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Abstract

The multifractional model with random exponent (MPRE) is one of the most recent frac-
tional models which extend the fractional Brownian motion (fBm). This paper is an empirical
contribution to the justification of the MPRE. Working with several FX rates between 2006
and 2016, sampled every minute, we show the statistical significance of various fractional mod-
els applied to log-prices, from the fBm to the MPRE. We propose a method to extract realized
Hurst exponents from log-prices. This provides us with a series of Hurst exponents on which
we can estimate different models of dynamics. In the MPRE framework, the data justify using
a fractional model for the dynamic of the Hurst exponent. We estimate and interpret the
value of the key parameter of this model of nested fractality, which is the Hurst exponent of
the Hurst exponents.

Keywords – fractional Brownian motion, Hurst exponent, foreign exchange rate, multifractional
Brownian motion, stable process, multifractional process with random exponent

1 Introduction

Since the seminal work of Mandelbrot [46], many articles empirically highlight the fractal nature
of financial time series. In the same time, different types of fractal models are developing. Among
them, the fractional Brownian motion (fBm) is one of the most simple. Most practitioners however
disregard the fBm for modelling log-prices because it contravenes the efficient market hypothesis
(EMH), as it assumes correlated increments. But this model is widely used for modelling volatility
for example [38], as this specific application of the fBm is consistent with the EMH. Besides, the
EMH is nowadays seriously challenged. For instance, the adaptive market hypothesis (AMH) does
not declare, as does the EMH, that statistical arbitrage is absurd. On the contrary, it considers
that models may produce relevant forecasts, at least for a limited period of time [45]. Modelling
log-prices with a multifractional Brownian motion (mBm), in which the correlation varies with
time, is thus consistent with the AMH, and we can apply the literature on fractal models not only
to volatility but also to log-prices.

Once a model is established, it is customary to see if another model cannot do better, by conducting
new empirical studies and by proposing alternative models that reproduce the new stylized facts.
This is why the fBm is the first of many stages in a journey inside fractal models in financial
time series. Indeed, in the fBm, the Hurst exponent describes the fractal feature of the series.
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It assumes that this feature will not change with time. Empirical evidence suggests adopting a
multifractal approach, for example with a time-varying Hurst exponent as in the mBm. All these
models are based on the brilliant idea of Mandelbrot of modelling the fractal features of financial
time series with either the fractional derivative or the fractional integral of a standard Brownian
motion (Bm). Some fractal models go in a different direction, exploiting for example the fractal
properties of stable processes instead of the Brownian dynamics. In the vein of fractional Brownian
models, one of the most recent and advanced models assumes that the time-varying Hurst exponent
follows a stochastic process: it is the multifractional process with random exponent (MPRE) [4].
This model is a progress compared to the mBm as it is in general more parsimonious and thus less
subject to overfitting.

While it is a promising multifractal model, the MPRE is only a generic model as it does not state
which model should describe the dynamic of H, the Hurst exponent. As we write this article, only
a few articles propose a model for H, and even less, if any, justify it empirically. The empirical
justification of the MPRE itself, whatever the model used for the Hurst exponent, is limited to a
few articles.

The purpose of this paper is thus to explore empirically the relevance of the MPRE and to propose
a data-consistent model for the dynamic of the Hurst exponent. We will show that the fBm
is an appropriate model for the Hurst exponent. This means that the fractal properties of the
log-prices are described by parameters which have also fractal properties. We also explore other
fractional models and their statistical significance, going stage by stage from fBm to MPRE, with
an additional focus on stable processes. We will see that each extension of the Bm which is studied
in our paper is fully justified empirically.

The empirical part of our work is about FX rates. In particular, we are considering ten FX
pairs, between December 2006 and January 2016, using prices sampled every minute. These pairs
are the following ones: AUD/JPY, AUD/USD, EUR/AUD, EUR/CAD, EUR/GBP, EUR/JPY,
EUR/USD, GBP/JPY, GBP/USD, and USD/JPY. When working with high-frequency data, the
FX market is interesting, more than the equity market, because it is rarely closed, so that we do
not need complicated techniques to handle the closing periods. For each pair, we then work with
a series of more than 3,350,000 log-prices.

This paper is organized following the history of fractional models. In Section 2, we explore the
monofractal properties of log-prices, we see how we can model them with fractional processes, we
present an estimation technique, and we apply it to FX rates to study the statistical significance
of this approach compared to the standard Bm. We conduct a similar study on multifractal
properties in Section 3 and on their random counterpart in Section 4. In Section 5, we discuss
hypothetical future extensions of these models, where we replace the nested fractality of the MPRE
by a multilayer fractality.

2 Fractal properties

The standard Bm has a fractal property, that is to say it is self-similar: the scaled process has indeed
the same probability distribution at two distinct times. The scaling rule consists in dividing the
process at time t > 0 by

√
t. One often applies this simple model in finance to describe log-prices.

But empirical studies stress the fact that this scaling rule is often not realistic [24, 46, 49, 61].
One should instead use a scaling rule in tH , where H is a Hurst exponent [41]. Once we know this
stylized fact, we have to introduce a stochastic process consistent with this scaling rule. The fBm
is then a natural extension of the standard Bm that follows Hurst’s scaling rule. We now introduce
this model as well as other useful fractional processes and show an empirical application to FX
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rates.

2.1 Fractional processes

In finance, following the old seminal work of Bachelier, the standard Bm has long been the (largely)
predominating model to describe the dynamic of the log-prices of a stock [5]. Some extensions,
such as the Ornstein-Uhlenbeck model, allow to take into account the stationarity of a series. This
makes it possible to describe the dynamic of rates, for example. Finally, with few adjustments,
practitioners and researchers have used the standard Bm to describe almost all the asset classes.

