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Sharp Large Deviations for empirical correlation coefficients

T.K.T. Truong ∗ , M. Zani ∗†

Abstract

In this paper, we study Sharp Large Deviations for empirical Pearson coefficients, i.e.

rn =
∑n

i=1(Xi − X̄n)(Yi − Ȳn)/
√∑

i=1(Xi − X̄n)2
∑

i=1(Yi − Ȳn)2 or r̃n =
∑n

i=1(Xi −
E(X))(Yi − E(Y ))/

√∑
i=1(Xi − E(X))2

∑
i=1(Yi − E(Y ))2 (when the expectations are

known). Our framework is for random samples (Xi, Yi) either Spherical or Gaussian. In
each case, we follow the scheme of Bercu et al. We also compute the Bahadur exact slope
in the Gaussian case.

Keywords: Pearson’s Empirical Correlation Coefficient, Sharp Large Deviations, Spherical Distribu-

tion, Gaussian distribution.

1 Introduction

The Beauvais–Pearson linear correlation coefficient between two real random variables X and
Y is defined by

ρ =
Cov(X,Y )√

Var(X)
√

Var(Y )
,

whenever this quantity exists. Such quantities were formally defined more than a century
ago by Pearson [22, 23]. The correlation describes the linear relation between two random
variables. It is clear from Cauchy–Schwartz inequality that the absolute value of ρ is less
than or equal to 1. Moreover, ρ = ±1 if and only if X and Y are linearly related. When ρ = 0
we say that X and Y are uncorrelated, i.e. linearly independent. The empirical counterpart
is the following. Let us consider two samples X = (X1, · · · , Xn) and Y = (Y1, · · · , Yn). The
so–called empirical Pearson correlation coefficient is given by

rn =

∑n
i=1(Xi − X̄n)(Yi − Ȳn)√∑n

i=1(Xi − X̄n)2
∑n

i=1(Yi − Ȳn)2
, (1)

where X̄n = 1
n

∑n
k=1Xk and Ȳn = 1

n

∑n
k=1 Yk are the empirical means of the samples. When-

ever E(X) and E(Y) are both known, we consider r̃n:

r̃n =

∑n
i=1(Xi − E(Xi))(Yi − E(Yi))√∑n

i=1(Xi − E(Xi))2
∑n

i=1(Yi − E(Yi))2
. (2)
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The study of the correlation coefficients is detailed in many references (see e.g. [19] or [25])
and it is shown that many competing correlation indexes are special cases of Pearson’s cor-
relation coefficient ([24]). The asymptotic behaviour of (rn)n, (r̃n)n is worth considering. It
is clear that when X and Y are independent, rn, r̃n → 0 when n→∞. Moreover, whenever
(X,Y) are sampled from a known distribution (X,Y ), rn, r̃n → ρ when n → ∞. In this
paper, we study Sharp Large Deviations (SLD) associated to these asymptotics.

Large Deviations for empirical correlation coefficients have been studied by Si [26] in the
Gaussian case. We extend his results to SLD in the spherical and Gaussian cases. It can be
noticed here that for the Gaussian case, we prove SLD on a resctricted domain of ρ since the
convexity properties of the functions are only true for 0 ≤ |ρ| ≤ ρ0, where ρ0 is explicitely
defined. This point was not noticed in [26] since the large deviations are given through a
contraction principle which is actually not valid (the function used is not continuous). We
stress the fact that things have to be handled in a different way for the case |ρ| > ρ0, and
there is no proof that the rate function should be the same.

We consider here the asymptotic development of

P (rn ≥ c) or, equivalently P (r̃n ≥ c)

for 0 < c < 1. We follow the scheme of Bercu et al. [5, 6] and split:

P (rn ≥ c) = AnBn ,

where

An = exp[n(Ln(λc)− cλc)] , (3)

Bn = En[exp[−nλc(rn − c)]1lrn≥c] , (4)

Ln is the normalized cumulant generating function (n.c.g.f.) of rn, L its limit as n→∞ and
λc is the unique λ such that L′(λc) = c. We perform the following change of probability

dQn
dP

= eλcnrn−nLn(λc) ,

and En is the expectation under this new probability Qn. The key point here is to develop

the characteristic function Φn of
√
n(rn−c)
σc

. We use an expansion already computed in the
i.i.d. case by Cramér (see [10], Lemma 2, p.72) and Esseen [13].

Such studies have been done in the context of small ball deviations and Gaussian semi-
norms by Ibragimov [16], Li [17], Sytaya [27], Zolotarev [31], with an anaytic point of vue and
different asymptotics. Independently, with large deviations techniques, was done a similar
work by Dembo, Meyer-Wolf and Zeitouni [11, 18]. We can also cite works in other contexts:
Ben Arous [4] on asymptotic expansion of the heat kernel associated with an hypoelliptic
operator (in small time), and Bolthausen [7] on the limiting behaviour of the partition function
for random vectors in Banach spaces in a general i.i.d. case.

The paper is organized as follows: in Sections 2 and 3, we present the SLD results in
the spherical and Gaussian cases; Section 4 is devoted to the proofs. In Section 5, we briefly
extend our results to any order developments as we present an application to Bahadur exact
slopes for the test based on rn in the Gaussian case. Finally, in an Appendix, we give some
more details and references on the Laplace method.
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2 Spherical distribution

In this section, we study empirical correlations coefficients (1) and (2) under the following
spherical distribution assumption. We denote by v′ the transpose of vector v.

