatively, the initial

guess y0 is too far from the zero of E so that we observe the divergence after few iterates of the

Newton method (case λk = 1 for all k > 0) but still the convergence of the algorithm described

in section 4.1 (see Table 3). The divergence in the case λk = 1 is still observed with a refined

discretization both in time and space, corresponding to δt = 0.5× 10−3 and h ≈ 0.0110 (19 810

triangles and 10 101 vertices). The divergence of the Newton method suggests that the functional

E is not convex far away from the zero of E and that the derivative E′(y) takes small values there.

We recall that, in view of the theoretical part, the functional E is coercive and its derivative

vanishes only at the zero of E. However, the equality E′(yk) · Y1,k = 2E(yk) shows that E′(yk)

can be “small” for “large” Y1,k, i.e. “large” yk. On the other hand, we observe the convergence

(after 3 iterates) of the Newton method, when initialized with the approximation corresponding

to ν = 1/1000.

Table 4 gives numerical values associated to ν = 1/2000 and T = 10. We used a refined

discretization: precisely, δt = 1/150 and a mesh composed of 15 190 triangles, 7 765 vertices

(h ≈ 1.343× 10−2). The convergence of the algorithm of section 4.1 is observed after 19 iterates.

In agreement with the theoretical results, the sequence {λk}(k>0) goes to one. Moreover, the

variation of the error functional E(yk) is first quite slow, then increases to be very fast after 15

iterates. This behavior is illustrated on Figure 5. For lower values of ν, we still observed the

convergence (provided a fine enough discretization so as to capture the third vortex) with an

increasing number of iterates. For instance, 28 iterates are necessary to achieve
√

2E(yk) ≤ 10−8

for ν = 1/3000 and 49 iterates for ν = 1/4000. This illustrates the global convergence of the

algorithm. In view of the estimate (2.30), a quadratic rate is achieved as soon as
√
E(yk) ≤ C−1

1
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Figure 4. Streamlines of the unsteady state solution for ν−1 = 1000 at time

t = i, i = 0, · · · , 7s.

]iterate k
‖yk−yk−1‖L2(V )

‖yk−1‖L2(V )

√
2E(yk) λk

‖yk−yk−1‖L2(V )

‖yk−1‖L2(V )
(λk = 1)

√
2E(yk) (λk = 1)

0 − 2.691× 10−2 0.6145 − 2.691× 10−2

1 5.241× 10−1 1.530× 10−2 0.5666 8.528× 10−1 2.385× 10−2

2 2.644× 10−1 8.025× 10−3 0.3233 4.893× 10−1 3.555× 10−2

3 1.380× 10−1 5.982× 10−3 0.3302 7.171× 10−1 8.706× 10−2

4 1.115× 10−1 4.543× 10−3 0.4204 4.849× 10−1 3.531× 10−2

5 9.429× 10−2 3.221× 10−3 0.5875 1.125× 100 3.905× 10−1

6 7.664× 10−2 1.944× 10−3 0.9720 − 1.337× 104

7 5.688× 10−2 5.937× 10−4 1.022 − 8.091× 1027

8 1.009× 10−2 1.081× 10−5 0.9998 − −
9 2.830× 10−4 1.332× 10−8 1. − −
10 2.893× 10−7 4.611× 10−11 − − −

Table 3. ν = 1/1100; Results for the algorithm (2.21).
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with here (since f ≡ 0)

C1 =
c

ν
√
ν

exp

(
c

ν2
‖u0‖2H +

c

ν3
E(y0)

)
so that C−1

1 → 0 as ν → 0. Consequently, for small ν, it is very likely more efficient (in term of

computational ressources) to couple the algorithm with a continuation method w.r.t. ν, in order

to reach faster the quadratic regime. This aspect is not addressed in this work and we refer to

[12] where this is illustrated in the steady case.

]iterate k
‖yk−yk−1‖L2(V )

‖yk−1‖L2(V )

√
2E(yk) λk

0 − 2.691× 10−2 0.5215

1 6.003× 10−1 1.666× 10−2 0.4919

2 3.292× 10−1 9.800× 10−3 0.1566

3 1.375× 10−1 8.753× 10−3 0.1467

4 1.346× 10−1 7.851× 10−3 0.0337

5 5.851× 10−2 7.688× 10−3 0.0591

6 7.006× 10−2 7.417× 10−3 0.1196

7 9.691× 10−2 6.864× 10−3 0.0977

8 8.093× 10−2 6.465× 10−3 0.0759

9 6.400× 10−2 6.182× 10−3 0.0968

10 6.723× 10−2 5.805× 10−3 0.1184

11 6.919× 10−2 5.371× 10−3 0.1630

12 7.414× 10−2 4.825× 10−3 0.2479

13 8.228× 10−2 4.083× 10−3 0.3517

14 8.146× 10−2 3.164× 10−3 0.4746

15 7.349× 10−2 2.207× 10−3 0.7294

16 6.683× 10−2 1.174× 10−3 1.0674

17 3.846× 10−2 2.191× 10−4 1.0039

18 5.850× 10−3 4.674× 10−5 0.9998

19 1.573× 10−4 5.843× 10−9 −
Table 4. ν = 1/2000; Results for the algorithm (2.21).

