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Sharp Large Deviations for empirical correlation coefficients

T.K.T. Truong *, M. Zani *'

Abstract
In this paper, we study Sharp Large Deviations for empirical Pearson coefficients, i.e.
o= 2 (X — X)) (Yi - Yn)/\/zi:1(Xi - X,,)? e (Yi— Y,)? or 7 = D i (X —
E(X)(Y; —E(Y))//>o1(Xi —E(X))2>,_,(Y; —E(Y))? (when the expectations are
known). Our framework is for random samples (X;,Y;) either Spherical or Gaussian. In

each case, we follow the scheme of Bercu et al. We also compute the Bahadur exact slope
in the Gaussian case.

Keywords: Pearson’s Empirical Correlation Coefficient, Sharp Large Deviations, Spherical Distribu-
tion, Gaussian distribution.

1 Introduction

The Beauvais—Pearson linear correlation coefficient between two real random variables X and
Y is defined by
B Cov(X,Y)

VVar(X)/Var(Y)’
whenever this quantity exists. Such quantities were formally defined more than a century
ago by Pearson [22, 23]. The correlation describes the linear relation between two random
variables. It is clear from Cauchy—Schwartz inequality that the absolute value of p is less
than or equal to 1. Moreover, p = +1 if and only if X and Y are linearly related. When p =0
we say that X and Y are uncorrelated, i.e. linearly independent. The empirical counterpart
is the following. Let us consider two samples X = (X3, -+, X,) and Y = (Y1,---,Y,). The
so—called empirical Pearson correlation coefficient is given by

= Z?:l(Xi - Xn)(yz - Yn)
VI (X = X2 0 (= V)2
where X,, = % Shoy Xk and Y, = % > 1Y} are the empirical means of the samples. When-
ever £(X) and E(Y) are both known, we consider 7,:
YL BO)Y-BY)
Vil (X — B(X))? Yo, (Yi — B(Y)))?
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The study of the correlation coefficients is detailed in many references (see e.g. [19] or [25])
and it is shown that many competing correlation indexes are special cases of Pearson’s cor-
relation coefficient ([24]). The asymptotic behaviour of (7y)n, (7n)n is worth considering. It
is clear that when X and Y are independent, r,, 7, — 0 when n — oco. Moreover, whenever
(X,Y) are sampled from a known distribution (X,Y), r,, 7, — p when n — oco. In this
paper, we study Sharp Large Deviations (SLD) associated to these asymptotics.

Large Deviations for empirical correlation coefficients have been studied by Si [26] in the
Gaussian case. We extend his results to SLD in the spherical and Gaussian cases. It can be
noticed here that for the Gaussian case, we prove SLD on a resctricted domain of p since the
convexity properties of the functions are only true for 0 < |p| < po, where pg is explicitely
defined. This point was not noticed in [26] since the large deviations are given through a
contraction principle which is actually not valid (the function used is not continuous). We
stress the fact that things have to be handled in a different way for the case |p| > po, and
there is no proof that the rate function should be the same.

We consider here the asymptotic development of

P(rp > ¢) or, equivalently P(7,, > ¢)
for 0 < ¢ < 1. We follow the scheme of Bercu et al. [5, 6] and split:
P(r, >c¢)=A,By,
where

Ap = exp[n(Ln(Ac) — cAc)], (3)
By, = Eplexp[—nAc(rn — o)1y, >] , (4)

L, is the normalized cumulant generating function (n.c.g.f.) of r,, L its limit as n — oo and
Ac is the unique X such that L'(\.) = ¢. We perform the following change of probability

dQn _ e/\cm"n —nLn(Ae)

dP ’
and E, is the expectation under this new probability ),,. The key point here is to develop
the characteristic function ®,, of M We use an expansion already computed in the

i.i.d. case by Cramér (see [10], Lemma 2, p.72) and Esseen [13].

Such studies have been done in the context of small ball deviations and Gaussian semi-
norms by Ibragimov [16], Li [17], Sytaya [27], Zolotarev [31], with an anaytic point of vue and
different asymptotics. Independently, with large deviations techniques, was done a similar
work by Dembo, Meyer-Wolf and Zeitouni [11, 18]. We can also cite works in other contexts:
Ben Arous [4] on asymptotic expansion of the heat kernel associated with an hypoelliptic
operator (in small time), and Bolthausen [7] on the limiting behaviour of the partition function
for random vectors in Banach spaces in a general i.i.d. case.

