Daniele Astolfi 
  
Romain Postoyan 
  
Dragan Nešić 
  
Uniting Observers

Keywords: Observers, nonlinear systems, hybrid systems, local performances, extended Kalman filters

We propose a framework for designing observers possessing global convergence properties and desired asymptotic behaviours for the state estimation of nonlinear systems. The proposed scheme consists in combining two given continuoustime observers: one, denoted as global, ensures (approximate) convergence of the estimation error for any initial condition ranging in some prescribed set, while the other, denoted as local, guarantees a desired local behaviour. We make assumptions on the properties of these two observers, and not on their structures, and then explain how to unite them as a single scheme using hybrid techniques. Two case studies are provided to demonstrate the applicability of the framework. Finally, a numerical example is presented.

I. INTRODUCTION

When designing an observer for a dynamical system, we first of all want to ensure that the produced state estimate converges towards the plant state as time grows. We also desire to ensure the following key properties:

(a) (domain of attraction) the convergence should be guaranteed irrespectively of the observer initialization; (b) (convergence speed) a certain convergence rate should be required for the observer to rapidly generate accurate estimates of the state; (c) (model robustness) the estimate needs to be accurate even in presence of model uncertainties; (d) (sensitivity to noise) the quality of the estimation should not be too sensitive to measurement noise. It is very difficult, if not impossible 1 , to address all these requirements at the same time, in particular when dealing with nonlinear finite-dimensional systems. Hence, the observer design often results in a trade-off between some of the properties listed above. For instance, high-gain observers (HGO), see e.g., [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF], or sliding mode observers, see e.g., [START_REF] Shtessel | Sliding mode control and observation[END_REF], typically satisfy requirements (a), (b), and (c), but fail in (d). Extended Kalman filters (EKF) on the other hand, see e.g., [START_REF] Bonnabel | A contraction theory-based analysis of the stability of the deterministic extended kalman filter[END_REF], [START_REF] Krener | The convergence of the extended kalman filter[END_REF], ensure the properties (b), (c), and (d), but do not guarantee (a) in general. A natural idea to overcome these limitations is therefore that of combining different observers or gains to inherit the "good" properties of each of them. This a D. Astolfi is with Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69100, Villeurbanne, France (daniele.astolfi@univ-lyon1.fr). b Postoyan is with the Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France. (romain.postoyan@univ-lorraine.fr).
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approach, often used by practitioners, have been studied by means of switching, adaptive or gain-scheduling strategies, see for instance [START_REF] Sanfelice | On the performance of high-gain observers with gain adaptation under measurement noise[END_REF]- [START_REF] Postoyan | A multi-observer approach for the state estimation of nonlinear systems[END_REF].

The main limitation of these works is that these apply to specific classes of systems or observers. To the best of our knowledge, if we are given two observers, each of them satisfying a subset of properties (a)-(d), no general methodology is available to unite them in a single estimation scheme satisfying all the properties (a)-(d). Such results exist, on the other hand, in the context of control, see e.g., [START_REF] Prieur | Uniting local and global controllers[END_REF]- [START_REF] Prieur | Uniting local and global controllers with robustness to vanishing noise[END_REF].

The objective of this paper is therefore to propose a framework to combine two given observers in order to obtain a uniting observer inheriting the "good features" of each of them, thus providing a rigorous foundation and guidelines for this technique, which is commonly used in practice. We provide a set of assumptions on the observers and we then explain how to unite them using a hybrid scheme. The two initial observers can be constructed using various techniques borrowed from the literature, see e.g., [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF], [START_REF] Bonnabel | A contraction theory-based analysis of the stability of the deterministic extended kalman filter[END_REF], [START_REF] Boizot | An adaptive high-gain observer for nonlinear systems[END_REF], [START_REF] Zemouche | On lmi conditions to design observers for lipschitz nonlinear systems[END_REF]- [START_REF] Astolfi | Low-power peakingfree high-gain observers[END_REF], and they do not need to be of the same type and of the same dimension, namely we can unite a HGO and an EKF for instance.

Inspired by [START_REF] Prieur | Uniting local and global output feedback controllers[END_REF], where the problem of uniting two outputfeedback controllers is addressed, we suppose to know two observers. One is denoted as the global observer and ensures a global2 domain of attraction, and possibly a certain rate of convergence. The other one is referred to as the local observer, its convergence is only ensured in a neighborhood of the plant trajectory and guarantees some desired performances in presence of measurement noise. The idea we pursue is to use the former when the estimation error is large, namely during transients, and latter when the estimation error is small, namely the asymptotic behaviour. A hysteresis switching mechanism is used to select one observer at a time. This mechanism, in the ideal case, should be based on the state estimation errors produced by the two observers. However, the state estimation errors are not directly available. As a consequence, these are estimated by means of a dynamical system processing the output of the plant and the outputs of the observers. The construction follows the design of norm estimators proposed in [START_REF] Krichman | Input-output-to-state stability[END_REF] for input-output-to-state stable (IOSS) systems. The proposed switching mechanism is able to switch back and forth between the two observers. At the end, the resulting uniting observer guarantees the following properties: global convergence of the estimation error; finite number of switches under some conditions on the measurement noise; asymptotic behavior coinciding with that of the local observer.

Two case studies are presented to illustrate the applicability of the framework. We first unite an EKF with a globally asymptotically convergent observer, which can be designed by applying any of the techniques in [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF], [START_REF] Zemouche | On lmi conditions to design observers for lipschitz nonlinear systems[END_REF], [START_REF] Rajamani | Observers for lipschitz nonlinear systems[END_REF], [START_REF] Besanc | Nonlinear observers and applications[END_REF]- [START_REF] Arcak | Nonlinear observers: a circle criterion design and robustness analysis[END_REF], [START_REF] Gauthier | Deterministic observation theory and applications[END_REF]. The interest here is to exploit the local good properties of the EKF together with the global convergence of the other observer. We then study the scenario where the same type of global observer is available, except that the convergence is no longer asymptotic but approximate, in the sense that the estimation error does not converge to zero with time, but "close" to it. This case is interesting when we do not know a global asymptotic observer, but we have an EKF, which we would like to work globally.

The main ideas of this work are inspired by the dual problem of uniting controllers addressed in [START_REF] Prieur | Uniting local and global output feedback controllers[END_REF]. Although the proposed design is conceptually similar to [START_REF] Prieur | Uniting local and global output feedback controllers[END_REF], the problems of uniting controllers and uniting observers are very different from the technical point of view. The main difference is that, in the former, one has to know how far is the current system state from the desired equilibrium point, while in the latter, we need to know the distance between the observer estimate and the current system state, which is in general a time-varying trajectory, and thus more challenging. Although in the case of linear systems these two problems coincide, this is no longer true in presence of nonlinear dynamics and results to be a crucial difference between the stabilization of an equilibrium and the stabilization of a time-varying trajectory. This issue arises in a large number of control problems, such as observer design, tracking, output regulation, or synchronization. For this reason, it is not possible to use "off-the shelf" the results proposed in [START_REF] Prieur | Uniting local and global output feedback controllers[END_REF] in the context of stabilization to solve the problem of uniting observers: different assumptions, design and analysis tools are needed.

Compared to the preliminary version of this work in [START_REF] Astolfi | Uniting local and global observers for the state estimation of nonlinear continuous-time systems[END_REF], completely novel elements include: a new design based on different assumptions; the explicit consideration of the measurement noise; two case studies. Finally, the construction proposed in [START_REF] Astolfi | Uniting local and global observers for the state estimation of nonlinear continuous-time systems[END_REF] is presented in Section III-D with its complete proof, contrary to [START_REF] Astolfi | Uniting local and global observers for the state estimation of nonlinear continuous-time systems[END_REF].

The rest of the paper is organized as follows. Notations and definitions are briefly recalled in Section II. We provide the main result in Section III. Then, the two case studies are presented in Section IV. A numerical example is given in Section V. The proofs of the results are detailed in Section VI. Finally, conclusions and future perspectives are discussed in Section VII.

II. PRELIMINARIES

The notation R stands for the set of real numbers, R ≥0 := [0, ∞), Z is the set of integer numbers, Z ≥0 := {0, 1, 2, . . .} and Z >0 := {1, 2, . . .}. Given x ∈ R n and y ∈ R m , we denote (x, y) := (x , y ) . The notation |x|, with x ∈ R n , stands for the standard Euclidean norm, while |A|, with A ∈ R m×n is used for the standard induced matrix norm. A continuous function α : R ≥0 → R ≥0 is of class K if it is strictly increasing and α(0) = 0, and it is of class

K ∞ if, in addition, lim r→∞ α(r) = ∞. A continuous function β : R ≥0 × R ≥0 → R ≥0 is of class KL if, for any s ∈ R ≥0 , β(•, s) ∈ K,
and, for each r ∈ R ≥0 , the function β(r, s) is decreasing with s and satisfies lim s→∞ β(r, s) = 0. We compactly write α ∈ K, α ∈ K ∞ , β ∈ KL. Given a matrix P ∈ R n×m , we denote by vec(P ) the vectorization of the matrix, namely vec(P ) := (p 11 , . . . , p 1m , p 21 , . . . , p 2m , . . . , p n1 , . . . , p nm ), where p ij is the i, j entry of P . We denote by diag(a 1 , . . . , a n ) a matrix whose diagonal entries are given respectively by a 1 , . . . , a n and all the other entries are zero. The symbol I denotes the identity matrix of appropriate dimension which will be made clear by the context.

We consider hybrid systems with state x ∈ X ⊆ R nx and input u ∈ U ⊆ R nu in the formalism of [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF], [START_REF] Goebel | Hybrid dynamical systems[END_REF], namely

H : ẋ = F (x, u), (x, u) ∈ C × U, x + = G(x, u), (x, u) ∈ D × U,
where C ⊆ X is the flow set, D ⊆ X is the jump set, F is the flow map and G is the jump map. Solutions to system (1) are defined on hybrid time domains. A set

E ⊂ R ≥0 × Z >0 is a compact hybrid time domain if E = J j=0 ([t j , t j+1 ], j)
for some finite sequence of times 0 = t 0 ≤ t 1 ≤ . . . ≤ t J+1 and it is a hybrid time domain if for all (T, J) ∈ E, E ∩ ([0, T ] × {0, 1, . . . , J}) is a compact hybrid time domain. On each hybrid time domain we use the natural ordering relation

(t 0 , j 0 ) (t 1 , j 1 ) if t 0 + j 0 ≤ t 1 + j 1 . Given a hybrid time domain E, we define sup t E := sup{t ∈ R ≥0 : ∃ j ∈ Z ≥0 such that (t, j) ∈ E}, sup j E := sup{j ∈ Z ≥0 : ∃ t ∈ R ≥0 such that (t, j) ∈ E}.
A hybrid signal is a function defined on a hybrid time domain. A hybrid signal u : dom u → U is called a hybrid input if u(•, j) is measurable and locally essentially bounded for each j. A hybrid signal x : dom x → X is called a hybrid arc if x(•, j) is locally absolutely continuous for each j. A hybrid arc x : dom x → X and a hybrid input u : dom u → U is a solution pair (x, u) to H in if dom x = dom u, (x(0, 0), u(0, 0)) ∈ (C ∪ D) × U, and

• for all j ∈ Z ≥0 and almost all t such that (t, j) ∈ dom x, (x(t, j), u(t, j)) ∈ C × U and ẋ = F (x(t, j), u(t, j)); • for all (t, j) ∈ dom x such that (t, j + 1) ∈ dom x, (x(t, j), u(t, j)) ∈ D × U and x(t, j + 1) = G(x(t, j), u(t, j)). A solution pair (x, u) to H is maximal if it cannot be extended and it is complete if dom x is unbounded. In the sequel, each time we talk of solutions we mean maximal solutions.

Given any hybrid signal w : dom w → R nw , we define w ∞ := max{sup (t,j)∈Γ(w) |w(t, j)|} where Γ(w) denotes the set of all (t, j) ∈ dom w such that (t, j + 1) ∈ dom w.

By adopting the same notation, we denote by (x, u) a solution pair, with the x-component initialized in X and control u taking values in U, to a differential equation of the form ẋ = f (x, u), with state x ∈ X ⊆ R nx and input u ∈ U ⊆ R nu . Given any continuous signal w : [0, ∞) → R nw , we define

w ∞ := sup t∈[0,∞) |w(t)|.

III. UNITING OBSERVER DESIGN

This section is structured as follows. We formulate the uniting observer problem in Section III-A. Then, we present the assumptions we make in Section III-B. The main result, in which we show how to design a hybrid observer solving the uniting observer problem, is given in Section III-C. An alternative design, based on different assumptions, is finally proposed in Section III-D.

A. Problem Statement

We consider nonlinear systems of the form

ẋ = f (x, u) , y = h(x, w) , (1) 
where x ∈ X ⊆ R nx is the state, u ∈ U ⊆ R nu is a known input, y ∈ R ny is the measured output, and w ∈ W ⊆ R nw represents an unknown measurement noise, with n x , n u , n y , n w ∈ Z >0 . The sets X , U, W are closed, the functions f, h are locally Lipschitz, and the signals corresponding to u and w in (1) are defined for all positive times, Lebesgue measurable and locally essentially bounded.

We assume that we know two observers for system (1). One is referred to as the local observer, and the other one as the global observer. The local observer is the one we want to use when the estimation error is small, while the global observer guarantees that the estimation error becomes eventually sufficiently small for any possible initialization. The state variables and the functions related to those observers will be indexed respectively with 0 (local) and 1 (global).

The dynamics of the local observer is described by

ζ0 = ϕ 0 (ζ 0 , u, y), x0 = ϑ 0 (ζ 0 ), ŷ0 = h(x 0 , 0), (2) 
where ζ 0 ∈ Z 0 ⊆ R n0 is the observer state, n 0 ∈ Z >0 is the observer dimension satisfying3 n 0 ≥ n x , and x0 ∈ R nx is the estimate of x. The set Z 0 is closed and the functions ϕ 0 , ϑ 0 are assumed to be locally Lipschitz. Loosely speaking, observer (2) is local and asymptotic in the sense that if the initial estimation error |x(0) -x0 (0)| is small enough, then convergence of the estimation error in absence of measurement noise is guaranteed, namely lim t→∞ |x(t) -x(t)| = 0. This property is rigorously stated in Section III-B. Although any observer which has global (or semiglobal) convergence properties satisfy this condition, local observers are of particular interest because they are often easy to design and they usually possess good robustness properties in presence of (small) measurement noise. A typical example is the EKF or its variations, see e.g., [START_REF] Bonnabel | A contraction theory-based analysis of the stability of the deterministic extended kalman filter[END_REF], [START_REF] Krener | The convergence of the extended kalman filter[END_REF], [START_REF] Reif | An ekf-based nonlinear observer with a prescribed degree of stability[END_REF], [START_REF] Hamid | Local observers design for a class of neural mass models[END_REF].