Assumption 2.1 Let X = (X1, · · · , Xn)′ and Y = (Y1, · · · , Yn)′, n ∈ N, n > 2, be two
independent random vectors where X has a n-variate spherical distribution with P (X =
(0, · · · , 0)′) = 0 and Y has any distribution with P (Y ∈ {1}) = 0 (where 1 = {k(1, · · · , 1)′ , k ∈
R}).

2.1 SLDP for rn

In order to derive SLD for (rn)n we compute the n.c.g.f.

Ln(λ) =
1

n
logE(enλrn) . (5)

The asymptotics of Ln are given in the following proposition:

Proposition 2.2 For any λ ∈ R, we have

E
(
enλrn

)
=

Γ(n−1
2 )

π1/2Γ(n−2
2 )

enh(r0(λ))

(
c0(λ)√
n

+O

(
1

n3/2

))
, (6)

where

• h(r) = λr + 1
2 log(1− r2),

• r0(λ) is the unique root in ]− 1, 1[ of h′(r) = 0, i.e.

r0(λ) =
−1 +

√
1 + 4λ2

2λ
, (7)

• g(r) = (1− r2)−2 and c0(λ) =

√
2π

|h′′(r0(λ))|
g(r0(λ)) .

Therefore

Ln(λ) = L(λ)− 1

n

[
1

2
log
√

1 + 4λ2 − 3

2
log

1 +
√

1 + 4λ2

2

]
+O

(
1

n2

)
. (8)

where L is the limit normalized log–Laplace transform of rn:

L(λ) = h(r0(λ)). (9)

The proof of this proposition is postponed to Section 4. Now we have the following SLDP:
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Theorem 2.3 For any 0 < c < 1, under Assumption (2.1), we have

P (rn ≥ c) =
e−nL

∗(c)− 1
2

log(1+4λ2c)+
3
2

log
1+

√
1+4λ2c
2

λcσc
√

2πn
(1 + o(1)), (10)

where

• λc is the unique solution of L′(λ) = c , i.e. λc =
c

1− c2
,

• σ2
c = L′′(λc) =

(1− c2)2

1 + c2
,

• L∗(y) = −1
2 log(1− y2) .

Proof:
To prove the SLD for (rn)n, we proceed as in Bercu et al. [5, 6]. The following lemma,

which proof is given in the Section 4, gives some basic properties of L:

Lemma 2.4 Let L(λ) = h(r0(λ)) where h and r0 are defined in Proposition 2.2, we have

• L is defined on R and L is C∞ on its domain.

• L is a strictly convex function on R, L reaches its minimum at λ = 0. Moreover for
any λ ∈ R, L′(λ) ∈]− 1, 1[.

• The Legendre dual of L is defined on ]− 1, 1[ and computed as

L∗(y) = sup
λ∈R
{λy − L(λ)} = −1

2
log(1− y2) . (11)

.

Let 0 < c < 1 and λc > 0 such that L′(λc) = c. Then

L∗(c) = cλc − L(λc) ,

We denote by σ2
c = L′′(λc), and define the following change of probability:

dQn
dP

= eλcnrn−nLn(λc) . (12)

The expectation under Qn is denoted by En. We write

P (rn ≥ c) = AnBn , (13)

where
An = exp[n(Ln(λc)− cλc)] ,

Bn = En(exp[−nλc(rn − c)]1lrn≥c) .

4



On the one hand, from (8)

An = exp[−nL∗(c)− 1

4
log(1 + 4λ2

c) +
3

2
log

1 +
√

1 + 4λ2

2
]

(
1 +O

(
1

n

))
.

On the other hand, let us denote by

Un =

√
n(rn − c)
σc

,

Φn(u) = En(eiuUn) = exp(− iu
√
n

σc
c+ nLn(λc +

iu

σc
√
n

)− nLn(λc)) .

We have the following technical results on Φn, proved in Section 4.

Lemma 2.5 For any K ∈ N∗, η > 0, for n large enough and any u ∈ R,

|Φn(u)| ≤ 1

|λc + iu
σc
√
n
|K
cK0 (λ)

c0(λ)
(1 + η) . (14)

where c0 and cK0 are the first coefficients in Laplace’s method (see Theorem 5.6), corresponding
respectively to

g(r) = (1− r2)−2

and
gK(r) = (2r)K(1− r2)−K−2 .

From lemma above, choosing K ≥ 2, we see that Φn is in L2 and by Parseval formula,

Bn = En[e−λcσc
√
nUn1lUn≥0] =

1

2π

∫
R

(
1

λcσc
√
n+ iu

)
Φn(u)du =

Cn

λcσc
√

2πn
,

where

Cn =
1√
2π

∫
R

(
1 +

iu

λcσc
√
n

)−1

Φn(u)du.

The key point here is to study the asymptotics of Φn.

Lemma 2.6 We have

lim
n→∞

Φn(u) = e−u
2/2 and lim

n→∞
Cn = 1 .

From lemma above, which proof is postponed to Section 4, we have equation (10).
�
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2.2 Known expectation

In case E(X) and E(Y) are both known, we consider r̃n given in formula (2) which can be
written as follows

r̃n =
(X− E(X))′ (Y − E(Y))

‖X− E(X)‖ ‖Y − E(Y)‖
. (15)

We can derive a SLD result similar to the previous one. The following proposition gives the
expression of the n.c.g.f. of r̃n:

Proposition 2.7 For any λ ∈ R, we have

E(enλr̃n) =
Γ(n2 )

π1/2Γ(n−1
2 )

enh(r0(λ))

(
c̃0(λ)√
n

+O

(
1

n3/2

))
, (16)

where

• h(r) = λr + 1
2 log(1− r2),

• r0(λ) is the unique root in ]− 1, 1[ of h′(r) = 0, i.e.

r0(λ) =
−1 +

√
1 + 4λ2

2λ
,

• g̃(r) = (1− r2)−3/2 and c̃0(λ) =

√
2π

|h′′(r0(λ))|
g̃(r0(λ)) .

