N

N

Hierarchical Affordance Discovery using Intrinsic
Motivation
Alexandre Manoury, Sao Mai Nguyen, Cédric Buche

» To cite this version:

Alexandre Manoury, Sao Mai Nguyen, Cédric Buche. Hierarchical Affordance Discovery using Intrinsic
Motivation. 7th International Conference on Human-Agent Interaction (HAI ’19), Oct 2019, Kyoto,
Japan. 10.1145/3349537.3351898 . hal-02283820v1

HAL Id: hal-02283820
https://hal.science/hal-02283820v1

Submitted on 11 Sep 2019 (v1), last revised 22 Sep 2020 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02283820v1
https://hal.archives-ouvertes.fr

Hierarchical Affordance Discovery using Intrinsic Motivation

Alexandre Manoury Sao Mai Nguyen Cédric Buche
alexandre.manoury@imt- mai.nguyen@imt-atlantique.fr buche@enib.fr
atlantique.fr IMT Atlantique ENIB

IMT Atlantique
Brest, France

ABSTRACT

To be capable of life-long learning in a real-life environment, robots
have to tackle multiple challenges. Being able to relate physical
properties they may observe in their environment to possible inter-
actions they may have is one of them. This skill, named affordance
learning, is strongly related to embodiment and is mastered through
each person’s development: each individual learns affordances dif-
ferently through their own interactions with their surroundings.
Current methods for affordance learning usually use either fixed
actions to learn these affordances or focus on static setups involving
a robotic arm to be operated.

In this article, we propose an algorithm using intrinsic motiva-
tion to guide the learning of affordances for a mobile robot. This
algorithm is capable to autonomously discover, learn and adapt
interrelated affordances without pre-programmed actions. Once
learned, these affordances may be used by the algorithm to plan
sequences of actions in order to perform tasks of various difficulties.
We then present one experiment and analyse our system before
comparing it with other approaches from reinforcement learning
and affordance learning.

KEYWORDS
Intrinsic motivation; Incremental learning; Affordances

ACM Reference Format:

Alexandre Manoury, Sao Mai Nguyen, and Cédric Buche. 2019. Hierarchical
Affordance Discovery using Intrinsic Motivation. In Proceedings of the 7th
International Conference on Human-Agent Interaction (HAI ’19), October 6-10,
2019, Kyoto, Japan. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3349537.3351898

1 INTRODUCTION

Continuous adaptation to the environment constitutes a key fea-
ture of the human learning process. It enables humans to learn to
interact with newly discovered objects, either by reusing and adapt-
ing previously acquired knowledge or by building new skills more
adapted to the situation at hand. This competence, named life-long

The research work presented is partially supported by the European Regional Fund
(FEDER) via the VITAAL Contrat Plan Etat Region.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HAI 19, October 6-10, 2019, Kyoto, Japan

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6922-0/19/10...$15.00
https://doi.org/10.1145/3349537.3351898

Brest, France

Brest, France

learning, is one of the central challenges for service robots to act
in our every day environment, towards socially assistive robotics
and human agent interaction.

To tackle this, we adopt the approach of developmental robot-
ics. Indeed, studying how infants learn and adapt constitutes an
essential example of life-long learning. It highlights multiple mech-
anisms involved in this learning. Among them, we decide to focus
on two in particular: the way infants relate what they see to how
they may interact with surrounding objects; and how they explore
and interact with their environment while building new skills.

The first one, coined since 1979 by Gibson as the concept of af-
fordance [22], describes the strong relationship between visual cues
and possible interactions. Contrarily to classical computer vision,
central to the notion of affordance are the concepts of embodiment
and of motor capabilities [9]. For instance, adults and infants do not
see the same affordances for the same objects because they do not
have the same body, the same way humans do not perceive the same
affordances as robots. Such affordances evolve all along the life of
a person, directly through its interactions with its surroundings.

The latter, the capacity that infants have to autonomously ex-
plore their environment, may be one of the answers of how af-
fordances are learned. Indeed, infants use their curiosity to drive
their exploration and build new skills through it [8]. This capacity,
described as intrinsic motivation in psychology [13], provides a
powerful mechanism to learn motor skills such as affordances.

In this paper, we focus on combining those two aspects of the
human learning process: affordances and intrinsic motivation, by
proposing a robotic framework to learn affordances thanks to active
learning. We apply it to the case of a mobile robot. Moreover, as we
aim at complex affordances that might require not only primitive
actions but a succession of actions to be combined, we use planning
to chain actions in order to perform task of various difficulty.

2 RELATED WORK

In this section we review the work related to two aspects of our
approach: affordances learning and active learning algorithms, es-
pecially those using intrinsic motivation. We also present reinforce-
ment learning methods we compare with later in the article.

2.1 Affordances learning

Many approaches to affordance learning has been developed: the
traversability affordance for instance, has been studied in different
works [3, 21]. Likewise, the grasp affordance is a recurrent topic
and various approaches exist to learn it such as learning based
on visual descriptors or raw image input [10, 16]. However such
methods are not easily generalised and tend to focus on one, or a

https://doi.org/10.1145/3349537.3351898
https://doi.org/10.1145/3349537.3351898
https://doi.org/10.1145/3349537.3351898

fixed number of specific affordances, with no mechanism adapting
it to new or more complex affordances.