The global observer for system (1) is of the form

ζ1 = ϕ 1 (ζ 1 , u, y), x1 = ϑ 1 (ζ 1 ), ŷ1 = h(x 1 , 0), (3) 
where

ζ 1 ∈ Z 1 ⊆ R n1 is the observer state, n 1 ∈ Z >0
is the observer dimension satisfying n 1 ≥ n x (similarly to (2)), and x1 ∈ R nx is the estimate of x. The set Z 1 is closed and the functions ϕ 1 , ϑ 1 are assumed to be locally Lipschitz.

Examples of global observers can be found in [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF], [START_REF] Zemouche | On lmi conditions to design observers for lipschitz nonlinear systems[END_REF], [START_REF] Astolfi | Integral action in output feedback for multiinput multi-output nonlinear systems[END_REF], [START_REF] Arcak | Nonlinear observers: a circle criterion design and robustness analysis[END_REF], [START_REF] Shim | Nonlinear observer design via passivation of error dynamics[END_REF] for n 1 = n x and in [START_REF] Bernard | Observer Design for Nonlinear Systems[END_REF], [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF]- [START_REF] Wang | High-gain observers with limited gain power for systems with observability canonical form[END_REF], [START_REF] Astolfi | Low-power peakingfree high-gain observers[END_REF], [START_REF] Efimov | Interval state observer for nonlinear time varying systems[END_REF] for

n 1 > n x .
Other examples are given in Section IV.

The main idea of this work is to combine observers (2) and (3) in order to benefit from the advantages of each of them. To address this problem, we aim at designing a hybrid observer of the general form below, based on (2) and (3),

ξ = F (ξ, u, y), ξ ∈ C, ξ + = G(ξ, u, y), ξ ∈ D, x = H(ξ), (4) 
where ξ ∈ R n ξ is the observer state, n ξ ∈ Z >0 , C ⊆ R n ξ and D ⊆ R n ξ are closed set, and x is the estimate of x. As a result, system (1) and observer (4) lead to the overall hybrid system below

ẋ = f (x, u) ξ = F (ξ, u, y) (x, ξ, u, w) ∈ X × C × U × W, x + = x ξ + = G(ξ, u, y) (x, ξ, u, w) ∈ X × D × U × W,
x = H(ξ) y = h(x, w) .

(5) Note that (u, w) needs to be defined on hybrid time domains in [START_REF] Krener | The convergence of the extended kalman filter[END_REF]. With some abuse of notation, we consider, throughout the rest of the paper, u and w, that are defined in such way that their values agree with (u(t), w(t)) during flows, do not change during jumps, and their hybrid time domains correspond to that of (x, ξ).

Our objective is to construct (4) to solve the problem stated next.

Definition 1 (Uniting observer). The observer (4) solves the uniting problem for system (1) if the following holds.

(a) (Completeness of solutions and finite number of jumps)

Any solution pair4 ((x, ξ), (u, w)) to (5) is complete and satisfies sup t dom(x, ξ) = +∞, sup j dom(x, ξ) < ∞. (b) (Global convergence) There exists γ ∈ K such that any solution pair ((x, ξ), (u, w)) to (5) satisfies

lim sup t+j→∞ |x(t, j) -x(t, j)| ≤ γ( w ∞ ). (6) 
(c) (Local behaviour) There exists a set B ⊆ X × (C ∪ D) such that any solution pair ((x, ξ), (u, w)) to (5) with (x(0, 0), ξ(0, 0)) ∈ B, has hybrid time domain [0, ∞) × {0}, and x(t, 0) = x0 (t) for all t ∈ [0, ∞), where x0 is a solution to (1), [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF].

Item (a) of Definition 1 means that the solutions of the hybrid observer (4) are complete, that no Zeno behaviour can occur and that switches stop in finite time. Item (b) of Definition 1 ensures that the estimation error has an asymptotic gain property with respect to the measurement noise with a global domain of attraction 5 . When there is no noise, i.e. w = 0, the global asymptotic convergence of the estimation error x -x is ensured. Finally, item (c) of Definition 1 guarantees that only the local observer (2) is used if observer (4) is initialized in such way that (x, ξ) is in the set B at the initial time. The rationale of the scheme we construct in the following is illustrated in Figure 1. We want to use the global observer (3) during transients, when the estimation error is large. Then, when |x 1 -x| is small enough, we reset the variables of the local observer (2) according to the estimate x1 provided by the global observer. Afterwards, we let the local observer run. This switching mechanism cannot be implemented in open loop, i.e. based on time only, for robustness reasons. We want a supervisor mechanism, which is able to switch between the two observers in order to cope with possible wrong initializations or large disturbances w, as depicted in Figure 2. This mechanism therefore needs to rely on |x 0 -x| and |x 1 -x|, but these quantities are not accessible since we do not know x. Inspired by [START_REF] Prieur | Uniting local and global output feedback controllers[END_REF], [START_REF] Krichman | Input-output-to-state stability[END_REF], we use instead estimates of these values based on the measured output y and the estimated outputs ŷ0 , ŷ1 . To do so, we need to make several assumptions, which are now presented.

B. Assumptions

First of all, we suppose that the dynamics of system (1) and observers (2) and (3) are well posed in the sense that solutions are defined for all t ≥ 0.

Standing Assumption (System and observers dynamics). The following holds. (i) For any initial condition (x(0), ζ 0 (0), ζ 1 (0)) ∈ X × Z 0 × Z 1 , and any input (u, w) taking values in U × W, any corresponding solution pair to (1), ( 2), ( 3) is unique, defined on [0, ∞), and

(x(t), ζ 0 (t), ζ 1 (t)) ∈ X × Z 0 × Z 1 for all t ∈ [0, ∞).
(ii) There exists a function Θ : R n1 → R n0 such that Θ(ζ 1 ) ∈ Z 0 and ϑ 1 (ζ 1 ) = ϑ 0 (Θ(ζ 1 )) for all ζ 1 ∈ Z 1 , where ϑ 0 , ϑ 1 come from (2) and (3), respectively.

Item (i) of Standing Assumption states that the trajectories of the system (1) and of the observers (2), (3) are well defined and lie in the sets X , Z 0 , Z 1 for all times. As a consequence, these sets will in general be chosen large. In some cases, the dynamics of the observers may need to be modified to guarantee this property. This can be done for instance by using the technique proposed in [START_REF] Astolfi | Low-power peakingfree high-gain observers[END_REF] or by modifying the definition of the jump maps and the flow and jump sets in (4), by resetting the state ζ 0 inside Z 0 when it is close to the boundary of Z 0 , Z 1 . We do not address this last issue in order not to blur our the main message of this work.

Function Θ in item (ii) of Standing Assumption is needed to map the global observer variable ζ 1 to the local observer variable ζ 0 , which is essential when the local observer is activated. In particular, when this occurs, we will take ζ + 0 = Θ(ζ 1 ). Hence, since Θ(ζ 1 ) ∈ Z 0 for any ζ 1 ∈ Z 1 , we are sure that the reset value of ζ 0 lies in Z 0 , as required. Moreover, item (ii) ensures also that x+ 0 = x1 . When the dimensions of the observers coincide and their dynamics are expressed in the same coordinates, Θ is simply the identity map. Additional examples of Θ are provided in Section IV.

The next assumption formalizes the properties of local observer (2).

Assumption 1 (Local observer).

There exist a continuous function V 0 : X × Z 0 → R ≥0 , γ 0 ∈ K, and ε 0 > ε 0 > 0, such that the following holds.

(i) (Local convergence) Any solution pair ((x, ζ 0 ), (u, w)) to

(1), [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF], with initial condition such that V 0 (x(0), ζ 0 (0)) ≤ ε 0 , satisfies lim sup t→∞ |x(t) -x0 (t)| ≤ γ 0 ( w ∞ ). (ii) (Invariance property) Any solution pair ((x, ζ 0 ), (u, w)) to

(1), (2), with initial condition such that V 0 (x(0),

ζ 0 (0)) ≤ ε 0 , satisfies V 0 (x(t), ζ 0 (t)) ≤ ε 0 for all t ∈ [0, ∞).
The function V 0 is used to characterize the domain of attraction of local observer (2), which contains the set

{(x, ζ 0 ) : V 0 (x, ζ 0 ) ≤ ε 0 }, see item (i) of Assumption 1.
On the other hand, when the initial estimation error satisfies V 0 (x(0), ζ 0 (0)) ≤ ε 0 , then it has an asymptotic gain property with respect to the measurement noise w, and converges asymptotically to zero when w(t) = 0 for all t ≥ 0, since γ 0 (0) = 0, according to item (i) of Assumption 1. Function V 0 typically corresponds to the Lyapunov function that is used to prove the convergence of the local observer and satisfies

α 0 (|x -x0 |) ≤ V (x, ζ 0 ) for some α 0 ∈ K. According to this interpretation, {(x, ζ 0 ) : V 0 (x, ζ 0 ) ≤ ε 0 } can be viewed as an invariant Lyapunov level set of size ε 0 , see item (ii) of Assumption 1.
In general the values of ε 0 , ε 0 depend on the maximum allowed magnitude of the measurement noise, namely on sup w∈W |w|.

In the next assumption we suppose that function V 0 , evaluated along the solutions to (1), [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF], can be overestimated by a dynamical system. The latter will be essential to detect when to activate the local observer.

Assumption 2 (Estimator of V 0 ). There exist a continuous function ρ 0 : R ny × R ny → R ≥0 satisfying ρ 0 (y, y) = 0 for any y ∈ R ny , β 0 ∈ KL, a 0 , b 0 , c 0 > 0 and v 0 ≥ 0, such that, under Assumption 1, the following holds. (i) Any solution pair ((x, ζ 0 ), (u, w)) to (1), (2), satisfies

V 0 (x(t), ζ 0 (t)) ≤ a 0 z 0 (t)+β 0 (V 0 (x(0), ζ 0 (0))+z 0 (0), t)+v 0 for all t ≥ 0, where z 0 is the solution to ż0 = -b 0 z 0 + ρ 0 (y, ŷ0 ) (7) 
with initial condition z 0 (0

) ∈ R ≥0 . (ii) The function ρ 0 satisfies sup ρ 0 (y, ŷ0 ) : (x, ζ 0 ) ∈ X × Z 0 , V 0 (x, ζ 0 ) ≤ ε 0 , w ∈ W ≤ b 0 c 0 , where y = h(x, w) and ŷ0 = h(ϑ 0 (ζ 0 ), 0). (iii) ε 0 ≤ a 0 c 0 < ε 0 -v 0 .
Assumption 2 states that function V 0 can be overestimated via the dynamical system [START_REF] Boizot | An adaptive high-gain observer for nonlinear systems[END_REF], which is called in the following as a norm estimator, to be consistent with the terminology coined in [START_REF] Krichman | Input-output-to-state stability[END_REF]. In particular, in view of item (i) of Assumption 2, and the fact that β 0 ∈ KL, the state z 0 asymptotically provides an upper bound of V 0 , up to the constant v 0 . The norm estimator [START_REF] Boizot | An adaptive high-gain observer for nonlinear systems[END_REF] can thus be used to detect whether the state of the local observer ( 2) is in the domain of attraction [START_REF] Boizot | An adaptive high-gain observer for nonlinear systems[END_REF] and item (ii) of Assumption 2, we obtain lim t→∞ z 0 (t) ≤ c 0 , which implies, in view of items (i) and (iii) of Assumption 2 and the properties of β 0 , that lim sup t→∞ V 0 (x(t), ζ 0 (t)) ≤ a 0 c 0 + v 0 < ε 0 . In other words, any solution (x, ζ 0 ) satisfying z 0 ≤ c 0 for a large enough amount of time ensures that the local observer is asymptotically converging to the plant state, up to the perturbing term due to w, see item (i) of Assumption 1.

V 0 (x, ζ 0 ) ≤ ε 0 , established by Assumption 1. For this, note that if (x(t), ζ 0 (t)) satisfies V 0 (x(t), ζ 0 (t)) ≤ ε 0 for all t ≥ 0, then, in view of
Item (i) of Assumption 2 is always satisfied when the system is uniformly observable (see [START_REF] Gauthier | Deterministic observation theory and applications[END_REF]), namely when a global asymptotic observer exists, as shown in [START_REF] Boizot | An adaptive high-gain observer for nonlinear systems[END_REF] and explained in Section IV. If there exist 0 , ψ 0 ∈ K such that the function V 0 satisfies, along any solution to (1), ( 2), the following differential inequality

V0 ≤ -b 0 V 0 + 0 (|y -ŷ0 |) + ψ 0 (|w|), (8) 
then, item (i) of Assumption 2 is verified by selecting any

ρ 0 such that ρ 0 (s 1 , s 2 ) ≥ 0 (|s 1 -s 2 |) for all s 1 , s 2 ∈ R ny and v 0 = b -1 0 sup w∈W ψ 0 (|w|).
To see this, it suffices to apply the comparison principle to the following differential inequality obtained by subtracting [START_REF] Boizot | An adaptive high-gain observer for nonlinear systems[END_REF] to ( 8)

V0 -ż ≤ -b 0 (V 0 -z 0 ) + 0 (|y -ŷ0 |) -ρ 0 (y, ŷ0 ) + ψ 0 (|w|) ≤ -b 0 (V 0 -z 0 ) + b 0 v 0 .
Item (ii) of Assumption 2 is then satisfied by properly selecting the constant a 0 , c 0 . Note that the constant v 0 ≥ 0 is a bias introduced by the measurement noise. When the noise is not present, we have in general v 0 = 0; however, if it is too large, item (iii) of Assumption 2 may not be satisfied. This means that our results are, in general, valid for "small" noise.