The paper is organized as follows: in Sections 2 and 3, we present the SLD results in
the spherical and Gaussian cases; Section 4 is devoted to the proofs. In Section 5, we briefly
extend our results to any order developments as we present an application to Bahadur exact
slopes for the test based on 7, in the Gaussian case. Finally, in an Appendix, we give some
more details and references on the Laplace method.



2 Spherical distribution

In this section, we study empirical correlations coefficients (1) and (2) under the following
spherical distribution assumption. We denote by v’ the transpose of vector v.

Assumption 2.1 Let X = (X3, -, X,) and Y = (Y1,---,Y,), n € N, n > 2, be two
independent random vectors where X has a n-variate spherical distribution with P(X =
(0,---,0)) =0 andY has any distribution with P(Y € {1}) =0 (where1 = {k(1,---,1) ,k €
R}).

2.1 SLDP for r,
In order to derive SLD for (ry,), we compute the n.c.g.f.
1 nAT
La(N) = ~log B(e™™). (5)
The asymptotics of L, are given in the following proposition:
Proposition 2.2 For any A € R, we have
L(*3h) co(A) 1
E (e”/\“) = 2 eMro(V) < + O< >> ) (6)
/20 (252) Vvn n3/2
where
o h(r) =Ar+ ilog(l—r?),
e 79(\) is the unique root in | — 1,1[ of K'(r) =0, i.e.

—1+ V144X
2\ ’

_ ] 27 .,
° g(T) = (1 — 7«2) 2 and CO()\) = 7|h”(7‘0()\))‘g( 0()\)) .

Therefore

7”0()\) =

111 3 1 14 4)2
Ly(\) = L(\) — -~ !2 log m- 5 log+\/2+7

+0 (;) . (8)

L(A) = h(ro(A))- (9)

where L is the limit normalized log—Laplace transform of ry:

The proof of this proposition is postponed to Section 4. Now we have the following SLDP:



Theorem 2.3 For any 0 < ¢ < 1, under Assumption (2.1), we have

144/ 14422
e—nL* (c)— % log(1+4A2)+ 2 log —Y—=°

P(r, >c¢) = 1+ o(1)), 10
( ) AeOcV 2N ( (1)) (10)
where
e ). is the unique solution of L'(\) = ¢, i.e. Ao = 1762,
—c
22
2 _ _ (1—¢%)
s =L"0) =g
o L*(y) = —%log(l —y?).

Proof:

To prove the SLD for (ry),, we proceed as in Bercu et al. [5, 6]. The following lemma,
which proof is given in the Section 4, gives some basic properties of L:

Lemma 2.4 Let L(\) = h(ro(\)) where h and ro are defined in Proposition 2.2, we have

e L is defined on R and L is C*° on its domain.

o L is a strictly convexr function on R, L reaches its minimum at A = 0. Moreover for
any A € R, L'(\) €] — 1,1].

e The Legendre dual of L is defined on | — 1,1[ and computed as

N 1
L*(y) = sup{\y — L(\)} = = log(1 — %). (11)
AER
Let 0 < ¢ <1 and . > 0 such that L'(\.) = ¢. Then
L*(c) = cAe — L(A),
We denote by 02 = L"().), and define the following change of probability:

dQn _ Xenrn—nLn(Ae)
— cNTn —NLn(Ac . 12
p = ¢ (12)

The expectation under Q),, is denoted by E,. We write

P(rn > C) = Aan’ (13)

where

A, = exp[n(Lp(X:) — cA)],
B, = E,(exp[—nAc(rn — o)1y, >c) -



On the one hand, from (8)

1 3 14+ vV1+4)2 1
Ay = expl=nL*(c) =y log(1 +4X2) + 5 log — =] <1 + o(n)> .

On the other hand, let us denote by

UHZM,

Oc

D, (u) = En(ei“U”) = exp(—wo\/ﬁc +nly(A + Uz\u/ﬁ> —nLy(Ae)) -

We have the following technical results on ®,,, proved in Section 4.
Lemma 2.5 For any K € N*, n > 0, for n large enough and any u € R,

G )

P, (u)| < ‘
e V| 1Oy

(1+4+n). (14)

where ¢y and c{f are the first coefficients in Laplace’s method (see Theorem 5.6), corresponding
respectively to

g(r)=(1—r*)7?

and
g (r) = (@)K (1 -2 K2

From lemma above, choosing K > 2, we see that ®,, is in L? and by Parseval formula,

1 1 c
By, = Eple™0eViUnlly o] = / | P (u)du = ——
[e U”ZO] 27T R ACO’C\/E + l’U, (U) " )\cUc V 27TTL’

where

1 U -1
= —— 1 D, .
¢ \/%/R < - )\co'c\/ﬁ) (u)du

The key point here is to study the asymptotics of ®,,.