More general approaches, not focusing only on one affordance,
have also been proposed. Such approaches build and update a list
of affordances through the robot interactions with its environment.
In [11], Bayesian Networks are used to learn dependencies between
actions, effects, and visual properties; a strongly spread definition of
affordances in robotics. Likewise, [18] also uses a Bayesian approach
but coupled with a fixed and finite pre-programmed action set to
learn affordances. In our case, we aim to continual learning of
multiple affordances through the interaction with its environment.
Thus, the robot builds itself sensory motor skills using a wide
variety of actions. The robot can use actions of unbounded length
and duration, in a continuous action space. In [5], Ugur et al. propose
a developmental approach of affordance learning. The robot learns
by stages: simple affordances first and more complex later. But they
limit their approach to simple affordances with no multi-object
interaction possible. In all of those methods above, the approach
is limited to a single scene and to a single object interaction at
a time, guiding the robot exploration without letting it choose
autonomously. Furthermore, the considered setups usually focus
on fixed robot with an end-point manipulator, while in our case we
decide to consider a mobile robot, using its mobility to explore its
surroundings by itself and choosing which object to interact with.

2.2 Active motor learning

Central to Gibson’s theory is the notion that the motor capabilities
of the agent dramatically influence perception. Therefore affor-
dance is closely linked to motor learning. In recent years, multiple
approaches have emerged for active motor learning. For instance,
several methods exist to learn forward and inverse models, map
motor policies to sensorimotor outcomes; as formalised by [7, 23].
However, as the dimensionality of the spaces considered increase,
the learner faces the curse of dimensionality [2] and no compre-
hensive method is possible.

Developmental methods, inspired by how infants explore and
learn, have also been proposed to tackle this issue [17]. Indeed,
curiosity has been identified as a key mechanism for exploration
[13]. Other methods, even further inspired by human psychology
has been developed [1], using goal-babbling mechanism to generate
goals and drive their exploration.

More recently, methods using intrinsic motivation to build a
hierarchy of interrelated skills has been proposed. Firstly by us-
ing a pre-programmed and static hierarchy [6], then by learning it
through exploration for robotic arms [4] or mobile robots [12]. The
latter provides an algorithm, CHIME, that uses intrinsic motivation
to guide its exploration. It is capable of adaptive addition and modi-
fication of a skill hierarchy based on its interactions. It may also
plan of sequence of actions to perform complex tasks.

2.3 Reinforcement learning

In other domains, such as reinforcement learning, numerous meth-
ods have emerged to tackle solving daily tasks, using either classical
approaches, such as Q-Learning or more recent neural network
based ones: DQN[15] or Actor Critic algorithm[14]. But such meth-
ods differ from our approach as they are designed to tackle specific

tasks, defined by a reward function that need to be provided to
the learner. For a more general approach of reinforcement learning
methods, Universal Value Function Approximators [19] have been
proposed: the task goal is this time learned as an environmental
state instead of being fixed. This lets the learned value function
to be more general and applicable to various goals. Closer to our
approach, the CURIOUS algorithm has been proposed, combining
deep reinforcement learning and intrinsic motivation to generate
goals to explore.

We decide to base our proposition on the CHIME algorithm and
adapt their learning algorithm to the affordance learning problem
by using sensorimotor features. Whereas in [12], CHIME could
not generalise its skills to new objects, our algorithm is capable
to generalise to new objects, as its learning is based on sensory
features.

3 PROPOSITION

Before describing our method, we first present the experiment and
formalise the learning problem.

3.1 Setup

The experimental setup used in this article is presented in Figure 1.

Figure 1: Experimental setup used: at the center is a mobile
robot, the green objects represent movable entities, at the
opposite of the red ones. The room is closed.

A mobile robot, equipped with two controllable wheels is placed
in a rectangular room. It is surrounded by multiple objects and
possesses a LIDAR sensor, helping it to detect obstacles. It can
navigate between them or learn to push them. The robot starts with
a limited prior knowledge:

e how many effectors it possesses, in this case its 2 wheels,

e a method to perform actions on its effectors. In our case,
the method lists indexes of the effectors to activate and the
action parameters p € [~1, 1]? representing the intensity of
the current to apply to each wheel.

e alist of the objects present in the room. We consider 9 cylin-
ders in our setup, of various sizes and colors. The green
objects are pushables whereas the red ones are not.

e a method to observe the properties of each of the objects
(including the robot itself). The properties used in our ex-
periment are: position, shape, radius, height, color, and the

position relative to the robot. A pushable object requires
more torque to be moved as its radius and height increase.

With this knowledge, the robot has to autonomously explore its
environment and learn how to perform various tasks: moving itself,
placing an object somewhere, pushing an object using another one.
It also has to learn affordances corresponding to such tasks and to
be able to recognise (or estimate) objects on which an affordance
may apply or not. E.g. the pushability affordance cannot be applied
to red objects, as those are fixed.

The robot explores the room in episodes of arbitrary length of
100 actions. At the beginning of each episode, the position and
properties of the objects are initialised at random values and the
robot always starts at the center of the room.

In real life operation, the robot can extract this information and
properties from its sensors. It our case, the real life system can use an
RGB-D sensor to segmentate objects and an variational autoencoder
to extract properties from each of them. All the acquired data are
used to fill in an environmental map, used in turn to provide data
to the learning algorithm described in this article. To keep this
system simple and avoid multiplying the source of errors, this
article focuses only on the learning algorithm, with direct access to
high-level data.

3.2 Problem formalization

Let us consider a robot interacting with its non-rewarding environ-
ment by performing sequences of motions of unbounded length in
order to induce changes in its surroundings.

Each one of these motions is a primitive action described by a
parametrised function with N parameters : a € A c RN, Each
primitive action a corresponds to a command that may be sent to
one or several actuators of the robot.

