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This paper presents an algorithm to simulate Gaussian random vectors whose precision matrix can be expressed as a polynomial of a sparse matrix. This situation arises in particular when simulating Gaussian Markov random elds obtained by the nite elements discretization of the solutions of some stochastic partial derivative equations. The proposed algorithm uses a Chebyshev polynomial approximation to compute simulated vectors with a linear complexity. This method is asymptotically exact as the approximation order grows. Criteria based on tests of the statistical properties of the produced vectors are derived to determine minimal orders of approximation.

Introduction

Gaussian random elds (GRF) are widely used to model spatially correlated data in environmental and earth sciences [START_REF] Chilès | Geostatistics : Modeling Spatial uncertainty[END_REF][START_REF] Lantuéjoul | Geostatistical simulation: models and algorithms[END_REF][START_REF] Wackernagel | Multivariate geostatistics: an introduction with applications[END_REF]. The stochastic simulation of such elds (also called geostatistical simulation) is a common process in risk analysis [START_REF] Chilès | Geostatistics : Modeling Spatial uncertainty[END_REF]. Indeed, each simulation is seen as an alternate but plausible version of the reality. Spatial uncertainty can then be assessed in problems where the variables of interest are partially observed through comparisons over a set of simulations. There are two main classes of simulation algorithms. Exact algorithms aim at reproducing exactly the statistical properties of a targeted model. They include methods based on the factorization of covariance matrices (Davis, 1987b) or on the spectral properties of random elds [START_REF] Pardo-Igúzquiza | The fourier integral method: An ecient spectral method for simulation of random elds[END_REF][START_REF] Dietrich | A fast and exact method for multidimensional gaussian stochastic simulations[END_REF]. These methods are suitable for small-sized problems or for compactly-supported covariance functions [START_REF] Kaufman | Covariance tapering for likelihood-based estimation in large spatial data sets[END_REF][START_REF] Bevilacqua | Estimation and prediction using generalized wendland covariance functions under xed domain asymptotics[END_REF] which lead to sparse covariance matrices [START_REF] Furrer | spam: A sparse matrix r package with emphasis on mcmc methods for gaussian markov random elds[END_REF]. However, for general covariance functions or when the size of the problem is very large, they are replaced by approximate algorithms that generate simulations from a nearly multi-Gaussian spatial distribution or with approximated covariance properties. Examples of such algorithms include the turning bands [START_REF] Matheron | The intrinsic random functions and their applications[END_REF][START_REF] Emery | Tbsim: A computer program for conditional simulation of three-dimensional gaussian random elds via the turning bands method[END_REF][START_REF] Emery | An improved spectral turning-bands algorithm for simulating stationary vector gaussian random elds[END_REF] and the continuous spectral methods [START_REF] Shinozuka | Digital simulation of random processes and its applications[END_REF], and also the sequential Gaussian simulation algorithm [START_REF] Deutsch | GSLIB: Geostatistical Software Library and User's Guide. 2nd Edition[END_REF]. Note also the circular embedding method that leverages the regularity of the simulation grids [START_REF] Schlather | Analysis, simulation and prediction of multivariate random elds with package randomelds[END_REF][START_REF] Wood | Simulation of stationary gaussian processes in [0, 1] d[END_REF]) and which will be discussed in Section 2.2.

Continuous Markov random elds are particularly suited models for geostatistical simulations thanks to the computational eciency they provide. Precisely, the sparsity of the precision matrices of their discretization allows fast computations of samples (and likelihood) [START_REF] Rue | Gaussian Markov random elds: theory and applications[END_REF]. When stationary and isotropic, these random elds have a spectral density, that is the Fourier transform of the covariance function, of the form f (ω) = 1/P( ω 2 ) where P is a real strictly positive polynomial on R + [START_REF] Rozanov | Markov random elds and stochastic partial dierential equations[END_REF]. Equivalently, they can be seen as solutions of the stochastic partial derivative equation (SPDE) dened as [START_REF] Rozanov | Markov random elds and stochastic partial dierential equations[END_REF][START_REF] Lang | Fast simulation of gaussian random elds[END_REF][START_REF] Simpson | Think continuous: Markovian gaussian models in spatial statistics[END_REF]:

P(-∆) 1/2 Z = W (1)
where W is a Gaussian white noise and P(-∆) 1/2 is the dierential operator dened as: P(-∆) 1/2 [.] = F -1 w → P( ω 2 )F [.](ω)

where F denotes the Fourier transform operator.