Lemma 2.6 We have

lim ®,(u) = e /% and lim C, =1.
n—00

From lemma above, which proof is postponed to Section 4, we have equation (10).



2.2 Known expectation

In case F(X) and E(Y) are both known, we consider 7,, given in formula (2) which can be
written as follows ,
. _ (X - EX))' (Y - E(Y))
Ty = . (15)
IX = EX)[Y - EY)
We can derive a SLD result similar to the previous one. The following proposition gives the
expression of the n.c.g.f. of 7,:

Proposition 2.7 For any A € R, we have

By = %enh(m()\)) (E(\)%) +O< 1 >> | 16)

where
o h(r) =Ar+ §log(l—r?),
e 1o(A) is the unique oot in | — 1,1[ of h'(r) =0, i.e.

-1+ VI 4N

ro(}) 2

o §(r) = (1 —72)732 and é&(\) =

The n.c.g.f. of 7y, is

~ 101 14+ V1 +4X2
L,(A\) = h(ro(X)) — - [2 log V14 4\2 — log —

+o<nlz> . (17)

This proposition is proved in Section 4. We have the following SLDP:
Theorem 2.8 For any 0 < ¢ < 1, under Assumption (2.1), we have
—nL* (0)7% log(1+4X2)+log Ve ”;+4)\g

ATV 2N

exp

P(r, >¢) = (14 0(1)). (18)

Proof:
The proof of Theorem 2.8 is exactly similar to the one of Theorem 2.3 and formula (10)

is changed to (18) according to the way formula (8) is changed to (17).
O

3 Gaussian case

Assumption 3.1 Let (X,Y) be a R?-valued Gaussian random vector where o3 = Var(X),
o3 = Var(Y) and p is the correlation coefficient: Cov(X,Y) = poioe. We consider (X,Y) =
{(X;,Y5),i=1,---n} an i.i.d. sample of (X,Y).



3.1 General case

We deal with the Pearson coefficient given in (1). As presviously mentioned, Large deviations
for (r,,)n are detailed in the paper of Si [26]. It can be noted that the contraction principle
used by Si is not valid here. The rate function is correct however, but only on some domain
of p. We can give an expression of the normalized log-Laplace transform L, given by (5).

Proposition 3.2 Let us define

V3+2V3

Po = 3
For any A € R and p such that |p| < po, we have the n.c.g.f. of ry:

Lu(0) = Rlro(0) + 1081 = ) + - [tog, ra(0) — g log (a0 | +0( ;) . 19)

in which
o h(r) = Ar—log(l—pr)+ ilog(1 —r?),
e 79(\) is the unique real root in | — 1,1] ofﬁl(r) =0,
* 9,(r) = (L= ) V21— pr)R(1 - 1)
The proof of this proposition is postponed to Section 4. We prove the following SLDP:

Theorem 3.3 For any 0 < p < c <1 and |p| < po (with the notations of Proposition 3.2),

we have .
o nL*(c)+log g, (ro(Ae))—5 log [h” (ro(Ae))

P(Tn > C) = N \/% (1 + 0(1))7 (20)
where for any —1 <y < 1,
. 1—py
L =1lo . 21
e (m — PV = y2>> .

Proof:
Following the Proof of Theorem 2.3, we can easy obtain (20). Note that the rate function
in Si [26] matches our (21).

O
3.2 Known expectations
In case E(X) and E(Y) are both known; and p = 0, we have the following result
Proposition 3.4 The n.c.g.f. of 7, is given for any X € R by
1 ) 1
Ly,(X\) = h(ug(N)) — n log(1+4X7) + O<n2> , (22)

where



o h(r) =Ar+ %log(l—r?),
o up(\) is the unique solution of h'(A\) =0 in | —1,1].
The proof is postponed to Section 4. The SLDP is therefore:

Theorem 3.5 When p =0 and under Assumption 3.1, for 0 < ¢ < 1, we have

e—nL* (c)—i log(1—4X2)

AeOcr/1

P(fn > ¢) = (1+0(1)),

where L* s given in Theorem 2.3.