Mandelbrot was one of the first to look for an alternative to using the standard Bm in finance. For
this purpose, he applied the fBm he had introduced with van Ness in the 1960s. After some decades,
during which the corresponding literature slowly increased, the fBm is becoming a serious challenger
to the standard Bm for financial applications. Several financial crisis underlined the limitation
of the Bm and have favored the rise of the fBm concept in the financial literature [2, 42, 52].
Among the many applications of the fBm in finance, we can cite predictions [27, 31, 34, 51] and
pricing [10, 29, 60]. These publications often interest in priority the econophysics community. But
the emergence of the rough volatility concept, which is also based on the fBm, tends to settle this
model as a mainstream approach for modelling volatility [38, 44].

The simplicity of the definition of the fBm partly explains the success of this concept in finance.
Following Mandelbrot and van Ness, the fBm is a weighted integral of a standard Bm [48]:

BHt =
σ

Γ
(
H + 1

2

) ∫ ∞
−∞

(
(t− s)H−1/2

+ − (−s)H−1/2
+

)
dWs, (1)

where W is a standard Bm and BH is a fBm of Hurst exponent H and volatility σ. This definition
is simple in the sense that it only relies on one more parameter than the Bm itself. In particular,
the standard Bm is a particular case of the fBm, for H = 1/2. Besides its simplicity, this model
also properly describes the fractal property of the observed log-prices, thanks to an appropriate
weight kernel. We already explained that the standard Bm also follows a fractal property, but the
corresponding scaling rule is then axiomatic, contrary to the fBm case, for which it is estimated on
the data. Taking into account the fractal property contained in the log-prices is important, because
decisions can be made for example with the help of risk measures scaled to the risk horizon, and,
for this purpose, the square-root rule is often too simplistic [64].

It is worth noting that the fractal property of the fBm is obtained thanks to a fractional technique.
Indeed, the weighting kernel in the integral definition of the fBm corresponds to the fractional
derivative (respectively the fractional integral) of order |H − 1/2| of a standard Bm if H < 1/2
(resp. H > 1/2). Therefore, the fBm is a natural generalization of the Bm and it is rougher or
smoother than the Bm itself, depending on the value of the Hurst exponent. This provides a simple
interpretation of the value of H:

. If H = 1/2, non-overlapping increments of the fBm are independent and the process is even
a standard Bm.

. If H > 1/2, the process is persistent, which means that non-overlapping increments of the
fBm are positively correlated, what is in contradiction with the EMH if the fBm is applied
directly to log-prices [12, 16, 34, 56].

. If H < 1/2, the process is anti-persistent, which means that non-overlapping increments of
the fBm are negatively correlated. This makes the prediction more complicated than in the
persistent case [31, 34], but this model is still in contradiction with the EMH.
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We can see the fBm as a Gaussian process with increments made dependent thanks to a single
parameter, H, and totally defined by the following covariance structure, which is a consequence of
the integral definition:

E{BHt BHs } =
σ2

2
(|t|2H + |s|2H − |t− s|2H).

But making the increments of the Bm correlated is not the only way to modify the fractal property
of the Bm. One can indeed alternatively play on another shared property of the Bm and the
fBm, which is the Gaussian feature. One can then define a process with symmetric alpha-stable
increments. This wide parametric family of random variables is parametrized by α ∈ (0, 2]. It
contains the particular case of Gaussian variables, for α = 2. It has been used for example in
signal processing [36, 37] or in medicine [57]. It is also possible to combine dependence of the
increments and alpha-stable distribution in the fractional Lévy stable motion (fLsm) [57, 63]. An
integral definition exists for this process:

Wα,m
t = σ

∫ ∞
−∞

(
(t− s)m+ − (−s)m+

)
dWα,0

s ,

where Wα,0
s is a symmetric Lévy α-stable motion, that is to say a stochastic process with i.i.d.

increments of symmetric Lévy α-stable distribution.1 The fLsm of parameters m and α has the
same fractal property as the fBm of Hurst exponent H such that:

H =
1

α
+m.

The parameter m is a memory parameter. It is positive (respectively negative) if non-overlapping
increments of the fLsm are positively (resp. negatively) correlated. The parameter α is related to
the law of the increments. The larger α is, the closer the law is to the Gaussian law. Therefore,
estimating the Hurst exponent is sometimes not enough for financial applications, because knowing
the structure of the dependence of the increments is often overriding. For example, in the fLsm
framework, a negative correlation is possible even with an estimated Hurst exponent above 1/2.
This is in contradiction with the interpretation made of the fBm in econophysics, but it is not only
a theoretical particular case as we will see in the following application to FX rates.

2.2 Statistics of fractional processes

Before applying fractional processes, namely fBm and fLsm, to FX rates, we have to explain the
estimation method for all the parameters introduced above.

First, several estimation techniques are possible for the Hurst exponent of a fBm. In empirical
sciences and econophysics, the rescaled range analysis (R/S) [41] and the detrended fluctuation
analysis (DFA) [54, 58] are popular methods. But both R/S and DFA rely on a big number
of observations, due to multiple regressions. We then put forward a simple method based on
the empirical absolute moments of log-price increments. The absolute moment of order k of the
increments of a process X, in a time interval [0, N ] and for a given scale τ , is defined by:

Mk,τ,N (X) =
1

bN/τc

bN/τc∑
i=1

|Xiτ −X(i−1)τ |k.

1A Γ function appeared in the definition of the fBm, equation (1), for normalizing the process. The α-stable
distribution has a scale parameter which makes it possible to tune the magnitude of Wα,m directly in the definition
of Wα,0, or in σ.
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This statistic is well defined for a fBm because its increments are stationary. But, for other
models, the distribution of Mk,τ,N (X) may depend on the times of observation. In the fBm case,
ln(Mk,τ,N (X)) is proportional toH. We can then define several estimators of Hurst exponents using
these absolute moments [8, 31]. The rationale consists in confronting these absolute-moment statis-
tics at several scales, two in the most simple case and a great number of scales in more advanced
estimators. The estimator of H is then 1/k times the slope of the regression of ln(Mk,τ,N (X)) on
ln(τ) [22].