The n.c.g.f. of r̃n is

L̃n(λ) = h(r0(λ))− 1

n

[
1

2
log
√

1 + 4λ2 − log
1 +
√

1 + 4λ2

2

]
+O

(
1

n2

)
. (17)

This proposition is proved in Section 4. We have the following SLDP:

Theorem 2.8 For any 0 < c < 1, under Assumption (2.1), we have

P (r̃n ≥ c) =
exp−nL

∗(c)− 1
4

log(1+4λ2c)+log
1+

√
1+4λ2c
2

λcσc
√

2πn
(1 + o(1)). (18)

Proof:
The proof of Theorem 2.8 is exactly similar to the one of Theorem 2.3 and formula (10)

is changed to (18) according to the way formula (8) is changed to (17).
�

3 Gaussian case

Assumption 3.1 Let (X,Y ) be a R2-valued Gaussian random vector where σ2
1 = Var(X),

σ2
2 = Var(Y ) and ρ is the correlation coefficient: Cov(X,Y ) = ρσ1σ2. We consider (X,Y) =
{(Xi, Yi), i = 1, · · ·n} an i.i.d. sample of (X,Y ).
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3.1 General case

We deal with the Pearson coefficient given in (1). As presviously mentioned, Large deviations
for (rn)n are detailed in the paper of Si [26]. It can be noted that the contraction principle
used by Si is not valid here. The rate function is correct however, but only on some domain
of ρ. We can give an expression of the normalized log–Laplace transform Ln given by (5).

Proposition 3.2 Let us define

ρ0 :=

√
3 + 2

√
3

3
.

For any λ ∈ R and ρ such that |ρ| ≤ ρ0, we have the n.c.g.f. of rn:

Ln(λ) = h(r0(λ)) +
1

2
log(1− ρ2) +

1

n

[
log gρ(r0(λ))− 1

2
log |h′′(r0(λ))|

]
+O

(
1

n2

)
, (19)

in which

• h(r) = λr − log(1− ρr) + 1
2 log(1− r2),

• r0(λ) is the unique real root in ]− 1, 1[ of h
′
(r) = 0,

• gρ(r) = (1− ρ2)−1/2(1− ρr)3/2(1− r2)−2.

The proof of this proposition is postponed to Section 4. We prove the following SLDP:

Theorem 3.3 For any 0 ≤ ρ < c < 1 and |ρ| ≤ ρ0 (with the notations of Proposition 3.2),
we have

P (rn ≥ c) =
e−nL

∗(c)+log gρ(r0(λc))− 1
2

log |h′′(r0(λc))|

λcσc
√

2πn
(1 + o(1)) , (20)

where for any −1 < y < 1,

L∗(y) = log

(
1− ρy√

(1− ρ2)
√

(1− y2)

)
. (21)

Proof:
Following the Proof of Theorem 2.3, we can easy obtain (20). Note that the rate function

in Si [26] matches our (21).
�

3.2 Known expectations

In case E(X) and E(Y ) are both known; and ρ = 0, we have the following result

Proposition 3.4 The n.c.g.f. of r̃n is given for any λ ∈ R by

Ln(λ) = h(u0(λ))− 1

4n
log(1 + 4λ2) +O

(
1

n2

)
, (22)

where
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• h(r) = λr + 1
2 log(1− r2),

• u0(λ) is the unique solution of h′(λ) = 0 in ]− 1, 1[.

The proof is postponed to Section 4. The SLDP is therefore:

Theorem 3.5 When ρ = 0 and under Assumption 3.1, for 0 < c < 1, we have

P (r̃n ≥ c) =
e−nL

∗(c)− 1
4

log(1−4λ2c)

λcσc
√
n

(1 + o(1)), (23)

where L∗ is given in Theorem 2.3.

4 Proofs

4.1 Proof of Proposition 2.2

We know from Muirhead (Theorem 5.1.1, [19]) that

(n− 2)1/2 rn

(1− (rn)2)1/2

has a Student’s tn−2-distribution. Hence the density function of rn is

fn(r) =
Γ(n−1

2 )

π1/2Γ(n−2
2 )

(1− r2)(n−4)/2 (−1 < r < 1). (24)

Applying Theorem 5.6, we get

E
(
enλrn

)
=

∫ 1

−1
enλrfn(r)dr =

∫ 1

−1
enλr

Γ(n−1
2 )

π1/2Γ(n−2
2 )

(1− r2)(n−4)/2dr

=
Γ(n−1

2 )

π1/2Γ(n−2
2 )

enh(r0(λ))

(
c0(λ)√
n

+O

(
1

n3/2

))
.

where h, r0 and c0 are given in Proposition 2.2.
So we have

E
(
enλrn

)
=

Γ(n−1
2 )

π1/2Γ(n−2
2 )

√
2π

n
enh(r0(λ)) g(r0(λ))√

|h′′(r0(λ))|

(
1 +O

(
1

n

))
(25)

=
Γ(n−1

2 )

Γ(n−2
2 )

√
2

n
enh(r0(λ)) 1

(1− r0(λ)2)
√

1 + r0(λ)2

(
1 +O

(
1

n

))
(26)

From the duplication formula (see e.g. Olver [21])

22z−1Γ(z)Γ(z +
1

2
) =
√
πΓ(2z) ,
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as well as the Stirling formula (see [21])

log Γ(z) = z log z − z − 1

2
log z + log

√
2π +O

(
1

Re(z)

)
, as Re(z)→∞ ,

formula (26) above becomes

E(enλr) = enh(r0(λ)) 1

(1− r0(λ)2)
√

1 + r0(λ)2

(
1 +O

(
1

n

))
.

