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Introduction

The Beauvais-Pearson linear correlation coefficient between two real random variables X and Y is defined by

ρ = Cov(X, Y )
Var(X) Var(Y ) , whenever this quantity exists. Such quantities were formally defined more than a century ago by Pearson [START_REF] Pearson | Notes on regression and inheritance in the case of two parents[END_REF][START_REF] Pearson | Notes on the history of correlation[END_REF]. The correlation describes the linear relation between two random variables. It is clear from Cauchy-Schwartz inequality that the absolute value of ρ is less than or equal to 1. Moreover, ρ = ±1 if and only if X and Y are linearly related. When ρ = 0 we say that X and Y are uncorrelated, i.e. linearly independent. The empirical counterpart is the following. Let us consider two samples

X = (X 1 , • • • , X n ) and Y = (Y 1 , • • • , Y n ).
The so-called empirical Pearson correlation coefficient is given by

r n = n i=1 (X i -Xn )(Y i -Ȳn ) n i=1 (X i -Xn ) 2 n i=1 (Y i -Ȳn ) 2 , (1) 
where Xn = 1 

= n i=1 (X i -E(X i ))(Y i -E(Y i )) n i=1 (X i -E(X i )) 2 n i=1 (Y i -E(Y i )) 2
.

(2)

The study of the correlation coefficients is detailed in many references (see e.g. [START_REF] Muirhead | Aspects of multivariate statistical theory[END_REF] or [START_REF] Sachs | Applied Statistics. A handbook of Techniques[END_REF]) and it is shown that many competing correlation indexes are special cases of Pearson's correlation coefficient ( [START_REF] Rodgers | Thirteen ways to look at the correlation coefficient[END_REF]). The asymptotic behaviour of (r n ) n , (r n ) n is worth considering. It is clear that when X and Y are independent, r n , rn → 0 when n → ∞. Moreover, whenever (X, Y) are sampled from a known distribution (X, Y ), r n , rn → ρ when n → ∞. In this paper, we study Sharp Large Deviations (SLD) associated to these asymptotics.

Large Deviations for empirical correlation coefficients have been studied by Si [START_REF] Shen | Large deviation for the empirical correlation coefficient of two Gaussian random variables[END_REF] in the Gaussian case. We extend his results to SLD in the spherical and Gaussian cases. It can be noticed here that for the Gaussian case, we prove SLD on a resctricted domain of ρ since the convexity properties of the functions are only true for 0 ≤ |ρ| ≤ ρ 0 , where ρ 0 is explicitely defined. This point was not noticed in [START_REF] Shen | Large deviation for the empirical correlation coefficient of two Gaussian random variables[END_REF] since the large deviations are given through a contraction principle which is actually not valid (the function used is not continuous). We stress the fact that things have to be handled in a different way for the case |ρ| > ρ 0 , and there is no proof that the rate function should be the same.

We consider here the asymptotic development of

P (r n ≥ c) or, equivalently P (r n ≥ c)
for 0 < c < 1. We follow the scheme of Bercu et al. [START_REF] Bercu | Sharp large deviations for Gaussian quadratic forms with applications[END_REF][START_REF] Bercu | Sharp large deviations for the Ornstein-Uhlenbeck process[END_REF] and split:

P (r n ≥ c) = A n B n ,
where

A n = exp[n(L n (λ c ) -cλ c )] , (3) 
B n = E n [exp[-nλ c (r n -c)]1l rn≥c ] , (4) 
L n is the normalized cumulant generating function (n.c.g.f.) of r n , L its limit as n → ∞ and λ c is the unique λ such that L (λ c ) = c. We perform the following change of probability dQ n dP = e λcnrn-nLn (λc) , and E n is the expectation under this new probability Q n . The key point here is to develop the characteristic function Φ n of √ n(rn-c) σc

. We use an expansion already computed in the i.i.d. case by Cramér (see [START_REF] Cramér | Random Variables and Probability Distributions[END_REF], Lemma 2, p.72) and Esseen [START_REF] Esseen | Fourier analysis of distribution functions. a mathematical study of the laplacegaussian law[END_REF].

Such studies have been done in the context of small ball deviations and Gaussian seminorms by Ibragimov [START_REF] Ibragimov | Hitting probability of a gaussian vector with values in a hilbert space in a sphere of small radius[END_REF], Li [START_REF] Li | Comparison results for the lower tail of gaussian seminorms, comparison results for the lower tail of gaussian seminorms, comparison results for the lower tail of gaussian seminorms[END_REF], Sytaya [START_REF] Sytaya | On some asymptotic representations of the gaussian measure in a hilbert space[END_REF], Zolotarev [START_REF] Zolotarev | Asymptotic behaviour of the gaussian mesure in l 2[END_REF], with an anaytic point of vue and different asymptotics. Independently, with large deviations techniques, was done a similar work by Dembo, Meyer-Wolf and Zeitouni [START_REF] Dembo | Exact behaviour for Gaussian seminorms[END_REF][START_REF] Mayer-Wolf | The probability of small gaussian ellipsoids and associated conditional moments[END_REF]. We can also cite works in other contexts: Ben Arous [START_REF] Arous | Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus[END_REF] on asymptotic expansion of the heat kernel associated with an hypoelliptic operator (in small time), and Bolthausen [START_REF] Bolthausen | Laplace approximations for sums of independent random vectors[END_REF] on the limiting behaviour of the partition function for random vectors in Banach spaces in a general i.i.d. case.

The paper is organized as follows: in Sections 2 and 3, we present the SLD results in the spherical and Gaussian cases; Section 4 is devoted to the proofs. In Section 5, we briefly extend our results to any order developments as we present an application to Bahadur exact slopes for the test based on r n in the Gaussian case. Finally, in an Appendix, we give some more details and references on the Laplace method.