When we work in the framework of the fLsm, we can still estimate the key parameter of the scaling
rule, that is to say the Hurst exponent, exactly like in the fBm case. We then estimate the α
parameter using the characteristic function of a centred symmetric α-stable random variable:

u ∈ R 7→ exp(−γ|u|α),

where γ is a scale parameter of the α-stable variable and u is a transform variable.2 Confronting
the values of the characteristic function at various transform variables and scales provides us with
an estimate of α. We can work with many transform variables and scales or, more easily, with only
two properly chosen transform variables and at the finest scale:

α̂ =
1

ln(2)
ln

 ln
(

1
N

∑N
t=1 cos (2u(Xt −Xt−1))

)
ln
(

1
N

∑N
t=1 cos (u(Xt −Xt−1))

)
 , (2)

where the transform variable u in what follows is u = π/4Q90%, where Q90% is the quantile of the
absolute increments |Xt −Xt−1| of probability 90% [57].

The estimation of m is a direct consequence of the estimation of H and of α:

m̂ = Ĥ − 1

α̂
,

where Ĥ is the Hurst exponent estimated with the method presented above.

2.3 Application to FX rates

Using the absolute-moment estimator presented above, we estimate a Hurst exponent for all the
FX pairs. We use an absolute moment of order 2 and consider the 200 lowest scales, between 1
and 200 minutes. For all the FX pairs studied, we obtain an affine regression with a very high R2,
always above 0.999, which thus confirms the fractal property of log-rates. For example, we provide
the plot of the logarithm of the empirical absolute moment as a function of the logarithm of the
time scale for the EUR/CAD pair, in Figure 1. The Hurst exponent for all the pairs is between
0.476 and 0.506, as exposed in Table 1, indicating only a slight deviation from the standard case
H = 1/2. In the next section, we will see that the series does not look like a standard Bm because
the Hurst exponent varies significantly over time. Here, we can only say that, on the very long run,
the series is not that far from a standard Bm, even though, given the high number of observations,
all the estimated Hurst exponents, except for USD/JPY, are significantly different from 1/2, either
higher or lower. We have determined the corresponding confidence level, displayed in Table 1, with
the help of a bootstrap.

We explained earlier that most of the dynamics used in finance stem from the standard Bm, with
adjustments taking into account some peculiarities. In the rate framework, one then use stationary
models, transforming the Bm with the Ornstein-Uhlenbeck approach or the Lamperti transform.

2In the case where α = 2, that is to say for Gaussian variables, γ is half the variance.
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Figure 1: Empirical log plot for the EUR/CAD series, with the cor-
responding affine regression in grey. We estimate the Hurst exponent
by half the slope of the regression.

It is also possible to stationarize a fBm with similar techniques in order to make it more relevant
for the rate framework [20, 21, 28, 32, 33]. But, if the log-rates in our dataset were stationary, we
should observe a flattening of the log plot for low resolutions in Figure 1. We do neither observe
such a phenomenon for EUR/CAD nor for other FX pairs. This means that, given the size of the
series and the considered scales, the stationarity is not strong enough to be visible.

We are now interested in the fLsm setting. While the Hurst exponent is close to 1/2, the estimated
α parameters are all far from 2, which is the value corresponding to a standard Bm, as we can
see in Table 1. This means that the distribution of the log-price increments has a fat tail. As a
consequence, all the estimated m are significantly negative. The series of FX rates is anti-persistent.
It is a striking case for which a rapid analysis would conclude that the standard Bm is not a too
bad model, because Hurst exponents are not far from 1/2, whereas, regarding α and m instead of
H, non-overlapping increments are strongly negatively correlated.

We can also check by other means that the distribution of log-price increments is not Gaussian.
For this purpose, we conduct a Kolmogorov-Smirnov test, using only the last 100,000 log-returns of
each FX pair in our dataset. The null hypothesis is the Gaussian nature of these log-returns. For
EUR/CAD, the statistic of the test is 0.094. We are thus very far from a Gaussian distribution.
The null hypothesis is rejected with a p-value of magnitude 10−16. We obtain similar results for
the other currencies.

This statistical test confirms that a Bm is not a relevant model for FX rates. The empirical fractal
properties, close to the ones of a standard Bm, are thus depicted by a fat-tail distribution and an
anti-persistence, in the setting of a fLsm. But we can go further and consider that the scaling rule is
not as simple as in the fractional models. In the next section, we will consider scaling rules based
on several parameters, that is to say a multifractal property instead of the simple monofractal
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Estimated H Estimated α Estimated m

AUD/JPY 0.505*** 1.490 -0.166
AUD/USD 0.498** 1.480 -0.178
EUR/AUD 0.485*** 1.543 -0.164
EUR/CAD 0.476*** 1.510 -0.186
EUR/GBP 0.503** 1.467 -0.178
EUR/JPY 0.504*** 1.489 -0.167
EUR/USD 0.506*** 1.454 -0.182
GBP/JPY 0.496*** 1.476 -0.182
GBP/USD 0.503** 1.396 -0.214
USD/JPY 0.500 1.477 -0.177

Table 1: Estimation of the parameters of the fBm and the fLsm. We
indicate the confidence level of rejecting the hypothesis of a Hurst
exponent equal to 1/2 by * for 90%, ** for 95%, *** for 99%.

property.

3 Multifractal properties

While the standard Bm has only an arbitrary fractal property, that is a scaling rule which is
not necessarily consistent with the data to which we apply this model, the fBm and the fLsm
generalize the standard Bm with an appropriate fractal property. It is a monofractal property
because it depends on a unique parameter, the Hurst exponent. After the focus on fractional
models during the 1960s, empirical evidence has suggested, since the late 1990s, that a multifractal
property was leading log-prices [6, 19, 31, 47, 59]. In other words, the scaling rule of the series
relies on more than one parameter.