4 Proofs

4.1 Proof of Proposition 2.2
We know from Muirhead (Theorem 5.1.1, [19]) that

Tn

A

has a Student’s t,,_o-distribution. Hence the density function of r,, is

(1—r2) =02 (1< <1).

Applying Theorem 5.6, we get

E (en)\rn) — /1 en)\rfn(r)dr — /1 en)\r F(n% (1 _ T2)(n_4)/2dT
—1 —1 7T1/2F %_2>

T o) (0N 1
= AT %)e NG +0 =) )

where h, rg and ¢y are given in Proposition 2.2.
So we have

_TCT) /2 anoov) 1 1
r(ez?) Von (1= r0(X)?)y/1 +70(A)? <1+O<”>>

From the duplication formula (see e.g. Olver [21])

227102 (2 + %) = /7l(22),

(23)

(24)



as well as the Stirling formula (see [21])

1
logT'(z) = zlogz — z — 2logz—|—log\/27r—|—0< ) , as Re(z) — o0,

L
Re(z)
formula (26) above becomes

oy (00))

With the expression of 79, we get formula (8).

E(en/\r) _ enh(ro()\))

4.2 Proof of Lemma 2.4

We can explicit the full expression of L:

—1+V1+4X 1 1+ V1 +4M2
L) = = - g (Y )

It is easy to see that L is defined on R, C* on its domain.
From the definition of L we can deduce

L'(A) = 10(A) + I (ro(A)) = ro(N),

and by construction of ro, L' €] — 1, 1[. Now we can compute

" / 1 1
00 =0 = 33 (1~ )

(28)

(29)

and it is easily seen that L”(\) > 0 for any A € R* and L”(0) can be defined by continuity
as 1. Hence L is strictly convex on R and has its minimum at A = 0. Moreover, if we have

then 0 < ¢ < 1 implies A > 0 and we can obtain
dAe(Ae(1—=c) —¢) =0.

This leads us to the expression

c
Ae = .
C 12
Hence the preceding expression yields
212
2 _ N _ (1 —C )
e =L0) =T



4.3 Proof of Lemmas 2.5 and 2.6
The proof of Lemma 2.5 is based on iterated integrations by parts. We detail below the steps.

: - A(r—c)
q)n<u) — En<ezuUn) _ ewT fn(’f’)e/\cnr_nL"()\c)dT

-1, e—wT —nLn(Ac )/ +>\cn)r( _ TQ)n/Z_ZdT,

where, for seek of simplicity, we denote by

r(et
Fn = ipp(az2) (30)

For K € N*, performing K integrations by part, since f,, is zero at —1 and 1 when n is large
enough, we get:
e
By () = T 5 im0 ..

n n n 1
(5-2)(5—-3)--- (5 ;K —1) / 6(zu£+>\m) (— 27a> (1— )n/2*2*Kdr.
(zu‘/ff + Acn) -1

Hence,
n n n
Gz Eok-1) p
]@n(u)| < IwnefnLn(/\c) 2 2 2}( / e)\cnr(QT)K(l _ 7,2)n/2727Kd7,.
‘zu‘;—f + Aen -1

Using Laplace’s method once again (see the Appendix), for a given > 0 we can find N large
enough such that for any n > N,

1 ck(\)
Dy (u)] < 0 (1417). 31
9] < iy ) (31)
O
To prove Lemma 2.6, we first split C,, into two terms:
C _1/ <1+w>1<1> (u)du + —= <1+i“>1<1> (u)du
n V2T [u|<ne )\CO'C\/H \/7 lu[>ne )\cac\/ﬁ n .
(32)

10



For the second term in the RHS of (32) we have

1 1
/ — b, (u)du g/ ——®, (u)du
[u[>n (1 + W) [u[>n> |1 4 Neoer/n
1 e ()
S/II o« I\ K ‘ K“duc?)(k)(lm
ul>ne |\ | ‘1+Acoe\/ﬁ
K
g (Ae) / 1
< 14+ du
|)\C‘KCO()\C)( n) fu[>no <1+ u2 )(K+1)/2
Ao2n
K —aK
DO (1 2oz g

= AeFeo(Ae) K

In order to have a negligible term, it is enough to have —Ka+ % < 0, i.e. fixing K = 3,
o= 2. Now for the domain {|u| < n®}, we study more precisely the expression

D, (u) = E,(eUn) = exp [— U\cfc +nLy(A + ac\/ﬁ) —nLy(Ae)| - (33)
We first remark that E(e™ ") is analytic in A on R, hence it can be expanded by analytic
continuation and L, (A+1iy) for A,y € R is well defined. From the analyticity, we can expand
in Taylor series the expression (33) above.

