
HAL Id: hal-02283838
https://hal.science/hal-02283838

Submitted on 3 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Conditional reliability-based importance measures
Phuc Do Van, Christophe Bérenguer

To cite this version:
Phuc Do Van, Christophe Bérenguer. Conditional reliability-based importance measures. Reliability
Engineering and System Safety, 2020, 193, pp.106633. �10.1016/j.ress.2019.106633�. �hal-02283838�

https://hal.science/hal-02283838
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Conditional reliability-based importance measures

Phuc Do1∗and Christophe Bérenguer2
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Abstract

Importance measures have been widely used as important decision-aiding indicators

in various purposes such as reliability studies, risk analyses and maintenance optimiza-

tion. In this work, we propose a novel time-dependent importance measure for systems

composed of multiple non repairable components. The proposed importance measure of

a component/group of components is defined as its ability to improve the system relia-

bility during a mission given the current conditions (states or degradation levels) of its

components. To take into account economic aspects (e.g., maintenance costs, economic

dependence between components and the cost benefit thanks to maintenance operations),

an extension of the proposed importance measure is then investigated. Thanks to these

proposed importance measures, the component/group of components can be “optimally”

selected for preventive maintenance regarding to the reliability criteria and/or the finan-

cial issues. A numerical example is introduced to illustrate the use and the advantages of

the proposed importance measures.

Keywords: Importance measure, conditional reliability, maintenance decision-making,

economic dependence, multi-component system.

1 Introduction

Importance measures providing information about the importance of a component or

a group of components on the system performance (reliability/availability, productiv-

ity, safety, or any performance metrics of interest) can help to identify design weakness

∗Corresponding author: phuc.do@univ-lorraine.fr
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or operation bottlenecks and to suggest optimal modifications for system upgrades and

maintenances [20]. In the literature, a large number of importance measures have been

developed and successfully applied for various purposes, see [14] for an overview about re-

cent advances on importance measures. In risk analyses, importance measures are used in

risk-informed decision-making, see for instance [5, 6, 12, 21, 23]. In reliability engineering,

importance measures are used to prioritize components in a system for reliability improve-

ment [1, 2, 4, 8, 11, 19]. Recently, importance measures have been applied for maintenance

optimization and spare parts management [3, 10, 16, 24, 26]. More specifically, Birnbaum

structural importance measure is used to build a decision indicator for maintenance op-

timization of multi-component systems with complex structure, see [16, 24]. Differential

importance measure is proposed to use in inventory management in [3]. More recently,

the link between component importance and preventive maintenance policy has been dis-

cussed in [26].

In the framework of condition-based maintenance optimization, the current condition

of components (e.g., failure state, working state, deterioration level) is an important is-

sue and needs to be taken into account in decision-making. However, very few existing

importance measures allow incorporating the actual condition of components over time.

Moreover, in practice, positive economic dependence, which implies that joint mainte-

nance of several components is cheaper than performing maintenance on components

separately, often exists and should be integrated in maintenance decision-making in the

framework of maintenance optimization. To the best of our knowledge, no existing impor-

tance measure allows taking into account this kind of interaction between components.

To face this issue, in this paper, a novel time-dependent importance measure based on the

conditional reliability evaluation of the system, namely RIM measure, is proposed. At a

given time and given the real condition of the components of a system, the proposed im-

portance measure can be used to rank the components or groups of components according

to their ability to improve the system reliability for a given mission. The proposed RIM

measure is then extended to take into account the maintenance cost and the economic

dependence between components. Indeed, the extended RIM measure is defined as the

ratio of the cost benefit given by the maintenance of a component/group of components

to its total maintenance cost. This indicator can help to identify the most cost-effective

components/group of components for preventive maintenance before a given mission.

This paper is organized as follows. Section 2 is devoted to the description of general as-
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sumptions and different reliability metrics. Different kinds of information on components

at given time are also discussed and integrated in the evaluation of reliability metrics.

Section 3 focuses on the definition of the proposed time-dependent importance measure,

namely RIM . The influence of information level on the RIM measure and RIM -based

importance ranking is also investigated. An extension of RIM measure is developed in

section 4. Maintenance cost structures and economic dependence between components

are also formulated and discussed. To illustrate the uses of RIM measure and its exten-

sion, a numerical of a 5-component system is introduced in Section 5. In addition some

numerical results are herein discussed. Finally, the last section presents the conclusions

drawn from this work.