For instance, following the results from [START_REF] Whittle | On stationary processes in the plane[END_REF], [START_REF] Lindgren | An explicit link between gaussian elds 670 and gaussian markov random elds: the spde approach (with discussion)[END_REF] consider stationary solutions of the SPDE:

(κ 2 -∆) α/2 Z = τ W (2)
with κ > 0, τ > 0 and α an integer greater than half the dimension of the space, to characterize GRFs with Matérn covariance (or Matérn elds). They even use this result to extend isotropic Matérn elds to manifolds, and to non-stationary and even oscillating formulations [START_REF] Lindgren | An explicit link between gaussian elds 670 and gaussian markov random elds: the spde approach (with discussion)[END_REF]. SPDE (1) can be numerically solved using the nite element method. In that case, it is solved on a triangulated domain, and a nite element representation of the solution is built as:

Z(x) = i z i ψ i (x)
for nite and deterministic basis functions {ψ i } and Gaussian weights {z i }. Simulating a solution is then equivalent to simply simulate the Gaussian weights {z i }. In particular, the precision matrix of these weights can be specied using 2 weak formulations of the SPDE, and has the form:

Q = DP(S)D (3)
where D is a diagonal matrix with strictly positive entries and S is a real, symmetric and positive semi-denite matrix. In particular, when piecewise linear basis functions are considered, S is a very sparse matrix, whose non-zero entries correspond to adjacent nodes in the triangulation.

Given that the precision matrix is known, the simulation of solutions is generally performed by matrix factorisation methods involving the Cholesky decomposition of Q. Even if the sparsity inherited from the Markovian properties of the eld reduces the complexity of an otherwise too expensive factorisation [START_REF] Davis | Direct Methods for Sparse Linear Systems[END_REF], computation and storage problems still arise for large simulation domains or when the dimension of the space increases [START_REF] Simpson | Fast sampling from a Gaussian Markov random eld using Krylov subspace approaches[END_REF].

This article introduces instead a computationally ecient algorithm to simulate any Gaussian random vectors whose precision matrix can be expressed as (3). This algorithm is based on the construction of a polynomial approximation of a factorisation of Q. It then relies on matrix-vector products between (a matrix as sparse as) S and vectors. It can produce simulations of vectors with a linear complexity, proportional to the number of non-zero entries of S. This approach can be seen as an adaptation of the simulation algorithm rst proposed by Davis (1987a) and then developed by [START_REF] Dietrich | Ecient generation of conditional simulations by chebyshev matrix polynomial approximations to the symmetric square root of the covariance matrix[END_REF], and based on the polynomial approximation of a square-root of the covariance matrix.

The simulation algorithm presented in this article is equivalent to a ltering technique used in Graph signal processing (GSP) [START_REF] Hammond | Wavelets on graphs via spectral graph theory[END_REF]. GSP is an emerging eld focusing on developing tools to process complex data that are embedded on a graph, i.e. a structure composed of a set of objects, called vertices, and pairwise relationships between them, the edges [START_REF] Bondy | Graph theory with applications[END_REF]. Such data arise naturally in applications such as social, energy, transportation and neural networks. They are modelled as variables indexed by the vertices of the graph, named graph signals. Generalizations of classical signal processing notions and tools, such as the Fourier transform, ltering and translation operators are then used to study these signals [START_REF] Shuman | The emerging eld of signal processing on graphs: Extending highdimensional data analysis to networks and other irregular domains[END_REF].

The outline of the article is as follows. In Section 2, methods for the simulation of Gaussian random vectors with known precision matrix are reviewed. In Section 3, the main idea behind the proposed algorithm is introduced and attention is devoted to the polynomial approximation it is based on. In Section 4, the overall workow of the algorithm is presented, and its complexity and induced error are calculated. Then the framework of statistical tests is used to assess whether the vectors produced by the algorithm respect their targeted distribution, and criteria on the minimal order of approximation are deduced. Moreover, the link between our algorithm and the Krylov subspaces approach is exposed, and a comparison with a more standard method to generate samples of GMRF using the same approach is presented. Finally, in Section 5, examples of application of the algorithm are presented, highlighting the great adaptability of the algorithm for the simulation of Matérn elds and their generalizations.