) \/ﬁc > U n (AC)
Py (Ac) = exp{—iu +";(UC\/5) A

Oc

Vvne T
L (A
. +nac\/ﬁ nl )+n§ —"

We detail now a development of L,, — and its derivatives — which will be useful in the whole
paper.

= exp{—iu

w F ’glk) c
) e

Technical Lemma 4.1 For any A € R, we have

1 1 1 1 — Ry(\)
L,(\) = ~log, — —1 - - P
(A) = h(ro(N) + ~logTn — -logn + —Ro(A) + — p; o (35)

where Ty, is defined in (30) and

Ro(A) = logeop(N), (36)
Ry(A) = > (=1 Ns = 1)!Byuler, e, )", (37)
1<s<p

where the coefficients ¢; are given by Laplace development (see Appendiz) and By s are the
partial exponential Bell polynomials (see (75)).

11



Proof of Technical Lemma 4.1:
From the Appendix we can develop

L) Mo o o0

E nATRY _ , 38
(e ) xl/2r nT—2) vn pg(:) (2p)!nP (38)
where
2
SOV ( i ety
O] 2\ k
3 (ro(N) hE=mE3) (14(N)) (2m +2p — D!
ZBkm . (39)
2.3 (k—m+2)(k—m+3) |h" (to)|m+P
From Faa di Bruno formula (see e.g. formula [5c] of Comtet [8]):
o)
log E(e™™) = nh(ro(N\) +log | ———-2—"—— | +1logco(A (40)
)
where R, is defined in formula (37) above. Hence the formula (35) is proven. O

From expressions (37) and (39), we see that R, is a polynomial in g(*)(ro(\)) and
h(*)(rg(\)) where the derivatives are taken with respect to r. The function 7o()\) is C®
on R. We can therefore express the derivatives of L, as follows:

k k
BP0 15~ BP0

n n nPp!
=1 P

L) = LW () + (41)

Back to formula (34), and from the choice of A., we have

and

zuf , L)
@ (u) = exp{ [Ly(Ae) — ] +n }
P ; <UC\/>>

i RN, iw \EL®
—mmwwzawwmw@gmﬂyn

p>1 k>3

o 3o ) R () i ) T

k>1

(42)

12



For p large enough such that {u*/(/n)*+?P} is bounded on {|u| < n®}, we can have a uniform
bound on the rest of the sum in the last term on the RHS above. Hence we can write, for a
given m € N large enough

Do) — expl— - 2§3(O_C f> i +2§f1<%‘f>’“1%““;§xc>

2m+1 s(m) u (k ) ul2ma
+ 3 Z( ) Lo By o T )

n np'
k=1 p=1 p

We follow the scheme of Cramer [10] Lemma 2, p.72 (see also Bercu and Rouault [6]), and
we get the wanted results.

O
Remark 4.2 A thorough study of expressions ng) and Rl(,k) are given in [30].
4.4 Proof of Proposition 2.7
By symmetry, the mean F(X) = 0 if it exists. Then, 7, from (15) becomes
X(Y - E(Y
o= (Y~ BY)) (44)
XY = E(Y)]]
Y - E(Y)

Applying Theorem 1.5.7 from Muirhead [19], with o = € R™, then

Y — E(Y)]|
n—1)/2___ "™
N T

has a t,_i-distribution. Comparing to r,, the degree of the ¢-distribution is one degree less

than 7,,.
Hence the density function of 7, is

r(3)
wT(2)

Applying Laplace’s method we get

1 n
nATn | _ nir (5) _ .2\(n—-3)/2
E(e )—/ e /D )(1 r?) dr

-1

_ T@E) ey (G0N 1
_Trl/QF(nT_l)e \/ﬁ +O W )

where h, rg and cg are given in Proposition 2.7. Then

i) L(5) T nh(r g(r
E(eA )_7r1/£F(2"2_1) %e h ()‘))\/% (1—|—O<;>>

Y v ey (o)) o

And we can obtain formula (17) from the expression of 7.

(1—r)=32 (1 <r<1). (45)

13



4.5 Proof of Proposition 3.2

From Muirhead, we know that the density function of a n + 1 sample correlation coefficient
Tn+1 1S given by
(n —1)I'(n)
I(n+1/2)V2n

(1= ) /2(1 = pr) (1 — g2y

11 11
2F1 <272an+272(1+pr)> (_1 <r< 1)

where o F) is the hypergeometric function (see [21]). Hence Laplace transform is

E <€(n+1))\rn+1> _ (n —1I'(n) (1— p?)n/?