With the expression of r0, we get formula (8).

4.2 Proof of Lemma 2.4

We can explicit the full expression of L:

L(λ) =
−1 +

√
1 + 4λ2

2
− 1

2
log(

1 +
√

1 + 4λ2

4
) . (27)

It is easy to see that L is defined on R, C∞ on its domain.
From the definition of L we can deduce

L′(λ) = r0(λ) + h′(r0(λ)) = r0(λ), (28)

and by construction of r0, L′ ∈]− 1, 1[. Now we can compute

L′′(λ) = r′0(λ) =
1

2λ2

(
1− 1√

1 + 4λ2

)
, (29)

and it is easily seen that L′′(λ) > 0 for any λ ∈ R∗ and L′′(0) can be defined by continuity
as 1. Hence L is strictly convex on R and has its minimum at λ = 0. Moreover, if we have

L′(λc) = r0(λc) = c,

then 0 < c < 1 implies λc > 0 and we can obtain

4λc(λc(1− c2)− c) = 0.

This leads us to the expression

λc =
c

1− c2
.

Hence the preceding expression yields

σ2
c = L′′(λc) =

(1− c2)2

1 + c2
.
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4.3 Proof of Lemmas 2.5 and 2.6

The proof of Lemma 2.5 is based on iterated integrations by parts. We detail below the steps.

Φn(u) = En(eiuUn) =

∫
R
eiu
√
n(r−c)
σc fn(r)eλcnr−nLn(λc)dr

= Γn e
−iu

√
nc
σc e−nLn(λc)

∫ 1

−1
e(iu

√
n
σc

+λcn)r(1− r2)n/2−2dr,

where, for seek of simplicity, we denote by

Γn =
Γ(n−1

2 )

π1/2Γ(n−2
2 )

. (30)

For K ∈ N∗, performing K integrations by part, since fn is zero at −1 and 1 when n is large
enough, we get:

Φn(u) = Γne
−iu

√
nc
σc e−nLn(λc) × · · ·

· · · ×
(n2 − 2)(n2 − 3) · · · (n2 −K − 1)(

iu
√
n
σc

+ λcn
)K ∫ 1

−1
e(iu

√
n
σc

+λcn)r(−2r)K(1− r2)n/2−2−Kdr.

Hence,

|Φn(u)| ≤ Γne
−nLn(λc)

(
n

2
− 2)(

n

2
− 3) · · · (n

2
−K − 1)∣∣∣iu√nσc + λcn
∣∣∣K

∫ 1

−1
eλcnr(2r)K(1− r2)n/2−2−Kdr.

Using Laplace’s method once again (see the Appendix), for a given η > 0 we can find N large
enough such that for any n ≥ N ,

|Φn(u)| ≤ 1

|λc + iu√
nσc
|K
cK0 (λ)

c0(λ)
(1 + η) . (31)

�
To prove Lemma 2.6, we first split Cn into two terms:

Cn =
1√
2π

∫
|u|≤nα

(
1 +

iu

λcσc
√
n

)−1

Φn(u)du+
1√
2π

∫
|u|>nα

(
1 +

iu

λcσc
√
n

)−1

Φn(u)du.

(32)
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For the second term in the RHS of (32) we have∣∣∣∣∣∣
∫
|u|>nα

1(
1 + iu

λcσc
√
n

)Φn(u)du

∣∣∣∣∣∣ ≤
∫
|u|>nα

1∣∣∣1 + iu
λcσc

√
n

∣∣∣Φn(u)du

≤
∫
|u|>nα

1

|λc|K
∣∣∣1 + iu

λcσc
√
n

∣∣∣K+1
du
cK0 (λc)

c0(λc)
(1 + η)

≤ cK0 (λc)

|λc|Kc0(λc)
(1 + η)

∫
|u|>nα

1(
1 + u2

λ2cσ
2
cn

)(K+1)/2
du

≤ cK0 (λc)

|λc|Kc0(λc)
(1 + η)(λ2

cσ
2
cn)(K+1)/22

n−αK

K
.

In order to have a negligible term, it is enough to have −Kα+ K+1
2 < 0, i.e. fixing K = 3,

α = 3
4 . Now for the domain {|u| ≤ nα}, we study more precisely the expression

Φn(u) = En(eiuUn) = exp

[
− iu
√
n

σc
c+ nLn(λc +

iu

σc
√
n

)− nLn(λc)

]
. (33)

We first remark that E(enλrn) is analytic in λ on R, hence it can be expanded by analytic
continuation and Ln(λ+ iy) for λ, y ∈ R is well defined. From the analyticity, we can expand
in Taylor series the expression (33) above.

Φn(λc) = exp{−iu
√
nc

σc
+ n

∞∑
k=1

(
iu

σc
√
n

)k L(k)
n (λc)

k!
}

= exp{−iu
√
nc

σc
+ n

iu

σc
√
n
L′n(λc) + n

∑
k≥2

(
iu

σc
√
n

)k L(k)
n (λc)

k!
}. (34)

We detail now a development of Ln – and its derivatives – which will be useful in the whole
paper.