Depending on the design of the observer, the function 0 in (8) may be a degree of freedom or imposed by the structure of V 0 . See further examples in Section IV.

In the next assumption, we define the properties of the global observer (3).

Assumption 3 (Global observer). There exist a continuous function

V 1 : X × Z 1 → R ≥0 and ε 1 > 0 such that, any solution pair ((x, ζ 1 ), (u, w)) to (1), (3), satisfies lim sup t→∞ V 1 (x(t), ζ 1 (t)) < ε 1 .
The function V 1 is used to characterize the asymptotic behaviour of the global observer. Typically, the function V 1 is the Lyapunov function constructed to show the convergence of the global observer and satisfies

α 1 (|x-x 1 |) ≤ V 1 (x, ζ 1 ) for some α 1 ∈ K ∞ .
In this case, ε 1 characterizes the ultimate bound of the estimation error of (3) and depends, in general on the magnitude of the measurement noise, namely on sup w∈W |w|. When w = 0, the value of ε 1 depends on the properties of the observer (3) and may be selected arbitrarily small if the observer is asymptotically convergent.

The next assumption states that function V 1 can be overestimated by a dynamical system.

Assumption 4 (Estimator of V 1 ). There exist a continuous function ρ 1 : R ny × R ny → R ≥0 , a 1 , b 1 , c 1 , ε 1 > 0, and v 1 ≥ 0, such that, under Assumption 3, the following holds. (i) Any solution pair ((x, ζ 1 ), (u, w)) to (1), (3), satisfies V 1 (x(t), ζ 1 (t)) ≤ a 1 z 1 (t)+β 1 (V 1 (x(0), ζ 1 (0))+z 1 (0), t)+v 1 for all t ∈ [0, ∞), where z 1 is the solution to ż1 = -b 1 z 1 + ρ 1 (y, ŷ1 ) (9) 
with initial condition z 1 (0) ∈ R ≥0 . (ii) The function ρ 1 satisfies sup{ρ 1 (y, ŷ1 ) : (x, ζ 1 ) ∈ X × Z 1 , V 1 (x, ζ 1 ) ≤ ε 1 , w ∈ W} ≤ b 1 c 1 , where y = h(x, w) and ŷ1 = h(ϑ 1 (ζ 1 ), 0). (iii) ε 1 ≤ a 1 c 1 < ε 1 -v 1 .
Assumption 4 is the counterpart of Assumption 2 for global observer (3) and the same interpretation holds for the function V 1 and its norm estimator [START_REF] Clement | An interpolation method for gain-scheduling[END_REF].

Finally, for the approach to work, we need the ultimate bound of the estimation error provided by global observer (3) to be included in the basin of attraction of local observer (2). This condition is referred to as the matching condition6 .

Assumption 5 (Matching condition). For any

(x, ζ 1 ) ∈ X × Z 1 satisfying V 1 (x, ζ 1 ) ≤ ε 1 , then V 0 (x, Θ(ζ 1 )) ≤ ε 0 , where Θ is defined in the Standing Assumption, V 0 , ε 0 in Assumption 1, V 1 in Assumption 3 and ε 1 in Assumption 4. Assumption 5 requires that {(x, ζ 1 ) : V 1 (x, ζ 1 ) ≤ ε 1 } is included in {(x, ζ 0 ) : V 0 (x, ζ 0 ) ≤ ε 0 }, when ζ 0 = Θ(ζ 1 )
, as depicted in Figure 3. Recall that, in view of Assumption 3, solutions to (1), [START_REF] Shtessel | Sliding mode control and observation[END_REF] 

enters in the set {(x, ζ 1 ) : V 1 (x, ζ 1 ) ≤ ε 1 }.
Moreover, this can be detected via the norm estimator [START_REF] Clement | An interpolation method for gain-scheduling[END_REF], see

ε 0 ε 0 ε 1 Fig. 3: Matching condition of Assumption 5. Dashed green line: level sets of V 0 (x, ζ 0 ). Red line: level sets of V 1 (x, ζ 1 ).
Assumption 4. As a consequence, Assumption 5 guarantees that, after a sufficient long amount of time, we can reset ζ + 0 = Θ(ζ 1 ), with Θ defined in the Standing Assumption, in order to guarantee asymptotic convergence of the local observer [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF], see item (i) of Assumption 1.

Remark 1 (Relaxing the matching condition). Assumption 5 may be difficult to verify. This may occur when the basin of attraction of local observer (2) is too small, namely ε 0 is too small; the global observer (3) is not enough accurate, namely ε 1 is too large, or the effect of the measurement noise w is too large, namely the level set ε 1 of V 1 that can be estimated via z 1 is too large. In these cases, one can overcome this problem by enlarging the domain of attraction of the local observer by replacing local observer (2) with a bank of local observers and by using the multi-observer design technique in [START_REF] Postoyan | A multi-observer approach for the state estimation of nonlinear systems[END_REF].

C. Main result

We are now in the position to state the main result of this paper, namely the design of hybrid observer (4), which solves the uniting observer problem of Definition 1.

The proposed hybrid observer consists of six components: local observer (2), global observer (3), norm estimators (7), [START_REF] Clement | An interpolation method for gain-scheduling[END_REF], a temporal regularization τ , which may be added to prevent undesired consecutive jumps, and a logic variable q taking values in {0, 1} defining which state estimate, x0 or x1 , we need to use. In particular, we design the following hybrid observer

ζ0 = (1 -q)ϕ 0 (ζ 0 , u, y) ζ1 = ϕ 1 (ζ 1 , u, y) ż0 = (1 -q)(-b 0 z 0 + ρ 0 (y, ŷ0 )) ż1 = -b 1 z 1 + ρ 1 (y, ŷ1 ) τ = q q = 0                ξ ∈ C (10a) ζ + 0 = qΘ(ζ 1 ) + (1 -q) ζ 0 ζ + 1 = ζ 1 z + 0 = 0 z + 1 = z 1 τ + = 0 q + = 1 -q                ξ ∈ D (10b) x = (1 -q)x 0 + q x1 , (10c) 
in which we use the definitions of x0 , x1 , ŷ0 and ŷ1 , given in ( 2), (3). The overall state ξ ∈ O ⊆ R n ξ , with O := Z 0 × Z 1 × R 4 and n ξ := n 0 + n 1 + 4, is therefore defined as

ξ := (ζ 0 , ζ 1 , z 0 , z 1 , τ, q) ∈ R n ξ = R n0 × R n1 × R 4 . (11a)
The sets C ∪ D ⊆ O are defined as

C := C 0 ∪ C 1 and D := D 0 ∪ D 1 , with C 0 := ξ ∈ O : z 0 ∈ [0, c 0 ], z 1 ∈ [0, ∞), τ ∈ [0, ∞), q = 0 , C 1 := ξ ∈ O : z 0 = 0, z 1 ∈ [c 1 , ∞) or τ ∈ [0, T ] , q = 1 , D 0 := ξ ∈ O : z 0 ∈ [c 0 , ∞), z 1 ∈ [0, ∞), τ ∈ [0, ∞), q = 0 , D 1 := ξ ∈ O : z 0 = 0, z 1 ∈ [0, c 1 ], τ ∈ [T, ∞), q = 1 , (11b) 
where c 0 , c 1 > 0 are design parameters to be properly chosen. According to the definition of the set C, the parameter T is used to enforce a minimum amount of time T of flow after a jump when it is taken strictly positive, when flowing in the set C 1 defined in (11b). This is a degree of freedom we allow. Note that according to the definition of [START_REF] Postoyan | A multi-observer approach for the state estimation of nonlinear systems[END_REF], we can use the compact notation (4) by defining F, G, H as

F (ξ, u, y) := (1 -q)ϕ 0 (ζ 0 , u, y), ϕ 1 (ζ 1 , u, y), (1 -q)(-b 0 z 0 + ρ 0 (y, h(ϑ 0 (ζ 0 ), 0)), -b 1 z 1 + ρ 1 (y, h(ϑ 1 (ζ 1 ), 0)), q, 0 , (11c) G(ξ, u, y) := qΘ(ζ 1 ) + (1 -q) ζ 0 , ζ 1 , 0, z 1 , 0, 1 -q , (11d) H(ξ) := (1 -q)ϑ 0 (ζ 0 ) + qϑ 1 (ζ 1 ). (11e) 
The proposed hybrid observer [START_REF] Postoyan | A multi-observer approach for the state estimation of nonlinear systems[END_REF] has two different operating modes. When q = 1, we use global observer [START_REF] Shtessel | Sliding mode control and observation[END_REF]. Thanks to the norm estimator (9), we can detect when the estimate x1 is close enough to the true value of the estimated state x. The temporal regularization τ imposes to use global observer for at least a T units of (continuous) time. This is only done to avoid unnecessary multiple consecutive jumps in the scheme [START_REF] Postoyan | A multi-observer approach for the state estimation of nonlinear systems[END_REF] and to always enforce a flow after a jump when T > 0. Note that since T can be chosen arbitrarily small, as we will see, we do not lose in generality in designing the proposed hybrid scheme from a practical point of view. When q = 0, the estimate is given by the local observer. A wrong behaviour of the local observer, namely when its estimate is not converging to the trajectory of the plant, is detected when the state of norm estimator z 0 becomes too large. In this case, a jump is imposed and we change the operating mode. Note that, when q = 0, global observer (3) is still used as a "safeguard". In particular, since the state of global observer (3) is never reset, after a time large enough, we know that its estimate always satisfies the bounds in item (i) of Assumption 4. As a result, unwanted behaviours, such as infinitely many switches in absence of measurement noise, are avoided.

The next theorem states the main result of this paper.

Theorem 1. Suppose Assumptions 1 to 5 hold. Let T ∈ [0, ∞), c 0 ∈ (c 0 , c 0 ) with c 0 = ε 0 -v0 a0 , and c 1 ∈ (c 1 , c 1 ), with c 1 = ε 1 -v1
a1 , where7 a 0 , a 1 , c 0 , c 1 , ε 0 , ε 1 , v 0 , v 1 are given in Assumptions 1-5. Then the hybrid observer (4), with ξ, F, G, H, C, D chosen as in [START_REF] Prieur | Uniting local and global controllers[END_REF], solves the uniting problem with γ = γ 0 and

B := {(x, ξ) ∈ X × O : V 0 (x, ζ 0 ) ≤ ε 0 , z 0 ∈ [0, c 0 ], z 1 ∈ [0, ∞), τ ∈ [0, ∞), q = 0}
, where γ 0 , V 0 are given by Assumption 1.

Remark 2 (Effect of measurement noise). The conditions of Theorem 1 typically require the noise w to be small, as already mentioned. When a large measurement noise is considered, some of the previous assumptions may no longer hold. However, as long as the behaviour of the global observer is well defined, and finite escape time of the local observer do not occur, the scheme proposed in [START_REF] Prieur | Uniting local and global controllers[END_REF] guarantees completeness of solutions. It may happen, however, that infinitely many switches occur as the local observer fails to converge and the global observer moves persistently back and forth from the set

{(x, ζ 1 ) : V 1 (x, ζ 1 ) ≤ ε 1 }.

D. Alternative design

In certain cases, Assumption 2 may not be verified, namely it is not possible to design a norm estimator for the local observer. For instance, this case occurs when item (i) of Assumption 2 does not hold globally but only locally, namely item (i) holds only for solutions to (1), ( 2), for which the estimation error x -x0 is small enough. In this case, it may be possible to follow the alternative design proposed in [START_REF] Astolfi | Uniting local and global observers for the state estimation of nonlinear continuous-time systems[END_REF]. This approach does not rely on Assumption 2, but compares instead the estimates x0 , x1 , provided by the local and the global observer, to obtain an overestimate of V 0 . For this to work, we need, in addition to Assumptions 1, 3, 4, and 5, the next conditions to hold.

Assumption 6 (Invariance property of the global observer).

Any solution pair ((x, ζ 1 ), (u, w)) to (1), [START_REF] Shtessel | Sliding mode control and observation[END_REF]

, starting in V 1 (x(0), ζ 1 (0)) ≤ ε 1 , with ε 1 given in Assumption 1, sat- isfies V 1 (x(t), ζ 1 (t)) ≤ ε 1 for all t ≥ 0, with ε 1 given in Assumption 5. Assumption 6 states that the set {(x, ζ 1 ) : V 1 (x, ζ 1 ) ≤ ε 1 } is invariant for solutions to (1), (3) initialized in {(x, ζ 1 ) : V 1 (x, ζ 1 ) ≤ ε 1 }.
This extra condition is needed to guarantee the local behaviour property (c) in Definition 1 of local observer [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF].

Next assumption shows how to overestimate the function V 0 starting from the knowledge of V 1 , x1 and x0 .

Assumption 7 (Estimation of V 0 and matching condition).

There exist c 0 > c 0 > 0 and a continuous function The function ω in Assumption 7 is needed to measure the distance between the estimates provided by the two observers and is typically selected as

ω : R n0 × R n1 → R ≥0 , satisfying ω(Θ(ζ 1 ), ζ 1 ) = 0 for all ζ 1 ∈ Z 1 , with Θ defined in the Standing Assumption, such that the following holds. (i) The function ω satisfies sup{ω(ζ 0 , ζ 1 ) : (x, ζ 0 , ζ 1 ) ∈ X × Z 0 × Z 1 V 0 (x, ζ 0 ) ≤ ε 0 , V 1 (x, ζ 1 ) ≤ ε 1 } ≤ c 0 , with ε 0 given in Assumption 1 and ε 1 given in Assump- tion 6. (ii) The function ω satisfies sup{V 0 (x, ζ 0 ) : (x, ζ 0 , ζ 1 ) ∈ X × Z 0 × Z 1 V 1 (x, ζ 1 ) ≤ ε 1 , ω(ζ 0 , ζ 1 ) ≤ c 0 } ≤ ε 0 , with ε 0 given in Assumption 1 and ε 1 given in Assump- tion 6.
ω(ζ 0 , ζ 1 ) = |x 0 -x1 | 2 . Recall that the set {(x, ζ 0 ) : V 0 (x, ζ 0 ) ≤ ε 0 }, given in Assumption 1, defines the domain of attraction of local observer (2), while the set {(x, ζ 1 ) : V 1 (x, ζ 1 ) ≤ ε 1 }, that
can be overestimated via the norm estimator (9) according to Assumption 4, contains the asymptotic trajectories of global observer (3), see Assumption 3. As a consequence, item (i) of Assumption 7 states that, if the states of local and global observers reached their asymptotic behaviours, namely {(x, ζ 0 , ζ 1 ) :

V 0 (x, ζ 0 ) ≤ ε 0 , V 1 (x, ζ 1 ) ≤ ε 1 }, then
the value of ω is small. On the other hand, item (ii) of Assumption 7 states that, if the value of ω is small enough and the global observer reached its asymptotic behaviour, then the state of the local observer needs to be in its domain of attraction {(x, ζ 0 ) : V 0 (x, ζ 0 ) ≤ ε 0 }. An illustration of items (i) and (ii) of Assumption 7, in the case in which V 0 , V 1 are quadratic Lyapunov function, is depicted in Figure 4.