Notation

ci0, c
G
0 set-up cost of component i and of group G respectively

Ci
p, C

G
p preventive maintenance cost of component i and of group G respectively

cd downtime cost rate of the system

di, dG duration of a replacement for component i of group G respectively

si(t) state of component i at time t

(Xi
t)t≥0 stochastic degradation process component i over time t

xit degradation level of component i at time t

Zi failure threshold of component i

Fi
t,F

S
t available information on component i and on the system respectively at t

Ri(t), R(t) reliability of component i and of the system respectively

Ri(t+ u|Fi
t) conditional reliability of component i

R(t+ u|Ft) conditional reliability of the system

fτi(u) probability density function for the failure time of component i

fXi
t
(u) probability density function for the deterioration level of component i at time t

2 System modeling & reliability metrics

2.1 System description and assumptions

We consider a coherent system composed of n non-identical components which are inter-

connected according to a complex structure in terms of reliability block diagram (RBD).

Each component is subject to an underlying aging/deterioration process which can cause
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random failures. It is also assumed that only kind maintenance action, that brings a

maintained component to as-good-as new, is possible for each component.

Let s(t) = (s1(t), s2(t), ..., sn(t)) be the state vector with si(t) (i = 1, ..., n) is binary

variable representing the state of the component i.

si(t) =







1 if component i is functioning at time t

0 if component i is in a failed state at time t

The structure function of the system, denoted φ(s(t)), can be defined as follows

φ(s(t)) = φ(s1, s2, . . . , sn) =







1 if the system is functioning at time t

0 if the system is in a failed state at time t

It is important to note that si(t) (i = 1, ..., n) are independent since all components

are assumed to be stochastically independent. The system structure function can be

expressed as a function of its minimal cut sets or its minimal path sets, [20]. For example,

as a function of the minimal cut sets, the structure function writes :

φ(s(t)) =

nK∏

j=1

[1−
∏

i∈Kj

(1− si(t))], (1)

where Kj is j-th minimal cut set, and nK is the total number of minimal cut sets of the

system.

2.2 Reliability metrics

To evaluate the reliability performance of a system, different reliability metrics (either

instantaneous, average or asymptotic) such as reliability/availability, MTTF (mean time

to failure), conditional reliability, have been introduced and successfully applied in dif-

ferent applications [20]. The conditional reliability that allows taking into account the

real/current information on the components/system is now recognized as an important

indicator for decision-making in risk analysis, maintenance and production scheduling

optimization, see for instance [17, 24].

2.2.1 Reliability

The reliability of a system is defined as the probability that the system operates cor-

rectly until time t. Mathematically, for non repairable components the system reliability,

denoted R(t), is expressed as:
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R(t) = E[φ(s(t))], (2)

where E[.] indicates the mathematical expectation. As an example, we consider a 5-non

repairable components system whose RBD is shown in Figure 1.

Figure 1: An example of 5-component system.

The considered system has four minimal cut sets: K1 = {C1},K2 = {C2, C4},K3 =

{C3, C4} and K4 = {C5}. According to Eq. (1), the structure function can be written

as:

φ(s(t)) = s1(t) · [s2(t) + s4(t)− s2(t) · · ·4 (t)] · [s3(t) + s4(t)− s3(t) · · ·4 (t)] · s5(t).

= s1(t) · [s4(t) + s2(t) · s3(t)− s2(t) · s3(t) · s4(t)] · s5(t).

By using Eq. (2), and under the assumption of independent components, the reliability

of the system is expressed by:

R(t) = R1(t) · [R4(t) +R2(t) ·R3(t)−R2(t) ·R3(t) ·R4(t)] ·R5(t). (3)

where Ri(t) = E[si(t)] (i = 1, ..., 5) is the reliability of component i.

Depending on the level of information available on the state of a component, two

different approaches can be followed to assess its reliability: degradation based model or

lifetime failure model [20, 17]. Two cases are thus considered for the evaluation of Ri(t):

1. if component i gradually deteriorates and its deterioration evolution is assumed to be

described by a stochastic process Xi
t , the reliability of component i can be expressed

as:

Ri(t) = P(Xi
t < Zi) =

Zi∫

0

fXi
t
(u)du, (4)

with Zi is the failure threshold above which component i is considered as failed

when Xi
t ≥ Zi; fXi

t
(u) is the probability density function of the deterioration level

of component i at time t. Gamma stochastic processes have been widely used in the

literature for modelling the degradation process of components [22] ; in this work, we
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use them as an example among several other possible ones. A detailed description

is given in appendix A.

2. if the failure behavior of component i is described by a lifetime failure model due

to a technical and/or economical issue (e.g., degradation inspection on component

i is not allowed or impossible; its inspection cost is too expensive or component i is

very reliable and its inspection are then unnecessary), the reliability of component i

can be then evaluated by

Ri(t) = (τi > t) = 1−

t∫

0

fτi(u) du, (5)

where τi is the time to failure of component i and follows a probability law with

probability density function (pdf) fτi(u). The Weibull law has been widely used in

the literature for modeling the failure behavior of components [20] and we use it as

an example among several other possible ones. A detailed description is given in

appendix B.