Our robot can perform sequences of primitive actions. Such
sequence may be of any length n € N, and described by n successive
primitive actions: a = [ay, ..., an] € A". Thus the primitive action
space exploitable by the robot is a continuous space of infinite
dimensionality AN c R,

Each of the actions performed by the robot may have conse-
quences on the environment, observable by the robot. We call such
consequences observations and note them w € Q c RM.

Each subspace of Q is related to a given property of an object
o € O present in the environment (e.g. the position of an object).
We consider this relation known to the robot, as such knowledge
is required to build an affordance. This is a weak assumption as
such information may be extracted from visual segmentation or
by exploiting data from a semantic map. In our case, such data are
directly given by the simulator itself.

3.3 Formalization of our approach

To learn how to interact with its environment, the robot learns
models of relations between primitive actions a € A and outcomes
w € Q (relative observations before and after executing an action)
obtained after performing this action within a given context @ € Q
(absolute state before executing the action, for more convenience
we indicate with ~the context spaces to differentiate them from
outcome spaces).

For convenience, we define the controllable ensemble C = A U
Qcontrollables Tegrouping both primitive actions € A and observ-
ables that may be controlled (€ Q.ontrollable)s 1-€- that a model
may be used to find one or a sequence of primitive actions to be
performed in order to induce a value for the given observable.
Qcontrollable 1S @ subset of Q and this set changes dynamically as
the robot discovers new control models.

More generally, the robot may learn models between control-
lables ¢ € C (not only primitive actions) and relative observations
within a given context. Indeed, our robot may learn how to reach a
goal observation value by first inducing a change in another observ-
able of the environment. E.g. pushing an object can be performed
after reaching the object.

To formalise affordances we use two elements. First we note an
Affordance model A(C;, Qj, Q), where C; C C is the input space
of the affordance, Q; C Q is the output space and O C Qis its
context space. And, secondly, to visually identify this affordance,
we associate A with a visual predictor p4. It learns on Q and indi-
cates whether A may be applied to an object o in the scene or not,
accordingly to its visual or physical properties. Moreover, to be able
to learn how to use the affordance to complete tasks, A possesses
a forward model M4 and an inverse model L 4. Both models learn
the relationship between C; and Q; knowing a context Q. The
forward model is used to predict the observable consequences w
of a controllable ¢; in a given context ©. Conversely, the inverse
model is used to estimate a controllable c; to be performed in a
given context & to induce a goal observable state w as a result of
ci. These models are trained on the data acquired by the robot all
along its life and recorded in its dataset. Let us note O this dataset.

Each affordance A can be seen as a basic skill, letting the robot
perform a given simple task, e.g. reaching a position, placing an
object somewhere.

Let us note H the ensemble of the affordances used by our robot.
As our robot aimed to be adaptive, H varies along time.

4 ALGORITHM

For our robot to learn to associate a sequence of primitive actions
[a1, ..., an] to desired consequences on multiple objects in its en-
vironment, our robot needs to learn which consequences w can
be observed and learn the control actions to realise these conse-
quences. For this learning problem, we propose an algorithm in this
section. We first introduce its global architecture before detailing
its key processes: how intrinsic motivation drives the exploration,
how actions are executed and finally how affordance models are
built and updated.

4.1 Global architecture

Our algorithm is based on the CHIME algorithm [12]. Both are itera-
tive and active learning algorithm that learn by episodes, but unlike
CHIME our algorithm is designed to consider visual properties
during its learning process.

The global layout of the algorithm architecture is presented
in Figure 2 and the corresponding pseudo code can be seen on
Algorithm 1. At the beginning of the learning, the dataset O and
the affordance hierarchy H are both empty: the robot autonomously
collects data and creates affordances.

Generate random

action
Choose random Plan ar;:;d
or goal oriented execul
Select affordance |] Selecta

and generate a goal valid object
Update intrinsic Update |
motivation affordances

Figure 2: Abstract layout of a learning episode, beginning is
on the left on the bold node.

At each episode, the robot explores its environment by perform-
ing actions, observes the context and the outcomes obtained and
processes the acquired data. One episode is composed of multiple
iterations, and at each iteration one primitive action is performed.

Starting an episode, the robot decides either to explore a random
action (. 10), or to use goal babbling to generate a goal to attain
during the episode (1. 5). This decision is stochastic, based on a
parameter o, and it also depends on whether interesting goals may
be generated or not. E.g. at the first episode, no data has been
acquired yet and thus only a random action may be performed.

When choosing a random action, the robot generates a random
controllable to be tested ¢ € C among all the controllable spaces
(including the primitive actions). If required, this controllable is
then converted to an executable primitive action, as only primitive
actions may be performed by the robot effectors. This process is
described in Section 4.3.

When choosing to generate a goal, an affordance A and a goal
g are selected, based on an interest metric detailed later in section
4.2. The robot next decides on which object this goal will be tested.
Currently it just selects the closest object considered as valid by
the affordance visual classifier p4. The robot then uses its inverse
models and its planning system to infer a sequence of controllables
¢ € C" to be performed in order to reach wy. Once again, these
controllables are broken down into executable primitive actions, if
required, using the same process as previously.

In both cases, the robot generates a sequence of primitive actions
a=lai,...,an] € A" of length n. This corresponds to a random
action or to a sequence of actions designed to reach a generated goal
@g. These actions are then executed by the robot (1. 17): for each
sub primitive action a;, the absolute value of each observable space
is first recorded (corresponding to the context of the subaction),
a; is then performed and the difference for each observable space
(compared to before the execution) is retrieved.