Simulation of Gaussian random vectors

The aim is to simulate a zero-mean Gaussian random vector (GRV) whose precision matrix Q is given by:

Q = DP(S)D = D L l=0 b l S l D (4) 
where P : x → L l=0 b l x l is a strictly positive polynomial function on R + ; S is a real, sparse, symmetric and positive semi-denite matrix; and D is an invertible diagonal matrix.

Simulation by matrix factorisation

A non-conditional simulation of a zero-mean GRV z with known precision matrix Q can be obtained through:

z = Lε (5)
where ε is a vector with independent zero-mean, unit variance and normally distributed random components and L is a matrix such that [START_REF] Gentle | Computational Statistics[END_REF]:

LL T = Q -1 (6) 
The most widely used candidate for such a matrix L is the Cholesky decomposition of Q -1 [START_REF] Horn | Matrix analysis[END_REF]. However, in the considered setting, only the precision matrix Q is known and not its inverse. Therefore, the simulation process can be performed in two steps:

Workow: Simulation of a random vector using Cholesky decomposition Require: A precision matrix Q. A vector of independent standard Gaussian values ε.

Output: A simulated vector z with precision matrix Q.

1. Compute Q chol the Cholesky decomposition of the precision matrix Q. 2. Compute the simulated vector z as the solution of the following linear system:

Q T chol z = ε
Two performance issues arise from this workow. First, the computation of the Cholesky decomposition of Q is intractable for large problems or when the matrix is not sparse enough [START_REF] Simpson | Fast sampling from a Gaussian Markov random eld using Krylov subspace approaches[END_REF]. Then, once computed, this decomposition must be stored, and is used to solve a linear system. Both these tasks grow more expansive as the size or the lling of Q chol increases. The idea behind the algorithm presented in this article is to nd another candidate for L that would take advantage of the fact that the precision matrix has the form (4).

Simulation by eigendecomposition

The matrix S being real and symmetric, it is diagonalizable with nonnegative eigenvalues λ 1 , . . . , λ n and eigenvectors that form an orthonormal basis of R n (with n the size of the matrix S). Therefore there exists a matrix V satisfying V -1 = V T and:

S = V    λ 1 . . . λ n    V -1
It can be shown that for any real polynomial P, P(S) := L l=0 b l S l is also a real symmetric matrix, and is diagonalizable in the same eigenbasis as S. In particular, the eigenvalues of P(S) are P(λ 1 ), . . . , P(λ n ).

Let's then denote P(S) -1/2 the matrix dened for strictly positive polynomials P by:

P(S) -1/2 := V   1/ √ P(λ1) . . . 1/ √ P(λn)   V -1 (7)
Given that this matrix is symmetric, L = D -1 P(S) -1/2 satises (6). So using (5), a eld z with precision matrix Q can be generated through:

z = D -1 P(S) -1/2 ε (8) 
A direct way to compute the matrix P(S) -1/2 is through (7) which supposes to diagonalize the matrix S, and store its eigenvalues λ 1 , . . . , λ n and eigenvectors V . The cost associated to this approach is generally prohibitive as it requires O(n 3 ) operations and a storage size of O(n 2 ).

However, a particular case when this is feasible is worth noticing. [START_REF] Rue | Gaussian Markov random elds: theory and applications[END_REF] show that the precision matrix of a stationary Gaussian Markov random eld dened on a torus (i.e. a regular lattice with cyclic boundary conditions) is block-circulant, with circulant blocks [START_REF] Wood | Simulation of stationary gaussian processes in [0, 1] d[END_REF]. They deduce that the eigenvalues and the eigenvectors of the precision matrix can be computed using the discrete Fourier Transform (DFT), and therefore without requiring a matrix diagonalization. They then sample from their Gaussian Markov random eld using (8), where, following the notations of this section, P (X) = X, D is the identity matrix, and so S = Q. They just replace the product between the V (resp. V -1 ) and a vector by the DFT (resp. inverse DFT) of this vector. Davis (1987a), and later [START_REF] Dietrich | Ecient generation of conditional simulations by chebyshev matrix polynomial approximations to the symmetric square root of the covariance matrix[END_REF], apply this polynomial approximation trick to the case where the covariance matrix Σ of the random eld is known. They propose to rst approximate the square-root function over an interval containing the eigenvalues of the covariance matrix by a polynomial R. Then a simulation is generated by computing the product R(Σ)ε for a vector of independent standard Gaussian values ε. The computational and storage costs of their approach therefore relies on how easy it is to store Σ and to compute matrix-vector products involving Σ. They present the particular case where simulations of a stationary eld on a regular grid are performed, thus yielding block Toeplitz covariance matrices. The storage cost of such matrices can be minimized using the repetitive structure of Toeplitz matrices, and products with a vector can be performed using the FFT algorithm. In the general case of simulating non-stationary elds on irregular domains, their approach becomes intractable as Σ becomes a full matrix with no evident structure. To circumvent these limitations, the algorithm presented hereafter uses the particular expression of the precision matrix given in (3).

