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Abstract

This paper presents an algorithm to simulate Gaussian random vectors whose
precision matrix can be expressed as a polynomial of a sparse matrix. This
situation arises in particular when simulating Gaussian Markov random �elds
obtained by the �nite elements discretization of the solutions of some stochastic
partial derivative equations. The proposed algorithm uses a Chebyshev poly-
nomial approximation to compute simulated vectors with a linear complexity.
This method is asymptotically exact as the approximation order grows. Criteria
based on tests of the statistical properties of the produced vectors are derived
to determine minimal orders of approximation.

Keywords� S imulation, GMRF, SPDE, Finite element method, Chebyshev ap-

proximation, Krylov subspaces

1. Introduction

Gaussian random �elds (GRF) are widely used to model spatially corre-
lated data in environmental and earth sciences (Chilès and Del�ner, 2012; Lan-
tuéjoul, 2013; Wackernagel, 2013). The stochastic simulation of such �elds (also
called geostatistical simulation) is a common process in risk analysis (Chilès
and Del�ner, 2012). Indeed, each simulation is seen as an alternate but plausi-
ble version of the reality. Spatial uncertainty can then be assessed in problems
where the variables of interest are partially observed through comparisons over
a set of simulations. There are two main classes of simulation algorithms. Exact
algorithms aim at reproducing exactly the statistical properties of a targeted
model. They include methods based on the factorization of covariance matrices
(Davis, 1987b) or on the spectral properties of random �elds (Pardo-Igúzquiza
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and Chica-Olmo, 1993; Dietrich and Newsam, 1993). These methods are suit-
able for small-sized problems or for compactly-supported covariance functions
(Kaufman et al., 2008; Bevilacqua et al., 2019) which lead to sparse covari-
ance matrices (Furrer et al., 2010). However, for general covariance functions
or when the size of the problem is very large, they are replaced by approxi-
mate algorithms that generate simulations from a nearly multi-Gaussian spatial
distribution or with approximated covariance properties. Examples of such al-
gorithms include the turning bands (Matheron, 1973; Emery and Lantuéjoul,
2006; Emery et al., 2016) and the continuous spectral methods (Shinozuka and
Jan, 1972), and also the sequential Gaussian simulation algorithm (Deutsch and
Journel, 1998). Note also the circular embedding method that leverages the reg-
ularity of the simulation grids (Schlather et al., 2015; Wood and Chan, 1994)
and which will be discussed in Section 2.2.

Continuous Markov random �elds are particularly suited models for geosta-
tistical simulations thanks to the computational e�ciency they provide. Pre-
cisely, the sparsity of the precision matrices of their discretization allows fast
computations of samples (and likelihood) (Rue and Held, 2005). When station-
ary and isotropic, these random �elds have a spectral density, that is the Fourier
transform of the covariance function, of the form f(ω) = 1/P(‖ω‖2) where P is
a real strictly positive polynomial on R+ (Rozanov, 1977). Equivalently, they
can be seen as solutions of the stochastic partial derivative equation (SPDE)
de�ned as (Rozanov, 1977; Lang and Pottho�, 2011; Simpson et al., 2012):

P(−∆)1/2Z =W (1)

where W is a Gaussian white noise and P(−∆)1/2 is the di�erential operator
de�ned as:

P(−∆)1/2[.] = F−1
[
w 7→

√
P(‖ω‖2)F [.](ω)

]
where F denotes the Fourier transform operator.

For instance, following the results fromWhittle (1954), Lindgren et al. (2011)
consider stationary solutions of the SPDE:

(κ2 −∆)α/2Z = τW (2)

with κ > 0, τ > 0 and α an integer greater than half the dimension of the space,
to characterize GRFs with Matérn covariance (or Matérn �elds). They even use
this result to extend isotropic Matérn �elds to manifolds, and to non-stationary
and even oscillating formulations (Lindgren et al., 2011).

SPDE (1) can be numerically solved using the �nite element method. In that
case, it is solved on a triangulated domain, and a �nite element representation
of the solution is built as:

Z(x) =
∑
i

ziψi(x)

for �nite and deterministic basis functions {ψi} and Gaussian weights {zi}.
Simulating a solution is then equivalent to simply simulate the Gaussian weights
{zi}. In particular, the precision matrix of these weights can be speci�ed using
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weak formulations of the SPDE, and has the form:

Q = DP(S)D (3)

where D is a diagonal matrix with strictly positive entries and S is a real, sym-
metric and positive semi-de�nite matrix. In particular, when piecewise linear
basis functions are considered, S is a very sparse matrix, whose non-zero entries
correspond to adjacent nodes in the triangulation.

Given that the precision matrix is known, the simulation of solutions is gen-
erally performed by matrix factorisation methods involving the Cholesky de-
composition of Q. Even if the sparsity inherited from the Markovian properties
of the �eld reduces the complexity of an otherwise too expensive factorisation
(Davis, 2006), computation and storage problems still arise for large simulation
domains or when the dimension of the space increases (Simpson et al., 2008).

This article introduces instead a computationally e�cient algorithm to sim-
ulate any Gaussian random vectors whose precision matrix can be expressed as
(3). This algorithm is based on the construction of a polynomial approxima-
tion of a factorisation of Q. It then relies on matrix-vector products between
(a matrix as sparse as) S and vectors. It can produce simulations of vectors
with a linear complexity, proportional to the number of non-zero entries of S.
This approach can be seen as an adaptation of the simulation algorithm �rst
proposed by Davis (1987a) and then developed by Dietrich and Newsam (1995),
and based on the polynomial approximation of a square-root of the covariance
matrix.

The simulation algorithm presented in this article is equivalent to a �lter-
ing technique used in Graph signal processing (GSP) (Hammond et al., 2011).
GSP is an emerging �eld focusing on developing tools to process complex data
that are embedded on a graph, i.e. a structure composed of a set of objects,
called vertices, and pairwise relationships between them, the edges (Bondy and
Murty, 1976). Such data arise naturally in applications such as social, energy,
transportation and neural networks. They are modelled as variables indexed
by the vertices of the graph, named graph signals. Generalizations of classical
signal processing notions and tools, such as the Fourier transform, �ltering and
translation operators are then used to study these signals (Shuman et al., 2013).

The outline of the article is as follows. In Section 2, methods for the sim-
ulation of Gaussian random vectors with known precision matrix are reviewed.
In Section 3, the main idea behind the proposed algorithm is introduced and
attention is devoted to the polynomial approximation it is based on. In Section
4, the overall work�ow of the algorithm is presented, and its complexity and
induced error are calculated. Then the framework of statistical tests is used
to assess whether the vectors produced by the algorithm respect their targeted
distribution, and criteria on the minimal order of approximation are deduced.
Moreover, the link between our algorithm and the Krylov subspaces approach is
exposed, and a comparison with a more standard method to generate samples of
GMRF using the same approach is presented. Finally, in Section 5, examples of
application of the algorithm are presented, highlighting the great adaptability
of the algorithm for the simulation of Matérn �elds and their generalizations.
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2. Simulation of Gaussian random vectors

The aim is to simulate a zero-mean Gaussian random vector (GRV) whose
precision matrix Q is given by:

Q = DP(S)D = D

( L∑
l=0

blS
l

)
D (4)

where P : x 7→
∑L
l=0 blx

l is a strictly positive polynomial function on R+; S is a
real, sparse, symmetric and positive semi-de�nite matrix; and D is an invertible
diagonal matrix.