2.2.2 Conditional reliability

Let FS
t be the available information associated to the system state at time t: FS

t = 1 if

the system is working at time t, FS
t = 0 for otherwise.

Assume now the system is functioning at time t (FS
t = 1), the conditional reliability

of the system within the interval horizon (t, t+ u) (with u > 0) is then expressed as:

R(t+ u|FS
t = 1,F1

t ,F
2
t , ...,F

n
t ) =

nc∏

j=1

[1−
∏

i∈Cj

(1−Ri(t+ u|Fi
t))], (6)

where Ri(t + u|Fi
t) is the conditional reliability of component i given the available infor-

mation on the component i at time t, Fi
t. Four levels are herein specified for the available

information Fi
t. More precisely, Fi

t can take the following values:

Fi
t =







0 if component i is in a failed state at time t;

1 if component i is working but its deterioration level is not measured at time t;

2 if component i is working and its deterioration level is measured at time t;

3 if component i is replaced by a new one at time t.

According the information level given at time t on a component, the conditional reliability

can thus be specified as follows:
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• If component i is not working at time t, i.e., Fi
t = 0, its predicted reliability is then

Ri(t+ u|Fi
t = 0) = 0;

• If component i is working but its deterioration level is not measured, i.e., Fi
t = 1, its

predicted reliability is calculated as:

Ri(t+ u|Fi
t = 1) =

Ri(t+ u)

Ri(t)
. (7)

It is important to note that if the failure behaviour of component i follows an expo-

nential distribution, then Ri(t+u|Fi
t = 1) = Ri(u). This means that component i is

considered as a new one if it is observed that it has survived at time t, consequently,

there is no need for preventive maintenance if this is known.

• If component i is working and its deterioration level is measured at time t (Fi
t = 2),

the predicted reliability of component i is then calculated as:

Ri(t+ u|Fi
t = 2) = Ri(t+ u|Xi

t = xit) = P(X
i
t+u < Zi|X

i
t = xit) =

∫ Zi

xi
t

fXi
t+u

(v)dv,

(8)

with Xi
t = xit is the deterioration level of component i at time t. An illustration for

Eq. (8) is shown in Figure 2.

D
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ra
d
at
io
n
le
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l

xi
t

Zi

t t+ u

fXi

t+u

∫ Zi

xi

t

fXi

t+u

(v)dv

Time

Figure 2: Illustration for the predicted reliability assessment given by Eq. (8).

• If component i is replaced by a new one at time t (Fi
t = 3), its predicted reliability

is then evaluated as: Ri(t+ u|Fi
t = 3) = Ri(u).
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An illustration of the predicted reliability of component i regarding to different levels of

information available at time t = 20 is shown in Figure 3. It should be noticed that in this

illustration, gamma process with shape and scale parameter γi = 1, ηi = 2 (see Appendix

A) is used to simulate the degradation process of component i. The failure threshold is

set by Zi = 100.
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Figure 3: Illustration of the predicted reliability of component i under a given information level

Fi
t

The numerical results in Figure 3 show that the information level (Fi
t) is crucial for

the reliability assessment of a component.

3 Conditional reliability-based importance mea-

sures

3.1 Definition

Conditional reliability-based importance measure, namely RIM , for component i is defined

as follows:

RIM i(u, t) = R(t+ u|F1
t ,F

2
t , ..., {F

i
t = 3}, ...,Fn

t )−R(t+ u|F1
t ,F

2
t , ...,F

n
t ). (9)

By definition, this importance measure provides the potential improvement in the system

reliability within the interval horizon (t, t + u) when component i is replaced at time t
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given the current condition of all components of the system.

According to the definition, several properties can be established for the proposed

RIM measure :

• For a coherent system R(t + u|F1
t ,F

2
t , ..., {F

i
t = 3}, ...,Fn

t ) ≥ R(t + u|F1
t ,F

2
t , ...,F

n
t ),

consequently RIM i(u, t) is not negative;

• RIM i(u, t) is bounded, i.e., 0 ≤ RIM i(u, t) ≤ 1, more precisely:

– RIM i(u, 0) = 0 since component i is new at time t = 0;

– RIM i(0, t) = 0 if the system is still working at time t;

– RIM i(u, t) = 0 if component i is still working at time t and the failure rate of

component i is time-independent, e.g., it is described by an exponential distri-

bution;

– RIM i(0, t) = 1 if component i is critical and it is not working at time t, i.e., the

system fails before time t. The replacement of component i brings the system

to an operational state.

• RIM i(u, t) may depend not only on t and u but also on the condition (state or

degradation level) of all components at time t.