Remark 3 (Differences between Assumption 2 and Assumption 7). Assumption 7 may not hold if the set {(x, ζ 1 ) :

V 1 (x, ζ 1 ) ≤ ε 1 } is not small enough with respect to the sets {(x, ζ 0 ) : V 0 (x, ζ 0 ) ≤ ε 0 }, {(x, ζ 0 ) : V 0 (x, ζ 0 ) ≤ ε 0 },
thus being sometimes more conservative than Assumption 2. On the other hand, the advantage of this second solution is that it does not need Assumption 2 to hold, namely we do not need the existence of a global norm estimator for V 0 , which may be difficult to establish in some cases.

Under previous assumptions, the uniting observer ( 4) is given as in (11) with8 

F (ξ, u, y) := (1 -q)ϕ 0 (ζ 0 , u, y), ϕ 1 (ζ 1 , u, y), (1 -q)(-z 0 + ω(ϑ 0 (ζ 0 ), ϑ 1 (ζ 1 )), -b 1 z 1 + ρ 1 (y, h(ϑ 1 (ζ 1 ), 0)), q, 0 . (12) 
The following theorem can finally be stated.

Theorem 2. Suppose Assumption 1 and 3 to 7 hold.

Let T ∈ [0, ∞), c 0 ∈ (c 0 , c 0 ), c 1 ∈ (c 1 , c 1 ), with c 1 = ε 1 -v1
a1 , where c 0 , c 0 , ε 1 , v 1 , a 1 are given in Assumptions 4, 6 and 7. Then the hybrid observer (4), with ξ, G, H, C, D selected as in [START_REF] Prieur | Uniting local and global controllers[END_REF], and F as in [START_REF] Prieur | Uniting local and global output feedback controllers[END_REF], solves the uniting problem in which γ = γ 0

and B := {(x, ξ) ∈ X × O : V 0 (x, ζ 0 ) ≤ ε 0 , V 1 (x, ζ 0 ) ≤ ε 1 , z 0 ∈ [0, c 0 ], z 1 ∈ [0, ∞), τ ∈ [0, ∞), q = 0}
, where γ 0 , V 0 are given by Assumption 1, and V 1 by Assumption 3.

IV. CASE STUDIES

We illustrate in this section how the results of Section III can be applied to combine an EKF with different types of global observers.

A. Uniting an EKF with a global asymptotic observer Consider system (1), and suppose that f, h are C 2 in their arguments, and moreover there exist L x , L w > 0 such that the following condition holds

|h(x 1 , w) -h(x 2 , 0)| ≤ L x |x 1 -x 2 | + L w |w| (13) 
for all

x 1 , x 2 ∈ X ∪ ϑ 0 (Z 0 ) ∪ ϑ 1 (Z 1
) and all w ∈ W, where W ⊆ {w ∈ R nw : |w| ≤ w}, for some w which is selected according to the properties of the local observer. We consider the case in which local observer ( 2) is an EKF (see, for instance, Definition 13 in [20, Section 1.3.1], or [START_REF] Krener | The convergence of the extended kalman filter[END_REF]) of the form ẋ0 = f (x 0 , u)

+ K 0 (ζ 0 )(y -ŷ0 ) Ṗ0 = J 0 (x 0 , u)P 0 + P 0 J 0 (x 0 , u) + Q 0 -P 0 C 0 (x 0 ) T R -1 0 C 0 (x 0 ) T P 0 ŷ0 = h(x 0 , 0), ( 14a 
) where ζ 0 = (x 0 , vec(P 0 )) ∈ Z 0 ⊆ R nx × R n 2
x is the state of the observer,

K 0 (ζ 0 ) := P 0 C 0 (x 0 ) R -1 0 , (14b) 
C 0 (x 0 ) := ∂h ∂x (x 0 , 0), J 0 (x 0 , u) := ∂f ∂x (x 0 , u), (14c) 
with C 0 satisfying |C(x 0 )| ≤ σ 0 for all x0 ∈ Z 0 , for some σ 0 ∈ R >0 , and R 0 , Q 0 are any real, symmetric, positive definite matrices of appropriate dimensions. As explained for instance in [START_REF] Bonnabel | A contraction theory-based analysis of the stability of the deterministic extended kalman filter[END_REF], in a deterministic and nonlinear setting, Q -1 0 represents the confidence in the trusted model (1) while R -1 0 the confidence in the measurements (1), while in stochastic theory Q 0 and R 0 represent the covariances of the respectively drift Gaussian noise and measurement Gaussian noise. The next assumption states that ( 14) is a local asymptotic observer for system (1).

Assumption 8. There exist V 0 : R nx × R n0 → R ≥0 and ε 0 , ε 0 , w > 0, such that Assumption 1 holds. Moreover, the function V 0 is selected as

V 0 (x, ζ 0 ) := (x -x0 ) P -1 0 (x -x0
) and P 0 satisfies p 0 I ≤ P 0 (t) ≤ p0 I for all t ≥ 0 along any solution pair ((x, ζ 0 ), (u, w)) ∈ X × Z 0 × U × W to system (1), [START_REF] Prieur | Uniting local and global controllers with robustness to vanishing noise[END_REF].

Conditions under which Assumption 8 is verified can be found in e.g., [START_REF] Bonnabel | A contraction theory-based analysis of the stability of the deterministic extended kalman filter[END_REF], [START_REF] Krener | The convergence of the extended kalman filter[END_REF]. In particular, the choice of V 0 arises naturally in the literature of EKF. Moreover, boundedness of P 0 (t) along any trajectory of ( 1), ( 14), is verified when system

µ 0 = 2 0 L 2 x p0 a 0 = (p 0 α 1 ) -1 µ 0 = 2 0 L 2 w b 0 = 1 2 λ 1 v 0 = a 0 b -1 0 ψ 1 (w) c 0 = max{a -1 0 ε 0 , b -1 0 (µ 0 ε 0 + µ 0 w 2 )} ρ 0 (y, ŷ0 ) = 0 |y -ŷ0 | 2 0 = (k 0 + k 1 ) 2 k 2 2 (2λ 1 α 1 ) -1 k 0 = p0 σ 0 |R -1 0 | ε 1 = 2α 1 p0 ε 0 a 1 = 1 ε 1 ∈ (v 1 , ε 1 -v 1 ) b 1 = λ 1 v 1 = b -1 1 ψ 1 (w) c 1 = ε 1 ρ 1 (y, ŷ1 ) = 1 |y -ŷ1 | 2 1 ∈ 0, b 1 c 1 (Lx ε 1 α 1 + Lww) -2 ,
TABLE I: Uniting EKF ( 14) and global asymptotic observer [START_REF] Zemouche | On lmi conditions to design observers for lipschitz nonlinear systems[END_REF]. Design of the parameters satisfying Assumptions 1-5 in Proposition 1.

(1) is uniformly observable, see e.g., [START_REF] Bonnabel | A contraction theory-based analysis of the stability of the deterministic extended kalman filter[END_REF], [START_REF] Krener | The convergence of the extended kalman filter[END_REF] or [20, Section 1.3.1]. The robustness properties of the EKF with respect to measurement noise w have been discussed in [START_REF] Bonnabel | A contraction theory-based analysis of the stability of the deterministic extended kalman filter[END_REF].

The global observer (3) is of the form

ẋ1 = f (x 1 , u) + K 1 (x 1 )(y -ŷ1 ), ŷ1 = h(x 1 , 0), (15) 
where

x1 = ζ 1 ∈ Z 1 ⊆ R nx is the state of the observer and K 1 satisfies |K 1 (x 1 )| ≤ k 1 for all x1 ∈ Z 1 for some k 1 ∈ Z >0 .
We also suppose that the projection of Z 0 on R nx coincides with Z 1 . The observer [START_REF] Zemouche | On lmi conditions to design observers for lipschitz nonlinear systems[END_REF] satisfies the next assumption.

Assumption 9 (Global asymptotic observer). There exist a continuous function

V 1 : X × Z 1 → R ≥0 , ψ 1 ∈ K, and ᾱ1 , α 1 , λ 1 , k 2 > 0, such that the following holds α 1 |x -x1 | 2 ≤ V 1 (x, x1 ) ≤ ᾱ1 |x -x1 | 2 |∇V 1 (x, x1 )| ≤ k 2 |x -x1 | ∇V 1 (x, x 1 ), Φ 1 (x, u, w, x1 ) ≤ -λ 1 V 1 (x, x1 ) + ψ 1 (|w|) (16 
) for all (x, x1 ) ∈ X × Z 1 and u ∈ U, where

Φ 1 (x, u, w, x1 ) := (f (x, u), f (x 1 , u)+K 1 (x 1 )(h(x, w)-h(x 1 , 0)).
Assumption 9 states that (3) is a global9 asymptotic observer for system [START_REF] Seron | Fundamental Limitations in Filtering and Control[END_REF]. In particular, the function V 1 is a Lyapunov function, typically quadratic, ensuring the global exponential input-to-state stability of the associated estimation error system with input w. Depending on the properties of f, h, the output injection gain K 1 in (15) and the function V 1 ensuring the conditions in Assumption 9 can be designed with various techniques. For instance, when f, h are expressed in the canonical observability form, we can design (15) by following the HGO design proposed in [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF], [START_REF] Besanc | Nonlinear observers and applications[END_REF]. When f, h are expressed in different coordinates but are diffeomorphic to the observability canonical form, we can follow the design proposed in [START_REF] Astolfi | Integral action in output feedback for multiinput multi-output nonlinear systems[END_REF], [START_REF] Astolfi | Low-power peakingfree high-gain observers[END_REF] and references therein. When f, h are Lipschitz on X ×U, it is also possible to follow the techniques proposed in e.g., [START_REF] Zemouche | On lmi conditions to design observers for lipschitz nonlinear systems[END_REF], [START_REF] Arcak | Nonlinear observers: a circle criterion design and robustness analysis[END_REF], [START_REF] Shim | Nonlinear observer design via passivation of error dynamics[END_REF]. Finally, other approaches, such as [START_REF] Boizot | An adaptive high-gain observer for nonlinear systems[END_REF], [START_REF] Bernard | Observer Design for Nonlinear Systems[END_REF], [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF], [START_REF] Andrieu | On the existence of a kazantziskravaris/luenberger observer[END_REF], [START_REF] Astolfi | Low-power peakingfree high-gain observers[END_REF], in which n 1 > n x , can be used by slightly modifying the conditions of Assumption 9 (and therefore the computation of the parameters given in Table I).

With the definition of observers ( 14) and ( 15), we select the function Θ of the Standing Assumption as Θ(ζ 1 ) := (ζ 1 , P 0 ), where P 0 ∈ R n 2

x is any positive definite symmetric matrix satisfying p 0 ≤ P 0 ≤ p0 , with p 0 , p0 given by Assumption 8. Finally, the following result can be stated. Proposition 1. Consider system (1), EKF [START_REF] Prieur | Uniting local and global controllers with robustness to vanishing noise[END_REF] and global observer [START_REF] Zemouche | On lmi conditions to design observers for lipschitz nonlinear systems[END_REF]. Suppose Assumptions 8 and 9 hold and, moreover, suppose that the following conditions hold

ε 0 > 2α -1 1 p-1 0 v 1 , (17a) ε 0 > v 0 + max{ε 0 , a0 b0 (µ 0 ε 0 + µ 0 w 2 )} (17b)
where ε 0 , ε 0 , p0 are given by Assumption 8, α 1 is given by Assumption 9, and a 0 , b 0 , µ 0 , µ 0 , v 0 , v 1 are selected as in Table I. Then, Assumptions 1 to 5 hold with the parameters given in Table I.

According to the previous proposition, we can therefore unite EKF [START_REF] Prieur | Uniting local and global controllers with robustness to vanishing noise[END_REF] and observer (15) by using the design proposed in Theorem 1.

Remark 4 (On the conditions of Proposition 1). The conditions [START_REF] Rajamani | Observers for lipschitz nonlinear systems[END_REF] given in the statement of the proposition are of qualitative nature, and in general only sufficient. Moreover, they may be conservative, since they are computed by using conservative inequalities. These conditions depend in general on the value of the measurement noise w, see how v 0 , v 1 are selected in Table I. When no measurement noise is present, namely w = 0, conditions (17) reduce to ε 0 > 0 and ε 0 > max{1, a0 b0 µ 0 } ε 0 . Finally, note that if EKF ( 14) has a global domain of attraction, namely ε 0 , ε 0 can be chosen arbitrarily large, then conditions ( 17) are always satisfied.

Remark 5 (On the parameters of Table I). In order to implement the hybrid observer [START_REF] Prieur | Uniting local and global controllers[END_REF], it is not needed to compute all the parameters defined in Table I. In particular, we can always select 10 a 0 = b 0 = a 1 = b 1 = 1 and focus on the tuning of the parameters c 0 , c 1 , 0 , 1 which can be estimated via numerical simulations. A numerical example is given in Section V.

Remark 6 (Comparison with other approaches). The problem of uniting an EKF with a HGO, for systems which are expressed in the observability canonical form, has been addressed with a different technique in [START_REF] Boizot | An adaptive high-gain observer for nonlinear systems[END_REF]. Therein, the two observers are merged into a single observer by making vary a single parameter θ. The resulting observer behaves as a HGO when θ is large, and as an EKF, when θ is small. Similarly to the construction of this work, the proposed continuous-time adaptive mechanism to vary θ is based on a norm estimator of the estimation error |x -x|, see [7, Lemma 4].