2.1. Simulation by matrix factorisation

A non-conditional simulation of a zero-mean GRV z with known precision
matrix Q can be obtained through:

z = Lε (5)

where ε is a vector with independent zero-mean, unit variance and normally
distributed random components and L is a matrix such that (Gentle, 2009):

LLT = Q−1 (6)

The most widely used candidate for such a matrix L is the Cholesky decomposi-
tion of Q−1 (Horn and Johnson, 1990). However, in the considered setting, only
the precision matrix Q is known and not its inverse. Therefore, the simulation
process can be performed in two steps:

Work�ow: Simulation of a random vector using Cholesky decomposition

Require: A precision matrix Q. A vector of independent standard Gaus-
sian values ε.
Output: A simulated vector z with precision matrix Q.

1. Compute Qchol the Cholesky decomposition of the precision matrix
Q.

2. Compute the simulated vector z as the solution of the following linear
system:

QT
cholz = ε

Two performance issues arise from this work�ow. First, the computation of
the Cholesky decomposition of Q is intractable for large problems or when the
matrix is not sparse enough (Simpson et al., 2008). Then, once computed, this
decomposition must be stored, and is used to solve a linear system. Both these
tasks grow more expansive as the size or the �lling of Qchol increases. The idea
behind the algorithm presented in this article is to �nd another candidate for
L that would take advantage of the fact that the precision matrix has the form
(4).
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2.2. Simulation by eigendecomposition

The matrix S being real and symmetric, it is diagonalizable with non-
negative eigenvalues λ1, . . . , λn and eigenvectors that form an orthonormal basis
of Rn (with n the size of the matrix S). Therefore there exists a matrix V sat-
isfying V −1 = V T and:

S = V

λ1 . . .

λn

V −1

It can be shown that for any real polynomial P, P(S) :=
∑L
l=0 blS

l is also a
real symmetric matrix, and is diagonalizable in the same eigenbasis as S. In
particular, the eigenvalues of P(S) are P(λ1), . . . ,P(λn).

Let's then denote P(S)−1/2 the matrix de�ned for strictly positive polyno-
mials P by:

P(S)−1/2 := V

 1/
√

P(λ1)

. . .
1/
√

P(λn)

V −1 (7)

Given that this matrix is symmetric, L = D−1P(S)−1/2 satis�es (6). So using
(5), a �eld z with precision matrix Q can be generated through:

z = D−1P(S)−1/2ε (8)

A direct way to compute the matrix P(S)−1/2 is through (7) which supposes
to diagonalize the matrix S, and store its eigenvalues λ1, . . . , λn and eigenvectors
V . The cost associated to this approach is generally prohibitive as it requires
O(n3) operations and a storage size of O(n2).

However, a particular case when this is feasible is worth noticing. Rue and
Held (2005) show that the precision matrix of a stationary Gaussian Markov
random �eld de�ned on a torus (i.e. a regular lattice with cyclic boundary con-
ditions) is block-circulant, with circulant blocks (Wood and Chan, 1994). They
deduce that the eigenvalues and the eigenvectors of the precision matrix can
be computed using the discrete Fourier Transform (DFT), and therefore with-
out requiring a matrix diagonalization. They then sample from their Gaussian
Markov random �eld using (8), where, following the notations of this section,
P (X) = X, D is the identity matrix, and so S = Q. They just replace the
product between the V (resp. V −1) and a vector by the DFT (resp. inverse
DFT) of this vector.

Davis (1987a), and later Dietrich and Newsam (1995), apply this polynomial
approximation trick to the case where the covariance matrix Σ of the random
�eld is known. They propose to �rst approximate the square-root function over
an interval containing the eigenvalues of the covariance matrix by a polynomial
R. Then a simulation is generated by computing the product R(Σ)ε for a vec-
tor of independent standard Gaussian values ε. The computational and storage
costs of their approach therefore relies on how easy it is to store Σ and to
compute matrix-vector products involving Σ. They present the particular case
where simulations of a stationary �eld on a regular grid are performed, thus
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yielding block Toeplitz covariance matrices. The storage cost of such matrices
can be minimized using the repetitive structure of Toeplitz matrices, and prod-
ucts with a vector can be performed using the FFT algorithm. In the general
case of simulating non-stationary �elds on irregular domains, their approach
becomes intractable as Σ becomes a full matrix with no evident structure. To
circumvent these limitations, the algorithm presented hereafter uses the partic-
ular expression of the precision matrix given in (3).

3. Polynomial approximation

In the general case, the eigendecomposition of S is inevitable if (8) is used to
simulate the GRV. To avoid this expensive operation, the idea is rather to com-

pute a matrix polynomial approximation P
(K)
-1/2(S) :=

∑K
k=0 αkS

k of P(S)−1/2

(of degree K). Indeed, both matrices can be decomposed in the same eigenbasis
V as:

P
(K)
-1/2(S) = V

 P
(K)

-1/2
(λ1)

. . .
P

(K)

-1/2
(λn)

V T and P(S)−1/2 := V

 1/
√

P(λ1)

. . .
1/
√

P(λn)

V T

Consequently, to approximate P(S)−1/2 by P
(K)
-1/2(S), the polynomial P

(K)
-1/2 must

satisfy:

∀i ∈ [[1, n]], P
(K)
-1/2(λi) ≈ 1/

√
P(λi) (9)

In that case, using (8), a �eld z with precision matrix approximately equal to
Q can be simulated via the formula:

z = D−1P
(K)
-1/2(S)ε = D−1

K∑
k=0

αkS
kε (10)

Once the {αk} are known, computing the simulated �eld using (10) can be done
using an iterative algorithm that only requires matrix-vector products involving
the sparse matrix S.

To de�ne the expression of a polynomial satisfying (9), it is su�cient to solve
the following problem: given an interval [a, b] containing all the eigenvalues of

S and a degree of approximation K, �nd a polynomial P
(K)
-1/2 of degree K that

approximates the (continuous) function x 7→ 1/
√

P(x) over [a, b]. Such an
interval [a, b] can be obtained without having to diagonalize S. Examples of
such intervals are provided in Appendix Appendix A.2. Using these results and
the fact that S is positive semi-de�nite, the following interval is considered in
the applications presented in this paper:

[a, b] =
[
0, max
i∈[[1,n]]

∑
j∈[[1,n]]

|Sij |
]

(11)

The approximation of the function 1/
√

P over the interval [a, b] is carried out
using Chebyshev polynomials (Mason and Handscomb, 2002; Press et al., 2007).
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Fig. 1 : First 5 Chebyshev polynomials over [−1, 1].