After finishing an episode, the robot obtains a list of
(ai, w{, o w,’;, (Z)i ol (Z’Ilc) for each iteration. Where i corresponds
to the iteration index and k to the number of subspaces of Q. These
data are then stored in D (1. 25). It is also processed and used to
improve existing affordances (1. 24), decide whether creating a new
affordance is necessary or not, and update the intrinsic motivation
system. These different processes are described in the following
sub sections.

4.2 Intrinsic motivation

This algorithm uses intrinsic motivation to guide its exploration.
It is based on the CHIME algorithm [12], itself inspired by the
SAGG-RIAC algorithm [1].

Algorithm 1 Algorithm layout
1: i=0
2: loop
3 Depisodic =0
4 if H # 0 and Random() < o then
5: A = AffordanceSelection(H)
6
7
8
9

= GoalSelection(A)
wg = ObjectSelection(A, w)

¢ = Plan(wyg)
else

10: C; = RandomControllableSpace(C)
11: ¢ = RandomValue(C;)
12: ¢ =[cr]
13: a = TransformToPrimitive(c)
14: for a; € ado
15: Wpefore = GetObservations(Q)
16: aj = [cx] if ¢ € A else TransformToPrimitive(cy)
17: Execute(a;)
18: Wafter = GetObservations(Q)
19: Wi = Wafter ~ Whefore
20: o = Wpefore
2L: Z)episoale — (ai, wi, 0;)
22: i+=1

23: UpdatelnterestMaps(D, Depisodic)
24: UpdateAffordances(D, Depisodic)
25 D « z)episodic

For each affordance A(Ca, Qa, Q 4), the system creates an inter-
est map: a partition of Q4 that is constructed incrementally based
on progress measures as described in [1]. The goal of this process
is to divide Q4 into regions and attribute a value of interest to each
region. This interest corresponds to a monitoring of how much
exploring this region may improve the robot knowledge in the
future.

This measure is linked to a notion of competence. In our case, we
define the competence of an affordance A near a goal w € Q4 as
mean(we — wy) for the k last outcomes near w. w, corresponds to an
outcome goal estimated by the algorithm for a given controllable ¢
and w; to the effective outcome reached during the exploration.

The derivative of this competence is used to define a learning
progress: how much an affordance model has been improved. And
the interest value of a region then corresponds to the mean of the
last n learning progresses in this region.

More details about this process and the region splitting mecha-
nism may be found in [12] and in [1].

4.3 Action and controllable execution

To perform sequence of controllables ¢, our algorithm uses the same
system as CHIME. For each element c; of c:

o if the sub-controllable to be performed c; is a primitive action,
it is directly sent to the effectors and executed without any
pre-processing

e in the other case, if ¢; is not a primitive action, it corresponds
to an observable the robot wants to induce within its envi-
ronment, i.e. ¢; ¢ A butc; € Qeonrrollable- Then it cannot
be directly executed by the effectors of the robot and it needs

to be broken down into primitive actions beforehand. An
affordance A(Ca, Qa, Q4) is then selected (with ¢; € Qp4)
and its inverse model is applied onto c¢; in order to obtain
a lower level controllable b; € Cga. If ¢; is difficult to reach
using only one lower level controllable, a planning phase is
used to build a sequence of element of C4 in order to reach
¢; when executed. Once again for each element of this newly
created sequence, if it is not primitive the same mechanism is
applied recursively on it until having only primitive actions.

At the end of this mechanism, we obtain a list b € AN composed
only of primitive actions that can be executed directly.
Additional information can be found in [12].

4.4 Affordance addition and update

The CHIME algorithm has been designed to autonomously learn
model of data. We diverge from it to autonomously learn affordances
instead. In this section we present how affordances are added to H
and updated.

At each episode, the robot has to decide multiple elements:
whether a new affordance must be added or if existing affordances
are enough; how to train the visual classifiers of affordances and if
affordances need to be updated.

To answer those questions, the robot follows the procedure pre-
sented on Algorithm 2.

At the end of each episode, subspaces of Q for which non null
relative outcomes w has been observed are listed. Then the robot
randomly picks a space among this list and verifies if it matches
an existing affordance. A space matches an affordance if adding
the data from this space to the training set of the affordance does
not reduce its competence. If not matching, it tries to add context
spaces to the affordance or then tries to create a new affordance. The
predictor py is afterwards trained on the acquired data (positive or
negative).

The predictor p4 used in our system is a binary neural network
composed of 3 fully connected layers using as input all the proper-
ties of the object o currently considered. It is trained using action
replay on balanced data (objects on which the A is applicable and
the others).

5 PERFORMANCE OF OUR ALGORITHM
We used our experimental setup to perform three series of tests:

o firstly, evaluating our system itself, which affordances are
created, and when;

o then, comparing the task performance of our system com-
pared to CHIME;

o finally, comparing our system to other reinforcement learn-
ing approaches.

5.1 Evaluation method

To measure the performance of our (or other) algorithm at complet-
ing tasks, we define an evaluation metric as follows: for each task,
we pre-define a list of points (robot position or object position) to
be reached. Then, during evaluation, the system attempts to reach
each point in the simulator and 1— the mean error at reaching those
points is defined as the evaluation of this task.