A clear observation of the multifractality appears when the standard absolute-moment estimation
methods lead either to a nonlinear log-plot or to distinct results when changing the order of the
moment. The nonlinear log-plot is well known in medicine for example [55, 57, 58] but some
empirical studies [32] in finance also lead to the same conclusion. The order-dependent estimator
is known as the generalized Hurst exponent (GHE) [25, 26, 52]. The GHE thus provides us with
a Hurst function. We can interpret its curvature as a deviation to the ideal monofractal case.

In order to follow these empirical findings, new models are proposed in the literature. Among
them, the multifractional models are a natural generalisation of the fBm. We now present them,
as well as the corresponding estimators and an empirical study on the same high-frequency FX
dataset.

3.1 Multifractional processes

Many models have multifractal properties. In order to restrict the subject, we focus on models
that are locally monofractal. This means that when we consider a series of log-prices in a small
time interval, a monofractal model such as the fBm is relevant, but, in the longer run, the scaling
behaviour varies over time. A straightforward generalization of the fractional models is thus possi-
ble: the mBm is an extension of the fBm in which the Hurst exponent is time-dependent [9, 53], a
multifractional stable motion is an extension of the fLsm in which α and m are time-dependent [62].
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A natural question arises: how do these parameter of multifractional processes evolve over time?
In a first approach, we simply assume a smooth and deterministic variation. We will see in the
next section another dynamic for these parameters. The mBm thus assumes a smooth evolution
of the Hurst exponent. In particular, the trajectory of a mBm is square-integrable if its Hurst
exponent evolves as a Hölderian function of time of order 0 < η ≤ 1 [22, 23]. For a mBm Y , of
time-dependent Hurst exponent t ∈ R 7→ H(t), the integral definition is [22]:

Yt =
σ
√
πK(2H(t))

Γ
(
H(t) + 1

2

) ∫ ∞
−∞

(
(t− s)H(t)−1/2

+ − (−s)H(t)−1/2
+

)
dWs,

which provides us with the following covariance function [22]:

E{YtYs} =
σ2

2
g(H(t), H(s))(|t|H(t)+H(s) + |s|H(t)+H(s) − |t− s|H(t)+H(s)),

where {
g : (x, y) 7→ K(x+ y)−1

√
K(2x)K(2y)

K : x 7→ Γ(1 + x) sin(xπ/2)/π.

For s and t such that H(t) = H(s), we have g(H(t), H(s)) = 1 and the covariance is equal to the
one of a fBm.

3.2 Statistics of multifractional processes

In the mBm, increments are not stationary, and the absolute moment is thus time-dependent.
Nevertheless, on a small time scale, when we assume that the Hurst exponent evolves smoothly,
we can make the approximation that the local absolute moment is based on almost stationary
increments. Therefore, the usual estimation method of the time-varying Hurst exponent consists
in estimating it like a fBm on sliding windows [13, 22, 31]. In order to be consistent with the state
of the art in financial econometrics, we instead propose a series of realized Hurst exponents. In
a similar way to the realized volatility [7, 35, 50], we use intraday log-prices to estimate a Hurst
exponent for each separate day instead of estimating it in a sliding window. We are thus working
with non-overlapping time intervals.

For each day, we have much less data than in the whole sample, so instead of using a linear
regression of the logarithm of the empirical absolute moments on 200 log-scales, we simply use the
two finest scales. For a given day d, we observe nd log-prices: Xd,0, ..., Xd,nd−1. The corresponding
realized Hurst exponent, that is to say the estimated Hurst exponent for day d using intraday
log-prices, is thus defined by:

Ĥd,k =
1

k
log2

(
nd − 1

b(nd − 1)/2c

∑b(nd−1)/2c
i=1 |Xd,2i −Xd,2(i−1)|k∑nd−1

i=1 |Xd,i −Xd,i−1|k

)
.

In the following empirical application, we will limit the analysis to k = 2. In the same manner, in
the stable distribution framework, we can define realized α and realized m by restricting the time
interval in equation (2) to day d.

In the assumptions of the mBm, the Hurst exponent is supposed to vary smoothly with the time. It
may thus be useful to smooth the series of realized Hurst exponents as a post-processing. One can
achieve this with a parametric model [1], a moving average [40], or a variational smoothing [31].
In the present paper, we only work with raw Hurst exponents, so that we can conduct a statistical
analysis to determine whether the evolutions of the Hurst exponent are significant. Indeed, we
must beware a possible overfitting of the mBm, and check the significance of the variations of
H [11].
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3.3 Application to FX rates

We calculate the realized Hurst exponent series for our ten FX pairs, between December 2006 and
January 2016, using log-prices sampled every minute. We can observe the evolution of the daily
Hurst exponent, for example for the EUR/GBP pair, in Figure 2. We see that it is very erratic
over time. We make the same observation for the dynamic m and α in the context of non-Gaussian
increments.

Figure 2: Daily estimates of H, α, and m, for the EUR/GBP pair,
between December 2006 and January 2016 (left), and in 2008 (right).
The dotted line is a smooth approximation obtained by variational
smoothing.