Spherical distribution

In this section, we study empirical correlations coefficients (1) and (2) under the following spherical distribution assumption. We denote by v the transpose of vector v.

Assumption 2.1 Let X = (X 1 , • • • , X n ) and Y = (Y 1 , • • • , Y n ) , n ∈ N, n > 2,
be two independent random vectors where X has a n-variate spherical distribution with P (X = (0, • • • , 0) ) = 0 and Y has any distribution with P (Y ∈ {1}) = 0 (where

1 = {k(1, • • • , 1) , k ∈ R}).

SLDP for r n

In order to derive SLD for (r n ) n we compute the n.c.g.f.

L n (λ) = 1 n log E(e nλrn ) . (5) 
The asymptotics of L n are given in the following proposition:

Proposition 2.2 For any λ ∈ R, we have

E e nλrn = Γ( n-1 2 ) π 1/2 Γ( n-2
2 )

e nh(r 0 (λ)) c 0 (λ)

√ n + O 1 n 3/2 , ( 6 
)
where

• h(r) = λr + 1 2 log(1 -r 2 ), • r 0 (λ) is the unique root in ] -1, 1[ of h (r) = 0, i.e. r 0 (λ) = -1 + √ 1 + 4λ 2 2λ , (7) 
• g(r) = (1 -r 2 ) -2 and c 0 (λ) = 2π |h (r 0 (λ))| g(r 0 (λ)) .

Therefore

L n (λ) = L(λ) - 1 n 1 2 log 1 + 4λ 2 - 3 2 log 1 + √ 1 + 4λ 2 2 + O 1 n 2 . ( 8 
)
where L is the limit normalized log-Laplace transform of r n :

L(λ) = h(r 0 (λ)). ( 9 
)
The proof of this proposition is postponed to Section 4. Now we have the following SLDP:

Theorem 2.3 For any 0 < c < 1, under Assumption (2.1), we have

P (r n ≥ c) = e -nL * (c)-1 2 log(1+4λ 2 c )+ 3 2 log 1+ √ 1+4λ 2 c 2 λ c σ c √ 2πn (1 + o(1)), (10) 
where

• λ c is the unique solution of L (λ) = c , i.e. λ c = c 1 -c 2 , • σ 2 c = L (λ c ) = (1 -c 2 ) 2 1 + c 2 , • L * (y) = -1 2 log(1 -y 2 ) .
Proof:

To prove the SLD for (r n ) n , we proceed as in Bercu et al. [START_REF] Bercu | Sharp large deviations for Gaussian quadratic forms with applications[END_REF][START_REF] Bercu | Sharp large deviations for the Ornstein-Uhlenbeck process[END_REF]. The following lemma, which proof is given in the Section 4, gives some basic properties of L: Lemma 2.4 Let L(λ) = h(r 0 (λ)) where h and r 0 are defined in Proposition 2.2, we have

• L is defined on R and L is C ∞ on its domain.
• L is a strictly convex function on R, L reaches its minimum at λ = 0. Moreover for

any λ ∈ R, L (λ) ∈] -1, 1[.
• The Legendre dual of L is defined on ] -1, 1[ and computed as

L * (y) = sup λ∈R {λy -L(λ)} = - 1 2 log(1 -y 2 ) . (11) 
.

Let 0 < c < 1 and λ c > 0 such that L (λ c ) = c. Then

L * (c) = cλ c -L(λ c ) ,
We denote by σ 2 c = L (λ c ), and define the following change of probability:

dQ n dP = e λcnrn-nLn(λc) . (12) 
The expectation under Q n is denoted by E n . We write

P (r n ≥ c) = A n B n , (13) 
where

A n = exp[n(L n (λ c ) -cλ c )] , B n = E n (exp[-nλ c (r n -c)]1l rn≥c ) .
On the one hand, from (8)

A n = exp[-nL * (c) - 1 4 log(1 + 4λ 2 c ) + 3 2 log 1 + √ 1 + 4λ 2 2 ] 1 + O 1 n .
On the other hand, let us denote by

U n = √ n(r n -c) σ c , Φ n (u) = E n (e iuUn ) = exp(- iu √ n σ c c + nL n (λ c + iu σ c √ n ) -nL n (λ c )) .
We have the following technical results on Φ n , proved in Section 4.

Lemma 2.5 For any K ∈ N * , η > 0, for n large enough and any u ∈ R,

|Φ n (u)| ≤ 1 |λ c + iu σc √ n | K c K 0 (λ) c 0 (λ) (1 + η) . ( 14 
)
where c 0 and c K 0 are the first coefficients in Laplace's method (see Theorem 5.6), corresponding respectively to

g(r) = (1 -r 2 ) -2 and g K (r) = (2r) K (1 -r 2 ) -K-2 .
From lemma above, choosing K ≥ 2, we see that Φ n is in L 2 and by Parseval formula,

B n = E n [e -λcσc √ nUn 1l Un≥0 ] = 1 2π R 1 λ c σ c √ n + iu Φ n (u)du = C n λ c σ c √ 2πn ,
where

C n = 1 √ 2π R 1 + iu λ c σ c √ n -1 Φ n (u)du.
The key point here is to study the asymptotics of Φ n .

Lemma 2.6

We have

lim n→∞ Φ n (u) = e -u 2 /2 and lim n→∞ C n = 1 .
From lemma above, which proof is postponed to Section 4, we have equation [START_REF] Cramér | Random Variables and Probability Distributions[END_REF].