B. Uniting an EKF with a global approximate observer

We consider again system (1) where f, h are C 2 and verify [START_REF] Teel | Uniting local and global controllers for the caltech ducted fan[END_REF], and the measurement noise ranges in some set W ⊆ {w ∈ R nw : |w| ≤ w}, for some w ∈ R >0 . The local observer is still given by EKF ( 14) and we suppose that Assumption 8 holds.

We consider in this section the case in which we only know how to design a global asymptotic observer (in the absence of 10 Recall that the existence of the Lyapunov function V 1 in Assumption 9 implies the existence of another Lyapunov function with arbitrary λ 1 . See [START_REF] Prieur | Uniting local and global output feedback controllers[END_REF], [START_REF] Sontag | Output-to-state stability and detectability of nonlinear systems[END_REF].

noise w) for an approximation of system [START_REF] Seron | Fundamental Limitations in Filtering and Control[END_REF]. In particular, we write

f (x, u) := f a (x, u) + (f (x, u) -f a (x, u)) and h(x, w) := h a (x) + (h(x, w) -h a (x)),
where f a is an approximation of f and h a is an approximation of h, and we assume that we know how to design a global asymptotic observer for system

ẋ = f a (x, u), y = h a (x). ( 18 
)
The observer is selected as

ẋ1 = f a (x 1 , u) + K 1 (x 1 )(y -ŷ1 ), ŷ1 = h a (x 1 ), (19) 
where x1 ∈ Z 1 ⊆ R nx is the state and

K 1 satisfies |K 1 (x 1 )| ≤ k 1 for all x1 ∈ Z 1 for some k 1 ∈ Z >0 .
It satisfies the next assumption.

Assumption 10 (Approximate observer). There exist a continuous function V 1 : X × Z 1 → R ≥0 , and ᾱ1 , α 1 , λ 1 , k 2 > 0, such that the following holds

α 1 |x -x1 | 2 ≤ V 1 (x, x1 ) ≤ ᾱ1 |x -x1 | 2 |∇V 1 (x, x1 )| ≤ k 2 |x -x1 | ∇V 1 (x, x 1 ), Φ a (x, u, x1 ) ≤ -λ 1 V 1 (x, x1 ) (20) 
for all (x, x1 ) ∈ X × Z 1 and (u, w) ∈ U × W, where

Φ a (x, u, x1 ) := (f a (x, u), f a (x 1 , u)+K 1 (x 1 )(h a (x)-h a (x 1 )).
Assumption 10 states that ( 19) is a global11 asymptotic observer for system [START_REF] Astolfi | Design of local observers for autonomous nonlinear systems not in observability canonical form[END_REF] in absence of measurement noise, namely when w = 0. Observer (19) may be designed by following any of the techniques proposed in e.g., [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF], [START_REF] Zemouche | On lmi conditions to design observers for lipschitz nonlinear systems[END_REF], [START_REF] Besanc | Nonlinear observers and applications[END_REF], [START_REF] Astolfi | Integral action in output feedback for multiinput multi-output nonlinear systems[END_REF], [START_REF] Arcak | Nonlinear observers: a circle criterion design and robustness analysis[END_REF], [START_REF] Astolfi | Low-power peakingfree high-gain observers[END_REF]. When considering observers with n 1 > n x , also interval observers [START_REF] Efimov | Interval state observer for nonlinear time varying systems[END_REF] can be combined with the EKF [START_REF] Prieur | Uniting local and global controllers with robustness to vanishing noise[END_REF]. The design of observer [START_REF] Hamid | Local observers design for a class of neural mass models[END_REF] obviously depends on the approximate model [START_REF] Astolfi | Design of local observers for autonomous nonlinear systems not in observability canonical form[END_REF]. This can be obtained by linearising f, h around an equilibrium (if any), or by ignoring some dynamics of f, h, which complicate if not obstruct the design of a global asymptotic observer for the original system (1). Furthermore, we assume that the functions f a , h a are locally Lipschitz and that the mismatch between the functions f, h and f a , h a is globally bounded on X × U, namely there exist

∆ f , ∆ h ≥ 0 such that |f (x, u) -f a (x, u)| ≤ ∆ f , |h(x, 0) -h a (x)| ≤ ∆ h , (21) 
for all (x, u) ∈ X × U. Hence, when the sets X , U are compact 12 , condition ( 21) is satisfied for any function pair (f a , h a ) globally bounded on X , U.

We select the functions Θ satisfying the Standing Assumptions as in Section IV-A, namely Θ(ζ 1 ) := (ζ 1 , P 0 ), where P 0 ∈ R n 2

x is any positive definite symmetric matrix satisfying p 0 ≤ P 0 ≤ p0 , with p 0 , p0 given by Assumption 8. The following result holds. 

ω(ζ 0 , ζ 1 ) = |x 0 -x1 | 2 c 0 = 4p 0 ε 0 c 0 = 1 2 (p 0 ε 0 -2p 0 ε 0 ) ε 1 = α 1 p0 ε 0 a 1 = 1 ε 1 ∈ (v 1 , ε 1 -v 1 ) b 1 = 1 2 λ 1 , v 1 = k 2 2 (∆ f + k 1 ∆ h + k 1 Lww) 2 (α 1 λ 2 1 ) -1 , c 1 = ε 1 ρ 1 (y, ŷ1 ) := 1 |y -ŷ1 | 2 1 ∈ 0, b 1 c 1 (Lx ε 1 α -1 1 + Lww + ∆ h ) -2
ε 0 > 2α -1 1 p-1 0 v 1 , ε 0 > 10p 0 p -1 0 ε 0 , ( 22 
)
where ε 0 , ε 0 , p0 , p 0 are given by Assumption 8, α 1 is given in Assumption 10, and v 1 is defined in Table II. Then, Assumption 1 and Assumptions 3 to 7 hold, with the parameters chosen as in Table II.

According to Proposition 2, we can therefore unite EKF ( 14) and observer [START_REF] Hamid | Local observers design for a class of neural mass models[END_REF] by using the design proposed in Theorem 2. As for Proposition 1, it is worth noticing that the conditions ( 22) may be very conservative and it is therefore to be appreciated the qualitative nature of the result.

V. NUMERICAL EXAMPLE

We apply the result of Proposition 1 in Section IV to unite an EKF, see e.g., [START_REF] Bonnabel | A contraction theory-based analysis of the stability of the deterministic extended kalman filter[END_REF], with a HGO, see e.g., [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF], for a perturbed Duffing oscillator, see [START_REF] Astolfi | Uniting local and global observers for the state estimation of nonlinear continuous-time systems[END_REF], described as

ẋ = Ax + Bφ(x) + Q c v, y = Cx + R c w, (23) 
where and(A, B, C) is a triplet in prime form, namely

x = (x a , x b ) ∈ R 2 is the state, y ∈ R is the output, φ(x) = x a -x 3 a ,
A = 0 1 0 0 , B = 0 1 , C = 1 0 ,
In [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF], the signal w ∈ R is the measurement noise, v ∈ R 2 is some unmeasured disturbance affecting the plant, and the matrices Q c , R c are unknown. Although the theory in Section III is not explicitly developed to treat dynamic disturbances, we consider here the effect of v in order to test the robustness of the proposed uniting observer. For any initial condition x(0) ranging in some given compact set X • ⊂ R 2 , and for any (small enough) bounded input v, there exists a compact set X ⊇ X • , which is forward invariant for [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF], which can be numerically determined.

By following [START_REF] Bonnabel | A contraction theory-based analysis of the stability of the deterministic extended kalman filter[END_REF], the local asymptotic observer in ( 2) is ( 14), which gives here

ẋ0 = Ax 0 + Bφ(x 0 ) + K 0 (ζ 0 )(y -C x0 ) Ṗ0 = J 0 (x 0 )P 0 + P 0 J 0 (x 0 ) T -P 0 C T R -1 0 CP 0 + Q 0 ŷ0 = C x0 , ( 24 
)
where x0 = (x 0a , x0b ) ∈ R 2 is the estimate, P 0 ∈ R 2×2 , ζ 0 = (x 0 , vec(P 0 )) is the overall state,

J 0 (x 0 ) := A + B ∂φ(x 0 ) ∂x , K 0 (ζ 0 ) = P 0 C T R -1 0 ,
and Q 0 , R 0 are positive definite matrices. Since system ( 23) is uniformly observable, the set X is forward invariant for [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF] and the second derivative of φ is bounded on compact sets, it can be proved, by following [5, Theorem 1.1.1], that EKF ( 24) is a local observer satisfying Assumption 1 and the matrix P 0 in [START_REF] Andrieu | On the existence of a kazantziskravaris/luenberger observer[END_REF] verifies Assumption 8 for any P 0 (0) = P 0 (0) > 0. Note that obtaining non-conservative estimates of the basin of attraction for EKF designs is in general hard. As a consequence, in the following, we selected various initial conditions for observer [START_REF] Andrieu | On the existence of a kazantziskravaris/luenberger observer[END_REF] and convergence has been verified by simulations for each of these initial conditions. The motivation for the uniting observer here is that, although the EKF seems to globally converge, very slow transients occur when the initial estimation |x(0) -x0 (0)| is large, as shown in Figure 5. The global observer in ( 3) is given by a HGO designed with state ζ 1 = x1 and dynamics given by

ẋ1 = Ax 1 + Bφ s (x 1 ) + D κ L 1 (y -C x1 ) ŷ1 = C x1 , (25) 
where 

x1 = (x 1a , x1b ) ∈ R 2 is the observer state, L 1 ∈ R 2×1 is any matrix chosen such that A -L 1 C is Hurwitz, D κ = diag(κ, κ 2 ),
V 1 = êT 1 H ê1
where H is solution of [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF]. In view of Proposition 1, we can therefore unite EKF [START_REF] Andrieu | On the existence of a kazantziskravaris/luenberger observer[END_REF] and HGO [START_REF] Wang | High-gain observers with limited gain power for systems with observability canonical form[END_REF] and design observer [START_REF] Prieur | Uniting local and global controllers[END_REF] satisfying Theorem 1. For this, we select ρ i (y, ŷi

H(A -L 1 C) + (A -L 1 C) T H = -I and ê1 = κD -1 k (x 1 -x), see
) := |y -ŷi |, b i = 1, i = {0, 1}, Θ(ζ 1 ) = (x 1 , vec(I 2×2 )) T ,
and ϕ 0 , ϕ 1 chosen accordingly to the definitions of ( 24), [START_REF] Wang | High-gain observers with limited gain power for systems with observability canonical form[END_REF].

In the simulations, v and w are generated by ηi =

ω i Sη i , i = {1, 2, 3}, v = Q 1 + η 1 + Q 2 η 2 , w = Q 3 η 3 , where S := 0 1 -1 0 , and the matrices Q 1 , Q 2 ∈ R 2×2 and Q 3 ∈ R 1×2
have unitary norms. We selected ω 1 = 3, ω 2 = 27, ω 3 = 32, Q 1 = (0.99 0.12, -0.12 0.99), Q 2 = (0.85 0.53, -0.53 0.85),

Q 3 = (0.65 0.76), Q c = diag(0.1, 0.1), R c = 0.5, Q 0 = diag(0.2, 0.2), R 0 = 1.
The initial conditions of ( 23) range in the compact set are tuned via numerical simulations in order to improve the performances of the resulting uniting observer.

X • := {(x a , x b ) ∈ R 2 : x 2 a + x 2 b ≤ 25} and we have X ⊂ {(x a , x b ) ∈ R 2 : |x a | ≤ 6,
We have selected the following set of initial conditions x(0, 0) = (2, 3), for [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF], and x0 (0, 0) = (-2, 1), P (0, 0) = I 2×2 , x1 (0, 0) = (-2, 1), z 0 (0, 0) = 0, z 1 (0, 0) = 1 q(0, 0) = 1, τ (0, 0) = 0 for ξ(0, 0) in (11c). The parameter T = 0.01 is selected small enough with respect to the dynamics of the HGO. In order to select the parameters c 0 , c 1 , we have run simulations and we have observed that the asymptotic behaviours of z 0 , z 1 of ( 7), ( 9) oscillate around 0.35. This indicates that the values of c 0 and c 1 cannot be chosen arbitrarily small.

Figure 5 shows the behaviours of system [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF], observers [START_REF] Andrieu | On the existence of a kazantziskravaris/luenberger observer[END_REF], [START_REF] Wang | High-gain observers with limited gain power for systems with observability canonical form[END_REF], and the hybrid observer [START_REF] Prieur | Uniting local and global controllers[END_REF] obtained by uniting the EKF and the HGO and by selecting c 0 = 0.6, c 1 = 0.8. As expected, the speed of convergence of the EKF ( 24) is very slow, and the asymptotic behaviour is quite accurate. On the contrary, the HGO [START_REF] Wang | High-gain observers with limited gain power for systems with observability canonical form[END_REF] shows a fast convergence with poor asymptotic behaviour. The uniting observer [START_REF] Prieur | Uniting local and global controllers[END_REF] combines both behaviours by taking advantage of the fast convergence of HGO and the good steady-state behaviour of the EKF. We have then studied the influence of the parameters c 0 , c 1 on the uniting observer [START_REF] Prieur | Uniting local and global controllers[END_REF] by picking different values, namely c 0 = 0.4 and c 1 = 0.5. Figure 6 shows the behaviours of the error coordinates x-x of (5) in the two cases. Note that, in the second simulation, the value of c 0 is too close to its expected asymptotic behaviour. As a consequence, more jumps occur during the transients, since the EKF dynamics has not the time to converge while the norm estimator z 0 exceeds the desired threshold c 0 . Similarly, simulations indicate that a choice of c 0 too large produces largest transients, since norm estimator z 0 takes more time to detect whether the local observer [START_REF] Andrieu | On the existence of a kazantziskravaris/luenberger observer[END_REF] is close to the system state or not.