This family (Tk)k∈N of polynomials is the sequence of polynomials de�ned over
[−1, 1] by:

∀θ ∈ R, Tk(cos θ) = cos(kθ)

or equivalently via the recurrence relation:

T0(x) = 1, T1(x) = x, Tk+1(x) = 2xTk(x)− Tk−1(x) (k ≥ 1)

A graphical representation of these polynomials is provided in Figure 1. Notice
that they can be generalized to arbitrary intervals [a, b] ⊂ R via a simple change
of variable:

y ∈ [a, b] 7→ x =
2y − b− a
b− a

∈ [−1, 1] (12)

The choice of Chebyshev polynomials has several perks. For the sake of
simplicity, they are listed in the case where a function f de�ned on [−1, 1] has
to be approximated.

• Convergence (Mason and Handscomb, 2002): If f is Lipschitz-continuous
over [−1, 1] (which is the case in the applications presented in this article),
its Chebyshev series, de�ned as:

∀x ∈ [−1, 1], S(x) =
1

2
c0T0 (x) +

∞∑
k=1

ckTk (x) (13)

where ∀k ∈ N:

ck =
2

π

∫ 1

−1
f(x)Tk(x)

1√
1− x2

dx (14)
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is uniformly convergent on [−1, 1]. A similar result can be obtained for
continuous functions when the Cesàro sums of their Chebyshev series are
considered instead.

• Near minimax property (Mason and Handscomb, 2002; Press et al., 2007):
Suppose that f is continuous. The minimax polynomial of degree K of f
is the polynomial p∗K de�ned as:

p∗K = argmin
p∈PK

‖f − p‖∞

where PK is the set of all polynomials of degree ≤ K and ‖.‖∞ denotes
the uniform norm (over [−1, 1]). It is generally very di�cult to compute.
However, the truncated Chebyshev series of degree K, denoted SK , is
a good approximation of p∗K in the sense that ‖f − SK‖∞ is close to
‖f − p∗K‖∞.

• Fast computation (Press et al., 2007): A change of variable in (14) gives:

ck =
2

π

∫ π

0

f (cos θ) cos(kθ)dθ ≈
J∑
j=0

f(cos(j
π

J
)) cos(kj

π

J
) (15)

This last sum is the expression of the real part of the discrete Fourier

Transform of the vector
(
f(1), . . . , f(cos(j πJ )), . . . , f(−1)

)T
for discretiza-

tion order J ∈ N∗. Hence the coe�cients of the Chebyshev series of a
function can be numerically computed using the Fast Fourier Transform
algorithm, known for its speed and accuracy (Brigham, 1988).

4. Simulation algorithm

In this section, the work�ow of the simulation algorithm is presented, then
its complexity and the induced error are derived. Finally, criteria on the choice
of the approximation order are given.
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4.1. Presentation of the algorithm

Work�ow: Simulation of a random vector using Chebyshev approximation

Require: A positive polynomial P, a real symmetric positive semi-de�nite
n × n matrix S and an invertible diagonal matrix D of size n. An order
of approximation K ∈ N. A vector of n independent standard Gaussian
components ε.
Output: A vector z with precision matrix (approximately equal to) Q =
DP(S)D

1. Find an interval [a, b] containing all the eigenvalues of S (for instance
(11)).

2. Compute a polynomial approximation P
(K)
-1/2 of the function x 7→

1/
√

P(x) over [a, b], by truncating its shifted Chebyshev series at
order K:

P
(K)
-1/2(x) =

1

2
c0T

[a,b]
0 (x)+

K∑
k=1

ckT
[a,b]
k (x), T

[a,b]
k (x) := Tk

(
2

b− a
x− b+ a

b− a

)
The coe�cients (ck)k∈[[0,K]] are computed by Fast Fourier Transform
(using the changes of variables (12) in (15)).

3. Compute the product u = P
(K)
-1/2(S)ε using the recurrence relation

satis�ed by the Chebyshev polynomials.

α :=
2

b− a
; β :=

b+ a

b− a
; k = 0;

u(−2) = ε; u =
1

2
c0u

(−2); k ← k + 1;

u(−1) = αSε− βε; u← u + c1u
(−1); k ← k + 1;

While(k ≤ K){
u(0) = αSu(−1) − βu(−1) − u(−2); u← u + cku

(0);

u(−2) ← u(−1); u(−1) ← u(0); k ← k + 1;

}
Return u

4. The simulated �eld is given by: z = D−1u

4.2. Complexity of the algorithm
The complexity of the simulation algorithm can be explicitly calculated.

Denote nnz the number of non-zero entries of S and mnz the mean number of
non-zero entries of a row of S: nnz = mnz × n.
Denote K the order of the Chebyshev approximation. The cost associated
with each step (ignoring additions and multiplications by non-stored zeros) is
described as follows:
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• Step 1 requires O(nnz) operations using (11) to compute the interval [a, b].

• Step 2 requires to compute the Fast Fourier Transform of a vector of length
K. The cost of this operation is O(K logK).

• Step 3 requires to:

� compute K products of matrix S and vectors→O(Knnz) operations

� 2(K−1)+1 subtractions of vectors, 3(K−1)+1 multiplications of a
vector by a scalar value and (K−1) additions of vectors→ (K−1)n
operations.

• Step 4 requires n operations (product of a diagonal matrix and a vector).

Therefore, the overall cost of the simulation algorithm isO(Knnz) = O(Kmnzn)
operations.
And regarding the storage needs, aside from S, D and ε which are assumed to
be known (and therefore stored), the algorithm only needs to store 4 additional
vectors of size n (u, u(0), u(−1) and u(−2)).

4.3. Quanti�cation of the numerical approximation error

The main idea of the simulation algorithm presented in this article is to
replace the matrix D−1P(S)−1/2 in relation (8) by an e�cient polynomial ap-

proximation, namely the matrix D−1P
(K)
-1/2(S). The numerical approximation

error εmat between these matrices can be measured by :

εmat := ‖D−1P(S)−1/2 −D−1P
(K)
-1/2(S)‖∞

where ‖.‖∞ denotes the matrix max norm, de�ned by ‖A‖∞ := max
i,j
|Aij |. D

being a diagonal matrix,

εmat ≤ ‖D−1‖∞‖P(S)−1/2 − P
(K)
-1/2(S)‖∞ ≤ ‖D−1‖∞‖P(S)−1/2 − P

(K)
-1/2(S)‖2

where ‖.‖2 denotes the Froebenius norm, de�ned by ‖A‖2 :=
√
Trace(AAT ).