We could believe that the erratic feature of time-dependent Hurst exponents, time-dependent α,
and time-dependent m is an artefact caused by the absence of convergence of our estimators. When
focusing on the sole Hurst exponent, we can show that this is not the case: the Hurst exponent
varies significantly over time. We prove it by considering the standard deviation of the series of
Hurst exponents and by showing that it is much higher than what would be the standard deviation
of the estimator of the Hurst exponent of a fBm. We gather all these standard deviations in
Table 2. For each FX pair, we have a series of 2,327 realized Hurst exponents, each one calculated
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on 1,440 log-prices. The lowest standard deviation among the sample of 2,327 Hurst exponents
is reached by the EUR/USD pair. We focus on this pair and apply a statistical bootstrap: we
simulate, using the exact Cholesky method [34], 100 trajectories of fBm of 1,440 observations each,
with an input Hurst exponent equal to the average estimated Hurst exponent for EUR/USD. We
then estimate the Hurst exponent on each of the simulated trajectories. The empirical standard
deviation of the 100 bootstrapped Hurst exponents is 0.018, that is to say far lower than the
value, 0.300, that we observed for the series of realized Hurst exponents. This value of 0.018 is
an approximation of the standard deviation of the estimator, what makes us think that the Hurst
exponent is significantly not a constant. But we must prove more thoroughly that 0.018 and 0.030
are statistically significantly different. We confirm this with statistical one-tailed tests of equality
of the variances. First, we compute a F-test of equality of the variances. The statistic of the test
is 2.86. It corresponds to a p-value close to zero. For instance, a p-value of 0.001 would have led
to a statistic of the test equal to 1.63, or, equivalently, to a standard deviation of the series of
Hurst estimates of 0.023, far lower than the observed 0.030. The null hypothesis of equality of the
variances is thus clearly rejected. But the F-test is relevant for Gaussian variables only. We then
compute Levene’s test [43] and Brown-Forsythe test [17]. The test statistic is respectively 14.18
and 14.28, with p-values 1.7×10−4 and 1.6×10−4. The null hypothesis of equality of the variances
is again rejected.

Average value Standard deviation

AUD/JPY 0.679 0.040
AUD/USD 0.684 0.039
EUR/AUD 0.657 0.048
EUR/CAD 0.660 0.045
EUR/GBP 0.673 0.038
EUR/JPY 0.682 0.034
EUR/USD 0.687 0.030
GBP/JPY 0.680 0.040
GBP/USD 0.690 0.033
USD/JPY 0.677 0.036
bootstrap EUR/USD 0.687 0.018

Table 2: Average and standard deviation of the estimated daily Hurst
exponents.

All these results show the statistical significance of the time variation of the Hurst exponent of
the EUR/USD pair. For the other pairs, the average Hurst exponent is very similar to the one
of the EUR/USD pair but the standard deviation is even higher. We thus assess that the time
dependence of the Hurst exponent is statistically significant for all the FX pairs we studied.

These empirical results pave the way for the use of multifractal processes. In the definition of
the mBm, the Hurst exponent varies smoothly over time. In Figure 2, it is difficult to see a clear
pattern, but, when zooming on a particular year, we indeed see that the Hurst exponent, as well
as the parameters m and α of the non-Gaussian extension, are oscillating around a time-varying
mean, which is well depicted for example by using a variational smoothing [31]. During this year
2008, we observe a peak corresponding to the dramatic episode of the financial crisis at the end of
the summer. Since then, the Hurst exponent has slightly increased, whereas the α parameter has
sharply decreased, and m has remained positive. This means that increments of prices has been
positively correlated and subject to many extreme events. This is characteristic of a crisis.

In the literature, the Hurst exponent is often linked to the predictability of the series [31, 51].
In fact, it is correct in the fBm or mBm case, in which the increments are Gaussian. When we
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introduce the more general stable distribution, the Hurst exponent does not tell much about pre-
dictability. What is relevant in a forecast perspective is then to have a memory parameter different
from 0 and preferably positive. For the studied EUR/GBP pair, this occurs frequently between
2006 and 2016. In particular, the highest values are obtained in the periods 2007-2008, 2009-2012,
and 2016, during which the FX pair high-frequency increments where strongly persistent. When
comparing the value of the estimated static m parameter of the fLsm model, in Table 1, with the
average value of its dynamic daily version, in Table 3, we observe opposed results. Indeed, in the
static case, m is negative and indicates anti-persistent increments, whereas m is positive in the
dynamic case and indicates persistent increments. The origin of this difference mainly stems from
differences observed between the static and dynamic Hurst exponents and that we will discuss in
the following paragraphs. We are not aware of another estimator for m and we regret that the one
we use, very dependent on estimators of H and α, does not really help us to determine whether
the series are persistent or not. We thus resort to standard correlations so as to have an idea of
which m, the static or the dynamic one, is more relevant. In Table 3, we display the correlation of
adjacent increments of the log-prices. They are all strongly significantly different from zero, with
a confidence level higher than 99.9%.3 These correlations indicate a persistence in the increments,
except for EUR/CAD, which is anti-persistent. We are aware that considering increments of a
longer duration than one minute could lead to other results. We are facing the limits of models
that try to represent in a simple manner a dependence structure which may be more complicated
in reality.

Average realized m Correlation of increments

AUD/JPY 0.107 29.8%
AUD/USD 0.095 23.4%
EUR/AUD 0.083 7.0%
EUR/CAD 0.060 -0.7%
EUR/GBP 0.051 27.4%
EUR/JPY 0.092 29.9%
EUR/USD 0.064 29.8%
GBP/JPY 0.092 8.7%
GBP/USD 0.053 31.3%
USD/JPY 0.074 28.4%

Table 3: Average value of the estimated daily m parameter and em-
pirical correlation of adjacent one-minute increments of the log-prices.

The average realized Hurst exponents displayed in Table 2 are far from the global Hurst exponents
estimated in the monofractal case and displayed in Table 1. In fact, the estimator is different in
the two cases, since we use a regression on the 200 lowest scales for the global Hurst exponent,
whereas we only used the two lowest for the realized Hurst exponent. If we apply the two-scale
estimator to the global dataset, we obtain estimated Hurst exponents also far from the estimates
obtained by regression on 200 scales. The two-scale estimated Hurst exponent, which is higher
than the regression-based estimate, is thus even more significantly different from 1/2. We also note
that the bootstrapped distributions of the two estimators are very close to each other. All this
means that, despite the R2 above 0.999, the log-plot is not linear enough to justify a monofractal
model.