VI. PROOFS

For the sake of compactness, throughout this section we will use the following compact notations V 0 (t, j) 

:= V 0 (x(t, j), ζ 0 (t, j)), V 1 (t, j):= V 1 (x(t, j), ζ 1 (t, j)), ρ 0 (t, j):= ρ 0 (y(t, j), ŷ0 (t, j)), ρ 1 (t, j) := ρ 1 (y(t, j), ŷ1 (t, j)), ω(t, j) := ω(x 0 (t, j), x1 (t, j)).

A. Proof of Theorem 1

The proof follows by showing that items (a), (b), (c) of Definition 1 hold. The main steps are similar to those of the proof of Theorem 3.2 in [START_REF] Prieur | Uniting local and global output feedback controllers[END_REF], although non-trivial differences arise due to the features of the estimation problem.

(a) Completeness of solutions and finite number of jumps: Consider system (5), with F, G, H, C, D selected as in [START_REF] Prieur | Uniting local and global controllers[END_REF]. Completeness of solutions follows by direct application of Proposition 2.10 in [START_REF] Goebel | Hybrid dynamical systems[END_REF]. First of all, the sets X , C, D, U and W are closed, and f, F, G are continuous. Moreover, in view of the Standing Assumption, the condition (VC) in Proposition 2.10 in [START_REF] Goebel | Hybrid dynamical systems[END_REF] is verified. Then, recall that by definition of F, G, C, D in (11b), (11c), (11d), we have G(D 0 ) ∈ C 1 and G(D 1 ) ∈ C 0 . We deduce that G(D) ∈ C. As a consequence, item (c) in Proposition 2.10 in [START_REF] Goebel | Hybrid dynamical systems[END_REF] cannot occur. Therefore, either the solutions13 are complete, or the time domain is bounded, because during flow, solutions cannot be extended, see conditions (a), (b) of Proposition 2.10 in [START_REF] Goebel | Hybrid dynamical systems[END_REF]. Next, we want to show that also condition (b) can be ruled out, namely solutions need to be complete. For this, suppose there exists a solution ξ that does not enter D and cannot be extended in ξ ∈ C. This solution is either in C 0 or in C 1 . When ξ ∈ C 0 , the flow of (x, ζ 0 , ζ 1 ) corresponds to solutions to (1), ( 2) and (3). In view of Standing Assumption, the components (x, ζ 0 , ζ 1 ) are complete. By continuity of ρ 0 , ρ 1 the solutions to z 0 , z 1 given by ( 7), (9) are complete. Finally, τ and q remain constant on flows. As a consequence, any solution in C 0 that does not jump must be complete. With similar arguments, any solution flowing in C 1 , which that does not jump, must be complete. As a consequence, condition (b) of Proposition 2.10 in [START_REF] Goebel | Hybrid dynamical systems[END_REF] cannot occur and only (a) can hold, namely solution are complete. Now consider the following claim, whose proof is given in Section VI-B1. Claim 1. Let ((x, ξ), (u, w)) be a solution pair to (5). There does not exist an infinite non-decreasing sequence of hybrid times ((t n , j n ) n∈Z>0 ) ∈ dom(x, ξ), such that we have

q(t 2n , j 2n ) = 0, q(t 2n+1 , j 2n+1 ) = 1, (26) 
for all n ∈ Z ≥0 .

Claim 1 states that the discrete variable q cannot switch back and forth persistently between q = 0 and q = 1. As a consequence, the number of jumps must be finite. This completes the first part of the proof.

(b) Global convergence: We prove the global convergence property by combining Claim 1 with the next two claims. The first claim states that the discrete variable q has to take the value 0 at some (hybrid) time. In other words, any solution (x, ξ) to ( 5) enters the set C 0 at some (hybrid) time. The second claim states that, if the discrete variable q remains equal to 0 after a sufficiently long time, i.e., (x, ξ) remains in C 0 for a sufficiently large time, then the asymptotic behaviour of hybrid observer [START_REF] Prieur | Uniting local and global controllers[END_REF] corresponds to that of local observer (2). Claim 2. For any initial condition (x(0, 0), ξ(0, 0)) and any hybrid input (u(t, j), w(t, j)), the corresponding solution pair ((x, ξ), (u, w)) to (5) is such that there exists ( t, j) ∈ dom(x, ξ) with q( t, j) = 0. Claim 3. Let ((x, ξ), (u, w)) be a solution pair to [START_REF] Krener | The convergence of the extended kalman filter[END_REF]. If there exists ( t, j) ∈ dom(x, ξ), such that q(t, j) = 0 for all (t, j) ∈ dom(x, ξ), with (t, j) ( t, j), then (6) holds.

We are in the position to combine the previous claims to prove the global convergence property. Pick any solution pair ((x, ξ), (u, w)) to [START_REF] Krener | The convergence of the extended kalman filter[END_REF]. In view of Claim 1, there exists a hybrid time ( t1 , j1 ) ∈ dom(x, ξ) such that either q(t, j) = 0 or q(t, j) = 1 for all (t, j) ∈ dom(x, ξ) with (t, j) ( t1 , j1 ). By applying Claim 2 and invoking the semigroup property, we know that it cannot exist a hybrid time ( t2 , j2 ) ∈ dom(x, ξ), ( t2 , j2 ) ( t1 , j1 ) such that, q(t, j) = 1, for all (t, j) ∈ dom(x, ξ) such that (t, j) ( t2 , j2 ). As a result, the solution (x, ξ) is such that q(t, j) = 0 for all (t, j) ∈ dom(x, ξ), (t, j) ( t1 , j1 ). Therefore, by applying Claim 3 we have that ( 6) holds. This concludes the global convergence property.

(c) Local behaviour: By construction, any point in the set B defined in the statement of Theorem 1 lies in X × C 0 , because c 0 < c 0 . We want to prove that any solution pair ((x, ξ), (u, w)), with ξ initialized in B, experiences no jump on its hybrid time domain, namely dom (x, ξ) = [0, ∞)×{0}. For this, we proceed by contradiction and we assume that there exists t 1 > 0 such that ( t1 , 0), ( t1 , 1) ∈ dom(x, ξ), namely ξ( t1 , 0) ∈ D 0 . First of all, note that, as q = 0, the components (x, ζ 0 ) of ( 5) coincide with those of (1) and (2). As a consequence, we can apply Assumption 1. By definition of the set B defined in the statement of Theorem 1, we have V 0 (0, 0) ≤ ε 0 . As a consequence, item (ii) of Assumption 1 ensures that the solution pair ((x, ξ), (u, w)) to (5) satisfies V 0 (t, 0) ≤ ε 0 for all t ∈ [0, t1 ]. Then, by applying item (ii) of Assumption 2, we have ρ 0 (t, 0) ≤ b 0 c 0 < b 0 c 0 for all t ∈ [0, t1 ], since c 0 < c 0 according to Theorem 1. Therefore, for t ∈ [0, t1 ], z 0 (t, 0) = e -b0t z 0 (0, 0) + t 0 e -b0(t-s) ρ 0 (s, 0)ds

< e -b0t c 0 + b -1 0 1 -e -b0t b 0 c 0 = c 0 ,
that is z 0 (t, 0) < c 0 for all t ∈ [0, t1 ]. As a result, (x, ξ) cannot jump at ( t1 , 0) and we have attained a contradiction. We deduce that t1 = ∞ (recall that any solution is complete) and ξ(t, 0) ∈ C 0 for all t ∈ [0, ∞). As a result, since the vector field of ζ 0 in C 0 corresponds to that of the local observer (2), we obtain

x = x0 = ϑ 0 (ζ 0 ) = ϑ ( ζ0 ) on [0, ∞) × {0}
where ζ0 is a solution to (2) obtained by picking the same initial conditions for (1), ( 2) and by applying input (u, w) for all time. This concludes the local property and the proof of Theorem 1.

B. Proofs of the claims 1) Proof of Claim 1:

We proceed by contradiction. Let ((x, ξ), (u, w)) be a solution pair to [START_REF] Krener | The convergence of the extended kalman filter[END_REF], with F, G, H, C, D selected as in [START_REF] Prieur | Uniting local and global controllers[END_REF]. For the purpose of showing contradiction, assume that there exists a non-decreasing sequence of hybrid times (t n , j n ) n∈Z ≥0 ∈ dom(x, ξ), with (t n , j n ) ∈ dom(x, ξ) for all n ∈ Z ≥0 , such that (26) holds. Without loss of generality and to simplify the notation, we assume that there is no jump between two elements of this sequence and that j n = n. Due to the expression of the function G and the definitions of the sets C and D in [START_REF] Prieur | Uniting local and global controllers[END_REF], we have

ξ(t, j) ∈ C 0 ∀ (t, j) ∈ [t 2n , t 2n+1 ] × {2n} ξ(t 2n+1 , 2n) ∈ D 0 ξ(t, j) ∈ C 1 ∀ (t, j) ∈ [t 2n+1 , t 2n+2 ] × {2n + 1} ξ(t 2n+2 , 2n + 1) ∈ D 1
for all n ∈ Z ≥0 . Due to the expression of the jump map (10b), the components (ζ 1 , z 1 ) do not change at jumps. Thus, since the dynamics in (10a) corresponds to (3) and ( 9) during flows, solutions (x(t, j), ζ 1 (t, j), z 1 (t, j)) to (5) correspond to solutions (x(t), ζ 1 (t), z 1 (t)) to (1), (3), ( 9) and therefore we can invoke Assumption 4. As a consequence, for (t, j) ∈ [t 2n+1 , t 2n+2 ] × {2n + 1}, we have

V 1 (t, j) ≤ a 1 z 1 (t, j)+β 1 (V 1 (t 0 , j 0 )+z 1 (t 0 , j 0 ), t)+v 1 , (27) recall that V 1 (t, j) = V 1 (x(t, j), ζ 1 (t, j)).
Since β 1 is of class KL, and in view of the choice of c 1 in the statement of Theorem 1, there exists N ≥ 0 such that

β 1 (V 1 (t 0 , j 0 ) + z 1 (t 0 , j 0 ), t 2N +2 ) ≤ ε 1 -a 1 c 1 -v 1 .
As a consequence, by recalling that, when entering in D 1 , we have z 1 ≤ c 1 , we obtain V 1 (t 2N +2 , 2N + 1) ≤ ε 1 in view of [START_REF] Astolfi | Low-power peakingfree high-gain observers[END_REF]. Since

ζ 0 (t 2N +2 , 2N + 2) = Θ(ζ 1 (t 2N +2 , 2N + 2)),
and by applying Assumption 5, we further get

V 0 (t 2N +2 , 2N + 2) ≤ ε 0 . It follows from item (ii) of Assumption 1 that V 0 (t, j) ≤ ε 0 for all t ∈ [t 2N +2 , t 2N +3 ]. Then, we can use item (ii) of Assumption 2, to obtain ρ 0 (t, 2N + 2) ≤ b 0 c 0 for all t ∈ [t 2N +2 , t 2N +3 ].
As a consequence, by evaluating z 0 (t, j) at (t 2N +3 , 2N + 2), we have

z 0 (t 2N +3 , 2N + 2) = e -b0(t 2N +3 -t 2N +2 ) z 0 (t 2N +2 , 2N + 2) + t 2N +3 t 2N +2
e -b0(t-s) ρ 0 (s, 2N + 2)ds

≤ 0 + b -1 0 sup t∈[t 2N +3 -t 2N +2 ] ρ 0 (t, 2N + 2)
which implies z 0 (t 2N +3 , 2N +2) ≤ c 0 < c 0 . The last inequality contradicts z 0 (t 2N +3 , 2N +2) ≥ c 0 , namely ξ(t 2N +3 , 2N + 2) ∈ D 0 , and concludes the proof of Claim 1.

2) Proof of Claim 2: We proceed by contradiction. Consider a solution pair ((x, ξ), (u, w)) to [START_REF] Krener | The convergence of the extended kalman filter[END_REF], with F, G, H, C, D selected as in [START_REF] Prieur | Uniting local and global controllers[END_REF], such that q(t, j) = 1 for all (t, j) ∈ dom(x, ξ). Since solutions are complete, its time domain is dom(x, ξ) = [0, ∞) × {0}, ξ ∈ C 1 for all [0, ∞) × {0}, and moreover the (ζ 0 , ζ 1 , z 0 , z 1 ) dynamics are

ζ0 = 0, ζ1 = ϕ 1 (ζ 1 , u, y), ż0 = 0, ż1 = -b 1 z 1 + ρ 1 (y, ŷ1 ).
Thus, by applying Assumption 3, we know there exists a

t 1 > 0 such that V 1 (t, 0) ≤ ε 1 for all t ∈ [t 1 , ∞). Now consider ξ on [t 1 , ∞). By using item (ii) of Assumption 4, we have ρ 1 (t, 0) ≤ b 1 c 1 for all t ∈ [t 1 , ∞). Therefore z 1 (t, 0) ≤ z 1 (t 1 , 0)e -b1(t-t1) + b -1 1 sup s∈[t1,t] ρ 1 (s, 0) ≤ z 1 (t 1 , 0)e -b1(t-t1) + c 1 for all t ∈ [t 1 , ∞). Therefore, there exists t 2 ∈ [t 1 , ∞) such that z 1 (t 1 , 0)e -λ1(t2-t1) < c 1 -c 1 .
Pick any t ≥ max{t 2 , T }. As a consequence, z 1 ( t, 0) < c 1 , and therefore ξ( t, 0) ∈ C 1 by definition of the map C 1 in (11b). This contradicts q(t, j) = 1 for all (t, j) ∈ dom(x, ξ), and concludes the proof of the claim.