Algorithm 2 Autonomous affordances adaptation

Input: a the actions performed during the episode,
w the observations at the beginning of each iteration of the
episode.
1: Spaces = SelectSpaces(Q, w)
2: repeat k times
3 S = PickSpace(Spaces)

4 for Ae H do

5 matched = False

6: if Matches(A, a, ws) then

7 matched = True

8 Add (a, ws) to the model training dataset of A

9 TrainVisualClassifier(A, wg, True)

10: else

11: repeat k’ times
12: Sl ontex: = PickSpace(2)

13: NewA = Copy(A)

14: ContextSpacenewa = ContextSpacenewa U

Séontext

15: if Competence(NewA) 2 Trodification then
16: A «— NewA
17: matched = True

18: break

19: pa < TrainVisualClassifier(A, ws, matched)
20: if matched then

21: Add g, wg to the model training dataset of A

22: else

23: NewA = Affordance(a, S, 0)

24: if Competence(NewA) > t¢rearion then

25: H «— NewA

26: PNewAa < TrainVisualClassifier(NewA, wg, True)

5.2 Affordances learning

In our first test, we let the robot explore the environment presented
in 3.1. This environment is simulated in python using a 2D physics
engine named pymunk.

We perform 10 runs, letting the robot autonomous during 4000
iterations and we report the mean results.

At the end of its exploration, we observe the affordances created
and their evaluation, as presented in Figure 3. The robot has suc-
cessfully discovered multiple affordances, we count 12 at the end
for the majority of runs. Among them, 3 where expected:

e A1: moving the robot itself,
e Ajy: pushing an object by moving the robot and
e As: pushing an object using another object.

The other affordances discovered are unintended, but still valid:
they correspond to unexpected correlations the robot has found
between various spaces. In our analysis we focus on the first 3
affordances mentioned above.

Even in this simple environment, the algorithm has managed to
create a hierarchy of interrelated skills: Ay depending on A; to be
completed, itself depending on Ay.

More than just the final number of affordances, it is interesting
to observe the creations, deletions and updates of affordances all
along the exploration.

10
08
Maving the robot
=== With only random actions
é o64—fF 1+ Ff Sl 1 e With full goal babbling
[— Pushing an ochject directly
E """ With full goal babbling
g === With only random actions
E 0.4 = Pushing an ocbject using a tool
""" With full goal babbling
=== With cnly random actions
0z
00

1500 2000 2500 3000 3500 4000
Iteration

Figure 3: Evaluation during the training for three affor-
dances: moving the robot itself A, pushing an object A; and
pushing an object using another one A;. Evaluation is done
every 200 iterations between 200 and 2000. Thus, affordance
Aj is created between 600 and 800. This also shows mean
evaluation value when using only random actions or only
goal babbling when possible (standard deviation for those
is not displayed for clarity). For A3, the goal babbling or ran-
dom only versions does not manage to create the affordance.

Concerning the affordance Ao, we can see in Figure 4 (top) that
the affordance is created since iteration t=25. At the moment of the
discovery of this affordance, the model created by the robot does
not take as input any context space. As no walls or obstacles have
been encountered yet the robot thinks the movement of the robot
only depends on its wheels speed. At iteration t=150 the affordance
is updated and the relative position between an object and the robot
is added as context space. A wrong assumption but coherent with
the data acquired so far. Then quickly, at iteration 175, this context
space is replaced with the robot LIDAR space and kept as such until
the end. No physical properties is used here as a context space,
this is due to the fact that the robot is the only object using this
affordance.

The results of A; in Figure 4 (bottom) show that this affordance
is created much later than Ay. This is explained by the fact that the
robot has first to collide with an object to discover how to push
objects directly with its body. The first occurrence of such collision
was around t=500 iterations on average. Here again, the context
space of the affordance has evolved during the exploration and has
finally converged to the relative position between the object and
the robot. At the difference of Ay, 2 physical properties are here
added as context spaces of this affordance: the radius and the height
of the object at hand. As the pushability of each object depends
on these two physical properties it is normal to see them appear
here, and this confirm that our algorithm has well captured the
dependency to such properties.

Once A; has been created, its visual classifier p 4 is also created
and trained to identify to which object A; may be applied or not.
At the end of the 4000 iterations, we use p4; to check its prediction
for each object in the room including the robot itself: it is positive
for all the green objects and negative for the robot. This is expected
as the robot cannot push itself neither it can push fixed red objects.

Hence, our algorithm has successfully managed to construct both a
model affordance and the corresponding visual classifier.

For Ap, A1 and Ay, the affordances are created directly as soon as
collected data permit it. This behaviour is desired and due to a low
affordance creation threshold 7, 44;+i0n- This favours exploration of
newly discovered spaces and regions: indeed, with a low threshold
value, affordances are easily created and a goal may be generated
to explore them. If the exploration then points out that it is a false
positive, that affordance is destroyed. On the contrary if the explo-
ration confirms it as a valid affordance, active learning continues
to gradually collect new data to increase the robot’s competence
for this affordance.

Model Context
creation update
Spaces J, J, J,
Input Whee! control
Cutput | Robot relative position
Context *| LIDAR
50 100 180 200
Iteration
Ag
Model Context
creation update
Spaces J, J, J, J,
Input | Robot relative position
Qutput | Object relative position |
Context == Object-Robot position
Object Radius
Object Height
[teration
Ay

Figure 4: Temporal evolution of affordances A (top) and A,
(bottom) during the learning process. Please note that the
iteration axis is not the same for Ay and A;. Colors are not
related to the competence graph: yellow spaces are part of
A, blue and green ones of Q: blue ones are using relative
data while green ones absolute data.