Polynomial approximation

In the general case, the eigendecomposition of S is inevitable if ( 8) is used to simulate the GRV. To avoid this expensive operation, the idea is rather to compute a matrix polynomial approximation P

(K) -1/2 (S) := K k=0 α k S k of P(S) -1/2
(of degree K). Indeed, both matrices can be decomposed in the same eigenbasis V as:

P (K) -1/2 (S) = V    P (K) -1/2 (λ1)
. . .

P (K) -1/2 (λn)    V T and P(S) -1/2 := V   1/ √ P(λ1) . . . 1/ √ P(λn)   V T Consequently, to approximate P(S) -1/2 by P (K) -1/2 (S), the polynomial P (K) -1/2 must satisfy: ∀i ∈ [[1, n]], P (K) -1/2 (λ i ) ≈ 1/ P(λ i ) (9) 
In that case, using (8), a eld z with precision matrix approximately equal to Q can be simulated via the formula:

z = D -1 P (K) -1/2 (S)ε = D -1 K k=0 α k S k ε (10)
Once the {α k } are known, computing the simulated eld using (10) can be done using an iterative algorithm that only requires matrix-vector products involving the sparse matrix S.

To dene the expression of a polynomial satisfying (9), it is sucient to solve the following problem: given an interval [a, b] containing all the eigenvalues of S and a degree of approximation K, nd a polynomial P (K) -1/2 of degree K that approximates the (continuous) function x → 1/ P(x) over [a, b]. Such an interval [a, b] can be obtained without having to diagonalize S. Examples of such intervals are provided in Appendix Appendix A.2. Using these results and the fact that S is positive semi-denite, the following interval is considered in the applications presented in this paper:

[a, b] = 0, max i∈[[1,n]] j∈[[1,n]] |S ij | (11)
The approximation of the function 1/ √ P over the interval [a, b] is carried out using Chebyshev polynomials [START_REF] Mason | Chebyshev polynomials[END_REF][START_REF] Press | Numerical Recipes 3rd Edition: The Art of Scientic Computing[END_REF]. This family (T k ) k∈N of polynomials is the sequence of polynomials dened over

[-1, 1] by: ∀θ ∈ R, T k (cos θ) = cos(kθ)
or equivalently via the recurrence relation:

T 0 (x) = 1, T 1 (x) = x, T k+1 (x) = 2xT k (x) -T k-1 (x) (k ≥ 1)
A graphical representation of these polynomials is provided in Figure 1. Notice that they can be generalized to arbitrary intervals [a, b] ⊂ R via a simple change of variable:

y ∈ [a, b] → x = 2y -b -a b -a ∈ [-1, 1] (12) 
The choice of Chebyshev polynomials has several perks. For the sake of simplicity, they are listed in the case where a function f dened on [-1, 1] has to be approximated.

• Convergence [START_REF] Mason | Chebyshev polynomials[END_REF]

: If f is Lipschitz-continuous over [-1, 1]
(which is the case in the applications presented in this article), its Chebyshev series, dened as:

∀x ∈ [-1, 1], S(x) = 1 2 c 0 T 0 (x) + ∞ k=1 c k T k (x) (13) 
where ∀k ∈ N:

c k = 2 π 1 -1 f (x)T k (x) 1 √ 1 -x 2 dx (14) is uniformly convergent on [-1, 1].
A similar result can be obtained for continuous functions when the Cesàro sums of their Chebyshev series are considered instead.