3) Proof of Claim 3: Let ((x, ξ), (u, w)) be a solution pair to [START_REF] Krener | The convergence of the extended kalman filter[END_REF], with F, G, H, C, D selected as in [START_REF] Prieur | Uniting local and global controllers[END_REF], such that there exists ( t, j) ∈ dom(x, ξ) with q(t, j) = 0 for all (t, j) ( t, j), namely ξ(t, j) ∈ C 0 for all (t, j) ( t, j). When flowing in C 0 , the dynamics of ( 5) are given by

ζ0 = ϕ 0 (ζ 0 , u, y), ζ1 = ϕ 1 (ζ 1 , u, y), ż0 = -b 0 z 0 + ρ 0 (y, h(x 0 )), ż1 = -b 1 z 1 + ρ 1 (y, h(x 1 )).
namely the dynamics of ζ 0 and z 0 coincide with those of (2) and [START_REF] Boizot | An adaptive high-gain observer for nonlinear systems[END_REF]. Therefore we can use Assumptions 1 and 2. Since q(t, j) = 0 for all (t, j) ( t, j), we also have z 0 (t, j) ≤ c 0 for all (t, j) ( t, j). By applying item (i) of Assumption 2, we deduce V 0 (t, j) ≤ a 0 c 0 + β 0 (V 0 ( t, j) + z 0 ( t, j), t -t) + v 0 for all (t, j) ( t, j). Recall that V 0 (t, j) = V 0 (x(t, j), ζ 0 (t, j)). Since β 0 is a class-KL function, and in view of the definition of c 0 in the statement of the Theorem, there exists t 1 ≥ t such that

β 0 (V 0 ( t, j) + z 0 ( t, j), t 1 -t) ∈ [0, ε 0 -a 0 c 0 -v 0 ].
As a consequence, in view of the previous inequality on V 0 (t, j), we obtain V 0 (t 1 , j) ≤ ε 0 . Finally, by applying item (i) of Assumption 1, we conclude that limit (6) holds. The proof of the claim is completed by recalling that x = x0 for ξ ∈ C 0 .

C. Sketch of the Proof of Theorem 2

We present a sketch of the proof of Theorem 2 as most of the arguments are derived from the proof of Theorem 1.

(a) Completeness of solutions and finite number of jumps: The proof follows the same arguments used in the proof of Theorem 1, see Section VI-A. For this, note that Claim 1 holds also for system [START_REF] Krener | The convergence of the extended kalman filter[END_REF] with F selected as in [START_REF] Prieur | Uniting local and global output feedback controllers[END_REF]. The proof is given in Section VI-D1.

(b) Global convergence: The global convergence property can be proved by following the same arguments used in the proof of Theorem 1, see Section VI-A. For this, note that Claims 2 and 3 hold also for system [START_REF] Krener | The convergence of the extended kalman filter[END_REF] with F selected as in [START_REF] Prieur | Uniting local and global output feedback controllers[END_REF]. The proof of Claim 2 follows the same arguments used in Section VI-B2 and will therefore not be repeated for the sake of compactness, while the proof of Claim 3 is given in Section VI-D2.

(c) Local behaviour: The proof follows by slightly adaptive the same arguments used in the proof of Theorem 1, see Section VI-A. In particular, we proceed by contradiction and we assume that there exists t > 0 such that ( t1 , 0), ( t1 , 1) ∈ dom(x, ξ), namely ξ( t1 , 0) ∈ D 0 . By definition of the set B defined in the statement of Theorem 2, we have V 0 (0, 0) ≤ ε 0 and V 1 (0, 0) ≤ ε 1 . Therefore, in view of item (ii) of Assumption 1 and Assumption 6, we also get V 0 (t, 0) ≤ ε 0 and V 1 (t, 0) ≤ ε 1 for all t ∈ [0, t1 ]. By applying item (i) of Assumption 7, we derive that ω(t, 0) ≤ c 0 for all t ∈ [0, t1 ]. Therefore, on [0, t1 ], the solution z 0 in (12) satisfies z 0 (t, 0) = e -t z 0 (0, 0) + t 0 e -(t-s) ω(s, 0)ds

≤ e -t c 0 + [1 -e -t ] c 0 = c 0 .
Hence z 0 (t, 0) < c 0 for all t ∈ [0, t1 ]. As a result, z 0 (t, 0) cannot jump at ( t1 , 0) and we have attained a contradiction. Therefore t1 = ∞ (recall that any solution is complete) and ξ(t, 0) ∈ C 0 for all t ∈ [0, ∞). The proof concludes with the same arguments of those used in the proof of Theorem 1.

D. Proof of the claims with F given by (12)

1) Proof of Claim 1 with F given by (12): As in Section VI-B1, we proceed by contradiction by assuming the existence of a non-decreasing sequence of hybrid times (t n , j n ) n∈Z ≥0 ∈ dom(x, ξ), with (t n , j n ) ∈ dom(x, ξ) for all n ∈ Z ≥0 , such that [START_REF] Arcak | Nonlinear observers: a circle criterion design and robustness analysis[END_REF] holds for all n ∈ Z ≥0 . First of all, by definition of the map F in [START_REF] Prieur | Uniting local and global output feedback controllers[END_REF], we see that during flows, the ζ 1 dynamics corresponds to that of (3). Moreover, in view of G of (11d), ζ 1 has the same value after a jump. As a consequence, Assumption 3 ensures existence of N ≥ 0 such that V 1 (t 2N +1 , 2N + 1) ≤ ε 1 . In view of Assumption 6, we further obtain

V 1 (t 2N +2 , 2N + 1) ≤ ε 1 . Therefore, at time (t 2N +2 , 2N + 2), V 0 (t 2N +2 , 2N + 2) ≤ ε 0 ,
where we used the fact that

ζ 0 (t 2N +2 , 2N + 2) = Θ(ζ 1 (t 2N +2 , 2N + 2))
in view of the definition of G in (11d), and we applied Assumption 5. As a consequence, by using again Assumption 6 and item (ii) of Assumption 1, we derive V 1 (t, 2N + 2) ≤ ε 1 and V 0 (t, 2N + 2) ≤ ε 0 for all t ∈ [t 2N +2 , t 2N +3 ]. The latter implies that ω(t, 2N + 2) ≤ c 0 for all t ∈ [t 2N +2 , t 2N +3 ], in view of item (i) of Assumption 7. As a consequence, by evaluating z 0 (t, j), and by recalling that z(t 2N +2 , 2N +2) = 0 in view of G defined in (11d),

z 0 (t 2N +3 , 2N + 2) = t 2N +3 t 2N +2 e -(t-s) ω(s, 2N + 2)ds ≤ sup t∈[t 2N +3 -t 2N +2 ] ω(t, 2N + 2) ≤ c 0 .
Since c 0 < c 0 , the latter inequality contradicts ξ(t 2N +3 , 2N + 2) ∈ D 0 and concludes the proof of the Claim 1.

2) Proof of Claim 3 with F given by (12): Let ((x, ξ), (u, w)) be a solution pair to (5) such that there exists ( t, j) ∈ dom(x, ξ), q(t, j) = 0 for all (t, j) ( t, j), namely ξ(t, j) ∈ C 0 for all (t, j) ( t, j). Suppose then, without loss of generality, that ( t, j) = (0, 0). In view of Assumption 3 and 6, there exists t 0 < ∞ such that V 1 (t, 0) ≤ ε 1 for all t ∈ [t 0 , ∞). Without loss of generality, we assume that t 0 = 0. When flowing in C 0 , the z 0 -dynamics is given by z 0 (t, 0) = e -t z 0 (0, 0) + t 0 e -(s-t) ω(s, 0)ds.

Since z 0 (t, 0) ∈ C 0 for all for all t ∈ [0, ∞), it must satisfy z 0 (t, 0) ≤ c 0 for all t ∈ [0, ∞), which implies t 0 e -(s-t) ω(s, 0)ds ≤ c 0 .

Suppose now that there exists t 1 > 0 such that

ω(t 1 , 0) ≤ c 0 + (c 0 -c 0 ) 2 < c 0 .
Then, by using item (ii) of Assumption 7, we know V 0 (t 1 , 0) ≤ ε 0 . We conclude, in view of item (i) of Assumption 1, that the limit (6) holds. Consider now the opposite case in which

ω(t, 0) ≥ c 0 + (c 0 -c 0 ) 2 ∀ t ∈ [0, ∞). ( 29 
)
As a consequence, in view of (28),

c 0 ≥ t 0 e -(s-t) ω(s, 0)ds ≥ t 0 e -(s-t) c 0 + (c 0 -c 0 ) 2 ds ≥ c 0 + (c 0 -c 0 ) 2 (1 -e -t )
which implies e -t ≥ c 0 -c 0 c 0 + c 0 > 0 for all t ∈ [0, ∞), which cannot hold since lim t→∞ e -t = 0. We deduce that the solution (x, ξ) cannot satisfy at the same time ( 28) and ( 29) for all t ∈ [0, ∞). In particular, either a jump occur (contradicting our assumptions), either there must exist t

1 ∈ [0, ∞) such that ω(t 2 , 0) ≤ c 0 + (c 0 -c 0 ) 2 for all t ∈ [t 1 , ∞), which concludes the proof.

E. Proof of Proposition 1

We prove the result of the proposition by verifying each assumption. Note that Assumption 1 is automatically implied by Assumption 8.

Assumption 2. Let Φ 0 (x, u, w, ζ 0 ) = (f (x, u), f (x 0 , u) + K 0 (ζ 0 )(h(x, w)-h(x 0 , 0)). By using the properties of boundedness of K 0 , K 1 , we obtain

|Φ 0 (x, u, w, ζ 0 ) -Φ 1 (x, u, w, ζ 0 )| ≤ |K 0 (ζ 0 )(y -ŷ0 ) -K 1 (x 1 )(y -ŷ0 )| ≤ (k 0 + k 1 )|y -ŷ0 |.
Next, by using the function V 1 defined in Assumption 9, the previous inequality and the second inequality in ( 16), we compute

∇V 1 (x, x0 ), Φ 0 (x, u, w, x0 ) = ∇V 1 (x, x0 ), Φ 1 (x, u, w, x0 ) + ∇V 1 (x, x0 ), Φ 0 (x, u, w, x0 ) -Φ 1 (x, u, w, x0 ) ≤ -λ 1 V 1 (x, x0 ) + ψ 1 (|w|) + k 2 |x -x0 |(k 0 + k 1 )|y -ŷ0 |
for any (x, ζ 0 ) ∈ X × Z 0 and (u, w) ∈ U × W. Furthermore, by using the next inequality, obtained by combining Young's inequality, the first inequality in [START_REF] Reif | An ekf-based nonlinear observer with a prescribed degree of stability[END_REF] and the definition of 0 given in Table I,

k 2 |x -x0 |(k 0 + k 1 )|y -ŷ0 | ≤ 1 2 λ 1 α 1 |x -x0 | 2 + 1 2 k 2 2 (k 0 + k 1 ) 2 (λ 1 α 1 ) -1 |y -ŷ0 | 2 ≤ 1 2 λ 1 V 1 (x, x0 ) + 0 |y -ŷ0 | 2 , we finally obtain ∇V 1 (x, x0 ), Φ 0 (x, u, w, x0 ) ≤ -b 0 V 1 (x, x0 ) + ψ 1 (|w|) + 0 |y -ŷ0 | 2 ,
with b 0 given in Table I. By letting (7) be defined with ρ 0 defined as in Table I, we derive, using the comparison principle, that

V 1 (x(t), x0 (t)) ≤ z 0 (t) + b -1 0 ψ 1 (|w|) +e -b0t (V 1 (x(0), x0 (0)) + z 0 (0)) (30) 
for all t ≥ 0. Furthermore, in view of Assumptions 8-9,

1 p0 |x -x0 | 2 ≤ V 0 (x, ζ 0 ) ≤ 1 p 0 |x -x0 | 2 1 p0 ᾱ1 V 1 (x, x0 ) ≤ V 0 (x, ζ 0 ) ≤ 1 p 0 α 1 V 1 (x, x0 ) (31) 
for any (x, ζ 0 ) ∈ X × Z 0 . By using [START_REF] Astolfi | Uniting local and global observers for the state estimation of nonlinear continuous-time systems[END_REF] and [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF], we deduce that item (i) of Assumption 2 holds with a 0 , v 0 given in Table I, and, for any s, t ≥ 0, β 0 (s, t) := (p 0 α 1 ) -1 max{1, p0 ᾱ1 }e -b0t s.

Now let us introduce the following compact notation

sup ε0,w ρ 0 (y, ŷ0 ) := sup{ 0 |y -ŷ0 | 2 : (x, ζ 0 ) ∈ X × Z 0 , V 0 (x, ζ 0 ) ≤ ε 0 , w ∈ W}.
By using ( 13), [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF] and the parameters µ 0 , µ 0 and c 0 defined in Table I, item (ii) of Assumption 2 is satisfied by computing sup ε0,w ρ 0 (y, ŷ0 )

≤ 0 L x sup V0(x,ζ0)≤ε0 |x -x0 | + L w w 2 ≤ 0 (2L 2 x p0 ε 0 + 2L 2 w w 2 ) = µ 0 ε 0 + µ 0 w 2 ≤ b 0 c 0 .
Furthermore, by definition of c 0 , we have a 0 c 0 ≥ ε 0 . This shows the lower bound of the inequality of item (iii) of Assumption 2. Finally, by using the condition (17b), and the definition of c 0 in Table I, we directly obtain ε 0 > a 0 c 0 + v 0 by which we obtain the upper bound of the inequality of item (iii) of Assumption 2.

Assumption 3. By using Assumption 9 we can show that all solutions to (1), [START_REF] Zemouche | On lmi conditions to design observers for lipschitz nonlinear systems[END_REF] converge to the set

{(x, ζ 1 ) : V 1 (x, ζ 1 ) ≤ v 1 },
with v 1 defined in Table I. The result follows selecting ε 1 > v 1 according to Table I.

Assumption 4. By using the comparison principle to the inequality obtained by subtracting (9), with a 1 , b 1 and ρ 1 selected as in Table I, to the last inequality of ( 16), we can deduce item (i) of Assumption 4, in which, for any s, t ≥ 0, β 1 (s, t) := e -b1t s and v 1 selected as in Table I. Now let us define the compact notation

sup ε1,w ρ 1 (y, ŷ1 ) := sup{ 1 |y -ŷ1 | 2 : (x, ζ 1 ) ∈ X × Z 1 , V 1 (x, ζ 1 ) ≤ ε 1 , w ∈ W}.
By using [START_REF] Teel | Uniting local and global controllers for the caltech ducted fan[END_REF], the first inequality in [START_REF] Reif | An ekf-based nonlinear observer with a prescribed degree of stability[END_REF], and the definition of 1 in Table I, we compute

sup ε1,w ρ 1 (y, ŷ1 ) ≤ 1 L x sup V1(x,ζ1)≤ε1 |x -x1 | + L w w 2 ≤ 1 L x ε 1 α -1 1 + L w w 2 ≤ b 1 c 1 .
This shows item (ii) of Assumption 4. By using the definitions of a

1 , c 1 , ε 1 , ε 1 , v 1 in Table I, we have ε 1 = a 1 c 1 < ε 1 -v 1
showing the inequality in in item (iii) of Assumption 4. Note that condition (17a) and the choice of ε 1 implies ε 1 > 2v 1 , thus ensuring that the set (v 1 , ε 1 -v 1 ) is non empty. Assumption 5. Let us define the compact notation

sup ε 1 V 0 (x, ζ 0 ) := sup{V 0 (x, ζ 0 ) : (x, ζ 1 ) ∈ X × Z 1 , ζ 0 = Θ(ζ 1 ), V 1 (x, ζ 1 ) ≤ ε 1 }.
By using [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF], and the definition of ε 1 in Table I, we compute

sup ε 1 V 0 (x, ζ 0 ) ≤ 1 p0 sup V1(x,ζ1)≤ε 1 |x -x1 | 2 ≤ ε 1 α 1 p0 = ε 0 ,
which concludes the proof.