Known expectation

In case E(X) and E(Y) are both known, we consider rn given in formula (2) which can be written as follows

rn = (X -E(X)) (Y -E(Y)) X -E(X) Y -E(Y) . (15) 
We can derive a SLD result similar to the previous one. The following proposition gives the expression of the n.c.g.f. of rn :

Proposition 2.7 For any λ ∈ R, we have

E(e nλrn ) = Γ( n 2 ) π 1/2 Γ( n-1
2 )

e nh(r 0 (λ)) c0 (λ) √ n + O 1 n 3/2 , ( 16 
)
where

• h(r) = λr + 1 2 log(1 -r 2 ), • r 0 (λ) is the unique root in ] -1, 1[ of h (r) = 0, i.e. r 0 (λ) = -1 + √ 1 + 4λ 2 2λ , • g(r) = (1 -r 2 ) -3/2 and c0 (λ) = 2π |h (r 0 (λ))| g(r 0 (λ)) .
The n.c.g.f. of rn is

Ln (λ) = h(r 0 (λ)) - 1 n 1 2 log 1 + 4λ 2 -log 1 + √ 1 + 4λ 2 2 + O 1 n 2 . ( 17 
)
This proposition is proved in Section 4. We have the following SLDP:

Theorem 2.8 For any 0 < c < 1, under Assumption (2.1), we have

P (r n ≥ c) = exp -nL * (c)-1 4 log(1+4λ 2 c )+log 1+ √ 1+4λ 2 c 2 λ c σ c √ 2πn (1 + o(1)). (18) 
Proof:

The proof of Theorem 2.8 is exactly similar to the one of Theorem 2.3 and formula ( 10) is changed to [START_REF] Mayer-Wolf | The probability of small gaussian ellipsoids and associated conditional moments[END_REF] according to the way formula ( 8) is changed to [START_REF] Li | Comparison results for the lower tail of gaussian seminorms, comparison results for the lower tail of gaussian seminorms, comparison results for the lower tail of gaussian seminorms[END_REF].

Gaussian case

Assumption 3.1 Let (X, Y ) be a R 2 -valued Gaussian random vector where σ 2 1 = Var(X), σ 2 2 = Var(Y ) and ρ is the correlation coefficient: Cov(X, Y ) = ρσ 1 σ 2 . We consider (X, Y) = {(X i , Y i ), i = 1, • • • n} an i.i.d. sample of (X, Y ).

General case

We deal with the Pearson coefficient given in [START_REF] Bahadur | An optimal property of the likelihood ratio statistic[END_REF]. As presviously mentioned, Large deviations for (r n ) n are detailed in the paper of Si [START_REF] Shen | Large deviation for the empirical correlation coefficient of two Gaussian random variables[END_REF]. It can be noted that the contraction principle used by Si is not valid here. The rate function is correct however, but only on some domain of ρ. We can give an expression of the normalized log-Laplace transform L n given by ( 5).

Proposition 3.2 Let us define

ρ 0 := 3 + 2 √ 3 3
.

For any λ ∈ R and ρ such that |ρ| ≤ ρ 0 , we have the n.c.g.f. of r n :

L n (λ) = h(r 0 (λ)) + 1 2 log(1 -ρ 2 ) + 1 n log g ρ (r 0 (λ)) - 1 2 log |h (r 0 (λ))| + O 1 n 2 , ( 19 
)
in which

• h(r) = λr -log(1 -ρr) + 1 2 log(1 -r 2 ), • r 0 (λ) is the unique real root in ] -1, 1[ of h (r) = 0, • g ρ (r) = (1 -ρ 2 ) -1/2 (1 -ρr) 3/2 (1 -r 2 ) -2 .
The proof of this proposition is postponed to Section 4. We prove the following SLDP:

Theorem 3.3 For any 0 ≤ ρ < c < 1 and |ρ| ≤ ρ 0 (with the notations of Proposition 3.2), we have

P (r n ≥ c) = e -nL * (c)+log g ρ (r 0 (λc))-1 2 log |h (r 0 (λc))| λ c σ c √ 2πn (1 + o(1)) , (20) 
where for any -1 < y < 1,

L * (y) = log 1 -ρy (1 -ρ 2 ) (1 -y 2 ) . ( 21 
)
Proof:

Following the Proof of Theorem 2.3, we can easy obtain [START_REF] Nikitin | Asymptotic efficiency of non parametric tests[END_REF]. Note that the rate function in Si [START_REF] Shen | Large deviation for the empirical correlation coefficient of two Gaussian random variables[END_REF] matches our [START_REF] Frank | Asymptotics and Special Functions[END_REF].

Known expectations

In case E(X) and E(Y ) are both known; and ρ = 0, we have the following result Proposition 3.4 The n.c.g.f. of rn is given for any λ ∈ R by

L n (λ) = h(u 0 (λ)) - 1 4n log(1 + 4λ 2 ) + O 1 n 2 , ( 22 
)
where

• h(r) = λr + 1 2 log(1 -r 2 ), • u 0 (λ) is the unique solution of h (λ) = 0 in ] -1, 1[.
The proof is postponed to Section 4. The SLDP is therefore:

Theorem 3.5 When ρ = 0 and under Assumption 3.1, for 0 < c < 1, we have

P (r n ≥ c) = e -nL * (c)-1 4 log(1-4λ 2 c ) λ c σ c √ n (1 + o(1)), (23) 
where L * is given in Theorem 2.3.