Therefore,

εmat ≤ ‖D−1‖∞
n∑
i=1

(
1√

P(λi)
− P

(K)
-1/2(λi)

)2

≤ n‖D−1‖∞ max
x∈[a,b]

(
1√
P(x)

− P
(K)
-1/2(x)

)2

(16)
Hence, the approximation error on the matrices is upper-bounded by the

overall error that arises from the polynomial approximation of x 7→ 1/
√

P(x) by
its Chebyshev series. This last error can be made arbitrary small by truncating
the polynomial series at a growing order. Therefore, the simulation algorithm
is asymptotically exact given that asymptotically, the matrices D−1P(S)−1/2

and D−1P
(K)
-1/2(S) coincide.
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4.4. Determination of the approximation order

A practical question still needs to be answered : how to choose the order
of the approximation polynomial? A criterion could be based on relation (16),
by imposing an order high enough so that the approximation error εmat of the
matrices is below a given tolerance. But then, this tolerance would also need
to be chosen. Given that the goal is actually to generate a random vector with
the right covariance properties, a criterion based on the statistical properties of
the random vectors produced by the proposed simulation algorithm, and not a
numerical approximation error, seems more appropriate. In this section, such a
criterion, based on the theory of statistical tests, is proposed.

4.4.1. Assessment of simulation validity through statistical tests

The aim is to simulate a Gaussian vector z with covariance matrix:

Σ = Q−1 = D−1P(S)−1D−1

But instead, the proposed simulation algorithm actually generates a Gaussian
vector zs with covariance matrix:

Σs = D−1Papprox(S)2D−1

Where Papprox is a polynomial approximating the function x 7→ 1/
√

P(x) over
an interval containing all the eigenvalues of S.

Consider then a sample ofN independent zero-mean Gaussian vectors
(
z
(1)
s , . . . ,z

(N)
s

)
with covariance matrix Σs. Let's consider the following null hypothesis test:

H0 :
(
z
(1)
s , . . . ,z

(N)
s

)
is a sample of zero-mean Gaussian vectors with

covariance matrix Σ

Obviously, the condition on the mean is satis�ed by construction of this
sample. Besides, by de�nition (Tong, 2012), a random vector z is a Gaussian
vector with covariance matrixΣ if and only if, for any v ∈ Rn, vTz is a Gaussian
variable with variance vTΣv. Therefore, hypothesis H0 won't be rejected if
∀v ∈ Rn, the hypothesis Hv

0 de�ned by:

Hv
0 :

(
vTz

(1)
s , . . . ,vTz

(N)
s

)
is a sample of zero-mean Gaussian variables with

variance vTΣvT

is not rejected.
Two-sided chi-square tests for the variance (Snedecor and Cochran, 1989)

are considered. The results of these tests can actually be anticipated given that

by de�nition, the sample
(
vTz

(1)
s , . . . ,vTz

(N)
s

)
has a known distribution: it is

Gaussian with variance vTΣsv. In particular, a criterion on the quality of the
polynomial approximation such that for any v ∈ Rn the probability of rejecting
hypothesis Hv

0 can be controlled is derived.
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Proposition 4.1. Let [a, b] be an interval containing all the eigenvalues of S.
Let εpol denote the polynomial approximation error de�ned by:

εpol := max
λ∈[a,b]

∣∣∣∣1/P(λ)− Papprox(λ)2

Papprox(λ)2

∣∣∣∣ (17)

Then ∀γ > 0, there exists εN,γ > 0 such that:

εpol ≤ εN,γ ⇒ ∀v ∈ Rn, Rα(v) ≤ (1 + γ)α (18)

where Rα(v) is the probability of rejecting hypothesis Hv
0 in a chi-square test for

the variance with signi�cance α (involving N samples).

Proof. See Appendix Appendix B.

Therefore, if (18) is satis�ed, then, for any v, hypothesis Hv
0 is actually

rejected (with signi�cance α) with a probability less than (1 +γ)α. This proba-
bility would have been equal to α if the samples were generated using the right
covariance matrix. Therefore, the parameter γ represents relative increase of
the rejection probability due to the fact that the samples are generated using
Σs instead of Σ.

As detailed in Appendix Appendix B, the bound εN,γ on the polynomial
approximation error εpol can be numerically computed with the sole speci�cation
of the charcteristics of the statitical test (a sample size N and a signi�cance level
α) and tolerated error in the variance γ. In particular, it depends neither on
the polynomial of approximation nor on the approximated function itself. 1
and 2 give typical values of the tolerance εN,γ for various sample sizes N and
thresholds γ. The signi�cance is �xed at α = 0.05 for Table 1 and α = 0.01 for
Table 2.

Notice now that in the case of our Chebyshev simulation algorithm, the
polynomial Papprox is de�ned as the truncation of a Chebyshev series at an
order K. This order can be determined by specifying the characteristics of the
statistical test the user would want its simulations to pass, along with a tolerated
error in variance, which in turn would yield a value of εN,γ and therefore set a
bound for the polynomial approximation error εpol. The order of truncation K
is then chosen so that εpol ≤ εN,γ .

4.4.2. E�ciency improvement

The previous subsection provides a link between the order of the polyno-
mial approximation of 1/

√
P and the validity of resulting simulations using the

proposed algorithm. In practice, this order can be reduced in some cases.
Following the notations of section 4, let (ck)k∈N be the coe�cients of the

Chebyshev series of 1/
√
P over an interval [a, b] containing all the eigenvalues

of S and for m ∈ N∗, let z(m) be the vector de�ned by:

z(m) = D−1

(
1

2
c0T

[a,b]
0 (S)ε +

m∑
k=1

ckT
[a,b]
k (S)ε

)
where ε is a vector with independent standard Gaussian values. Then, for
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γ
Sample size N

50 100 500 1000 5000 10000
0.1% 6.40e-04 6.20e-04 5.40e-04 4.80e-04 3.00e-04 2.40e-04
1% 5.44e-03 4.80e-03 3.04e-03 2.36e-03 1.20e-03 8.60e-04
5% 1.89e-02 1.51e-02 8.06e-03 5.94e-03 2.82e-03 2.02e-03
10% 3.00e-02 2.33e-02 1.18e-02 8.64e-03 4.02e-03 2.88e-03
20% 4.59e-02 3.48e-02 1.71e-02 1.24e-02 5.74e-03 4.08e-03
50% 7.66e-02 5.71e-02 2.75e-02 1.98e-02 9.08e-03 6.46e-03
100% 1.10e-01 8.12e-02 3.89e-02 2.80e-02 1.28e-02 9.10e-03

Table 1: Values of the precision threshold εN,γ for di�erent values of sample size N
and of degradation of the type I error γ. The signi�cance of the test is α = 0.05