Technical Lemma 4.1 For any λ ∈ R, we have

Ln(λ) = h(r0(λ)) +
1

n
log Γn −

1

2n
log n+

1

n
R0(λ) +

1

n

∑
p≥1

Rp(λ)

npp!
, (35)

where Γn is defined in (30) and

R0(λ) = log c0(λ), (36)

Rp(λ) =
∑

1≤s≤p
(−1)s−1(s− 1)!Bp,s(c1, c2, · · · )c−s0 , (37)

where the coefficients ci are given by Laplace development (see Appendix) and Bp,s are the
partial exponential Bell polynomials (see (75)).
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Proof of Technical Lemma 4.1:
From the Appendix we can develop

E(enλrn) =
Γ(n−1

2 )

π1/2Γ(n−2
2 )

enh(r0(λ)

√
n

∑
p≥0

cp(λ)

(2p)!np
, (38)

where

cp(λ) =

√
2π

|h′′(r0(λ))|

2p∑
k=0

(
2p
k

)
g(2p−k)(r0(λ))

·
k∑

m=0

Bk,m

(
h(3)(r0(λ))

2.3
, . . . ,

h(k−m+3)(r0(λ))

(k −m+ 2)(k −m+ 3)

)
(2m+ 2p− 1)!!

|h′′(t0)|m+p
. (39)

From Faà di Bruno formula (see e.g. formula [5c] of Comtet [8]):

logE(enλrn) = nh(r0(λ)) + log

(
Γ(n−1

2 )
√
nπ1/2Γ(n−2

2 )

)
+ log c0(λ) +

∑
p≥1

Rp(λ)

npp!
, (40)

where Rp is defined in formula (37) above. Hence the formula (35) is proven. �
From expressions (37) and (39), we see that Rp is a polynomial in g(s)(r0(λ)) and

h(s)(r0(λ)) where the derivatives are taken with respect to r. The function r0(λ) is C∞
on R. We can therefore express the derivatives of Ln as follows:

L(k)
n (λ) = L(k)(λ) +

R
(k)
0 (λ)

n
+

1

n

∑
p≥1

R
(k)
p (λ)

npp!
. (41)

Back to formula (34), and from the choice of λc, we have

∂

∂λ
h(r0(λ))

∣∣∣
λ=λc

= L′(λc) = c

and

Φn(u) = exp{ iu
√
n

σc
[L′n(λc)− c] + n

∑
k≥2

(
iu

σc
√
n

)k L(k)
n (λc)

k!
}

= exp{ iu√
nσc

[R′0(λ) +
∑
p≥1

R′p(λ)

npp!
]− u2

2σ2
c

L′′n(λc) + n
∑
k≥3

(
iu

σc
√
n

)k L(k)
n (λc)

k!
}

= exp{−u
2

2
+

2p∑
k=3

(
iu

σc
√
n

)k nL(k)(λc)

k!
+

2p∑
k=1

(
iu

σc
√
n

)k R(k)
0 (λc)

k!
+
∑
k≥1

(
iu

σc
√
n

)k 1

k!

∑
p≥1

R
(k)
p (λc)

npp!
}.

(42)
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For p large enough such that {uk/(
√
n)k+2p} is bounded on {|u| ≤ nα}, we can have a uniform

bound on the rest of the sum in the last term on the RHS above. Hence we can write, for a
given m ∈ N large enough

Φn(u) = exp{−u
2

2
+

2m+3∑
k=3

(
iu

σc
√
n

)k nL(k)(λc)

k!
+

2m+1∑
k=1

(
iu

σc
√
n

)k R(k)
0 (λc)

k!

+

2m+1∑
k=1

s(m)∑
p=1

(
iu

σc
√
n

)k 1

k!

R
(k)
p (λc)

npp!
}+O(

1 + |u|2m+4

nm+1
)}. (43)

We follow the scheme of Cramer [10] Lemma 2, p.72 (see also Bercu and Rouault [6]), and
we get the wanted results.

�

Remark 4.2 A thorough study of expressions L
(k)
n and R

(k)
p are given in [30].

4.4 Proof of Proposition 2.7

By symmetry, the mean E(X) = 0 if it exists. Then, r̃n from (15) becomes

r̃n =
X′(Y − E(Y))

‖X‖ ‖Y − E(Y)‖
. (44)

Applying Theorem 1.5.7 from Muirhead [19], with α =
Y − E(Y)

‖Y − E(Y)‖
∈ Rn, then

(n− 1)1/2 r̃n

(1− r̃2
n)1/2

has a tn−1-distribution. Comparing to rn, the degree of the t-distribution is one degree less
than r̃n.

Hence the density function of r̃n is

Γ(n2 )

π1/2Γ(n−1
2 )

(1− r2)(n−3)/2 , (−1 < r < 1). (45)

Applying Laplace’s method we get

E
(
enλr̃n

)
=

∫ 1

−1
enλr

Γ(n2 )

π1/2Γ(n−1
2 )

(1− r2)(n−3)/2dr

=
Γ(n2 )

π1/2Γ(n−1
2 )

enh(r0(λ))

(
c̃0(λ)√
n

+O

(
1

n3/2

))
,

where h, r0 and c0 are given in Proposition 2.7. Then

E
(
enλr̃n

)
=

Γ(n2 )

π1/2Γ(n−1
2 )

√
2π

n
enh(r0(λ)) g̃(r0(λ))√

|h′′(r0(λ))|

(
1 +O

(
1

n

))
= enh(r0(λ)) 1√

(1− r2
0(λ))(1 + r2

0(λ))

(
1 +O

(
1

n

))
. (46)

And we can obtain formula (17) from the expression of r0.
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4.5 Proof of Proposition 3.2

From Muirhead, we know that the density function of a n+ 1 sample correlation coefficient
rn+1 is given by

(n− 1)Γ(n)

Γ(n+ 1/2)
√

2π
(1− ρ2)n/2(1− ρr)−n+1/2(1− r2)(n−3)/2

2F1

(
1

2
,
1

2
;n+

1

2
;
1

2
(1 + ρr)

)
(−1 < r < 1).

where 2F1 is the hypergeometric function (see [21]). Hence Laplace transform is

E
(
e(n+1)λrn+1

)
=

(n− 1)Γ(n)

Γ(n+ 1/2)
√

2π
(1− ρ2)n/2∫ 1

−1
e(n+1)λr(1− ρr)−n+1/2(1− r2)(n−3)/2

2F1

(
1

2
,
1

2
;n+

1

2
;
1

2
(1 + ρr)

)
dr.