Proofs

Proof of Proposition 2.2

We know from Muirhead (Theorem 5.1.1, [START_REF] Muirhead | Aspects of multivariate statistical theory[END_REF]) that

(n -2) 1/2 r n (1 -(r n ) 2 ) 1/2 has a Student's t n-2 -distribution. Hence the density function of r n is f n (r) = Γ( n-1 2 ) π 1/2 Γ( n-2 2 ) (1 -r 2 ) (n-4)/2 (-1 < r < 1). (24) 
Applying Theorem 5.6, we get

E e nλrn = 1 -1 e nλr f n (r)dr = 1 -1 e nλr Γ( n-1 2 ) π 1/2 Γ( n-2 2 ) (1 -r 2 ) (n-4)/2 dr = Γ( n-1 2 ) π 1/2 Γ( n-2
2 )

e nh(r 0 (λ)) c 0 (λ)

√ n + O 1 n 3/2 .
where h, r 0 and c 0 are given in Proposition 2.2. So we have

E e nλrn = Γ( n-1 2 ) π 1/2 Γ( n-2 2 )
2π n e nh(r 0 (λ)) g(r 0 (λ))

|h (r 0 (λ))| 1 + O 1 n (25) = Γ( n-1 2 ) Γ( n-2 2 ) 2 n e nh(r 0 (λ)) 1 (1 -r 0 (λ) 2 ) 1 + r 0 (λ) 2 1 + O 1 n (26) 
From the duplication formula (see e.g. Olver [START_REF] Frank | Asymptotics and Special Functions[END_REF])

2 2z-1 Γ(z)Γ(z + 1 2 ) = √ πΓ(2z) ,
as well as the Stirling formula (see [START_REF] Frank | Asymptotics and Special Functions[END_REF])

log Γ(z) = z log z -z - 1 2 log z + log √ 2π + O 1 Re(z)
, as Re(z) → ∞ , formula [START_REF] Shen | Large deviation for the empirical correlation coefficient of two Gaussian random variables[END_REF] above becomes

E(e nλr ) = e nh(r 0 (λ)) 1 (1 -r 0 (λ) 2 ) 1 + r 0 (λ) 2 1 + O 1 n .
With the expression of r 0 , we get formula (8).

Proof of Lemma 2.4

We can explicit the full expression of L:

L(λ) = -1 + √ 1 + 4λ 2 2 - 1 2 log( 1 + √ 1 + 4λ 2 4 ) . (27) 
It is easy to see that L is defined on R, C ∞ on its domain.

From the definition of L we can deduce

L (λ) = r 0 (λ) + h (r 0 (λ)) = r 0 (λ), (28) 
and by construction of r 0 , L ∈] -1, 1[. Now we can compute

L (λ) = r 0 (λ) = 1 2λ 2 1 - 1 √ 1 + 4λ 2 , ( 29 
)
and it is easily seen that L (λ) > 0 for any λ ∈ R * and L (0) can be defined by continuity as 1. Hence L is strictly convex on R and has its minimum at λ = 0. Moreover, if we have

L (λ c ) = r 0 (λ c ) = c,
then 0 < c < 1 implies λ c > 0 and we can obtain

4λ c (λ c (1 -c 2 ) -c) = 0.
This leads us to the expression

λ c = c 1 -c 2 .
Hence the preceding expression yields

σ 2 c = L (λ c ) = (1 -c 2 ) 2 1 + c 2 .

Proof of Lemmas 2.5 and 2.6

The proof of Lemma 2.5 is based on iterated integrations by parts. We detail below the steps.

Φ n (u) = E n (e iuUn ) = R e iu √ n(r-c) σc
f n (r)e λcnr-nLn(λc) dr

= Γ n e -iu √ nc σc e -nLn(λc) 1 -1 e (iu √ n σc +λcn)r (1 -r 2 ) n/2-2 dr,
where, for seek of simplicity, we denote by

Γ n = Γ( n-1 2 ) π 1/2 Γ( n-2 2 ) . ( 30 
)
For K ∈ N * , performing K integrations by part, since f n is zero at -1 and 1 when n is large enough, we get:

Φ n (u) = Γ n e -iu √ nc σc e -nLn(λc) × • • • • • • × ( n 2 -2)( n 2 -3) • • • ( n 2 -K -1) iu √ n σc + λ c n K 1 -1 e (iu √ n σc +λcn)r (-2r) K (1 -r 2 ) n/2-2-K dr.
Hence,

|Φ n (u)| ≤ Γ n e -nLn(λc) ( n 2 -2)( n 2 -3) • • • ( n 2 -K -1) iu √ n σc + λ c n K 1 -1 e λcnr (2r) K (1 -r 2 ) n/2-2-K dr.
Using Laplace's method once again (see the Appendix), for a given η > 0 we can find N large enough such that for any n ≥ N ,

|Φ n (u)| ≤ 1 |λ c + iu √ nσc | K c K 0 (λ) c 0 (λ) (1 + η) . (31) 
To prove Lemma 2.6, we first split C n into two terms:

C n = 1 √ 2π |u|≤n α 1 + iu λ c σ c √ n -1 Φ n (u)du + 1 √ 2π |u|>n α 1 + iu λ c σ c √ n -1 Φ n (u)du. ( 32 
)
For the second term in the RHS of (32) we have

|u|>n α 1 1 + iu λcσc √ n Φ n (u)du ≤ |u|>n α 1 1 + iu λcσc √ n Φ n (u)du ≤ |u|>n α 1 |λ c | K 1 + iu λcσc √ n K+1 du c K 0 (λ c ) c 0 (λ c ) (1 + η) ≤ c K 0 (λ c ) |λ c | K c 0 (λ c ) (1 + η) |u|>n α 1 1 + u 2 λ 2 c σ 2 c n (K+1)/2 du ≤ c K 0 (λ c ) |λ c | K c 0 (λ c ) (1 + η)(λ 2 c σ 2 c n) (K+1)/2 2 n -αK K .
In order to have a negligible term, it is enough to have -Kα + K+1 2 < 0, i.e. fixing K = 3, α = 3 4 . Now for the domain {|u| ≤ n α }, we study more precisely the expression

Φ n (u) = E n (e iuUn ) = exp - iu √ n σ c c + nL n (λ c + iu σ c √ n ) -nL n (λ c ) . (33) 
We first remark that E(e nλrn ) is analytic in λ on R, hence it can be expanded by analytic continuation and L n (λ + iy) for λ, y ∈ R is well defined. From the analyticity, we can expand in Taylor series the expression (33) above.