γ
Sample size N

50 100 500 1000 5000 10000
0.1% 4.00e-04 4.00e-04 3.60e-04 3.20e-04 2.20e-04 1.80e-04
1% 3.56e-03 3.24e-03 2.20e-03 1.74e-03 9.20e-04 6.60e-04
5% 1.33e-02 1.09e-02 6.06e-03 4.52e-03 2.18e-03 1.56e-03
10% 2.16e-02 1.71e-02 9.00e-03 6.62e-03 3.12e-03 2.24e-03
20% 3.36e-02 2.59e-02 1.31e-02 9.54e-03 4.44e-03 3.18e-03
50% 5.67e-02 4.28e-02 2.10e-02 1.52e-02 7.00e-03 5.00e-03
100% 8.11e-02 6.07e-02 2.94e-02 2.12e-02 9.76e-03 6.96e-03

Table 2: Values of the precision threshold εN,γ for di�erent values of sample size N
and of degradation of the type I error γ. The signi�cance of the test is α = 0.01

m, l ∈ N∗:

‖z(m+l) − z(m)‖ =

∥∥∥∥∥D−1
l∑

k=1

cm+kT
[a,b]
k (S)ε

∥∥∥∥∥ ≤ ‖D−1‖∞
l∑

k=1

|cm+k|
∥∥∥T [a,b]

k (S)ε
∥∥∥

where ‖.‖ denotes the Euclidean norm on Rn.
Recall that, according to the properties of Rayleigh quotients (see Appendix

Appendix A.1), and using the symmetry of T
[a,b]
k (S):∥∥∥T [a,b]

k (S)ε
∥∥∥2

‖ε‖2
=

εTT
[a,b]
k (S)2ε

εTε
≤ λmax

(
T

[a,b]
k (S)2

)
where λmax(.) denotes the largest eigenvalue of a matrix. Notice then that,
given that the Chebyshev polynomials are upper-bounded (in absolute value)

by 1, λmax

(
T

[a,b]
k (S)2

)
≤ 1. Consequently,

‖z(m+l) − z(m)‖ ≤ ‖D−1‖∞
l∑

k=1

|cm+k| ‖ε‖

13



Hence, ‖D−1‖∞ ‖ε‖
l∑

k=1

|cm+k| ≈ 0 ⇒ z(m+l) ≈ z(m). This gives an additional

criterion for the choice of the approximation order of the algorithm. After
computing a value of order L using the criterion based on statistical tests, its
value can be decreased to K as long as:

L∑
k=K+1

|ck| ≤
η

‖D−1‖∞‖ε‖

for a �xed tolerance η corresponding to the Euclidean distance between the vec-
tor computed using order K and the one computed using order L. In particular,
if η is of the form η =

√
εn (where n is the size of the simulated vectors) and

ε > 0, then in average, the square of the components of the vector (z(L)−z(K))
will be less than ε.

4.5. Relation to Krylov subspaces methods

Krylov subspaces provide a framework for the study of some of the most
used iterative algorithms used to solve eigenvalue problems and linear systems
involving a matrix A. The idea behind such algorithms is to iteratively generate
a sequence of approximate solutions of the problem while relying at each itera-
tion on recurrence relations based on matrix-vector products involving A. The
approximate solution obtained at the m-th iteration step lies in the subspace
Km(A,v) de�ned by:

Km(A,v) = span{v,Av, . . . ,Am−1v} = {π(A)v : π polynomial of degree < m}
In this section, the relation between our simulation algorithm and Krylov sub-
spaces is exposed, and a comparison with a more standard Krylov subspaces
approach to generate samples from a GMRF with known precision matrix is
presented.

Section 2.2 provides a direct way to generate samples from a precision matrix
satisfying (3). Indeed, from equation (8), the vector z = D−1u where:

u = P(S)−1/2ε (19)

and ε is a vector of independent standard Gaussian variables, is a zero-mean
GMRF with precision matrix Q given by (3). The algorithm presented in this

paper actually consists in replacing u by an approximation u
(K)
C given by:

u
(K)
C = P

(K)
-1/2(S)ε (20)

where P
(K)
-1/2 is a polynomial of degree K de�ned as the truncation at order K

of the Chebyshev series of the function x 7→ 1/
√
P (x) on an interval containing

the eigenvalues of S. In particular, u
(K)
C ∈ KK+1(S, ε) and our algorithm can

be seen as an iterative algorithm on the truncation order K. This justi�es the
fact that it can be considered as a Krylov subspace approach.

A standard approach using Krylov subspaces to generate samples from a
GMRF with known precision matrix uses the Lanczos algorithm to come up
with an approximation of u (Simpson et al., 2008). Indeed, in exact arithmetic,
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this algorithm can provide an orthonormal basis of KK+1(S, ε) (Golub and
Van Loan, 1996). u can then be approximated by (Frommer and Simoncini,
2008; Simpson et al., 2008):

u
(K)
L = ‖ε‖VK+1P (TK+1)−1/2e1 (21)

where e1 = (1 0 . . . 0)T , TK+1 is a tridiagonal (symmetric) matrix of size K+1
and VK+1 is a matrix containing the K + 1 vectors of the orthonormal basis of
KK+1(S, ε), both matrices being products of the Lanczos algorithm.

This cost associated with computing u
(K)
L can be decomposed as follows :

• running the Lanczos algorithm for K iterations : O(Kmnzn) operations,
where mnz is the mean number of non-zero values in a row of S.

• computing (21), which involves the diagonalisation of TK+1 and a matrix-
vector product with VK+1 : O((K + 1)2 + nK) operations.

Computing u
(K)
L therefore comes at an overall cost of O(Kmnzn + K2) oper-

ations. Regarding the storage needs of this process, the matrix VK+1 and the
eigendecomposition of TK+1 need to be stored, which requires a storage need of
O(Kn+K2).

From Section 4.2, it is clear that our Chebyshev approximation algorithm
requires less operations and storage space to generate an approximation of u
from the same Krylov subspace. But on the other hand, at the same approxi-
mation order K, the quality of the approximation obtained using the Lanczos
algorithm will be better than the one using our Chebyshev algorithm. Indeed,
in the Lanczos case (still in exact arithmetic) this approximation error satis�es
(Musco et al., 2017):

‖u− u
(K)
L ‖ ≤ 2‖ε‖δK , δK = min

π polynomial
of degree ≤K

max
x∈[λmin,λmax]

|1/
√
P (x)− π(x)|

Where λmin (resp. λmax) denotes the smallest (resp. largest) eigenvalue of
S. Thus it yields in the Lanczos case an error of order O(δK). And in the
Chebyshev case, it is given by:

‖u− u
(K)
C ‖ ≤ ‖P−1/2(S)− P

(K)
-1/2(S)‖‖ε‖ ≤ ‖ε‖ max

x∈[λmin,λmax]
|1/
√
P (x)− P

(K)
-1/2(x)|

This last estimate can be bounded using δK and the Lebesgue constant λK ,
thus giving for the Chebyshev approximation an error of order O(λKδK) =
O(δK logK) (Mason and Handscomb, 2002). The results of the comparison
between the Lanczos algorithm and our Chebyshev algorithm are summed up
in Table 3.