I'(n+1/2)V2r
LI —nt1/2 2\(n—3)/2 11 11

e (1—pr) (1—177) oFi | =, zin+ (1 +pr) | dr.
. 2°2° " T2

Looking for a limit as n — oo, we can use the following result due to Temme [28, 29] (see
also [14]): the function 9F} has the following Laplace transform representation

. B F(C) 1 tbfl(l _ t)cfbfl
O =) /0 el (47)
and
2F1(CL,b,C+ A,Z) ~ meS(Z) )(\l;—):s 3 (48)

S=

where the equivalent is for A — +oo and

et — 1\t
() = < - > 7M1=z 426777,

f(t) = i £, (1)t
s=0

In our case, we get as n — oo:

111 1 T(A+n) /1 24pr 1
Fl=-2 -2 (1 ~—2 : 4
oA (g gt ~ S (S o))
Hence we have to deal with the following integral:
! 2 1
/ eMHDAT (1 _ )7t L/2(q _ p2)(n=3)/2 (1 b o(>> dr. (50)
1 8n n

Neglecting the terms of lower order in n we focus on

1 1 _
/ e(n—l—l))\r(l o pT)—n+1/2(1 o T2)(n_3)/2d7‘ — / enh(T)g(T)dT, (51)
1 —1

14



where .
h(r) = Ar —log(1 — pr) + 3 log(1 — 7?), (52)

() = L= pr)(1 =122,
The following lemma details the properties of the function h:

Lemma 4.3 For any p €] — 1,1[ and r €] — 1,1[, the function h of formula (52) is defined

for any A € R. Moreover the equation h'(r) = 0 has at least one solution in | — 1,1] and
- 34+ 2v3
R'(r) <0 on]—1,1[ for any |p| < po where py = ;\[
Proof:
We compute easily
W) =r+—L d

1—pr 1—12

and see that H(r) = h/(r)(1—r2) = 0 has at least one root in | —1,1[ (since H(—1)H(1) <0).
Hence there exists at least one solution ry €] — 1, 1 such that h/(r) = 0. Next, we compute

_ 2 1 2
' (r) = P _ +r
(T=p? (=P
and we have
_ 2
h"(r) <0 for any r €] — 1,1[ < |p|§p0::M. O

3

We know from Si [26] that the rate function in this case is

1—ps
VI=A=)

As previously said, even if this function was obtained by a contraction principle which
is not applicable here (the function involved is not continuous, see Dembo and Zeitouni for
more details [12]), we claim that the expression of the rate function above is nevertheless
correct in the given domain {|p| < po}. We prove it below. We have

I,,(s)-log( ) for —1<s<1. (53)

L) = Blro(\) + 5 log(1 ~ 2),

where 7 satisfies

Now we compute B
L'(A) = 1o(A) + 16 (MR (ro(N) = ro(A). (54)
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For every —1 < ¢ < 1 and A, such that L'(\.) = ¢, we have
L*(c) = cAe — L(A)

1 1
= che — {Aero(Ae) + 5 log(1 — 7‘8()\0)) —log(1 — pro(Ae)) + 3 log(1 — p*)}
1—pc
Vi=2/1-p%

_ From the dual properties of Legendre transform, the condition of Laplace’s method
h”(r) < 0 is compatible with the condition of convexity of I, in | — 1,1[. Indeed, for

po < |p| <1, I, is not convex. From that point, under condition |p| < py, we can get

niar) — oL g avng2 [27 akere(h) _ 9(r0(A) 1
E(e( +DA )_\/%(1 ) /2\/2 Rro(\) yi/’?m(A))\ <1+0<n>) (55)

o (L= 2221~ pro(1))*2 (1 . 0<1>> . (56)

(1= 13(A)2\/ B (ro(\)] "

We can adjust the size of sample into n and obtain

B (emvn) = enttry (L= 220D pro() (1 10 <1>> , (57)

(1= 12(N)2\/[R" (ro(N)] "

which leads us to (19). We give below two graphics, one for p = pg — 0.1 and one for
p = po+ 0.1. We can clearly see the change of convexity.