F. Proof of Proposition 2

We prove the result of the proposition by verifying each assumption. Note that Assumption 1 is automatically implied by Assumption 8.

Assumption 3. By combining ( 13) and ( 21), we obtain |h(x, w) -h a (x)| = |h(x, w) -h(x, 0) + h(x, 0) -h a (x)| ≤ L w w + ∆ h for all x ∈ X and w ∈ W. Let Φ 1 (x, u, w, x1 ) := (f (x, u), f a (x 1 , u) + K 1 (x 1 )(h(x, w) -h a (x 1 )). By using the previous inequality, by recalling the definition of Φ a given in Assumption 10, by using the property of K 1 and inequality (21), we compute As a consequence, by using the function V 1 given in Assumption 10, we obtain 

≤ -λ 1 V 1 (x, x1 ) + k 2 |x -x1 |(∆ f + k 1 (L w w + ∆ h )).
Next, by using the following inequality, obtained by applying Young's inequality and the first inequality in [START_REF] Besanc | Nonlinear observers and applications[END_REF],

k 2 |x -x1 |(∆ f + k 1 (L w w + ∆ h )) ≤ 1 2 λ 1 α 1 |x -x1 | 2 + 1 2 (λ 1 α 1 ) -2 (∆ f + k 1 (L w w + ∆ h )) 2 ≤ b 1 V 1 (x, x1 ) + v 1
with b 1 , v 1 defined as in Table II, we further obtain

∇V 1 (x, x1 ), Φ 1 (x, u, w, x1 ) ≤ -b 1 V 1 (x, x1 ) + b 1 v 1 .
Finally, by applying the comparison principle to the previous inequality we obtain

V 1 (x(t), ζ 1 (t)) ≤ e -b1t V 1 (x(0), ζ 1 (0)) + v 1 . ( 32 
)
Assumption 3 is satisfied with the choice ε 1 > v 1 in Table II. Assumption 4. By subtracting the solution to [START_REF] Clement | An interpolation method for gain-scheduling[END_REF], in which b 1 , ρ 1 are selected as in Table II, to inequality in [START_REF] Goebel | Hybrid dynamical systems[END_REF], we obtain directly obtain item (i) of Assumption 4, in which a 1 , v 1 are defined as in Table II and β 1 (s, t) = e -b1t s for any s, t ≥ 0. By combining [START_REF] Teel | Uniting local and global controllers for the caltech ducted fan[END_REF] in which we used the definition of 1 in Table II to compute the last inequality. This shows item (ii) of Assumption 4 holds. By using the definitions of a 1 , c 1 , v 1 in Table II, we have a 1 c 1 = ε 1 . In view of the choice of ε 1 By using the definitions of a 1 , c 1 , ε 1 , ε 1 , v 1 in Table I, we have

ε 1 = a 1 c 1 < ε 1 -v 1
showing the inequality in in item (iii) of Assumption 4. Note that condition [START_REF] Astolfi | Integral action in output feedback for multiinput multi-output nonlinear systems[END_REF] and the choice of ε 1 implies ε 1 > 2v 1 , thus ensuring that the set (v 1 , ε 1 -v 1 ) is non empty. By using [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF], and the definition of ε 1 in Table II, we compute sup

ε 1 V 0 (x, ζ 0 ) ≤ 1 p0 sup V1(x,ζ1)≤ε 1 |x -x1 | 2 ≤ ε 1 α 1 p0 = ε 0 .
Assumption 6. Pick any initial condition satisfying V 1 (x(0), ζ 1 (0)) ≤ ε 1 . By using [START_REF] Goebel | Hybrid dynamical systems[END_REF] and the definition of ε 1 in Table II we directly obtain V (x(t), ζ 1 (t)) ≤ e -b1t ε 1 + v 1 < ε 1 for all t ≥ 0.

Assumption 7. First of all, we need to verify that c 0 > c 0 . For this, by using their definition in Table II, we compute c 0 -c 0 = 1 2 (p 0 ε 0 -2p 0 ε 0 ) -4p 0 ε 0 = 1 2 p 0 ε 0 -10 p0 p 0 ε 0 which implies c 0 > c 0 in view of the condition [START_REF] Astolfi | Integral action in output feedback for multiinput multi-output nonlinear systems[END_REF] in the statement of the proposition. Moreover, the function ω defined in Table II satisfies the condition ω(Θ(ζ 1 ), ζ 1 ) = 0 of the statement of Assumption 7. Now we prove items (i), (ii) of Assumption 7. To show item (i), we use the bounds in [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF], the first inequality in [START_REF] Besanc | Nonlinear observers and applications[END_REF] and following inequality

1 2 |x 0 -x1 | 2 ≤ |x -x0 | 2 + |x -x1 | 2 . We obtain ω(ζ 0 , ζ 1 ) ≤ 2p 0 V 0 (x, ζ 0 ) + 2α -1 1 V 1 (x, ζ 1 )
and therefore, by using the compact notation

ω := sup{ω(ζ 0 , ζ 1 ) : (x, ζ 0 , ζ 1 ) ∈ X × Z 0 × Z 1 , V 0 (x, ζ 0 ) ≤ ε 0 , V 1 (x, ζ 1 ) ≤ ε 1 },
and by recalling the definition of ε 1 , c 0 in Table II, we directly obtain ω ≤ 2p 0 ε 0 + 2α -1 1 ε 1 ≤ 4p 0 ε 0 = c 0 .

To show item (ii) of Assumption 7, we combine inequality [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF], the first inequality in [START_REF] Besanc | Nonlinear observers and applications[END_REF], the definition of ω(ζ 0 , ζ 1 ) in Table II, and the following inequality

1 2 |x -x0 | 2 ≤ |x -x1 | 2 + |x 1 -x0 | 2 . We obtain V 0 (x, ζ 0 ) ≤ 2p -1 0 α -1 1 V 1 (x, ζ 1 ) + 2p -1 0 ω(ζ 0 , ζ 1
). As a consequence, by using the compact notation

V 0 := sup{V 0 (x, ζ 0 ) : (x, ζ 0 , ζ 1 ) ∈ X × Z 0 × Z 1 , V 1 (x, ζ 1 ) ≤ ε 1 , ω(ζ 0 , ζ 1 ) ≤ c 0 },
and by recalling the definition of ε 1 , c 0 in Table II, we derive V 0 ≤ 2p -1 0 α -1 1 ε 1 + 2p -1 0 c 0 ≤ 2p -1 0 p0 ε 0 + ε 0 -2p -1 0 p0 ε 0 and therefore V 0 ≤ ε 0 . This concludes the proof of the proposition.

VII. CONCLUSION

We have addressed the problem of combining two given observers, one ensuring global convergence, and the other guaranteeing some desired (possibly optimal) behaviour when the estimation error is small. Under a set of sufficient conditions, we provided a constructive solution based on a hybridredesign and two norm estimators that are used to detect whether the estimation error provided by each observer is small enough. The resulting uniting observer takes benefit of the good properties of each observer: it guarantees the global convergence of the estimation error, while preserving the desired local behaviour, asymptotically. Then, two case studies are proposed. We first combine an EKF with a global asymptotic observer that can be designed using various techniques borrowed from the literature, see e.g., [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF], [START_REF] Zemouche | On lmi conditions to design observers for lipschitz nonlinear systems[END_REF], [START_REF] Arcak | Nonlinear observers: a circle criterion design and robustness analysis[END_REF], [START_REF] Astolfi | Low-power peakingfree high-gain observers[END_REF]. Then, we study the case in which the global observer is not asymptotically convergent.

We point out that the proposed solution is not unique and depends, in general, on the properties of the given observers. For instance, in the proposed scheme, the global observer is enforced to run also when the current estimate coincides with that of local observer. However, when both observers possess global convergence properties, one can exploit a different design in which only one observer at a time is used, in order to reduce the overall computational cost. This case will be addressed in future works.

The main message of this work, namely to combine different observers in order to improve the overall performance, can be adapted to take into account also different scenarios which have not been explicitly addressed here. For instance, in order to relax the matching conditions of Assumption 5, it may be possible to substitute the local observer by a bank of local observers, in the same spirit of [START_REF] Postoyan | A multi-observer approach for the state estimation of nonlinear systems[END_REF], as mentioned in Remark 1. Compared to [START_REF] Postoyan | A multi-observer approach for the state estimation of nonlinear systems[END_REF], uniting a single global observer with a bank of local oscillators could be more efficient from the computation point of view. This work also suggests the development of new classes of global approximate/practical observers that would not be of great interest without the unification of a local observer.
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 2 Fig. 2: Hybrid scheme to unite local observer (2) and global observer (3).

Fig. 4 :

 4 Fig. 4: Graphical interpretation of Assumption 7. Item (i) on the left, and item (ii) on the right. Dashed green line: level sets of V 0 (x, ζ 0 ). Red line: level sets of V 1 (x, ζ 1 ). Black line: value of the function ω(ζ 0 , ζ 1 ).

where κ ≥ 1

 1 is the so called high-gain parameter, and the function φ s (•) := sat r (φ(•)) where sat r is any (continuous) saturation function with saturation level r ≥ max x∈X |φ(x)|. Given the compact set X in (23), the observer (25) is a global asymptotic observer for (23) for κ large enough. Assumption 9 can be established with the Lyapunov function

Fig. 5 :

 5 Fig. 5: State x of the Duffing oscillator (black), state x0 of EKF (blue), state x1 of HGO (green), and estimate x of the uniting observer (red). Figure a) First components of x, x0 , x1 , x. Figure b) Second components of x, x0 , x1 , x.

Fig. 6 :

 6 Fig. 6: Error coordinates x -x of the uniting observer for two different sets of values of c 0 , c 1 . Figure a) xa -x a . Figure b) xb -x b . Red line: c 0 = 0.6, c 1 = 0.8. Blue line: c 0 = 0.4, c 1 = 0.5.

|Φ 1 (

 1 x, u, w, x1 ) -Φ a (x, u, x1 )| ≤ |f (x, u) -f a (x, u)| + |K 1 (x 1 )(h(x, w) -h a (x))| ≤ ∆ f + k 1 (L w w + ∆ h ).

∇V 1 (

 1 x, x1 ), Φ 1 (x, u, w, x1 ) = ∇V 1 (x, x1 ), Φ a (x, u, x1 ) + ∇V 1 (x, x1 ), Φ 1 (x, u, w, x1 ) -Φ a (x, u, x1 )

2 ≤ 1 L x ε1 α 1 + L w w + ∆ h 2 ≤ b 1 c 1

 21121 [START_REF] Bernard | Observer Design for Nonlinear Systems[END_REF], we also obtain|h(x, w) -h a (x 1 )| ≤ L x |x -x1 | + L w w + ∆ h . Define sup ε1,w ρ 1 (y, ŷ1 ) := sup{ 1 |y -ŷ1 | 2 : (x, ζ 1 ) ∈ X × Z 1 , V 1 (x, ζ 1 ) ≤ ε 1 , w ∈ W}.Then, by using the first inequality in[START_REF] Besanc | Nonlinear observers and applications[END_REF], we computesup ε1,w ρ 1 (y, ŷ1 ) ≤ 1 L x sup V1(x,ζ1)≤ε1 |x -x1 | + L w w + ∆ h

Assumption 5 .

 5 Let sup ε 1 V 0 (x, ζ 0 ) := sup{V 0 (x, ζ 0 ) : (x, ζ 1 ) ∈ X × Z 1 , ζ 0 = Θ(ζ 1 ), V 1 (x, ζ 1 ) ≤ ε 1 }.

TABLE II

 II 

	: Uniting EKF (14) and global approximate observer
	(19). Design of the parameters satisfying Assumptions 1, 3-7
	in Proposition 2.
	Proposition 2. Consider system (1), EKF (14), and global
	observer (19). Suppose Assumptions 8 and 10 hold and,
	moreover, suppose that the following conditions hold

The notion of global refers, in this work, to a given (arbitrarily large) set of initial conditions and not necessarily with respect to the full state space.

We do not consider reduced order observers, namely observers with n 0 < nx, though all the forthcoming results can be adapted to cover this case.

Recall that each time we mention a solution, it is a maximal one, see the end of Section II.

Global with respect to the domain of definition of system[START_REF] Krener | The convergence of the extended kalman filter[END_REF], that is X × (C ∪ D).

This has not to be confused with the notion of matching condition often used in control theory.

This choice is always possible since a 0 c 0 < ε 0 -v 0 in view of item (iii) of Assumption 2, anda 1 c 1 < ε 1 -v 1 in view of item (iii) of Assumption 4.

With respect to the design proposed in[START_REF] Astolfi | Uniting local and global observers for the state estimation of nonlinear continuous-time systems[END_REF], we use here two different estimators, z 0 and z 1 , instead of using only one norm estimator driven by a function that depends on both ρ 1 and ω when q = 0. The two approaches are essentially the same, but we prefer, here, to follow the two-norm estimator route to be consistent with the solution proposed in Section III-C.

Global with respect to the sets X × Z 1 .

Global with respect to the sets X × Z 1 .

This case occurs when input and plant dynamics are ultimately bounded, like in the case of a limit cycle.

Recall that we talk of maximal solutions throughout the paper, see Section II.