For small values of K the Lanczos algorithms is more adequate as it provides
an approximation with a lower error. Its main �aw resides in the fact that, con-
trary to our Chebyshev algorithm, the storage needs grow linearly with the order
of approximation. Hence for large problems (i.e. when n is large), a restriction
on the order of approximation has to be set according to the storage space avail-
able to the user. In order to tackle this storage problem, some adjustments can
be made to the original Lanczos algorithm (Aune et al., 2013). For instance,
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Lanczos Chebyshev
Computational cost O(Kmnzn+K2) O(Kmnzn)
Storage needs O(Kn+K2) O(n)
Approximation error of u = Dz O(δK) O(δK logK)

Table 3: Comparison between the Lanczos algorithm and our Chebyshev algorithm
after K iterations, for the simulation of a sample from a GMRF z with precision

matrix (3).

restarting procedures allow to work with a �xed number of stored basis vectors
of the Krylov space. However, those methods result in a loss of approximation
quality and push to use complex preconditioning techniques in order to improve
the convergence speed of the algorithm , which in turn increases the overall
computational cost (Simpson et al., 2008). Our Chebyshev algorithm doesn't
share this storage �aw, allowing it to make up for its relative lack of precision
by the possibility to work with much higher orders of approximation without
the headache of �nding the right variation of Lanczos algorithm 1 .

Another attractive feature of the Chebyshev algorithm is the statistical stop-
ping criterion derived in Section 4.4.1. This criterion was established by using

the fact that u
(K)
C could be written as u

(K)
C = πK(S)ε where the coe�cients

de�ning πK are deterministic (which in our case means that they are not linked

to ε) and that therefore u
(K)
C is a Gaussian vector with known covariance. This

is no longer the case when considering the Lanczos algorithm given that these
same coe�cients would e�ectively depend on the entries of ε given that this vec-

tor is used to compute the matrices VK+1 and TK+1 used to de�ne u
(K)
L . The

only available stopping criteria for the Lanczos algorithm are therefore linked

to the actual approximation error ‖u−u
(K)
L ‖ and not the statistical properties

of the vector we wish to simulate. Moreover, given that in practice u is not
available, the stopping criteria actually rely on the link between the Lanczos al-
gorithm and the Conjugate Gradient algorithm, using the residuals of the latter
as a bound on the approximation error (Aune et al., 2013).

5. Application

5.1. Simulation of stationary Matérn models

The Matérn model is a widely used covariance model in Geostatistics due
to its great �exibility. For a lag distance h ∈ R+, its isotropic formulation is

1Note also that the comparison is carried out under the assumption of exact arithmetic.
In �oating points computations, a loss of orthogonality of VK+1 is observed as K grows,
leading to larger approximation errors (Musco et al., 2017) and forcing the user to adapt
is algorithm using workarounds such as re-orthogonalisation techniques or restart techniques
(thus increasing the overall complexity of the algorithm).
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(Chilès and Del�ner, 2012):

C(h) =
σ2

2ν−1Γ(ν)

(
h

φ

)ν
Kν

(
h

φ

)
where σ2 > 0 is the marginal variance, φ > 0 is a scaling parameter, ν > 0 is
a shape parameter and Kν is the modi�ed Bessel function of the second kind
of order ν. The parameter ν can be seen as a "smoothness" parameter as the
underlying process is bνc-time mean-square di�erentiable.

Lindgren et al. (2011) de�ne Markovian approximations GRF with Matérn
covariance as numerical solutions of SPDE (2) with parameters:

κ = 1/φ, α = ν + d/2 ∈ N, τ = σκν
√

(4π)d/2Γ(ν + d/2)/Γ(ν)

using the �nite element method with linear triangular elements. They show
that the precision matrix of the weights of the �nite element representation of
the solution can be written as (3), with:

S = (1/κ2)C−1/2GC−1/2, D = (κα/τ)C1/2, P : x 7→ (1 + x)α (22)

where:
C = [〈ψi, ψj〉], G = [〈∇ψi,∇ψj〉], C−1/2 = (C1/2)−1 (23)

and C1/2 is a square-root of C. The matrices C and G are sparse. Following
again the results from Lindgren et al. (2011), C is replaced by a diagonal matrix
with entries [〈ψi, 1〉], which yields a Markov approximation of the solution that
has the same convergence rate as the full �nite element method formulation.

In this subsection, simulations of the Matérn �elds are generated using two
methods (for comparison purposes): the Cholesky factorisation algorithm pre-
sented in Section 2.1, and the simulation algorithm proposed in this paper and
presented in Section 4.

When applied to the simulation of random �elds using the �nite element
method, the proposed algorithm can actually be interpreted as an image convo-
lution algorithm. To see that, notice that when de�ned as in (22), the matrix S
can be interpreted as what is referred to as a shift operator in the GSP theory
(Shuman et al., 2013). Namely, when (linear) triangular elements are used, S
is a sparse matrix whose entry Mij is non-zero if the nodes i and j of the tri-
angulation are adjacent or if they coincide. Therefore, the non-zeros entries of
a polynomial of degree K of S correspond to nodes that are within a distance
K from each other in the triangulation (i.e. there exist a chain of at most K
adjacent nodes between them).

Now, according to the work�ow provided in Section 4, the output vector z
of the simulation algorithm can be written as z = D−1P-1/2(S)ε, where D is
a diagonal matrix, ε is a vector indexed by the nodes of the triangulation and
P-1/2 is a polynomial of degree K. So, the i-th entry of z is given by a linear
combination of the entries of ε that correspond to nodes within a distance K
of i, and weighted by the entries of i-th row of D−1P-1/2(S). Hence, z can be
seen as a convolution of the entries ε. The bigger the degree of the polynomial,
the bigger the size of the convolution kernel.
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Fig. 2 : (Left) Simulations of a Matérn �eld on a 200x200 grid using Cholesky
factorisation. (Right) Mean variograms over 50 simulations (solid line) and model

(dotted line) : range=25, sill=1, smoothness=1.

5.1.1. Order of the polynomial approximation

First, the e�ect of the order of the polynomial approximation on the re-
sulting simulation is investigated. To do so, simulations of a Matérn �eld are
generated on a 200x200 grid, with range 25, sill 1 and smoothness parameter 1,
and with a growing order. In Figure 3, simulations obtained for degree values
of 1, 5, 20 and 100 and the associated variogram (averaged over 50 simulations)
are displayed. As a comparison, the same model simulated using the classical
Cholesky factorisation algorithm is displayed in Figure 2.

As noticed in Figure 3, increasing the order of the polynomial tends to add
smoothness and structure to the simulation. This is expected from a convolution
algorithm as the size of the kernel, which is directly linked to the order of the
polynomial, grows (center images in Figure 3). Moreover, there seems to be a
point from which adding more polynomials doesn't change the simulation. This
observation is just a consequence of the result presented in Subsection 4.4.2.