* : relative position between an object and the robot
** : robot absolute position
*** : LIDAR data

5.3 Random and Goal Babbling impact

To further analyse our algorithm we decided to test two extreme
situations: one with only random action exploration; and another
one using only goal babbling whenever possible.

The first case favours novelty and discovery: the rate of affor-
dance addition is high, but the exploration and the mastering of the
already discovered affordance is delayed. In Figure 3 we can see
that the competence curve for A; requires more time to converge
than in the previous test.

At the opposite, using only goal babbling whenever available, the
number of affordances discovered is greatly reduced, and focused
at the beginning of the exploration. In this configuration, A is
discovered later compared to the previous configuration.

6 COMPARISON WITH OTHER APPROACHES

We compare our approach to baselines belonging to two different
families: firstly to reinforcement learning algorithms on similar
setups. Secondly, we compare it to affordance learning algorithms.
But to our knowledge such methods do not focus on mobile ro-
bot and are thus evaluated on experimental setups significantly
different from ours.

6.1 Reinforcement learning

As we want to compare our algorithm to existing ones on the same
setup, we choose to use classical reinforcement learning algorithms
such as Q-Learning, DQN (Deep Q-Network) and Actor Critic in
our experimental setup. As they are not designed for multi-task
learning and require an extrinsic reward, some setup modifications
have been made to enable these algorithms to learn in our setup: we
limited the experiment to one object at a time (except for Az) and
added a reward function to provide a feedback. Unlike our method,
where the exploration is self-guided, the desired behaviours or tasks
to be completed with these algorithms must be explicited through
the reward function. We test these algorithms on 3 increasingly
difficult tasks: moving the robot, pushing an object directly and then
by using another object as a tool. To match the general aspect of our
algorithm, we use Universal Value Function Approximators [19]
for these three algorithms in order to learn how to reach various
goals. We use 2 different kinds of reward function for each setup:

. . Pushing/going
Version Reaching goal in the right direction Else
Non-guided +1000 5
(sparse reward)
Guided +1000 max +20 -5

Table 1: Reward functions used by the comparative setup

In addition to these algorithms, we also compare ours to CURI-
OUS, a reinforcement learning algorithm using intrinsic motivation
for exploration. We base its reward on the non-guided version.

When required, Q has been discretised uniformly. Actions have
also been discretised into 4 when needed: forward, backward, turn-
ing left, turning right. When reaching the zone or after 1000 itera-
tions the episode ends, the setup is reset and the robot is randomly
placed inside the room.

We perform 10 runs over 50000 iterations for each task, reward
function and algorithm and report the result in Figure 5.

For the first task (top), we can see that all the algorithms succeed
in 10000 to 20000 iterations. With our algorithm, moving the robot
is mastered as soon as 250 iterations. The difference mainly comes
from the use of planning in our case. It lets the robot reach distant
spots even with such a few exploration done.

For the second task (middle), only the guided version are success-
ful, requiring between 12500 and 26000 iterations to be learned. The
non-guided versions fail because of the combinatorial explosion of
all the states involved and the difficulty to reach the final goal. In
our case this task is learned within 1000 iterations.

For the most complex task (bottom), only CURIOUS and our
algorithm manage to succeed, CURIOUS reaches a competence of

0.96 using 32000 iterations. The other algorithms, even using the
guided rewards, fail due to the complexity of the task at hand. Our
algorithm only requires 2100 iterations to reach the final level of
competence of CURIOUS.

For all the examples above, as we use UVFA, the Q-Learning is
highly dependent to the number of goal it has to explore (as each
goal corresponds to a different state). Thus, this adds another prior
(in addition to the reward function) that is not required with our
algorithm.

Task: Moving the robot

10
08
(=
2
w 0.6
5 === Non guided Q-Learning
E —— Guided Q-Learning
% 0.4 === Non guided DQN
I —— Guided DON
0.z === Non guided Actor Critic
—— Guided Actor Critic
0.0 CURIOUS
20000 30000 40000 50000
Iteration
Task: Pushing an object
10 —— =
08 === Non guided Q-Learning
H —— Guided Q-Learning
§ 06 === Non guided DON
] —— Guided DQN
2 s === Non guided Actor Critic
E —— Guided Actor Critic
CURIOUS
0z
00
o 10000 20000 30000 40000 50000
Iteration
Task: Pushing an object with a tool
=== Non guided Q-Learning
08 / — Gulded.O-Learnlng
— === Non guided DON
c / —— Guided DON
= 06 ral === Non guided Actor Critic
2 { —— Guided Actor Critic
H CURIOUS
Los
i /
0z f
o
V4
00
o 10000 20000 30000 40000 50000

Iteration

Figure 5: Evaluation of Q-Learning, DQN, Actor Crictic and
CURIOUS applied to three tasks: moving the robot, pushing
an object and pushing it using another object as a tool. The
standard deviation is displayed in transparent.

6.2 Affordance learning

As the majority of works in affordance learning uses robot arms
to manipulate objects and not mobile robot, experimental setups
are difficult to compare. Thus, we decide to provide a qualitative
comparison between our approach and existing affordance learning
ones. We analyse the learning process reported for the subsequent
affordances in these different setups.

In [11], the system extracts pre-programmed controllables from
the considered objects, like in our algorithm, then discretises them
and clusterises them. It then builds a dependency graph that encom-
passes visual controllables, performed action and the action context.
In our case, the information contained in this graph are all included
in our models and visual classifiers. Thus, our system is capable
to build the same affordances. Conversely, the pre-programmed
actions in [11] are in our case autonomously learned by the ro-
bot, requiring less prior information and adding more flexibility.
In both cases, the temporal aspect of sequences of actions is not
learned, but in our algorithm, the planning layer automatically
creates successive sequences, based on the models learned.