It is important to note that if u = 0, the proposed RIM measure becomes a variant

of a classical importance measure called improvement potential factor [20]. Indeed, the

improvement potential factor for component i is defined as:

IP i(t) = R(t|{Fi
t = 3})−R(t). (10)

It is clear that the improvement potential factor allows considering the current condition of

only component i while that of the other components are ignored. In addition, unlike RIM

measure, the improvement potential factor does not allow considering a given mission

(t, t+ u).

3.2 Influence of information level on RIM measure

To study the influence of information level on RIM measure and RIM -based importance

ranking, we consider a series structure composed of two components C1 and C2. It is

assumed that the degradation process of each component is described by a gamma process

(see Appendix A) with shape and scale parameter (γi, ηi) with i = 1, 2 shown in Figure 4.

The failure threshold of C1 and C2 is Z1 = Z2 = 100.
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C1 C2

γ1 = 1
η1 = 2

γ2 = 1
η2 = 2.1

Figure 4: An example of 2-component system.

Assume that both components are still functioning at time t = 20. We consider herein

two cases according the available information level on each component:

Case 1 Both components are working at time t but their deterioration levels are un-

known, i.e., F1
t = F2

t = 1. RIM measure of each component is evaluated by using

Eq.(9) and Eq.(7) and the obtained results for the interval (t, t+u) with u = 30 are

shown in Table 1. According to RIM ’s value, component C2 is more important

than C1. This is quite natural since without any information about the current level

on the degradation process of both components, we can only take into account the

fact that the degradation speed of C2 is higher than that of C1 because η2 > η1. As

a consequence, the replacement of C2 is considered to be more effective in improving

the system reliability than replacement of C1.

Case 2 Both components are working at time t and their degradation levels are measured,

i.e., F1
t = F2

t = 2. Since both components are subject to stochastic degradation pro-

cesses, the degradation level of each component at time t = 20 can be random.

As an example, two experiments, namely cases 2a et 2b, are carried out to simu-

late the degradation process evolution of two components. The degradation levels

of both components at time t = 20 for each experiment are reported in Table 1.

Based on the components’ degradation levels at time t, the RIM measure of each

component is evaluated by using Eq.(9) and Eq.(8). In the first experiment (case

2a), RIM2(30, 20) > RIM1(30, 20), consequently C1 is more important than C2

in improving the system reliability. However, in the second experiment (case 2b),

RIM2(30, 20) < RIM1(30, 20), C1 becomes more important than C2.
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Information available at t = 20 u = 30 Ranking

F1

t X1

t F2

t X2

t RIM1(u, t) RIM2(u, t) C1 C2

Case 1 1 - 1 - 0.1844 0.3182 2 1

Case 2a 2 44.32 2 34.56 0.3818 0.1445 1 2

Case 2b 2 33.66 2 34.21 0.1098 0.4291 2 1

Table 1: RIM measure and importance ranking of a two-component system.

Figure 5 shows the components’ degradation trajectories and the corresponding RIM

measures. It is clear that the RIM values and the importance ranking of the components

may change regarding to their degradation trajectories.
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Figure 5: Components’ degradation trajectories and corresponding RIM measures with u = 30.

The numerical results show that RIM measure allows taking into account efficiently

not only the degradation processes of all the components, but also their conditions (states

or degradation levels) at given time t, which is crucial to determine the most appropriate

component to be selected for preventive maintenance. Consequently, the proposed RIM

measure turns to be an efficient decision-aiding indicator for the selection of the most

appropriate component to be maintained in order to improve the system reliability on a

given mission horizon [t, t+ u].
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3.3 RIM of a group of components

The RIM definition of an individual component can be extended to a group of com-

ponents. Indeed, RIM measure of a group G containing k components {j1, ..jk} with

k = 2, 3, ... can be written as follows

RIM{j1,..jk}(u, t) = R(t+ u|F1
t ,F

2
t , ..., {F

j1
t = 3,Fj2

t = 3, . . . ,Fjk
t = 3}, ...,Fn

t )

−R(t+ u|F1
t ,F

2
t , ...,F

n
t ). (11)

RIM{j1,..jk}(u, t) gives the potential improvement in the conditional reliability of the

system when all the components within group G are replaced at time t. By definition,

RIM of a group components allows taking into account the joint effect in the system

reliability improvement when the group components are preventively replaced together.

As a consequence, RIM is not additive, i.e.,

RIM{j1,..jk}(u, t) 6=
k∑

l=1

RIM{j1}(u, t). (12)

The uses of RIM measure for ranking the importance of a component/group of several

components will be discussed in more detail in section 5.

4 An extension of RIM measure for maintenance

decision-making

In the framework of maintenance optimization, different kinds of criteria (such as relia-

bility/safety, productivity, maintenance cost, etc.) have been used for evaluating and/or

determining an optimal maintenance policy. It is also shown in the literature that that

maintenance cost is the most popular criterion for optimization process and should be

integrated in the decision rules. [18, 25, 13]. In that way, we propose herein to integrate

both the system reliability improvement and the maintenance cost into a single indicator

for maintenance decision-making.