Remark also that the variogram of the simulations in Figure 3 tends to
be respected as the order of the polynomial grows. This fact was predictable
and is due to the fact that the proposed algorithm ensures that any linear
combinations of the vectors generated by the algorithm have the right variance
within a given tolerance (see subsection 4.4.1). Consequently, this will ensure
that the variogram is respected given that its value at particular lag h is just
the variance of the di�erence between two particular entries of the simulated
vector that correspond to nodes of the triangulation separated by an Euclidean
distance of h.

5.1.2. In�uence of the model

The in�uence of the covariance model parameters on the resulting approxi-
mations is now investigated. To do so, simulations of Matérn �elds with di�erent
values of range and smoothness parameters are generated (cf. Figure 4). For
each set of parameters, the order of approximation is set so that the proba-
bility of rejection on the statistical tests with signi�cance α = 0.05 is equal to
(1+10%)α, which corresponds to a threshold on the approximation error (18) of
3.0e-02 (cf. Table 1). Following the result of subsection 4.4.2, the e�ective order
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(a) Order=1

(b) Order=10

(c) Order=50

(d) Order=100

Fig. 3 : (Left) Simulations of a Matérn model with range 25, sill 1 and smoothness
parameter 1 on a 200x200 grid using Chebyshev approximation with growing order.

(Center) Convolution kernels associated with the simulation. (Right) Mean
variograms over 50 simulations (solid line) and model (dotted line).
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(a) Range = 25, Smoothness = 1 : Order = 76 (E�ective order = 52)

(b) Range = 50, Smoothness = 1 : Order = 166 (E�ective order = 102)

(c) Range = 25, Smoothness = 3 : Order = 84 (E�ective order = 40)

Fig. 4 : (Left) Simulations using Chebyshev approximation of a Matérn �eld on a
200x200 grid with various model parameters. (Center) Convolution kernels

associated with the simulation. (Right) Mean variograms over 50 simulations (solid
line) and model (dotted line).

of approximation used to generate the simulation is reduced by considering a
tolerance η =

√
10−4n where n = 2002 is the size of the simulated vector.

The order of approximation used for each simulation is reported in Figure
4. It can be noticed that increasing the range results in signi�cantly higher
orders of approximation to achieve the same accuracy, whereas the e�ect of the
smoothness parameters seems more limited. This is just another consequence
of the "convolution" nature of the algorithm, as explained at the beginning of
the section. The bigger the range is, the bigger the size of the kernel used to
generate the simulation from a white noise image should be as bigger "spots"
must be created, and therefore the bigger the order of approximation is. On
the other hand, the smoothness parameter mainly a�ects the smoothness of the
kernel, not its size.
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5.2. Simulation of non-stationary �elds

Following the modeling approach of Fuglstad et al. (2015), an expression
for the precision matrix of a �nite element solution of the SPDE (2) with lo-
cally varying coe�cients is derived, resulting in a non-stationary �eld with local
anisotropies. Speci�cally, let's consider a numerical solution of the SPDE:

κ2Z(x)− div (H(x)∇Z(x)) = τW(x)

where κ, τ > 0, W is a spatial Gaussian white noise and H is a �eld of positive
de�nite matrices indexed by the space. Using weak formulations of this SPDE,
it can be shown that the precision matrix of the weights has the same expression
as in the stationary case presented in the previous subsection (with α = 2) but
where the matrix G is now de�ned by:

G = [〈∇ψi, H∇ψj〉]
Notice that the matrix G contains all the "anisotropy" parameters of the model
in the sense that, similarly as in (Fuglstad et al., 2015), its elements are con-
structed by locally accounting for the varying coe�cients of the SPDE in ex-
pressions (23).

(a) Anisotropy �eld : each line represents the local direction of the
anisotropy. The anisotropy ratio is locally proportional to the

thickness of the layer (maximum value : 1.5).

(b) Simulation.

Fig. 5 : Simulation using Chebyshev approximation of a non-stationary Matérn
�eld with local anisotropy de�ned on a layer. Overall extension of the domain :

500x200. Model : range=150, sill=1.
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Just like in Subsection 5.1, the Chebyshev approximation simulation algo-
rithm to generate realizations of solutions of the SPDE. The results are displayed
in Figure 5.

6. Conclusion

In this paper, an algorithm for simulating Gaussian random vectors whose
precision matrix can be expressed as a polynomial P of a sparse matrix S is
proposed. This case arises in particular when simulation is carried out by solving
numerically some SPDEs using �nite element method. In doing so, random
�elds with a Matérn covariance can be generated. But this approach can also
be used to simulate non-stationary random �elds arising when SPDEs with
varying coe�cients are considered (Fuglstad et al., 2015).

The proposed algorithm is based on a computationally e�cient polynomial
approximation of a square-root of the covariance matrix, using a Chebyshev
polynomial approximation of the function 1/

√
P, and can generate random vec-

tors in O(Knnz) operations, where K is the order of approximation and nnz
is the number of non-zeros of S. The error of approximation on 1/

√
P was

proved to be directly linked to the statistical properties of the random vectors
generated by the algorithm, namely the variance of linear combinations of their
components, providing a criterion on the level of approximation for the simu-
lated vectors to satisfy the right properties within a given tolerance. Due to its
low computational complexity and memory requirements, this algorithm can be
used to generate large random vectors, arising for instance from the discretiza-
tion of the solutions of SPDEs in 3 dimensions, even with large smoothness
parameters. This approach is implemented in the R package RGeostats (Re-
nard et al., 2018).

The proposed algorithm is a tool particularly well suited for the simula-
tion of random �elds represented as numerical solutions of SPDEs using �nite
element methods, and in particular Matérn �elds and their extensions to mani-
folds, and oscillating and non-stationary covariances as presented in (Lindgren
et al., 2011). Although only the case α ∈ N (in SPDE (2)) has been exam-
ined, the generalization to non-integer values of α is quite straightforward, as
the resulting �elds can be approximated by a linear combinations of �elds with
α ∈ N (Lindgren et al., 2011). The main limitation seems rather to come from
the �nite element method itself which for small values of ν = α − d/2 requires
thinner and thinner meshes and hence, bigger and bigger matrix sizes.

Finally, the proposed algorithm could be applied to the simulation of more
general random �elds than Matérn �elds. Indeed, the function 1/

√
P approxi-

mated by the algorithm and used to generate the simulations, is proportional,
for Matérn �elds, to the actual square-root of the spectral density of the �eld.
A way of generalizing the algorithm, which is under study and shows promising
results, is to generate simulations of general Gaussian isotropic random �elds us-
ing the same �nite elements matrices as the one used here, but by replacing the
approximation of the function 1/

√
P by the approximation of the square-root

of the spectral density of the targeted �eld.
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Appendix A. Some elements of matrix analysis

Let n ∈ N∗. Let M = (Mij)i,j∈[[1,n]] be a real symmetric n× n matrix. M
is diagonalizable in an orthonormal basis. Denote λmin = λ1 ≤ · · · ≤ λn = λmax

its eigenvalues, and (v(1), . . . ,v(n)) the corresponding eigenvectors (forming the
orthonormal basis).