Φ n (λ c ) = exp{-iu

√ nc σ c + n ∞ k=1 iu σ c √ n k L (k) n (λ c ) k! } = exp{-iu √ nc σ c + n iu σ c √ n L n (λ c ) + n k≥2 iu σ c √ n k L (k) n (λ c ) k! }. (34) 
We detail now a development of L n -and its derivatives -which will be useful in the whole paper.

Technical Lemma 4.1 For any λ ∈ R, we have

L n (λ) = h(r 0 (λ)) + 1 n log Γ n - 1 2n log n + 1 n R 0 (λ) + 1 n p≥1 R p (λ) n p p! , (35) 
where Γ n is defined in [START_REF] Truong | Sharp Large Deviations for some Test Statistics[END_REF] and

R 0 (λ) = log c 0 (λ), (36) 
R p (λ) = 1≤s≤p (-1) s-1 (s -1)!B p,s (c 1 , c 2 , • • • )c -s 0 , (37) 
where the coefficients c i are given by Laplace development (see Appendix) and B p,s are the partial exponential Bell polynomials (see (75)).

Proof of Technical Lemma 4.1:

From the Appendix we can develop

E(e nλrn ) = Γ( n-1 2 ) π 1/2 Γ( n-2
2 )

e nh(r 0 (λ) √ n p≥0 c p (λ) (2p)!n p , (38) 
where

c p (λ) = 2π |h (r 0 (λ))| 2p k=0 2p k g (2p-k) (r 0 (λ)) • k m=0 B k,m h (3) (r 0 (λ)) 2.3 , . . . , h (k-m+3) (r 0 (λ)) (k -m + 2)(k -m + 3) (2m + 2p -1)!! |h (t 0 )| m+p . ( 39 
)
From Faà di Bruno formula (see e.g. formula [5c] of Comtet [START_REF] Comtet | Analyse Combinatoire[END_REF]):

log E(e nλrn ) = nh(r 0 (λ)) + log Γ( n-1 2 ) √ nπ 1/2 Γ( n-2 2 ) + log c 0 (λ) + p≥1 R p (λ) n p p! , ( 40 
)
where R p is defined in formula (37) above. Hence the formula (35) is proven.

From expressions (37) and (39), we see that R p is a polynomial in g (s) (r 0 (λ)) and h (s) (r 0 (λ)) where the derivatives are taken with respect to r. The function r 0 (λ) is C ∞ on R. We can therefore express the derivatives of L n as follows:

L (k) n (λ) = L (k) (λ) + R (k) 0 (λ) n + 1 n p≥1 R (k) p (λ) n p p! . (41) 
Back to formula (34), and from the choice of λ c , we have

∂ ∂λ h(r 0 (λ)) λ=λc = L (λ c ) = c and Φ n (u) = exp{ iu √ n σ c [L n (λ c ) -c] + n k≥2 iu σ c √ n k L (k) n (λ c ) k! } = exp{ iu √ nσ c [R 0 (λ) + p≥1 R p (λ) n p p! ] - u 2 2σ 2 c L n (λ c ) + n k≥3 iu σ c √ n k L (k) n (λ c ) k! } = exp{- u 2 2 + 2p k=3 iu σ c √ n k nL (k) (λ c ) k! + 2p k=1 iu σ c √ n k R (k) 0 (λ c ) k! + k≥1 iu σ c √ n k 1 k! p≥1 R (k) p (λ c ) n p p! }. (42) 
For p large enough such that {u k /( √ n) k+2p } is bounded on {|u| ≤ n α }, we can have a uniform bound on the rest of the sum in the last term on the RHS above. Hence we can write, for a given m ∈ N large enough

Φ n (u) = exp{- u 2 2 + 2m+3 k=3 iu σ c √ n k nL (k) (λ c ) k! + 2m+1 k=1 iu σ c √ n k R (k) 0 (λ c ) k! + 2m+1 k=1 s(m) p=1 iu σ c √ n k 1 k! R (k) p (λ c ) n p p! } + O( 1 + |u| 2m+4 n m+1 )}. ( 43 
)
We follow the scheme of Cramer [START_REF] Cramér | Random Variables and Probability Distributions[END_REF] Lemma 2, p.72 (see also Bercu and Rouault [6]), and we get the wanted results. p are given in [START_REF] Truong | Sharp Large Deviations for some Test Statistics[END_REF].

Proof of Proposition 2.7

By symmetry, the mean E(X) = 0 if it exists. Then, rn from ( 15) becomes

rn = X (Y -E(Y)) X Y -E(Y) . ( 44 
)
Applying Theorem 1.5.7 from Muirhead [START_REF] Muirhead | Aspects of multivariate statistical theory[END_REF], with

α = Y -E(Y) Y -E(Y) ∈ R n , then (n -1) 1/2 rn (1 -r2 n ) 1/2 has a t n-1 -distribution.
Comparing to r n , the degree of the t-distribution is one degree less than rn .