4.1 Maintenance costs and economic dependence

For a multi-component system with complex structure, the system may still operate even

when maintenance operations are carried out on some of its components. On the other

hand, maintenance operations on some others of its components may lead the entire system
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to shutdown, which may incur an additional cost due to for example production loss

caused by maintenance. In a general way, the preventive maintenance cost of component

i, denoted C
(i)
p , can thus be divided into three parts as follows:

Ci
p = cip + ci0 + di · Cd · I{i is critical component}, (13)

where:

• a specific component cost cip depending on the component characteristics and main-

tenance labor costs;

• a setup-cost ci0 indicates the preparation cost (or logistic cost) associated with com-

ponent i and can be shared when several maintenance activities are performed to-

gether. Different setup-cost model have been discussed in [18, 13]. For example, it

is pointed out in [25, 9] that execution of a group of maintenance activities usually

requires only one set-up;

• an unavailability cost di · Cd is incurred if component i is critical, i.e. the system is

stopped during di time units for executing the preventive maintenance of component

i (Cd is the unavailability cost rate of the system). This additional cost can be also

shared when several maintenance activities are simultaneously executed by different

maintenance teams [7];

• I{.} denotes the indicator function with I{.} = 1 if the event {.} is true; otherwise

I{.} = 0.

From a practical point of view, several components may be preventively replaced

together due (i) economic raisons regarding to the economic dependence between com-

ponents; and (ii) technical reasons relying on some specific constraints such as reliabil-

ity/availability, limited repairmen [7]. In that way, assume that several components,

considered as a group denoted G, are preventively replaced together, the corresponding

preventive cost can be expressed as

CG
p =

∑

i∈G

cip + cG0 + dG · Cd · I{G is a cut set} (14)

with,

• cG0 is the setup-cost for executing the maintenance of group G. cG0 may depend on

both technical factors (e.g. proximity between components), and economic factors

(e.g. sales strategies of components’ suppliers). cG0 is bounded:

max
i∈G

ci0 ≤ cG0 ≤
∑

i∈G

ci0

13



For a simple model, cG0 is constant, e.g., cG0 = ci0 = cj0 with i, j ∈ G, see [25, 9].

• dG is the total maintenance duration of groupG and may depend on both the number

of maintenance team and the structural dependence [7, 13]. dG is also bounded:

max
i∈G

di ≤ dG ≤
∑

i∈G

di.

To better highlight the economic dependence, Eq.(14) can be written as follows:

CG
p =

∑

i∈G

Ci
p− (

∑

i∈G

ci0 − cG0 )

︸ ︷︷ ︸

saved setup-cost: positive impact

−Cd ·
(∑

i∈G

di · I{i is critical} − dG · I{G is a cut set}

)

,

︸ ︷︷ ︸

saved shutdown cost: positive or negative impacts

(15)

The second part of (15) represents the positive impact of economic dependence since it is

always positive. The third part could be zero (when group G is not a cut set, consequently

all components of the group are not critical), negative (when group G is a cut set but any

component of the group is critical) or positive (when at least one component is critical,

group G becomes a cut set and the total maintenance duration of its critical components

is higher than the joint maintenance duration of the group).

4.2 An extension of RIM measure

To integrate both the improvement reliability and associated maintenance cost, an exten-

sion of RIM measure for component i, denoted RIMc, can be defined as follows

RIM i
c(u, t) =

h(RIM i(u, t))

Ci
P

, (16)

where h(RIM i(u, t)) is a benefit function with respect to the improvement quantity in

the system reliability, RIM i(u, t), given by the replacement of component i at time t.

It should be emphasized that h(RIM i(u, t)) can be seen as the benefit in terms of cost

associated with the system reliability improvement.

By definition, as RIM i
c(u, t) shows the ratio between the benefit given by the mainte-

nance of component i and the maintenance cost of component i, it can help to better select

a component to be preventively maintained. Indeed, two cases can be herein specified:

• RIM i
c(u, t) ≥ 1, i.e., the benefit is higher than the maintenance cost, component

i is then considered as cost-effective one at time t, i.e., component i should be an

admissible candidate for preventive maintenance;
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• 0 ≤ RIM i
c(u, t) < 1 means that the benefit given by the maintenance of component

i is lower than its maintenance cost. As a consequence, component i is not cost-

effective at time t, i.e., it should not be selected for preventive maintenance at least

from a financial point of view.

It is shown in the literature that the investment cost is usually an exponential function

of the reliability, see [15]. In that way, as an example, the following benefit model is used

in this paper:

h(RIM i(u, t)) = a · eb·RIM i(u,t), (17)

with a and b are positive real numbers characterizing a mount of reliability improvement

in terms of cost. The values of a and b may depend on various factors such as compo-

nents/system characteristics, technology, etc.