We also observe the presence of peaks in the series of realized Hurst exponents, as in Figure 2.

3We determined the statistical significance by making a Fisher transformation of the correlation and by making
the assumption of Gaussian increments. Taking into account the number of observations, the null hypothesis of a
zero correlation is always rejected.
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Figure 3: Average realized Hurst exponents (crosses) and estimated
global Hurst exponents using the regression on the 200 lowest scales
(dots) or the 2 lowest (circles).

These rare peaks correspond to strongly nonlinear log-plots. At the corresponding dates, the local
monofractality of the log-prices, that the mBm approach assumes, does not hold, whereas it is a
reasonable assumption for other days. Therefore, the empirical multifractality of the log-prices
may be not as smooth as required by the mBm model. The aim of the next section is to take
into account a rougher dynamic of multifractality. We will propose a model for this purpose. It is
also worth noting that the estimated parameters of this next model are not that affected by the
presence of the few peaks in the series of realized Hurst exponents.

4 Random multifractal properties

The standard Bm is a particular case of fBm, which itself is a particular case of mBm. It is again
possible to define a generalization of the aforementioned processes. As the mBm assumes a smooth
and determinstic evolution of the Hurst exponent, other models lead to multifractality without this
assumption. For example, one can consider that the Hurst exponent is a more general function of
time, with singularities, like the generalized multifractional Brownian motion [3]. One can even
assume it follows a stochastic process. For example, the Hurst exponent of the log-price may be a
white noise. This is the purpose of the MPRE, which Ayache and Taqqu introduced [4]. In what
follows, we will focus on the MPRE.

The move from Bm towards fBm, or from fBm towards mBm was made possible by adding param-
eters. But, whereas the MPRE generalizes the mBm, it is in general not at the cost of additional
parameters. The improvement proposed by the MPRE is thus of importance. Indeed, one of
the main drawbacks of the mBm is the risk of overfitting the dynamic of Hurst exponents [11].
The MPRE bypass this drawback, thanks to the definition of a stochastic dynamic for the Hurst
exponents, insofar as the stochastic process used has few parameters.

The question of the choice of this stochastic process for modelling the dynamic of the Hurst
exponents is thus overriding. But the MPRE is a generic model which does not specify what model
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one should use for the series of Hurst exponents. Only few papers document an estimation of the
MPRE with a clear choice of model for the Hurst exponents. From this scarce literature, we can cite
a model of i.i.d. random variables distributed according to a mixture of beta distributions [18], or a
Cox-Ingersoll-Ross-type (CIR) mean-reverting process [30]. In the following empirical application,
in which we estimate a MPRE, we try to justify the use of a third model. In a manner consistent
with the rationale which led from Bm to fractional processes, we want to determine whether or
not the dynamic of Hurst exponents follows itself a fractional model, namely a fBm.

One could then speak about a multifractional process with fractional exponent (MPFE). This
nested fractionality is not intended to be esoteric in finance. Indeed, in this field, nested concepts
are not rare. For example, a parameter of Bachelier’s model, volatility, is a key concept of finance.
Stochastic volatility models assume that this volatility follows itself a Brownian-type stochastic
process, whose key parameter is nothing else than the volatility of the volatility. Therefore, defining
the Hurst exponent of the Hurst exponent is not that shocking.

In the mBm paradigm, the fluctuations of the estimated Hurst exponent are largely caused by the
variance of the estimation technique. In the MPRE with i.i.d. random variables for the Hurst
exponents, these fluctuations are an unpredictable noise. In the MPFE, we assume that these
fluctuations contain information and that the process of Hurst exponents is partially predictable.

The following empirical work provides some new evidence of the relevance of the MPFE. We develop
the equations of the model, its estimation, its interpretation, and some non-Gaussian extensions.

4.1 Multifractional process with fractional Hurst exponent

Bianchi and Pantanella already mentioned the possibility for the Hurst exponents to follow a
fBm [14]. A major issue with the use of a fBm to model the Hurst exponents is that the fBm is not
bounded, whereas the Hurst series must remain in the interval (0, 1). This explains for example
why the MPRE with i.i.d. random variables is based on bounded beta variables [18]. Bianchi and
Pantanella thus proposed an affine scaling of the fBm. This scaling depends on the maximum and
minimum values reached by the fBm used in modelling the Hurst exponents [14].

We propose a new method to bound the fBm. This method is based on the Fisher transformation,
which is traditionally used to transform a correlation in an unbounded variable so as to conduct
statistical tests on this correlation. We slightly modify this transformation to take into account
the fact that the Hurst exponent is in (0, 1), whereas the correlation is in [−1, 1]. In the MPFE,
we thus define our Fisher-like transformation by:

F : x ∈ (0, 1) 7−→ 1

2
ln

(
x

1− x

)
.

The following equations then define the MPFE, in which Zt depicts the log-price at time t, of Hurst
exponent H0,t, and with H1 the Hurst exponent of the Hurst exponents:

Zt = µ0 +
σ0

√
πK(2H0,t)

Γ(H0,t+
1
2 )

∫∞
−∞

(
(t− s)H0,t−1/2

+ − (−s)H0,t−1/2
+

)
dW0,s

F (H0,t) = µ1 + σ1

Γ(H1+ 1
2 )

∫∞
−∞

(
(t− s)H1−1/2

+ − (−s)H1−1/2
+

)
dW1,s,

(3)

where W0,. and W1,. are independent Bm. The independence of W0,. and W1,. is not mandatory in
the MPRE model, but we recommend it for ease of estimation. We could also write H0,t, for a given
time t, as the inverse Fisher transformation of an underlying fBm, where F−1(y) = (1 + e−2y)−1.
The major benefit of using the Fisher transformation is that the scaling of the fBm does not depend
on the past values of the process of Hurst exponents. Therefore, in a practical use, with frequent
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updates, the scaling of the fBm will always remain the same. Moreover, for a large set of Hurst
exponents, the Fisher transform is close to the identity, so that the transformation does not alter
much the properties of the fBm, like its fractal property. The following empirical results are indeed
very close if we use the Fisher transformation or not.