1 1
=3 log(1 — ¢*) +log(1 — pc) — 3 log(1 — p?) = log

Figure 1: I, for p = pg — 0.1
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10 o5
Figure 2: I, for p = pg + 0.1

4.6 Proof of Proposition 3.4

For the asymptotics of L, in this case, we follow the steps of Si [26]. Up to considering
X1=X-EX)and Y; =Y — E(Y), we can boil down to E(X)=E(Y) =0.
If we denote by (,) the Euclidean scalar product in R?, and

~ X X ~ Y; Y,
o L O R e
\/ iy X7 \/Zzn:ile2 \/ S VP \/ > Y
therefore o
™ = (X,Y). (58)

Large deviations for (7,), are proved in [26]. We derive here the corresponding sharp princi-
ple. Since X, Y are independent random variables with uniform distribution ,, on the unit
sphere S"~! of R™, we can compute

m _ / / 29 G, (da) G (dy)dedy (59)

Sn—1ygn—1
Ap_1 1 A n—1
= / e (\/ 1-— u2) du , (60)
(079 -1
where a,, is the area of the unit sphere:
2r' T
a; = —
RS

In order to get the SLD, we want to compute the normalized log—Laplace transform: for any
A € R, from Stirling formula (see [21]), we get easily

w V(o)
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Then we can write

1 et 1
/ e ( 1- u2) du = / "W g(u)du,
-1 1

where h(u) = \u + %log(l —u?) and g(u) = \/1177 We apply Laplace’s method to get:

1
nh(w) 5 nh(uo(n) | ©0(A) 1
/16 du=-e <\/ﬁ +0 5m) ) (61)

wo() = YL = ).

La(\) = h(uo(\)) — %log(l +4)2) +o<n12). (62)

where

This leads to

5 Further results

5.1 Any order development

We present in this section a way to extend the results of Sections 2 and 3 to higher orders.
Moreover, whenever functions involved are smooth enough, these techniques can be applied
and the asymptotics are given in other cases.

Theorem 5.1 In the framework of Sections 2 and 3, for any 0 < ¢ < 1, there exists a
sequence (Ock)k such that

efnL* (e)+Ro(Ae)

P(rp, >c¢) =

AeOcV 2N

1 -~ de o L 63
ol (63)
k=1

Proof:

For seek of simplicity, we only present here the proof for (r,), in the spherical case.
Similarly to the proof of Theorem 2.3, we briefly give the main ideas: From the decomposition
P(rp, > ¢) = A, By, in which

A, = exp[n(Ln()\c) - C)‘C)]

_ * Rp()\c)

= exp[—nLi(e) + Fo(Ae) + pz>:1 i (2p)]

B . Mp(Ac)

= expl=nli(e) + Ro(e))] {1+ 25 37 |

p>1
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where (1), is a sequence of smooth functions of A\. Recall that we can develop L, as in (35)
and L as in (41) and from the development of ®,, in (42),

' ! 2 2ptl 6(p+1)
w —50 Pyr(u)  1+uP
1 q)n — o 1 p, 1 4
( " Acac\/ﬁ> w=c < " ; nk/2 + npt+1 X )>’ (o

where P, ;. are polynomials in odd powers of u for £ odd, and polynomials in even powers of
u for k even. From that points, we can complete the proof of Theorem 5.1.

0

5.2 Correlation test and Bahadur exact slope
5.2.1 Bahadur slope

Let us recall here some basic facts about Bahadur exact slopes of test statistics. For a
reference, see [2] and [20]. Consider a sample X1, -+, X, having common law g depending
on a parameter § € O. To test (Hp) : 0 € ©¢ against the alternative (H;) : € ©; = 0\0Oy,
we use a test statistic 5, large values of S, rejecting the null hypothesis. The p-value of this
test is by definition Gy, (S,), where

Gn(t) = Gseué) Py(Sy, > t).
0

The Bahadur exact slope ¢(6) of S,, is then given by the following relation

¢(f) = —2liminf ! log (G (Sh)) - (65)

n—oo N

Quantitatively, for § € ©1, the larger ¢(0) is, the faster S,, rejects Hy.