Hence the density function of rn is

Γ( n 2 ) π 1/2 Γ( n-1 2 ) (1 -r 2 ) (n-3)/2 , (-1 < r < 1). ( 45 
)
Applying Laplace's method we get

E e nλrn = 1 -1 e nλr Γ( n 2 ) π 1/2 Γ( n-1 2 ) (1 -r 2 ) (n-3)/2 dr = Γ( n 2 ) π 1/2 Γ( n-1
2 )

e nh(r 0 (λ)) c0 (λ) √ n + O 1 n 3/2 ,
where h, r 0 and c 0 are given in Proposition 2.7. Then

E e nλrn = Γ( n 2 ) π 1/2 Γ( n-1 2 ) 2π n e nh(r 0 (λ)) g(r 0 (λ)) |h (r 0 (λ))| 1 + O 1 n = e nh(r 0 (λ)) 1 (1 -r 2 0 (λ))(1 + r 2 0 (λ)) 1 + O 1 n . (46) 
And we can obtain formula [START_REF] Li | Comparison results for the lower tail of gaussian seminorms, comparison results for the lower tail of gaussian seminorms, comparison results for the lower tail of gaussian seminorms[END_REF] from the expression of r 0 .

Proof of Proposition 3.2

From Muirhead, we know that the density function of a n + 1 sample correlation coefficient r n+1 is given by

(n -1)Γ(n) Γ(n + 1/2) √ 2π (1 -ρ 2 ) n/2 (1 -ρr) -n+1/2 (1 -r 2 ) (n-3)/2 2 F 1 1 2 , 1 2 ; n + 1 2 ; 1 2 (1 + ρr) (-1 < r < 1).
where 2 F 1 is the hypergeometric function (see [START_REF] Frank | Asymptotics and Special Functions[END_REF]). Hence Laplace transform is

E e (n+1)λr n+1 = (n -1)Γ(n) Γ(n + 1/2) √ 2π (1 -ρ 2 ) n/2 1 -1 e (n+1)λr (1 -ρr) -n+1/2 (1 -r 2 ) (n-3)/2 2 F 1 1 2 , 1 2 ; n + 1 2 ; 1 2 
(1 + ρr) dr.

Looking for a limit as n → ∞, we can use the following result due to Temme [START_REF] Temme | Special functions. An introduction to Classical Functions of Mathematical Physics[END_REF][START_REF] Temme | Large parameter cases of the gauss hypergeometric function[END_REF] (see also [START_REF] Ferreira | The gauss hypergeometric function f (a, b, c; z) for large c[END_REF]): the function 2 F 1 has the following Laplace transform representation

2 F 1 (a, b, c; z) = Γ(c) Γ(b)Γ(c -b) 1 0 t b-1 (1 -t) c-b-1 (1 -zt) a dt (47) 
and

2 F 1 (a, b, c + λ; z) ∼ Γ(c + λ) Γ(c + λ -b) ∞ s=0 f s (z) (b) s λ b+s , (48) 
where the equivalent is for λ → +∞ and

f(t) = e t -1 t b-1 e (1-c)t (1 -z + ze -t ) -a , f(t) = ∞ s=0 f s (t)t s .
In our case, we get as n → ∞:

2 F 1 1 2 , 1 2 , 1 2 + n; 1 2 (1 + ρr) ∼ Γ( 1 2 + n) Γ(n) 1 √ n + 2 + ρr 8n 3/2 + o 1 n 3/2 . ( 49 
)
Hence we have to deal with the following integral:

1 -1 e (n+1)λr (1 -ρr) -n+1/2 (1 -r 2 ) (n-3)/2 1 + 2 + ρr 8n + o 1 n dr. (50) 
Neglecting the terms of lower order in n we focus on

1 -1 e (n+1)λr (1 -ρr) -n+1/2 (1 -r 2 ) (n-3)/2 dr = 1 -1 e nh(r) g(r)dr , (51) 
where

h(r) = λr -log(1 -ρr) + 1 2 log(1 -r 2 ) , (52) g 
(r) = e λr (1 -ρr)(1 -r 2 ) -3/2 .
The following lemma details the properties of the function h: 

Proof:

We compute easily

h (r) = λ + ρ 1 -ρr - r 1 -r 2
and see that H(r) = h (r)(1 -r 2 ) = 0 has at least one root in ] -1, 1[ (since H(-1)H(1) < 0). Hence there exists at least one solution r 0 ∈] -1, 1[ such that h (r) = 0. Next, we compute

h (r) = ρ 2 (1 -ρr) 2 - 1 + r 2 (1 -r 2 ) 2 and we have h (r) < 0 for any r ∈] -1, 1[ ⇐⇒ |ρ| ≤ ρ 0 := 3 + 2 √ 3 3
.

We know from Si [START_REF] Shen | Large deviation for the empirical correlation coefficient of two Gaussian random variables[END_REF] that the rate function in this case is

I ρ (s) = log 1 -ρs (1 -ρ 2 ) (1 -s 2 ) for -1 < s < 1 . (53) 
As previously said, even if this function was obtained by a contraction principle which is not applicable here (the function involved is not continuous, see Dembo and Zeitouni for more details [START_REF] Dembo | Large deviations techniques and applications[END_REF]), we claim that the expression of the rate function above is nevertheless correct in the given domain {|ρ| ≤ ρ 0 }. We prove it below. We have

L(λ) = h(r 0 (λ)) + 1 2 log(1 -ρ 2 ) ,
where r 0 satisfies h (r 0 (λ)) = 0.