• Near minimax property [START_REF] Mason | Chebyshev polynomials[END_REF][START_REF] Press | Numerical Recipes 3rd Edition: The Art of Scientic Computing[END_REF]:

Suppose that f is continuous. The minimax polynomial of degree K of f is the polynomial p * K dened as:

p * K = argmin p∈P K f -p ∞
where P K is the set of all polynomials of degree ≤ K and . ∞ denotes the uniform norm (over [-1, 1]). It is generally very dicult to compute. However, the truncated Chebyshev series of degree K, denoted S K , is a good approximation of p * K in the sense that f -

S K ∞ is close to f -p * K ∞ .
• Fast computation [START_REF] Press | Numerical Recipes 3rd Edition: The Art of Scientic Computing[END_REF]: A change of variable in ( 14) gives:

c k = 2 π π 0 f (cos θ) cos(kθ)dθ ≈ J j=0 f (cos(j π J )) cos(kj π J ) (15) 
This last sum is the expression of the real part of the discrete Fourier Transform of the vector f (1), . . . , f (cos(j π J )), . . . , f (-1) T for discretization order J ∈ N * . Hence the coecients of the Chebyshev series of a function can be numerically computed using the Fast Fourier Transform algorithm, known for its speed and accuracy [START_REF] Brigham | The fast Fourier transform and its applications[END_REF].

Simulation algorithm

In this section, the workow of the simulation algorithm is presented, then its complexity and the induced error are derived. Finally, criteria on the choice of the approximation order are given.

Presentation of the algorithm

Workow: Simulation of a random vector using Chebyshev approximation Require: A positive polynomial P, a real symmetric positive semi-denite n × n matrix S and an invertible diagonal matrix D of size n. An order of approximation K ∈ N. A vector of n independent standard Gaussian components ε.

Output: A vector z with precision matrix (approximately equal to) Q = DP(S)D

1. Find an interval [a, b] containing all the eigenvalues of S (for instance (11)).

Compute a polynomial approximation P (K)

-1/2 of the function x → 1/ P(x) over [a, b], by truncating its shifted Chebyshev series at order K:

P (K) -1/2 (x) = 1 2 c 0 T [a,b] 0 (x)+ K k=1 c k T [a,b] k (x), T [a,b] k (x) := T k 2 b -a x - b + a b -a The coecients (c k ) k∈[[0,K]]
are computed by Fast Fourier Transform (using the changes of variables ( 12) in ( 15)).

Compute the product u = P (K)

-1/2 (S)ε using the recurrence relation satised by the Chebyshev polynomials.

α := 2 b -a ; β := b + a b -a ; k = 0; u (-2) = ε; u = 1 2 c 0 u (-2) ; k ← k + 1; u (-1) = αSε -βε; u ← u + c 1 u (-1) ; k ← k + 1; While(k ≤ K){ u (0) = αSu (-1) -βu (-1) -u (-2) ; u ← u + c k u (0) ; u (-2) ← u (-1) ; u (-1) ← u (0) ; k ← k + 1; } Return u 4.
The simulated eld is given by: z = D -1 u

Complexity of the algorithm

The complexity of the simulation algorithm can be explicitly calculated. Denote n nz the number of non-zero entries of S and m nz the mean number of non-zero entries of a row of S: n nz = m nz × n. Denote K the order of the Chebyshev approximation. The cost associated with each step (ignoring additions and multiplications by non-stored zeros) is described as follows:

• Step 1 requires O(n nz ) operations using (11) to compute the interval [a, b].

•

Step 2 requires to compute the Fast Fourier Transform of a vector of length K. The cost of this operation is O(K log K).

•

Step 3 requires to: compute K products of matrix S and vectors → O(Kn nz ) operations 2(K -1) + 1 subtractions of vectors, 3(K -1) + 1 multiplications of a vector by a scalar value and (K -1) additions of vectors → (K -1)n operations.

•

Step 4 requires n operations (product of a diagonal matrix and a vector).

Therefore, the overall cost of the simulation algorithm is

O(Kn nz ) = O(Km nz n) operations.
And regarding the storage needs, aside from S, D and ε which are assumed to be known (and therefore stored), the algorithm only needs to store 4 additional vectors of size n (u, u (0) , u (-1) and u (-2) ).