From (16) and (17), RIM i
c(u, t) can be written as

RIM i
c(u, t) =

a · eb·RIM i(u,t)

Ci
P

. (18)

For a group of several components, RIMc can also defined as follows

RIM{j1,..jk}
c (u, t) =

a · eb·RIM{j1,..jk}(u,t)

C
{j1,..jk}
P

. (19)

It is clear that RIMc allows taking into account both the joint effect on the system

reliability improvement and the economic dependence when the group’s components are

preventively replaced together.

The uses of RIMc for ranking the importance of a component/group of several com-

ponents and selecting ”optimal” components in condition based maintenance decision-

making are illustrated through an numerical system and presented in the next section.

5 Numerical example

We re-consider the system composed of five non repairable components which is shown in

Figure 1. It should be noticed that the system studied has been chosen such that basic

structures (series, parallel) are investigated. It is not directly connected to a real cases

study, but real systems can be studied using the same method, starting from any reliability

block diagrams. From a methodological point of view, this example is complete enough

to illustrate the different steps of the modeling approach, to have meaningful and relevant
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numerical results and to get more insight into the components importance ranking for

decision-making resulting from the application of the proposed RIM measures.

It is assumed that the reliability behavior of three components C1, C4, C5 is described

by homogeneous gamma stochastic process (see Appendix A) with shape and scale pa-

rameters γi & ηi (i = 1, 4, 5) respectively which are reported in Table 2. For components

C2 and C3, their failure behavior are assumed to be described by Weibull distribution

(see Appendix B) with scale parameter λi > 0, and shape parameter βi > 1 (i = 2, 3)

which are also shown in Table 2. It should be noticed that gamma stochastic process and

Weibull distribution are herein used as an example, other stochastic processes (such as

the Wiener process, the inversed Gaussian process, etc.) can be also used depending on

the degradation behavior of components.

Component αi βi γi ηi Li

C1 - - 1 2 100

C2 88 2.2 - - -

C3 75 3.25 - - -

C4 - - 1 300 100

C5 - - 1 2.1 100

Table 2: Parameters of a 5-component system.

The system reliability function as with respect to the components’ reliability is given

in Eq.(3).

The system is required to serve a mission from t to t + u. It is assumed that, in the

aim to improve the system reliability, several components should be replaced by the new

ones at time t. For this purpose, one interesting question arising is which components

should be chosen to be preventively replaced. This can be solved by using the proposed

RIM measures.

5.1 RIM : importance ranking and maintenance decision-

making

In this section, it is assumed that maintenance costs are not considered due to whatever

reason, e.g., they are not available. To illustrate the use of RIM importance measure we

consider in this study that only one or two components can be replaced at time t. Of
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course, RIM can be used to select any group of more than two components.

5.1.1 RIM of individual components

First, inspection operations are carried at time t = 20. The information about the com-

ponents’ condition is then provided. It is assumed components C2 and C3 are in working

state (F2
t=20 = F3

t=20 = 1). Components C1, C4 and C5 are also in working state and

their degradation levels are measured, i.e., F1
t=20 = F4

t=20 = F5
t=20 = 2. By executing a

numerical experiment to simulate the degradation process of these components with the

parameters shown in Table 2, their degradation levels at t = 20 are reported in Table 3.

Based on the available information, RIM of individual components are evaluated. To

illustrate the use of RIM importance measure, two missions are considered with u = 20

and u = 30. The obtained results are reported in Table 3. According to the RIM values,

an importance ranking is provided.

At time t = 20 Mission 1: u = 20 Mission 2: u = 30

Component F1

t Xi RIM i(u, t) Ranking RIM i(u, t) Ranking

C1 2 37.21 0.010 5 0.124 2

C2 1 - 0.038 3 0.036 5

C3 1 - 0.040 2 0.045 4

C4 2 40.60 0.105 1 0.096 3

C5 2 39.62 0.018 4 0.176 1

Table 3: RIM measure and ranking of individual components in two missions.

The numerical results show that given the components’ condition (states or degrada-

tion levels) at time t, the RIM value of each component depends on the mission duration

u. As a consequence, the RIM importance of a component may change with the con-

sidered mission horizon u. For example, when u = 20 (mission 1) the most important

component in improving the system reliability improvement for the mission interval [20

40] is C4. It should be noticed however that C4 may be no longer the most important one

another mission interval, e.g., C5 becomes the most important component when u = 30.

5.1.2 RIM of two-component groups

It is assumed now that two components can be replaced together at time t. To select

the “optimal” group which can provide the highest improvement in the system reliability,
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RIM measure is applied for all groups of two components. Table 4 reports the RIM

value of two-component groups and their importance ranking for two missions considered.