On the contrary, in [20], the system builds a hierarchy of affor-
dances like in our proposition. This time intrinsic motivation is used
to select which action to execute within a finite set of pre-defined
low level actions. Whereas in our system, the robot manages to
learn primitive actions in a continuous space, and is capable to use
sequences of actions by chaining primitive actions.

7 CONCLUSION

For affordances learning, we have presented an algorithm combin-
ing the affordances concept and intrinsic motivation exploration.
It allows a robot to autonomously discover unknown affordances
and learn actions to exploit them. The learning is based on active
learning to collect data through new interactions with the environ-
ment, guided by the heuristics of intrinsic motivation; Once learned,
these affordance control models are used to plan complex tasks with
known or unknown objects, by using their physical properties to
decide whether or not a learned affordance may be applied.

Our main contribution in this article is to propose a learning
algorithm for multiple objects based on physical properties so as to
generalise to new objects. We have shown that it can discover in a
developmental manner non-predefined affordances from the easiest
to the most complex ones, and can use unbounded sequences of
learned actions to complete complex tasks. We have compared our
algorithm to others to outline two main properties : the hierarchical
and developmental learning process, as well as the capacity to use
sequences of actions to adapt to the complexity of the task at hand.

This algorithm broadly relies on the concept of embodiment and
is strongly inspired by human development from this point of view;
for both the affordance aspect and the intrinsic motivation one.

In future works we want to deepen the comparison with existing
methods by considering similar setups, and thus applying our algo-
rithm onto robotic arms. Also, we aim for a more complete system,
including a mechanism for visual feature extraction in order to
provide inputs for our algorithm.

REFERENCES

[1] Adrien Baranes and Pierre-yves Oudeyer. 2009. R-IAC: Robust intrinsically
motivated exploration and active learning. IEEE Transactions on Autonomous
Mental Development 1, 3 (2009), 155-169.

[2] Richard Bellman. 1957. Dynamic programming.

[3] Dongshin Kim, Jie Sun, Sang Min Oh, J. M. Rehg, and A. F. Bobick. 2006.
Traversability classification using unsupervised on-line visual learning for out-
door robot navigation. In Proceedings 2006 IEEE International Conference on Robot-
ics and Automation, 2006. ICRA 2006. 518-525. https://doi.org/10.1109/ROBOT.
2006.1641763

[4] Nicolas Duminy, Sao Mai Nguyen, and Dominique Duhaut. 2019. Learning a
Set of Interrelated Tasks by Using a Succession of Motor Policies for a Socially

—_
—_

[12]

[13

[14

[15

[16]

(17

(18]

(19]

[20]

[21]

[22

(23]

Guided Intrinsically Motivated Learner. Frontiers in Neurorobotics 12 (2019), 87.
https://doi.org/10.3389/fnbot.2018.00087

Erol Sahin Emre Ugur Yukie Nagai, Erhan Oztop, Emre Ugur, Yukie Nagai, Erol
Sahin, and Erhan Oztop. 2015. Staged Development of Robot Skills: Behavior
Formation, Affordance Learning and Imitation with Motionese. IEEE Transactions
on Autonomous Mental Development 7, 2 (2015), 119-139. https://doi.org/10.1109/
TAMD.2015.2426192

Sébastien Forestier and Oudeyer Pierre-Yves. 2016. Overlapping Waves in Tool
Use Development: a Curiosity-Driven Computational Model. IEEE International
Conference Developmental Learning and Epigenetic Robotics (2016), 1859-1864.
B.A. Francis and W.M. Wonham. 1976. The internal model principle of control
theory. Automatica 12, 5 (1976), 457 — 465. https://doi.org/10.1016/0005-1098(76)
90006-6

Jacqueline Gottlieb, Pierre Yves Oudeyer, Manuel Lopes, and Adrien Baranes.
2013. Information-seeking, curiosity, and attention: Computational and neural
mechanisms. Trends in Cognitive Sciences 17, 11 (2013), 585-593. https://doi.org/
10.1016/j.tics.2013.09.001 arXiv:NIHMS150003

Lorenzo Jamone, Emre Ugur, Angelo Cangelosi, Luciano Fadiga, Alexandre
Bernardino, Justus Piater, and Jose Santos-Victor. 2016. Affordances in psychology,
neuroscience and robotics: a survey. IEEE Transactions on Cognitive and Develop-
mental Systems January (2016), 1-1. https://doi.org/10.1109/TCDS.2016.2594134
Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen.
2018. Learning hand-eye coordination for robotic grasping with deep learn-
ing and large-scale data collection. The International Journal of Robotics
Research 37, 4-5 (2018), 421-436. https://doi.org/10.1177/0278364917710318
arXiv:https://doi.org/10.1177/0278364917710318

Alexandre Bernardino Luis Montesano Manuel Lopes, Jose Santos-Victor, L.
Montesano, M. Lopes, a. Bernardino, and Jose Santos-Victor. 2008. Learning
Object Affordances: From Sensory—-Motor Coordination to Imitation. Ninth
International Conference on Epigenetic Robotics: Modeling Cognitive Development
in Robotic Systems 24, 1 (2008), 15-26. https://doi.org/10.1109/TRO.2007.914848
A.Manoury, S. M. Nguyen, and C. Buche. 2019. CHIME: An Adaptive Hierarchical
Representation for Continuous Intrinsically Motivated Exploration. In 2019 Third
IEEE International Conference on Robotic Computing (IRC). 167-170. https://doi.
org/10.1109/IRC.2019.00032