Some well-known properties of the generic MPRE with some technical assumptions, which remain
true for the MPFE: it is a self-similar process and its increments are stationary, what is not the
case for the mBm [4].

In addition to the representation of the Hurst exponents by a scaled fBm and by beta variables,
the mean-reverting process is another solution proposed in the literature [30]. This last stochastic
process proposed for the Hurst exponents is of interest. It is indeed theoretically unbounded, but,
if the parameter of the mean-reversion strength is big enough, the trajectory will very likely remain
close to its average value. Similarly, in the following empirical study, the Hurst exponent of the
Hurst exponents is very low, around 0.02. As a consequence, the adjacent increments of realized
Hurst exponents are strongly negatively correlated. It thus depicts a mean-reversion phenomenon
which is strong enough to keep the trajectory very likely in the interval (0, 1). In other words,
using the Fisher transformation in the MPFE is a theoretical precaution but, in practice, we could
do without it.

Similarly to the estimation of a rough volatility model [38], the estimation of the MPFE consists
first in estimating a series of realized Hurst exponents and then to estimate a fBm on this series, or
on the Fisher transformation of this series. For the first step, the realized Hurst exponents provide
us with one statistic each day and must be computed using intraday prices. Therefore, two realized
Hurst exponents at two different dates will use prices from non-overlapping time intervals. This
avoids spurious dependence in the series of realized Hurst exponents. As already exposed, we use
the two-scale estimator for each realized Hurst exponent. For the second step, we estimate the
Hurst exponent of the Hurst exponents with the method of absolute moments and in particular by
conducting a regression of the log-plot using the 64 finest scales. We indeed adapted the number
of scales to the size of the series of realized Hurst exponents, limited to 2327 observations.

4.2 Non-Gaussian extensions

The fBm and the mBm have both their non-Gaussian counterpart. We thus also propose a non-
Gaussian adaptation of the MPFE, but we will not provide much details about it in this paper.
The MPFE is based on two nested fractional processes. So, the non-Gaussian feature can apply to
one or two of them.

In a first approach, we could consider that the log-price follows a multifractional stable process, with
a dynamic for the α and m parameters. This dynamic could be Brownian or not. In Section 3.3,
we already estimated dynamic α and m parameters. But we do not explore this solution further.

In a second approach, we consider that the log-price follows a MPFE with a fLsm modelling the
dynamic of Hurst exponents. We can thus estimate the α and m parameters of the Hurst exponents.
The equations of this model are: Z ′t = µ0 +

σ0

√
πK(2H0,t)

Γ(H0,t+
1
2 )

∫∞
−∞

(
(t− s)H0,t−1/2

+ − (−s)H0,t−1/2
+

)
dW0,s

F (H0,t) = µ1 + σ1

∫∞
−∞

(
(t− s)m1

+ − (−s)m1
+

)
dWα1,0

1,s ,
(4)

where W0,. and Wα1,0
1,. are two independent processes, namely a standard Bm and a symmetric

Lévy α1-stable motion. We kept, for the clarity of the architecture of the model some unnecessary
subscripts, for example the 1 inm1 and α1, which indicate the layer in the model of nested fractality.
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4.3 Application to FX rates

We now estimate the MPFE, as well as its non-Gaussian extension, on our dataset. We note that
an application of the MPRE to FX rates is already documented in the literature but with another
model for the series of Hurst exponents and a different methodology [15].

The estimated Hurst exponent of the Hurst exponents, which we display in Table (4), is very
low, around 0.02, whatever the FX pair. This confirms the mean-reverting effect documented by
Frezza [30]. But it is not only mean-reverting, it is also a fractal process. The Hurst exponent
of the Hurst exponents thus provides us with an interpretation about the dynamic of the realized
Hurst exponent. As already exposed, we obtain very similar results, whether we use the Fisher
transformation or not.

Dynamic of F(H0,.) Dynamic of H0,.

H1 α1 m1 H1 α1 m1

AUD/JPY 0.045 1.804 -0.509 0.044 1.773 -0.520
AUD/USD 0.011 1.770 -0.553 0.011 1.738 -0.564
EUR/AUD 0.021 1.733 -0.556 0.026 1.696 -0.564
EUR/CAD 0.020 1.777 -0.543 0.024 1.789 -0.535
EUR/GBP 0.024 1.829 -0.522 0.024 1.821 -0.525
EUR/JPY 0.031 1.851 -0.510 0.030 1.817 -0.521
EUR/USD 0.011 1.885 -0.520 0.010 1.882 -0.521
GBP/JPY 0.019 1.879 -0.513 0.028 1.843 -0.515
GBP/USD 0.014 1.860 -0.524 0.013 1.845 -0.529
USD/JPY 0.021 1.815 -0.530 0.021 1.800 -0.534

Table 4: Estimated Hurst exponent, α1, and m1 parameters of the
dynamic of realized Hurst exponents or of their Fisher transformation
(like in equations (3) and (4)).

The Hurst exponent of the Hurst exponents is so low that the relevance of this model is questionable.
We thus display for some FX pairs, in Figure 4, the log-plot applied to the series of realized Hurst
exponents instead of the series of log-prices. The linear shape of the plot is clear, even though the
variance of the plot around the affine regression is much higher than in Figure 1. To assess the
statistical significance of the Hurst exponent of the Hurst exponents, we conduct a test whose null
hypothesis is that the log-prices are a MPRE with an i.i.d. random variable for the Hurst exponent.
In fact, if the null hypothesis was true, we would have got a constant log-plot, reflecting a null
Hurst exponent of the Hurst exponents. We conduct two bootstraps, one with uniform variables
for the Hurst exponents of the log-prices, another with Gaussian variables. In both tests, we obtain
a very high significance, above 99.9%, for the Hurst exponents of the Hurst exponents displayed in
Table 4. The scaling phenomenon of the realized exponents is thus statistically significant. This
justifies the use of the MPFE instead of a MPRE with i.i.d. random variables.