Quantication of the numerical approximation error

The main idea of the simulation algorithm presented in this article is to replace the matrix D -1 P(S) -1/2 in relation ( 8) by an ecient polynomial approximation, namely the matrix D -1 P (K) -1/2 (S). The numerical approximation error mat between these matrices can be measured by :

mat := D -1 P(S) -1/2 -D -1 P (K) -1/2 (S) ∞
where . ∞ denotes the matrix max norm, dened by A ∞ := max i,j

|A ij |. D being a diagonal matrix, mat ≤ D -1 ∞ P(S) -1/2 -P (K) -1/2 (S) ∞ ≤ D -1 ∞ P(S) -1/2 -P (K)
-1/2 (S) 2 where . 2 denotes the Froebenius norm, dened by A 2 := Trace(AA T ). Therefore,

mat ≤ D -1 ∞ n i=1 1 P(λ i ) -P (K) -1/2 (λ i ) 2 ≤ n D -1 ∞ max x∈[a,b] 1 P(x) -P (K) -1/2 (x) 2 
(16) Hence, the approximation error on the matrices is upper-bounded by the overall error that arises from the polynomial approximation of x → 1/ P(x) by its Chebyshev series. This last error can be made arbitrary small by truncating the polynomial series at a growing order. Therefore, the simulation algorithm is asymptotically exact given that asymptotically, the matrices D -1 P(S) -1/2 and D -1 P (K) -1/2 (S) coincide.

Determination of the approximation order

A practical question still needs to be answered : how to choose the order of the approximation polynomial? A criterion could be based on relation ( 16), by imposing an order high enough so that the approximation error mat of the matrices is below a given tolerance. But then, this tolerance would also need to be chosen. Given that the goal is actually to generate a random vector with the right covariance properties, a criterion based on the statistical properties of the random vectors produced by the proposed simulation algorithm, and not a numerical approximation error, seems more appropriate. In this section, such a criterion, based on the theory of statistical tests, is proposed.

Assessment of simulation validity through statistical tests

The aim is to simulate a Gaussian vector z with covariance matrix:

Σ = Q -1 = D -1 P(S) -1 D -1
But instead, the proposed simulation algorithm actually generates a Gaussian vector z s with covariance matrix:

Σ s = D -1 P approx (S) 2 D -1
Where P approx is a polynomial approximating the function x → 1/ P(x) over an interval containing all the eigenvalues of S.

Consider then a sample of N independent zero-mean Gaussian vectors z

s , . . . , z (N ) s

with covariance matrix Σ s . Let's consider the following null hypothesis test:

H 0 : z (1) s , . . . , z (N ) s
is a sample of zero-mean Gaussian vectors with covariance matrix Σ

Obviously, the condition on the mean is satised by construction of this sample. Besides, by denition [START_REF] Tong | The multivariate normal distribution[END_REF], a random vector z is a Gaussian vector with covariance matrix Σ if and only if, for any v ∈ R n , v T z is a Gaussian variable with variance v T Σv. Therefore, hypothesis H 0 won't be rejected if ∀v ∈ R n , the hypothesis H v 0 dened by:

H v 0 : v T z (1) s , . . . , v T z (N ) s
is a sample of zero-mean Gaussian variables with variance v T Σv T is not rejected. Two-sided chi-square tests for the variance [START_REF] Snedecor | Statistical methods[END_REF]) are considered. The results of these tests can actually be anticipated given that by denition, the sample v T z (1) s , . . . , v T z (N ) s has a known distribution: it is Gaussian with variance v T Σ s v. In particular, a criterion on the quality of the polynomial approximation such that for any v ∈ R n the probability of rejecting hypothesis H v 0 can be controlled is derived.

Proposition 4.1. Let [a, b] be an interval containing all the eigenvalues of S.

Let pol denote the polynomial approximation error dened by:

pol := max λ∈[a,b] 1/P(λ) -P approx (λ) 2 P approx (λ) 2 (17) 
Then ∀γ > 0, there exists N,γ > 0 such that:

pol ≤ N,γ ⇒ ∀v ∈ R n , R α (v) ≤ (1 + γ)α (18) 
where R α (v) is the probability of rejecting hypothesis H v 0 in a chi-square test for the variance with signicance α (involving N samples).

Proof. See Appendix Appendix B.