Mission 1: t = 20, u = 20 Mission 2: t = 20, u = 30

Group RIMG(u, t) Ranking RIMG(u, t) Ranking

(C1,C2) 0.049 9 0.178 7

(C1,C3) 0.051 8 0.196 6

(C1,C4) 0.117 2 0.278 3

(C1,C5) 0.029 10 0.406 1

(C2,C3) 0.082 5 0.086 10

(C2,C4) 0.105 3 0.105 9

(C2,C5) 0.057 7 0.238 5

(C3,C4) 0.104 4 0.108 8

(C3,C5) 0.058 6 0.259 4

(C4,C5) 0.125 1 0.353 2

Table 4: RIM measure and ranking of 2-component groups.

It is shown again that RIM measure depends on the mission duration u. Based on the

RIM value, the importance ranking for groups of two components is given. The results

show also that at a given time t, the importance ranking may be changed regarding to the

mission duration u. Group (C4,C5) is the most important group for a mission interval

[20 40] (t = 20, u = 20), i.e., group (C4,C5) should be selected to be preventively replaced

in order to improve the system reliability. However, group (C4,C5) is no longer the most

important one in interval [20 50] (t = 20, u = 30), otherwise, group (C1,C5) becomes the

most important and should be selected for preventive maintenance activities.

It should be noticed that the importance ranking of a group can not be deduced

from the importance ranking of its individual components. Indeed, looking at the results

reported in Table 3, for mission 1 (t = 20 et u = 20), the importance ranking of C3 is

higher than that of C5 but at the group level, group (C3,C4) is less important than group

(C4,C5). This can be explained by the joint effect on the system reliability when two

components are replaced together which is not additive.

5.2 RIM extension with consideration of costs: RIMc

In this section, the costs are assumed to be known. Table 5 reports the data related to

maintenance costs and durations of the system. It should be noticed that, in this study,
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all parameters are given in arbitrary units, e.g., arbitrary cost unit (acu) and arbitrary

time unit (atu). The down time cost rate is cd = 20 acu. The cost coefficients are

a = 40 and b = 10. It is also assumed all components are economically dependent. More

precisely, when two components (Ci,Cj) with i 6= j are preventively replaced together,

the total maintenance duration is equal to d(Ci,Cj) = max(di, dj) and its setup cost is

c
(Ci,Cj)
0 = max(ci0, c

j
0).

Unit C1 C2 C3 C4 C5

cip 100 50 50 130 120

ci0 15 8 8 10 15

di 2 1.5 1.5 1.5 2

Table 5: Cost parameters of a 5-component system.

To integrate the maintenance costs, the variant of RIM with consideration of costs,

RIMc, is applied for individual components and for groups of two components.

5.2.1 RIMc of individual components

The total preventive maintenance cost for each component is firstly calculated by using

Eq.(13). RIMc of individual components are then evaluated from Eq.(18), the obtained

results are reported in Table 6.

Mission 1: t = 20, u = 20 Mission 2: t = 20, t = 30

Component RIM i
c Ranking RIM i

c Ranking

C1 0.287 4 0.892 4

C2 1.012 2 0.964 3

C3 1.024 1 1.078 2

C4 0.816 3 0.744 5

C5 0.273 5 1.322 1

Table 6: RIMc indicator and ranking of individual components.

It is shown again that RIMc depends on the mission duration u. It is important to

note that the importance ranking based on RIMc is not the same as the one provided by

RIM (see again Table 3). This can be explained by the fact that RIM is related to the

improvement ability on the system reliability when a component is replaced. While RIMc

indicator focuses on the balance between the cost benefit thanks to the replacement of a
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component and its maintenance cost. More precisely, in the first case (u = 20, t = 20),

according to the RIM measure, C4 is the most important component. However, regarding

to the RIMc, C3 is the most important one. In addition, RIM i
c(20, 20) < 1 with i = 1, 4, 5

mean that, from a financial point of view, components C1, C4 and C5 are not cost-effective

for preventive maintenance at time t = 20 with u = 20. While in the second case (t = 20,

u = 30), C5 becomes cost-effective and ranks the first place.

5.2.2 RIMc of groups of two components

RIMc indicator is herein applied for all two-component groups and the obtained results

are reported in Table 7.

Mission 1: t = 20, u = 20 Mission 2: t = 20, u = 30

Group RIMG
c (u, t) Ranking RIMG

c (u, t) Ranking

(C1,C2) 0.320 7 1.168 7

(C1,C3) 0.324 6 1.382 6

(C1,C4) 0.451 5 2.255 4

(C1,C5) 0.194 10 8.418 1

(C2,C3) 0.841 1 0.873 8

(C2,C4) 0.521 3 0.517 10

(C2,C5) 0.301 9 1.836 5

(C3,C4) 0.522 2 0.533 9

(C3,C5) 0.318 8 2.358 3

(C4,C5) 0.457 4 4.486 2

Table 7: RIMc indicator and ranking of 2-component groups.