Karen A. Miller, Edward L. Deci, and Richard M. Ryan. 1988. Intrinsic Motiva-
tion and Self-Determination in Human Behavior. Contemporary Sociology 17,
2 (1988), 253. arXiv:arXiv:1011.1669v3 http://www.jstor.org/stable/2070638?
origin=crossref

Volodymyr Mnih, Adria Puigdoménech Badia, Mehdi Mirza, Alex Graves, Timo-
thy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous Methods for Deep Reinforcement Learning. CoRR abs/1602.01783 (2016).
arXiv:1602.01783 http://arxiv.org/abs/1602.01783

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518, 7540
(Feb. 2015), 529-533. http://dx.doi.org/10.1038/nature14236

L. Montesano and M. Lopes. 2009. Learning grasping affordances from local
visual descriptors. In 2009 IEEE 8th International Conference on Development and
Learning. 1-6. https://doi.org/10.1109/DEVLRN.2009.5175529

Pierre-Yves Oudeyer, Frederic Kaplan, and Verena Hafner. 2007. Intrinsic Mo-
tivation Systems for Autonomous Mental Development. IEEE Transactions on
Evolutionary Computation 11, 2 (2007), 265-286. https://doi.org/10.1109/TEVC.
2006.890271

Pierre Luce-Vayrac R. Omar Chavez-Garcia, Raja Chatila, R. Omar Chavez-
Garcia, Pierre Luce-Vayrac, and Raja Chatila. 2016. Discovering Affordances
Through Perception and Manipulation. In 2016 IEEE/RSY International Confer-
ence on Intelligent Robots and Systems (IROS), Vol. 2016-Novem. 3959-3964.
https://doi.org/10.1109/IR0OS.2016.7759583

Tom Schaul, Dan Horgan, Karol Gregor, and David Silver. 2015. Universal Value
Function Approximators. In Proceedings of the 32Nd International Conference on
International Conference on Machine Learning - Volume 37 (ICML’15). JMLR.org,
1312-1320. http://dl.acm.org/citation.cfm?id=3045118.3045258

Emre Ugur and Justus Piater. 2016. Emergent structuring of interdependent affor-
dance learning tasks using intrinsic motivation and empirical feature selection.
(2016), 1-13.

Emre Ugur and Erol Sahin. 2010. Traversability: A case study for learning
and perceiving affordances in robots. Adaptive Behavior 18, 3 (2010), 258—284.
https://doi.org/10.1177/1059712310370625

Bruce A. Whitehead. 1981. James J. Gibson: The ecological approach to visual
perception. Boston: Houghton Mifflin, 1979, 332 pp. Behavioral Science 26, 3
(1981), 308-309. https://doi.org/10.1002/bs.3830260313

D.M. Wolpert and M. Kawato. 1998. Multiple paired forward and inverse models
for motor control. Neural Networks 11, 7 (1998), 1317 - 1329. https://doi.org/10.
1016/50893-6080(98)00066-5

https://doi.org/10.1109/ROBOT.2006.1641763
https://doi.org/10.1109/ROBOT.2006.1641763
https://doi.org/10.3389/fnbot.2018.00087
https://doi.org/10.1109/TAMD.2015.2426192
https://doi.org/10.1109/TAMD.2015.2426192
https://doi.org/10.1016/0005-1098(76)90006-6
https://doi.org/10.1016/0005-1098(76)90006-6
https://doi.org/10.1016/j.tics.2013.09.001
https://doi.org/10.1016/j.tics.2013.09.001
http://arxiv.org/abs/NIHMS150003
https://doi.org/10.1109/TCDS.2016.2594134
https://doi.org/10.1177/0278364917710318
http://arxiv.org/abs/https://doi.org/10.1177/0278364917710318
https://doi.org/10.1109/TRO.2007.914848
https://doi.org/10.1109/IRC.2019.00032
https://doi.org/10.1109/IRC.2019.00032
http://arxiv.org/abs/arXiv:1011.1669v3
http://www.jstor.org/stable/2070638?origin=crossref
http://www.jstor.org/stable/2070638?origin=crossref
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
http://dx.doi.org/10.1038/nature14236
https://doi.org/10.1109/DEVLRN.2009.5175529
https://doi.org/10.1109/TEVC.2006.890271
https://doi.org/10.1109/TEVC.2006.890271
https://doi.org/10.1109/IROS.2016.7759583
http://dl.acm.org/citation.cfm?id=3045118.3045258
https://doi.org/10.1177/1059712310370625
https://doi.org/10.1002/bs.3830260313
https://doi.org/10.1016/S0893-6080(98)00066-5
https://doi.org/10.1016/S0893-6080(98)00066-5

	Abstract
	1 Introduction
	2 Related work
	2.1 Affordances learning
	2.2 Active motor learning
	2.3 Reinforcement learning

	3 Proposition
	3.1 Setup
	3.2 Problem formalization
	3.3 Formalization of our approach

	4 Algorithm
	4.1 Global architecture
	4.2 Intrinsic motivation
	4.3 Action and controllable execution
	4.4 Affordance addition and update

	5 Performance of our algorithm
	5.1 Evaluation method
	5.2 Affordances learning
	5.3 Random and Goal Babbling impact

	6 Comparison with other approaches
	6.1 Reinforcement learning
	6.2 Affordance learning

	7 Conclusion
	References