Therefore, if ( 18) is satised, then, for any v, hypothesis H v 0 is actually rejected (with signicance α) with a probability less than (1 + γ)α. This probability would have been equal to α if the samples were generated using the right covariance matrix. Therefore, the parameter γ represents relative increase of the rejection probability due to the fact that the samples are generated using Σ s instead of Σ.

As detailed in Appendix Appendix B, the bound N,γ on the polynomial approximation error pol can be numerically computed with the sole specication of the charcteristics of the statitical test (a sample size N and a signicance level α) and tolerated error in the variance γ. In particular, it depends neither on the polynomial of approximation nor on the approximated function itself. 1 and 2 give typical values of the tolerance N,γ for various sample sizes N and thresholds γ. The signicance is xed at α = 0.05 for Table 1 and α = 0.01 for Table 2.

Notice now that in the case of our Chebyshev simulation algorithm, the polynomial P approx is dened as the truncation of a Chebyshev series at an order K. This order can be determined by specifying the characteristics of the statistical test the user would want its simulations to pass, along with a tolerated error in variance, which in turn would yield a value of N,γ and therefore set a bound for the polynomial approximation error pol . The order of truncation K is then chosen so that pol ≤ N,γ .

Eciency improvement

The previous subsection provides a link between the order of the polynomial approximation of 1/ √ P and the validity of resulting simulations using the proposed algorithm. In practice, this order can be reduced in some cases.

Following the notations of section 4, let (c k ) k∈N be the coecients of the Chebyshev series of 1/ √ P over an interval [a, b] containing all the eigenvalues of S and for m ∈ N * , let z (m) be the vector dened by:

z (m) = D -1 1 2 c 0 T [a,b] 0 (S)ε + m k=1 c k T [a,b] k (S)ε
where ε is a vector with independent standard Gaussian values. 

z (m+l) -z (m) = D -1 l k=1 c m+k T [a,b] k (S)ε ≤ D -1 ∞ l k=1 |c m+k | T [a,b] k (S)ε
where . denotes the Euclidean norm on R n . Recall that, according to the properties of Rayleigh quotients (see Appendix Appendix A.1), and using the symmetry of T

[a,b] k (S): T [a,b] k (S)ε 2 ε 2 = ε T T [a,b] k (S) 2 ε ε T ε ≤ λ max T [a,b] k (S) 2
where λ max (.) denotes the largest eigenvalue of a matrix. Notice then that, given that the Chebyshev polynomials are upper-bounded (in absolute value) by 1, m) . This gives an additional criterion for the choice of the approximation order of the algorithm. After computing a value of order L using the criterion based on statistical tests, its value can be decreased to K as long as:

λ max T [a,b] k (S) 2 ≤ 1. Consequently, z (m+l) -z (m) ≤ D -1 ∞ l k=1 |c m+k | ε Hence, D -1 ∞ ε l k=1 |c m+k | ≈ 0 ⇒ z (m+l) ≈ z (
L k=K+1 |c k | ≤ η D -1 ∞ ε
for a xed tolerance η corresponding to the Euclidean distance between the vector computed using order K and the one computed using order L. In particular, if η is of the form η = √ n (where n is the size of the simulated vectors) and > 0, then in average, the square of the components of the vector (z (L) -z (K) ) will be less than .

Relation to Krylov subspaces methods

Krylov subspaces provide a framework for the study of some of the most used iterative algorithms used to solve eigenvalue problems and linear systems involving a matrix A. The idea behind such algorithms is to iteratively generate a sequence of approximate solutions of the problem while relying at each iteration on recurrence relations based on matrix-vector products involving A. The approximate solution obtained at the m-th iteration step lies in the subspace K m (A, v) dened by:

K m (A, v) = span{v, Av, . . . , A m-1 v} = {π(A)v : π polynomial of degree < m}
In this section, the relation between our simulation algorithm and Krylov subspaces is exposed, and a comparison with a more standard Krylov subspaces approach to generate samples from a GMRF with known precision matrix is presented.

Section 2.2 provides a direct way to generate samples from a precision matrix satisfying (3). Indeed, from equation ( 8), the vector z = D -1 u where:

u = P(S) -1/2 ε ( 19 
)
and ε is a vector of independent standard Gaussian variables, is a zero-mean GMRF with precision matrix Q given by (3). The algorithm presented in this paper actually consists in replacing u by an approximation u

(K) C
given by:

u (K) C = P (K) -1/2 (S)ε ( 20 
)
where

P (K)
-1/2 is a polynomial of degree K dened as the truncation at order K of the Chebyshev series of the function x → 1/ P (x) on an interval containing the eigenvalues of S. In particular, u (K) C ∈ K K+1 (S, ε) and our algorithm can be seen as an iterative algorithm on the truncation order K. This justies the fact that it can be considered as a Krylov subspace approach.