It is not surprising again that the importance ranking based on RIMc differs from

the one provided by RIM (see again Table 7). As an example of comparison, when

t = 20, u = 20, group (C1,C5) is the most important group according to the RIM , while,

regarding to the RIMc, group (C2,C3) becomes the most important one. It should be

however noticed that any group of two components is cost-effective when t = 20, u = 20.

5.3 Joint consideration of RIM and RIMc

Both RIM and RIMc can be considered jointly to find the most appropriate component.

Figure 6 shows the RIM vs RIMc of individual components for two cases (t=20, u=20)

and (t=20, u=30).

20



RIMc
0.2 0.4 0.6 0.8 1 1.2 1.4

R
IM

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

t=20, u=20

t=20, u=30

C
1

C
1

C
2

C
3

C
5

C
3

C
2

C
4

C
4

C
5

Cost effective zone

Figure 6: Joint consideration of RIM and RIMc for ranking individual components.

The most important components are given in the top right corner of the figure and

the components in the bottom left corner are the less important. It is clear that C4 is the

most important component for the period [20 ; 50] (t = 20, u = 30). When looking at

the period [20 ; 40] (t = 20, u = 20), it is difficult to find the most important component.

However, if the decision maker judges that the reliability is a priority criterion, C4 should

be then selected for preventive maintenance. Otherwise, if an improvement of 0.04 in the

system reliability is enough, C3 should be the best choice.

In the same manner, Figure 7 presents the RIM vs RIMc of two-component groups

for t=20, u=30. The results show that group (C1,C5) is the most important regarding to

both RIM and RIMc criteria.
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Figure 7: Joint consideration of RIM and RIMc for ranking two-component groups.

6 Conclusions

In this work, a time-dependent importance measure, namely RIM , is introduced for

multi-component systems. RIM provides the improvement ability on the system reliabil-

ity considering the current components’ condition (monitoring information on the states

or degradation levels) for a given mission horizon when a component/group components is

maintained. This measure could be used as an indicator for condition based maintenance

decision-making for a given mission to minimize the probability of system failure during

the mission. Moreover, an extension of RIM measure, called RIMc, which allows taking

into account both the improvement ability and different costs structures (maintenance

and benefit costs), is proposed. In that way, economic dependence between components is

considered and integrated to rank the importance of a group components. RIMc can help

to find the most cost-effective component/group of components. Both RIM and RIMc

are time-dependent. In addition, the current components’ condition may have also signif-

icant impacts on RIM measure and and its extension (RIMc). The use and advantages

of both RIM and RIMc measure are then illustrated through an numerical example of 5-
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non repairable components system. The numerical results show that, for a given mission,

RIM and RIMc may provide two different importance rankings. From a practical point

of view, RIM measure and its extension RIMc are complementary and should be jointly

considered in order to determine the most appropriate component/group of components

for maintenance decision-making.

Our future research works will focus on the investigation of RIM measures with con-

sideration of the stochastic dependence between components. Another perspective should

be the development of RIM measures in the link with remaining useful life (RUL).

Appendix

Appendix A. Reliability evaluation with gamma deteriora-

tion process

Assume that the degradation process of component i is described by a gamma processes

(X̃t)t≥0 which has the following characteristics:

• (X̃t)t≥0 has independent increments;

• for all 0 ≤ l < t, the random increment X̃t− X̃l follows a gamma probability density

(pdf) with shape parameter γi(t− l) and scale parameter ηi:

fXi
t
(x) =

1

Γ(γi(t− l))
η
γi(t−l)
i xγi(t−l)−1e−ηixI{x≥0},

where, I{x≥0} is an indicator function. I{x≥0} = 1 if x ≥ 0, I{x≥0} = 0 and otherwise;

The mean deterioration speed and its variance are γi/ηi and γi/η
2
i respectively. Various

deterioration behaviors can be modeled by changing the couple of parameters γi, ηi.

The reliability of component i can be evaluated as follows

Ri(t) =

∫ Zi

xi
0

1

Γ(γit)
ηγiti xγit−1e−ηixdx,

where xi0 is the degradation level of component i at time 0.
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Appendix B. Reliability evaluation with Weibull lifetime dis-

tribution

If the failure behavior of component i is described by Weibull stochastic process, its

lifetime follows then a probability density function (pdf) given by

f i
A(x) =

βi
αi

( t

αi

)(βi−1)
e
−
(

t
αi

)βi

,

where, parameters αi > 0 (scale parameter) and βi > 1 (shape or form parameter). The

reliability of component i is expressed as

Ri(t) = e
−( t

αi
)βi
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