Looking for a limit as n → ∞, we can use the following result due to Temme [28, 29] (see
also [14]): the function 2F1 has the following Laplace transform representation

2F1(a, b, c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− zt)a
dt (47)

and

2F1(a, b, c+ λ; z) ∼ Γ(c+ λ)

Γ(c+ λ− b)

∞∑
s=0

fs(z)
(b)s
λb+s

, (48)

where the equivalent is for λ→ +∞ and

f(t) =

(
et − 1

t

)b−1

e(1−c)t(1− z + ze−t)−a ,

f(t) =

∞∑
s=0

fs(t)t
s.

In our case, we get as n→∞:

2F1

(
1

2
,
1

2
,
1

2
+ n;

1

2
(1 + ρr)

)
∼

Γ(1
2 + n)

Γ(n)

(
1√
n

+
2 + ρr

8n3/2
+ o

(
1

n3/2

))
. (49)

Hence we have to deal with the following integral:∫ 1

−1
e(n+1)λr(1− ρr)−n+1/2(1− r2)(n−3)/2

(
1 +

2 + ρr

8n
+ o

(
1

n

))
dr. (50)

Neglecting the terms of lower order in n we focus on∫ 1

−1
e(n+1)λr(1− ρr)−n+1/2(1− r2)(n−3)/2dr =

∫ 1

−1
enh(r)g(r)dr , (51)
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where

h(r) = λr − log(1− ρr) +
1

2
log(1− r2) , (52)

g(r) = eλr
√

(1− ρr)(1− r2)−3/2 .

The following lemma details the properties of the function h̄:

Lemma 4.3 For any ρ ∈] − 1, 1[ and r ∈] − 1, 1[, the function h̄ of formula (52) is defined
for any λ ∈ R. Moreover the equation h̄′(r) = 0 has at least one solution in ] − 1, 1[ and

h̄′′(r) < 0 on ]− 1, 1[ for any |ρ| ≤ ρ0 where ρ0 =

√
3 + 2

√
3

3
.

Proof:
We compute easily

h
′
(r) = λ+

ρ

1− ρr
− r

1− r2

and see that H(r) = h̄′(r)(1−r2) = 0 has at least one root in ]−1, 1[ (since H(−1)H(1) < 0).
Hence there exists at least one solution r0 ∈]− 1, 1[ such that h̄′(r) = 0. Next, we compute

h̄′′(r) =
ρ2

(1− ρr)2
− 1 + r2

(1− r2)2

and we have

h̄′′(r) < 0 for any r ∈]− 1, 1[⇐⇒ |ρ| ≤ ρ0 :=

√
3 + 2

√
3

3
. �

We know from Si [26] that the rate function in this case is

Iρ(s) = log

(
1− ρs√

(1− ρ2)
√

(1− s2)

)
for − 1 < s < 1 . (53)

As previously said, even if this function was obtained by a contraction principle which
is not applicable here (the function involved is not continuous, see Dembo and Zeitouni for
more details [12]), we claim that the expression of the rate function above is nevertheless
correct in the given domain {|ρ| ≤ ρ0}. We prove it below. We have

L(λ) = h̄(r0(λ)) +
1

2
log(1− ρ2) ,

where r0 satisfies
h̄′(r0(λ)) = 0.

Now we compute
L′(λ) = r0(λ) + r′0(λ)h̄′(r0(λ)) = r0(λ). (54)
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For every −1 < c < 1 and λc such that L′(λc) = c, we have

L∗(c) = cλc − L(λc)

= cλc − {λcr0(λc) +
1

2
log(1− r2

0(λc))− log(1− ρr0(λc)) +
1

2
log(1− ρ2)}

= −1

2
log(1− c2) + log(1− ρc)− 1

2
log(1− ρ2) = log

1− ρc
√

1− c2
√

1− ρ2
.

From the dual properties of Legendre transform, the condition of Laplace’s method
h
′′
(r) < 0 is compatible with the condition of convexity of Iρ in ] − 1, 1[. Indeed, for

ρ0 < |ρ| < 1, Iρ is not convex. From that point, under condition |ρ| ≤ ρ0, we can get

E
(
e(n+1)λrn+1

)
=
n− 1√

2nπ
(1− ρ2)n/2

√
2π

n
enh(r0(λ)) g(r0(λ))√

|h′′(r0(λ))|

(
1 +O

(
1

n

))
(55)

= e(n+1)h(r0(λ)) (1− ρ2)n/2(1− ρr0(λ))3/2

(1− r2
0(λ))2

√
|h′′(r0(λ))|

(
1 +O

(
1

n

))
. (56)

We can adjust the size of sample into n and obtain

E
(
enλrn

)
= enh(r0(λ)) (1− ρ2)(n−1)/2(1− ρr0(λ))3/2

(1− r2
0(λ))2

√
|h′′(r0(λ))|

(
1 +O

(
1

n

))
, (57)

which leads us to (19). We give below two graphics, one for ρ = ρ0 − 0.1 and one for
ρ = ρ0 + 0.1. We can clearly see the change of convexity.