We also display in Table 4 the estimated parameters of the non-Gaussian extension of the MPFE.
With no surprise, the m1 parameter is always very strongly negative. This is relevant with the
mean-reversion effect already discussed. The α1 parameter is around 1.8, indicating a slight non-
Gaussian behaviour of the realized Hurst exponents.
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Figure 4: Empirical log plot of the series of realized Hurst exponents
for EUR/JPY (top left), EUR/USD (top right), EUR/GBP (bottom
left), and GBP/JPY (bottom right). Half the slope of the corre-
sponding affine regressions (in grey) is the estimated Hurst exponent
of the Hurst exponents.
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5 Discussion: Towards multilayer fractality

We exposed throughout this paper the rationale which led from the standard Bm to the fBm,
from the fBm to the mBm, and from the mBm to the MPFE. These models always intend to
reproduce more accurately some stylized facts of log-prices, in particular their fractal features.
This fractality is arbitrary in the standard Bm, it is based on one parameter in the fBm, it is a
deterministic function of time in the mBm, it is a stochastic one in the MPRE, and it is even a
random fractal itself in the MPFE. In the MPFE approach, the log-price follows a fractional model,
whose parameters follow similar dynamics. A logical continuation of all these models consists in
cumulating several layers of fractality. Indeed, the fBm and the mBm have one layer of fractality,
whereas the MPFE has two layers of fractality, with a Hurst exponent of the Hurst exponents. We
can thus write a model with n layers of fractality:

Zn,t = µ0 +
σ0

√
πK(2H0,t)

Γ(H0,t+
1
2 )

∫∞
−∞

(
(t− s)H0,t−1/2

+ − (−s)H0,t−1/2
+

)
dW0,s

F (H0,t) = µ1 +
σ1

√
πK(2H1,t)

Γ(H1,t+
1
2 )

∫∞
−∞

(
(t− s)H1,t−1/2

+ − (−s)H1,t−1/2
+

)
dW1,s

...

F (Hn−2,t) = µn−1 +
σn−1

√
πK(2Hn−1,t)

Γ(Hn−1,t+
1
2 )

∫∞
−∞

(
(t− s)Hn−1,t−1/2

+ − (−s)Hn−1,t−1/2
+

)
dWn−1,s

F (Hn−1,t) = µn + σn

Γ(Hn+ 1
2 )

∫∞
−∞

(
(t− s)Hn−1/2

+ − (−s)Hn−1/2
+

)
dWn,s,

where W0,., ..,Wn,. are independent Bm and Hn ∈ (0, 1). In this model, F (Hn−1,t) is a fBm of
Hurst exponent Hn, and F (Hi,t), for i ≤ n− 1, is a (n− i)-layer multifractal model.

This logical generalisation is tempting, but we are unconvinced it is the right direction for further
developments of the research on multifractal models, for several reasons:

. When adding one layer to this multilayer multifractal model, one adds two parameters to
the model. Therefore, a model with many layers would have many parameters. As with
deep learning, one can expect a very accurate reproduction of reality while designing many
layers in this model. But one can also expect bad forecast ability due to overfitting, which
is already a pitfall for mBm [11]. The selection of the appropriate number of layers should
therefore be based on an information criterion.

. We present this multilayer approach as the logical continuation of other fractional models
presented in this paper. But the MPRE, instead of adding parameters to the mBm, bypass
its high number of parameters by introducing stochasticity. Adding many parameters may
thus not be that logical.

. In the MPFE, the interpretation of the Hurst exponent of the Hurst exponents may provide
some insight on the dynamic of the log-prices. With a multilayer fractional model, the
interpretation seems much more intricate.

. The estimation of the parameters of the multilayer multifractal model is not straightforward.
In the MPFE, we estimated first a series of Hurst exponents, each defined in non-overlapping
windows of 1,440 observations of the log-price, and we then analysed this series of Hurst
exponents. Applying this method to the multilayer case sounds inappropriate. Indeed, if we
observe a series of N log-prices and want to estimate a n-layer model, we could use only N1/n

points4 for the estimation of the Hurst exponents at each layer. For our dataset of roughly
3,350,000 log-prices, a 3-layer model, which contains only one more layer than the MPFE,

4Points are either observations of log-prices or Hurst exponents of the previous layer.
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would lead to using only 150 points to estimate a Hurst exponent. Adding layers would thus
rapidly increase the estimation error.

6 Conclusion

In the fBm setting, the volatility and the Hurst exponent are two parameters whose interpretation
is insightful. Following the volatility, the analysis of the fractal properties of financial time series
becomes increasingly widespread. Some models even put forward the interplay between both, by
analysing the fractal properties of the volatility (rough volatility, Markov-switching multifractal,
HAR-RV). We note that, in the history of models in finance, volatility was successively considered
constant, time-varying, stochastic, and fractional. The Hurst exponent follows the same path: it is
constant in the fBm, time-varying in the mBm, stochastic in the MPRE, fractional in the MPFE,
which we exposed in this paper.

The justification of any model comes from empirical findings. The econophysics literature tries to
find these stylized facts that force to imagine new models. It is also the purpose of this paper, in
which we display some empirical evidence of the fractality of the Hurst exponents and thus of the
relevance of the MPFE approach. Further research may consist in finding new stylized facts beyond
the rough fractality of both the Hurst exponents and the volatility. The econometrics literature
already uses monofractality, as the fBm inspired ARFIMA [39]. But it is time for mainstream
econometrics to go further, because fBm is only the first step in the fractional models and because
it appears, thanks to the rise of models such as rough volatility, that modelling the fractal properties
of financial time series is overriding.
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