Appendix A.1. Rayleigh quotient

De�nition. The Rayleigh quotient R(M ,x) associated with M and x ∈
(Rn)∗ is the ratio:

R(M ,x) =
xTMx

xTx
=

(
x

‖x‖

)T
M

(
x

‖x‖

)
Proposition. ∀x ∈ (Rn)∗, λmin ≤ R(M ,x) ≤ λmax

Proof. Simply notice that x can be decomposed in the orthonormal basis (v(1), . . . ,v(n))
as: x =

∑n
i=1 αiv

(i) for some (α1, . . . , αn)T ∈ (Rn)∗. Then,

R(M ,x) =

∑n
i=1 λiα

2
i∑n

j=1 α
2
j

=

n∑
i=1

λi
α2
i∑n

j=1 α
2
j

which is just a weighted sum of the eigenvalues with positive weights.

Appendix A.2. Eigenvalue bounds

Proposition. ∀i ∈ [[1, n]], |λi| ≤
√
Trace (M2).

All the eigenvalues ofM are therefore included in the interval [−
√
Trace (M2),

√
Trace (M2)].

Proof. Notice that Trace
(
M2

)
=
∑n
j=1 λ

2
j . Take i ∈ [[1, n]]. If λi = 0, the

statement is true. Otherwise, Trace
(
M2

)
= λ2i

(
1 +

∑
j 6=i(λj/λi)

2
)
≥ λ2i and

therefore the statement is also true.

Theorem. Gerschgorin circle theorem (Gerschgorin, 1931).
Any eigenvalue λ of M satis�es:

λ ∈
⋃

i∈[[1,n]]

[Mii − ri,Mii + ri], ri =
∑
j 6=i

|Mij |

Proof. Take λ an eigenvalue of M and v = (v1, . . . , vn)T an associated eigen-
vector. Let i0 be the index of the component of v with the largest magnitude:
∀j, |vj | ≤ |vi0 |.
Then, given that Mv = λv: λvi0 =

∑n
j=1Mi0jvj = Mi0i0vi0 +

∑
j 6=i0 Mi0jvj ,

which gives:
(λ−Mi0i0)vi0 =

∑
j 6=i0 Mi0jvj

So:
|λ−Mi0i0 ||vi0 | =

∣∣∣∑j 6=i0 Mi0jvj

∣∣∣ ≤∑j 6=i0 |Mi0j ||vj |
And �nally,

|λ−Mi0i0 | ≤
∑
j 6=i0 |Mi0j |

|vj |
|vi0 |
≤ ri0
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Appendix B. Proof of Proposition 4.1

Proof. Take v ∈ (Rn)∗. Let's perform a chi-squared test for the variance on
hypothesis Hv

0 . The statistic t(v) of this test is:

t(v) = (N − 1)
S2(v)

vTΣv

where S2(v) is the (unbiased) sample variance de�ned as:

S2(v) =
1

N − 1

N∑
i=1

(
vTz(i)

s −m(v)
)2
, m(v) =

1

N

N∑
i=1

vTz(i)
s

Hv
0 will not be rejected with signi�cance α if t(v) satis�es :

χ2
α
2 ,N−1

≤ t(v) ≤ χ2
1−α2 ,N−1

where χ2
p,N−1 is the p-th quantile of the chi-squared distribution with N − 1

degrees of freedom (denoted χ2(N − 1)).
In particular, the probability Rα(v) that Hv

0 is rejected with signi�cance α
is given by:

Rα(v) = 1− Prob
(
χ2
α
2 ,N−1

≤ t(v) ≤ χ2
1−α2 ,N−1

)
= 1− Prob

(
vTΣv

vTΣsv
χ2
α
2 ,N−1

≤ ts(v) ≤ vTΣv

vTΣsv
χ2
1−α2 ,N−1

)
where ts(v) is the statistic de�ned by:

ts(v) =
vTΣv

vTΣsv
t(v) = (N − 1)

S2

vTΣsv

By de�nition, the sample
(
vTz

(1)
s , . . . ,vTz

(N)
s

)
is Gaussian with variance vTΣsv.

Hence, ts(v) follows a χ2(N − 1) distribution. So, if Fχ2(N−1) denotes the cu-
mulative distribution function of the χ2(N − 1) distribution:

Rα(v) = Rα(X) = 1−
[
Fχ2(N−1)

(
χ2
1−α2 ,N−1

X
)
− Fχ2(N−1)

(
χ2
α
2 ,N−1

X
)]
, X :=

vTΣv

vTΣsv

If the variance of the simulated sample were to be equal to the true variance
(i.e. X = 1), the probability Rα of rejecting the test would be α, the type
I error of the test. But here, this error depends on the ratio X. Due to the
non-symmetry of the chi-squared distribution, it can even be smaller than the
signi�cance level α of the test. However, when the size of the sample increases,
the χ2 distribution tends to regain symmetry and the minimum of the function
Rα(X) tends to be achieved at X = 1 for a value α.

Denote γα(X) the ratio:

γα(X) =
Rα(X)− α

α
This ratio measures the degradation of the type I error of test, due to the fact
that the simulated sample has variance vTΣsv instead of vTΣv. A condition
on the value of X so that γα(X) ≤ γ for some �xed proportion γ ≥ 0 can be
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expressed for some εN,γ > 0 as follows :

|X − 1| ≤ εN,γ ⇒ γα(X) ≤ γ (B.1)

For �xed values of γ, α and N the value of εN,γ is determined numerically by
�nding the two roots of the equation γα(X) = γ.

The condition on X in (B.1) can be written in terms of variances:∣∣∣∣vT (Σ−Σs)v

vTΣsv

∣∣∣∣ ≤ εN,γ
which in turn, by denoting Σ

1/2
s = Papprox(S)D−1, can be expressed as:∣∣∣∣∣∣

(
Σ

1/2
s v

‖Σ1/2
s v‖

)T
Papprox(S)−1(P(S)−1 − Papprox(S)2)Papprox(S)−1

(
Σ

1/2
s v

‖Σ1/2
s v‖

)∣∣∣∣∣∣ ≤ εN,γ
Noticing the Rayleigh quotient (cf. Appendix Appendix A.1) on the left side of
the inequality, this relation can be satis�ed for any v ∈ Rn by simply imposing:

λmax magn

(
Papprox(S)−1(P(S)−1 − Papprox(S)2)Papprox(S)−1

)
≤ εN,γ

where λmax magn(.) denotes the eigenvalue with the greatest magnitude of a
matrix. In turn, if [a, b] denotes an interval containing all the eigenvalues of S,
this last condition can be satis�ed by imposing :

max
λ∈[a,b]

∣∣∣∣1/P(λ)− Papprox(λ)2

Papprox(λ)2

∣∣∣∣ ≤ εN,γ
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