-1.0 -0.5 0.5 1.0

0.5

1.0

1.5

2.0

2.5

Figure 1: Iρ for ρ = ρ0 − 0.1
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-1.0 -0.5 0.5 1.0

1

2

3

4

Figure 2: Iρ for ρ = ρ0 + 0.1

4.6 Proof of Proposition 3.4

For the asymptotics of Ln in this case, we follow the steps of Si [26]. Up to considering
X1 = X − E(X) and Y1 = Y − E(Y ), we can boil down to E(X) = E(Y ) = 0.

If we denote by 〈, 〉 the Euclidean scalar product in R2, and

X̃ =

 X1√∑n
i=1X

2
i

, · · · , Xn√∑n
i=1X

2
i

 , Ỹ =

 Y1√∑n
i=1 Y

2
i

, · · · , Yn√∑n
i=1 Y

2
i

 ,

therefore
r̃n = 〈X̃, Ỹ 〉. (58)

Large deviations for (r̃n)n are proved in [26]. We derive here the corresponding sharp princi-
ple. Since X̃, Ỹ are independent random variables with uniform distribution σ̃n on the unit
sphere Sn−1 of Rn, we can compute

E
(
eλr̃n

)
=

∫∫
Sn−1×Sn−1

eλ〈x,y〉σ̃n(dx)σ̃n(dy)dxdy (59)

=
an−1

an

∫ 1

−1
eλu
(√

1− u2
)n−1

du , (60)

where an is the area of the unit sphere:

ai =
2π

i+1
2

Γ( i+1
2 )

.

In order to get the SLD, we want to compute the normalized log–Laplace transform: for any
λ ∈ R, from Stirling formula (see [21]), we get easily

an−1

an
=

√
n

2π

(
1 +O

(
1

n

))
.
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Then we can write ∫ 1

−1
enλu

(√
1− u2

)n−1
du =

∫ 1

−1
enh(u)g(u)du ,

where h(u) = λu+ 1
2 log(1− u2) and g(u) = 1√

1−u2 . We apply Laplace’s method to get:∫ 1

−1
enh(u)du = enh(u0(λ))

(
c0(λ)√
n

+O

(
1

n3/2

))
, (61)

where

u0(λ) =
−1 +

√
1 + 4λ2

2λ
, c0(λ) =

√
2π

h′′(u0(λ))|
g(u0(λ)) .

This leads to

Ln(λ) = h(u0(λ))− 1

2n
log(1 + 4λ2) +O

(
1

n2

)
. (62)

5 Further results

5.1 Any order development

We present in this section a way to extend the results of Sections 2 and 3 to higher orders.
Moreover, whenever functions involved are smooth enough, these techniques can be applied
and the asymptotics are given in other cases.

Theorem 5.1 In the framework of Sections 2 and 3, for any 0 < c < 1, there exists a
sequence (δc,k)k such that

P (rn ≥ c) =
e−nL

∗(c)+R0(λc)

λcσc
√

2πn

[
1 +

p∑
k=1

δc,k
nk

+O

(
1

np+1

)]
. (63)

Proof:
For seek of simplicity, we only present here the proof for (rn)n in the spherical case.

Similarly to the proof of Theorem 2.3, we briefly give the main ideas: From the decomposition
P (rn ≥ c) = AnBn, in which

An = exp[n(Ln(λc)− cλc)]

= exp[−nL∗(c) +R0(λc) +
∑
p≥1

Rp(λc)

np(2p)!
]

= exp[−nL∗(c) +R0(λc))]

1 +
∑
p≥1

ηp(λc)

np(2p)!

 ,
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where (ηp)p is a sequence of smooth functions of λ. Recall that we can develop Ln as in (35)

and L
(k)
n as in (41) and from the development of Φn in (42),(

1 +
iu

λcσc
√
n

)−1

Φn(u) = e−
u2

2σc

(
1 +

2p+1∑
k=1

Pp,k(u)

nk/2
+

1 + u6(p+1)

np+1
O(1)

)
, (64)

where Pp,k are polynomials in odd powers of u for k odd, and polynomials in even powers of
u for k even. From that points, we can complete the proof of Theorem 5.1.

�

5.2 Correlation test and Bahadur exact slope

5.2.1 Bahadur slope

Let us recall here some basic facts about Bahadur exact slopes of test statistics. For a
reference, see [2] and [20]. Consider a sample X1, · · · , Xn having common law µθ depending
on a parameter θ ∈ Θ. To test (H0) : θ ∈ Θ0 against the alternative (H1) : θ ∈ Θ1 = Θ\Θ0,
we use a test statistic Sn, large values of Sn rejecting the null hypothesis. The p-value of this
test is by definition Gn(Sn), where

Gn(t) = sup
θ∈Θ0

Pθ(Sn ≥ t).

The Bahadur exact slope c(θ) of Sn is then given by the following relation

c(θ) = −2 lim inf
n→∞

1

n
log (Gn(Sn)) . (65)

Quantitatively, for θ ∈ Θ1, the larger c(θ) is, the faster Sn rejects H0.
A theorem of Bahadur (Theorem 7.2 in [3]) gives the following characterization of c(θ):

suppose that limn n
−1/2Sn = b(θ) for any θ ∈ Θ1, and that limn n

−1 log
(
Gn(n1/2t)

)
= −I(t)

under any θ ∈ Θ0. If I is continuous on an interval containing b(Θ1), then c(θ) is given by:

c(θ) = 2I(b(θ)) . (66)

5.2.2 Correlation in the Gaussian case

In the Gaussian case, under Assumption 3.1, we have the following strong law of large num-
bers:

rn → ρ = cov(X,Y ) . (67)

We wish to test H0 : ρ = 0 against the alternative H1 : ρ 6= 0. It is obvious that under H1,

lim
n→∞

rn = ρ ,

and this limit is continuous when ρ 6= 0.
Besides, we have here

Gn(t) = sup
ρ∈Θ0

Pρ(
√
nrn ≥ t)
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and
1

n
logGn(

√
nt)→ −1

2
log(1− t2) .