A theorem of Bahadur (Theorem 7.2 in [3]) gives the following characterization of ¢(f):
suppose that lim, n~'/2S, = b(f) for any § € ©1, and that lim,, n~! log (Gn(nl/zt)) = —1(t)
under any 6 € Og. If I is continuous on an interval containing b(01), then c(6) is given by:

c(0) = 21(b(8)). (66)

5.2.2 Correlation in the Gaussian case

In the Gaussian case, under Assumption 3.1, we have the following strong law of large num-
bers:
™ — p=cov(X,Y). (67)

We wish to test Hy: p = 0 against the alternative Hy : p # 0. It is obvious that under Hq,

lim r, =p,
n—oo

and this limit is continuous when p # 0.
Besides, we have here

Gy (t) = sup P,(v/nry > t)
pPEBg
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and
%log Gn(v/nt) — —% log(1 — t?).
Therefore the Bahadur slope is
c(p) = log(1 - p?). (68)
We show that this statistic is optimal in a certain sense. In the framework above, to test
0 € B¢ against the alternative § € ©1 we define the likelihood ratio:

suppeo, [ iz Ho(2:)

Ay =
" supgeo, [1iLy po(wi)
and the related statistic: )
S, = = log A, (69)
n
Bahadur showed in [1] that S, is optimal in the following sense: for any 6 € O,
1 A
Jim —log G (5n) = —J(6), (70)

where J is the infimum of the Kullback—Leibler information:

J(8) = inf{K (6, 00), 00 € O} (71)
and
_ o 1o (%)
K (6.00) =~ [ 1og] . (72)

Definition 5.2 Let T, be a statistic in the parametric framework defined above, then if ¢(0)
is the Bahadur slope of T,,, we have

«(0) < 2J(6)
and T, is said to be optimal if the upper bound is reached.
We have the following result on the statistic 7.

Proposition 5.3 The sequence of empirical coefficients (ry)n is asymptotically optimal in
the Bahadur sense ([1]).

Proof:

We can easily compute the Kullback—Liebler information in this case:

Let § = (u,X) corresponds to the distribution of (X,Y) in the case § € ©; and § =
(0, Xo) for 6 € ©g. Since p = 0 in the case 6 € O, the matrix ¥ is diagonal.

1 1 1 _
K(0,6p) = —510g 12| + 51055 1Xo| — 1+ 5'“20 1S — (1= po)' (1 — o), (73)

where || stands for the determinant of ¥. The infimum in (73) is reached when po = p and
the diagonal terms in g are the ones of X.
Hence,

, 1 1 1 1 )
J(0) = 9012(20 K(0,600) = —§log X+ §log011 + §log022 = —ilog(l - p°).
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Appendix: Laplace method

We present here some well known results about asymptotics of Laplace transforms. More
precisely, we consider integrals of type

I(z) = / ’ ™ g (t)dt (74)

and its asymptotics as * — oco. Details and references can be found in Olver [21] and
Queffelec and Zuily [15]. The explicit computations are also done in [30]. Let us first recall
some definitions (for more details, see Comtet [8, 9]).

Definition 5.4 Partial exponential Bell polynomials are defined for any positive integers
k<n by

B TL' T1\CL [ X9\ C2 Tkt 1 Cn—k+1
Bn,k(xlax%"' 7xn7k+1) *201!02!'”011_]{:4_1! <?) <§) ((n—k—i—l)‘) )
(75)

where the sum is taken over all positive integers c1,co -+ ,Cn_k+1 Such that

cot+e+- o+ cppr1 =k,
ca+20+--+n—k+1)cppp1 =n.

Definition 5.5 The complete exponential Bell polynomials are defined by
By=1,

n
Vn>1, Bn=)» B
k=1

where By, i, are partial exponential Bell polynomials defined above.

Theorem 5.6 Let (a,b) be a non-empty open interval, possibly non bounded and ty be some
point in (a,b). Denote by Vi, a neighborhood of ty such that p,q : (a,b) — R are functions of
class C* (V).

We suppose that

i) p is measurable on (a,b),
ii) The mazimum of p is reached at ty (i.e. p'(ty) = 0 and p”(ty) < 0),

b
i11) There exists xo such that / P |g(t)|dt < 4o0.
a

Then there ezist coefficients co(to), c1(to), ... depending on derivatives of p and q at to, such
that for any N >0, as x — +00 we have

b
op(t) _apte) [(Colto) | alto) en (to) 1
/aep g(t)dt = emPlio < Tt ey O ) ) - ()
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Moreover, (cy)n can be computed as

o 27'(' 2N 2N (2N—k)
enfto) = rp"<to>r,§0( P )

Zk: 5 [PP(t) Pt (ko) (2m + 2N — I
P\ 23 (k—m+2)(k—m+3) ] [p't)|tN

m=0

where By, p, are the Bell polynomials defined above and (2n + 1)!' =1.3.5....(2n +1).
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