Now we compute

L (λ) = r 0 (λ) + r 0 (λ) h (r 0 (λ)) = r 0 (λ). ( 54 
)
For every -1 < c < 1 and λ c such that L (λ c ) = c, we have

L * (c) = cλ c -L(λ c ) = cλ c -{λ c r 0 (λ c ) + 1 2 log(1 -r 2 0 (λ c )) -log(1 -ρr 0 (λ c )) + 1 2 log(1 -ρ 2 )} = - 1 2 log(1 -c 2 ) + log(1 -ρc) - 1 2 log(1 -ρ 2 ) = log 1 -ρc √ 1 -c 2 1 -ρ 2 .
From the dual properties of Legendre transform, the condition of Laplace's method h (r) < 0 is compatible with the condition of convexity of I ρ in ] -1, 1[. Indeed, for ρ 0 < |ρ| < 1, I ρ is not convex. From that point, under condition |ρ| ≤ ρ 0 , we can get

E e (n+1)λr n+1 = n -1 √ 2nπ (1 -ρ 2 ) n/2 2π n e nh(r 0 (λ)) g(r 0 (λ)) |h (r 0 (λ))| 1 + O 1 n (55) = e (n+1)h(r 0 (λ)) (1 -ρ 2 ) n/2 (1 -ρr 0 (λ)) 3/2 (1 -r 2 0 (λ)) 2 |h (r 0 (λ))| 1 + O 1 n . ( 56 
)
We can adjust the size of sample into n and obtain

E e nλrn = e nh(r 0 (λ)) (1 -ρ 2 ) (n-1)/2 (1 -ρr 0 (λ)) 3/2 (1 -r 2 0 (λ)) 2 |h (r 0 (λ))| 1 + O 1 n , (57) 
which leads us to [START_REF] Muirhead | Aspects of multivariate statistical theory[END_REF]. We give below two graphics, one for ρ = ρ 0 -0.1 and one for ρ = ρ 0 + 0.1. We can clearly see the change of convexity. For the asymptotics of L n in this case, we follow the steps of Si [START_REF] Shen | Large deviation for the empirical correlation coefficient of two Gaussian random variables[END_REF]. Up to considering

X 1 = X -E(X) and Y 1 = Y -E(Y ), we can boil down to E(X) = E(Y ) = 0.
If we denote by , the Euclidean scalar product in R 2 , and

X =   X 1 n i=1 X 2 i , • • • , X n n i=1 X 2 i   , Ỹ =   Y 1 n i=1 Y 2 i , • • • , Y n n i=1 Y 2 i   , therefore rn = X, Ỹ . (58) 
Large deviations for (r n ) n are proved in [START_REF] Shen | Large deviation for the empirical correlation coefficient of two Gaussian random variables[END_REF]. We derive here the corresponding sharp principle. Since X, Ỹ are independent random variables with uniform distribution σn on the unit sphere S n-1 of R n , we can compute

E e λrn = S n-1 ×S n-1 e λ x,y σn (dx)σ n (dy)dxdy (59) = a n-1 a n 1 -1 e λu 1 -u 2 n-1 du , (60) 
where a n is the area of the unit sphere:

a i = 2π i+1 2 Γ( i+1 2 
)

.

In order to get the SLD, we want to compute the normalized log-Laplace transform: for any λ ∈ R, from Stirling formula (see [START_REF] Frank | Asymptotics and Special Functions[END_REF]), we get easily

a n-1 a n = n 2π 1 + O 1 n .
Then we can write

1 -1 e nλu 1 -u 2 n-1 du = 1 -1 e nh(u) g(u)du , where h(u) = λu + 1 2 log(1 -u 2 ) and g(u) = 1 √ 1-u 2 .
We apply Laplace's method to get:

1 -1 e nh(u) du = e nh(u 0 (λ)) c 0 (λ) √ n + O 1 n 3/2 , (61) 
where

u 0 (λ) = -1 + √ 1 + 4λ 2 2λ , c 0 (λ) = 2π h (u 0 (λ))| g(u 0 (λ)) .
This leads to

L n (λ) = h(u 0 (λ)) - 1 2n log(1 + 4λ 2 ) + O 1 n 2 . ( 62 
)
5 Further results

Any order development

We present in this section a way to extend the results of Sections 2 and 3 to higher orders. Moreover, whenever functions involved are smooth enough, these techniques can be applied and the asymptotics are given in other cases.

Theorem 5.1 In the framework of Sections 2 and 3, for any 0 < c < 1, there exists a sequence (δ c,k ) k such that

P (r n ≥ c) = e -nL * (c)+R 0 (λc) λ c σ c √ 2πn 1 + p k=1 δ c,k n k + O 1 n p+1 . ( 63 
)
Proof:

For seek of simplicity, we only present here the proof for (r n ) n in the spherical case. Similarly to the proof of Theorem 2.3, we briefly give the main ideas: From the decomposition P (r n ≥ c) = A n B n , in which 

Appendix: Laplace method

We present here some well known results about asymptotics of Laplace transforms. More precisely, we consider integrals of type

I(x) = b a
e xp(t) q(t)dt (74) and its asymptotics as x → ∞. Details and references can be found in Olver [START_REF] Frank | Asymptotics and Special Functions[END_REF] and Queffelec and Zuily [START_REF] Quéffelec | Analyse pour l'agrégation[END_REF]. The explicit computations are also done in [START_REF] Truong | Sharp Large Deviations for some Test Statistics[END_REF]. Let us first recall some definitions (for more details, see Comtet [START_REF] Comtet | Analyse Combinatoire[END_REF][START_REF] Comtet | Analyse Combinatoire[END_REF]).

Definition 5.4 Partial exponential Bell polynomials are defined for any positive integers k ≤ n by where B n,k are partial exponential Bell polynomials defined above.