5. Conclusions and perspectives

In order to get an approximation of the solutions of the unsteady Navier-Stokes equation, we

have introduced and analyzed a least-squares method based on a minimization of an appropriate

norm of the equation. In the two dimensional case, considering the weak solution associated to

an initial condition in H ⊂ L2(Ω)2 and a source f ∈ L2(0, T,V ′), the least-square functional is

based on the L2(0, T,V ′)-norm of the state equation. In the three dimensional case, assuming

T small enough, the initial data in V ⊂ H1(Ω)3 and f ∈ L2(0, T ;L2(Ω)3), the functional is

based on the L2(0, T ; (L2(Ω))3)-norm of the equation. This leads to a regular solution. In both

cases, using a particular descent direction, we construct explicitly a minimizing sequence for

the functional converging strongly, for any initial guess, to the solution of the Navier-Stokes.

Moreover, except for the first iterates, the convergence is quadratic. Actually, it turns out

that this minimizing sequence coincides with the sequence obtained from the damped Newton

method when used to solves the weak formulation associated to the Navier-Stokes equation. The

numerical experiments performed in the two dimensional case illustrate the global convergence

of the method and its robustness including for small values of the viscosity constant.
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Figure 5. Evolution of
√

2E(yk) and λk w.r.t. k; ν = 1/2000 (see Table 4).

Moreover, the strong convergence of the whole minimizing sequence has been proved using a

coercivity type property of the functional, consequence of the uniqueness of the solution. Actu-

ally, it is interesting to remark that this property is not necessary, since such minimizing sequence

(which is completely determined by the initial term) is a Cauchy sequence. The approach can

therefore be adapted to partial differential equations with multiple solutions or to optimization

problem involving various solutions. We mention notably the approximation of null controls

for (controllable) nonlinear partial differential equation: the source term f , possibly distributed

over a non-empty set of Ω is now, together with the corresponding state, an argument of the

least-squares functional. The controllability constraint is incorporated in the set A of admissible

pair (y, f). In spite of the non uniqueness of the minimizers, the approach introduced in this

work still produces a strongly convergent approximation. We refer to [11] for the analysis of this

approach for surlinear (null controllable) heat equation.
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Villars, Paris, 1969.

14. Michael Ortiz, Bernd Schmidt, and Ulisse Stefanelli, A variational approach to Navier-Stokes, Nonlinearity

31 (2018), no. 12, 5664–5682.

15. Pablo Pedregal, A variational approach for the Navier-Stokes system, J. Math. Fluid Mech. 14 (2012), no. 1,

159–176.

16. Olivier Pironneau, Finite element methods for fluids, John Wiley & Sons, Ltd., Chichester; Masson, Paris,

1989, Translated from the French.

17. Alfio Quarteroni and Alberto Valli, Numerical approximation of partial differential equations, Springer Series

in Computational Mathematics, vol. 23, Springer-Verlag, Berlin, 1994.

18. Pierre Saramito, A damped Newton algorithm for computing viscoplastic fluid flows, J. Non-Newton. Fluid

Mech. 238 (2016), 6–15. MR 3577347

19. Jacques Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure,

SIAM J. Math. Anal. 21 (1990), no. 5, 1093–1117. MR 1062395 (91i:35159)

20. Luc Tartar, An introduction to Navier-Stokes equation and oceanography, Lecture Notes of the Unione Matem-

atica Italiana, vol. 1, Springer-Verlag, Berlin; UMI, Bologna, 2006.

21. Roger Temam, Navier-Stokes equations, AMS Chelsea Publishing, Providence, RI, 2001, Theory and numer-

ical analysis, Reprint of the 1984 edition.


	1. Introduction
	2. Space-time least squares method: the two dimensional case
	2.1. Preliminary technical results
	2.2. The least-squares functional
	2.3. Minimizing sequence for E - Link with the damped Newton method

	3. The three dimensional case
	3.1. Preliminary results
	3.2. The least-squares functional
	3.3. Minimizing sequence for E

	4. Numerical illustrations
	4.1. Algorithm - Approximation
	4.2. 2D semi-circular driven cavity
	4.3. Experiments

	5. Conclusions and perspectives
	References