Therefore the Bahadur slope is
c(ρ) = log(1− ρ2) . (68)

We show that this statistic is optimal in a certain sense. In the framework above, to test
θ ∈ Θ0 against the alternative θ ∈ Θ1 we define the likelihood ratio:

λn =
supθ∈Θ0

∏n
i=1 µθ(xi)

supθ∈Θ1

∏n
i=1 µθ(xi)

and the related statistic:

Ŝn =
1

n
log λn. (69)

Bahadur showed in [1] that Ŝn is optimal in the following sense: for any θ ∈ Θ1,

lim
n→∞

1

n
logGn(Ŝn) = −J(θ), (70)

where J is the infimum of the Kullback–Leibler information:

J(θ) = inf{K(θ, θ0), θ0 ∈ Θ0} (71)

and

K(θ, θ0) = −
∫

log[
µθ0(x)

µθ(x)
]dµθ . (72)

Definition 5.2 Let Tn be a statistic in the parametric framework defined above, then if c(θ)
is the Bahadur slope of Tn, we have

c(θ) ≤ 2J(θ)

and Tn is said to be optimal if the upper bound is reached.

We have the following result on the statistic rn.

Proposition 5.3 The sequence of empirical coefficients (rn)n is asymptotically optimal in
the Bahadur sense ([1]).

Proof:
We can easily compute the Kullback–Liebler information in this case:
Let θ = (µ,Σ) corresponds to the distribution of (X,Y ) in the case θ ∈ Θ1 and θ =

(µ0,Σ0) for θ ∈ Θ0. Since ρ = 0 in the case θ ∈ Θ0, the matrix Σ0 is diagonal.

K(θ, θ0) = −1

2
log |Σ|+ 1

2
log |Σ0| − 1 +

1

2
trΣ−1

0 [Σ− (µ− µ0)t(µ− µ0)], (73)

where |Σ| stands for the determinant of Σ. The infimum in (73) is reached when µ0 = µ and
the diagonal terms in Σ0 are the ones of Σ.

Hence,

J(θ) = inf
θ0∈Θ0

K(θ, θ0) = −1

2
log |Σ|+ 1

2
log σ11 +

1

2
log σ22 = −1

2
log(1− ρ2).

�
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Appendix: Laplace method

We present here some well known results about asymptotics of Laplace transforms. More
precisely, we consider integrals of type

I(x) =

∫ b

a
exp(t)q(t)dt (74)

and its asymptotics as x → ∞. Details and references can be found in Olver [21] and
Queffelec and Zuily [15]. The explicit computations are also done in [30]. Let us first recall
some definitions (for more details, see Comtet [8, 9]).

Definition 5.4 Partial exponential Bell polynomials are defined for any positive integers
k ≤ n by

Bn,k(x1, x2, · · · , xn−k+1) =
∑ n!

c1!c2! · · · cn−k+1!

(x1

1!

)c1 (x2

2!

)c2
· · ·
(

xn−k+1

(n− k + 1)!

)cn−k+1

,

(75)
where the sum is taken over all positive integers c1, c2 · · · , cn−k+1 such that

c1 + c2 + · · ·+ cn−k+1 = k,

c1 + 2c2 + · · ·+ (n− k + 1)cn−k+1 = n.

Definition 5.5 The complete exponential Bell polynomials are defined by

B0 = 1,

∀n ≥ 1 , Bn =
n∑
k=1

Bn,k.

where Bn,k are partial exponential Bell polynomials defined above.

Theorem 5.6 Let (a, b) be a non-empty open interval, possibly non bounded and t0 be some
point in (a, b). Denote by Vt0 a neighborhood of t0 such that p, q : (a, b)→ R are functions of
class C∞(Vt0).

We suppose that

i) p is measurable on (a, b),

ii) The maximum of p is reached at t0 (i.e. p′(t0) = 0 and p′′(t0) < 0),

iii) There exists x0 such that

∫ b

a
ex0p(t) |q(t)|dt < +∞.

Then there exist coefficients c0(t0), c1(t0), . . . depending on derivatives of p and q at t0, such
that for any N ≥ 0, as x→ +∞ we have∫ b

a
exp(t)q(t)dt = exp(t0)

(
c0(t0)√

x
+
c1(t0)

2!x3/2
+ · · ·+ cN (t0)

(2N)!xN+1/2
+O

(
1

xN+3/2

))
. (76)
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Moreover, (cN )N can be computed as

cN (t0) =

√
2π

|p′′(t0)|

2N∑
k=0

(
2N
k

)
q(2N−k)(t0)

k∑
m=0

Bk,m

(
p(3)(t0)

2.3
, . . . ,

p(k−m+3)(t0)

(k −m+ 2)(k −m+ 3)

)
(2m+ 2N − 1)!!

|p′′(t0)|m+N
.

where Bk,m are the Bell polynomials defined above and (2n+ 1)!! = 1.3.5. . . . (2n+ 1).
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f(a, b, c; z) for large c. Journal of Comp. and Applied Math., 197:568–577, 2006.
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