B n,k (x 1 , x 2 , • • • , x n-k+1 ) = n! c 1 !c 2 ! • • • c n-k+1 ! x 1 1! c 1 x 2 2! c 2 • • • x n-k+1 (n -k + 1)!
Theorem 5.6 Let (a, b) be a non-empty open interval, possibly non bounded and t 0 be some point in (a, b). Denote by V t 0 a neighborhood of t 0 such that p, q : (a, b) → R are functions of class C ∞ (V t 0 ).

We suppose that i) p is measurable on (a, b),

ii) The maximum of p is reached at t 0 (i.e. p (t 0 ) = 0 and p (t 0 ) < 0), iii) There exists x 0 such that b a e x 0 p(t) |q(t)|dt < +∞.

Then there exist coefficients c 0 (t 0 ), c 1 (t 0 ), . . . depending on derivatives of p and q at t 0 , such that for any N ≥ 0, as x → +∞ we have 

  are the empirical means of the samples. Whenever E(X) and E(Y) are both known, we consider rn : rn

Remark 4 . 2 A

 42 thorough study of expressions L

Lemma 4 . 3

 43 For any ρ ∈] -1, 1[ and r ∈] -1, 1[, the function h of formula (52) is defined for any λ ∈ R. Moreover the equation h (r) = 0 has at least one solution in ] -1, 1[ and h (r) < 0 on ] -1, 1[ for any |ρ| ≤ ρ 0 where ρ 0

Figure 1 :Figure 2 : 1 4. 6

 1216 Figure 1: I ρ for ρ = ρ 0 -0.1

A

  n = exp[n(L n (λ c ) -cλ c )] = exp[-nL * (c) + R 0 (λ c ) + p≥1 R p (λ c ) n p (2p)! ] = exp[-nL * (c) + R 0 (λ c ))]

Definition 5 . 5

 55 where the sum is taken over all positive integers c 1 , c 2 • • • , c n-k+1 such thatc 1 + c 2 + • • • + c n-k+1 = k, c 1 + 2c 2 + • • • + (n -k + 1)c n-k+1 = n.The complete exponential Bell polynomials are defined byB 0 = 1, ∀n ≥ 1 , B n = n k=1B n,k .

e+ c 1 (t 0 ) 2 ! x 3 / 2 +

 1232 xp(t) q(t)dt = e xp(t 0 ) c 0 (t 0 ) √ x • • • + c N (t 0 ) (2N )! x N +1/2 + O 1 x N +3/2. (76)Moreover, (c N ) N can be computed asc N (t 0 ) = 2π |p (t 0 )| p (k-m+3) (t 0 ) (k -m + 2)(k -m + 3) (2m + 2N -1)!! |p (t 0 )| m+N .where B k,m are the Bell polynomials defined above and (2n + 1)!! = 1.3.5. . . . (2n + 1).
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where (η p ) p is a sequence of smooth functions of λ. Recall that we can develop L n as in (35) and L (k) n as in (41) and from the development of Φ n in (42),

where P p,k are polynomials in odd powers of u for k odd, and polynomials in even powers of u for k even. From that points, we can complete the proof of Theorem 5.1.

Correlation test and Bahadur exact slope

Bahadur slope

Let us recall here some basic facts about Bahadur exact slopes of test statistics. For a reference, see [START_REF] Bahadur | Some limit theorems in statistics[END_REF] and [START_REF] Nikitin | Asymptotic efficiency of non parametric tests[END_REF]. Consider a sample X 

The Bahadur exact slope c(θ) of S n is then given by the following relation

Quantitatively, for θ ∈ Θ 1 , the larger c(θ) is, the faster S n rejects H 0 . A theorem of Bahadur (Theorem 7.2 in [START_REF] Bahadur | Large deviations of the maximum likelihood estimate in the markov chain case[END_REF]) gives the following characterization of c(θ): suppose that lim n n -1/2 S n = b(θ) for any θ ∈ Θ 1 , and that lim n n -1 log G n (n 1/2 t) = -I(t) under any θ ∈ Θ 0 . If I is continuous on an interval containing b(Θ 1 ), then c(θ) is given by: c(θ) = 2I(b(θ)) .

(66)

Correlation in the Gaussian case

In the Gaussian case, under Assumption 3.1, we have the following strong law of large numbers:

We wish to test H 0 : ρ = 0 against the alternative

and this limit is continuous when ρ = 0. Besides, we have here G n (t) = sup

Therefore the Bahadur slope is

We show that this statistic is optimal in a certain sense. In the framework above, to test θ ∈ Θ 0 against the alternative θ ∈ Θ 1 we define the likelihood ratio:

and the related statistic:

Bahadur showed in [START_REF] Bahadur | An optimal property of the likelihood ratio statistic[END_REF] that Ŝn is optimal in the following sense: for any θ ∈ Θ 1 ,

where J is the infimum of the Kullback-Leibler information:

and

Definition 5.2 Let T n be a statistic in the parametric framework defined above, then if c(θ) is the Bahadur slope of T n , we have

and T n is said to be optimal if the upper bound is reached.

We have the following result on the statistic r n .

Proposition 5.3 The sequence of empirical coefficients (r n ) n is asymptotically optimal in the Bahadur sense ( [START_REF] Bahadur | An optimal property of the likelihood ratio statistic[END_REF]).

Proof:

We can easily compute the Kullback-Liebler information in this case: Let θ = (µ, Σ) corresponds to the distribution of (X, Y ) in the case θ ∈ Θ 1 and θ = (µ 0 , Σ 0 ) for θ ∈ Θ 0 . Since ρ = 0 in the case θ ∈ Θ 0 , the matrix Σ 0 is diagonal.

where |Σ| stands for the determinant of Σ. The infimum in (73) is reached when µ 0 = µ and the diagonal terms in Σ 0 are the ones of Σ. Hence,