A standard approach using Krylov subspaces to generate samples from a GMRF with known precision matrix uses the Lanczos algorithm to come up with an approximation of u [START_REF] Simpson | Fast sampling from a Gaussian Markov random eld using Krylov subspace approaches[END_REF]. Indeed, in exact arithmetic, this algorithm can provide an orthonormal basis of K K+1 (S, ε) [START_REF] Golub | Matrix computations[END_REF]. u can then be approximated by [START_REF] Frommer | Matrix functions. Model order reduction: theory[END_REF][START_REF] Simpson | Fast sampling from a Gaussian Markov random eld using Krylov subspace approaches[END_REF]:

u (K) L = ε V K+1 P (T K+1 ) -1/2 e 1 ( 21 
)
where e 1 = (1 0 . . . 0) T , T K+1 is a tridiagonal (symmetric) matrix of size K + 1 and V K+1 is a matrix containing the K + 1 vectors of the orthonormal basis of K K+1 (S, ε), both matrices being products of the Lanczos algorithm. This cost associated with computing u

(K) L
can be decomposed as follows :

• running the Lanczos algorithm for K iterations : O(Km nz n) operations, where m nz is the mean number of non-zero values in a row of S.

• computing ( 21), which involves the diagonalisation of T K+1 and a matrixvector product with V K+1 : O((K + 1) 2 + nK) operations.

Computing u (K) L therefore comes at an overall cost of O(Km nz n + K 2 ) operations. Regarding the storage needs of this process, the matrix V K+1 and the eigendecomposition of T K+1 need to be stored, which requires a storage need of O(Kn + K 2 ).

From Section 4.2, it is clear that our Chebyshev approximation algorithm requires less operations and storage space to generate an approximation of u from the same Krylov subspace. But on the other hand, at the same approximation order K, the quality of the approximation obtained using the Lanczos algorithm will be better than the one using our Chebyshev algorithm. Indeed, in the Lanczos case (still in exact arithmetic) this approximation error satises [START_REF] Musco | Stability of the Lanczos Method for Matrix Function Approximation[END_REF]:

u -u (K) L ≤ 2 ε δ K , δ K = min π polynomial of degree ≤K max x∈[λmin,λmax] |1/ P (x) -π(x)|
Where λ min (resp. λ max ) denotes the smallest (resp. largest) eigenvalue of S. Thus it yields in the Lanczos case an error of order O(δ K ). And in the Chebyshev case, it is given by:

u -u (K) C ≤ P -1/2 (S) -P (K) -1/2 (S) ε ≤ ε max x∈[λmin,λmax] |1/ P (x) -P (K)
-1/2 (x)| This last estimate can be bounded using δ K and the Lebesgue constant λ K , thus giving for the Chebyshev approximation an error of order O(λ [START_REF] Mason | Chebyshev polynomials[END_REF]. The results of the comparison between the Lanczos algorithm and our Chebyshev algorithm are summed up in Table 3.

K δ K ) = O(δ K log K)
For small values of K the Lanczos algorithms is more adequate as it provides an approximation with a lower error. Its main aw resides in the fact that, contrary to our Chebyshev algorithm, the storage needs grow linearly with the order of approximation. Hence for large problems (i.e. when n is large), a restriction on the order of approximation has to be set according to the storage space available to the user. In order to tackle this storage problem, some adjustments can be made to the original Lanczos algorithm [START_REF] Aune | Iterative numerical methods for sampling from high dimensional gaussian distributions[END_REF]. For instance, Lanczos Chebyshev Computational cost

O(Km nz n + K 2 ) O(Km nz n) Storage needs O(Kn + K 2 ) O(n) Approximation error of u = Dz O(δ K ) O(δ K log K)
Table 3: Comparison between the Lanczos algorithm and our Chebyshev algorithm after K iterations, for the simulation of a sample from a GMRF z with precision matrix (3).

restarting procedures allow to work with a xed number of stored basis vectors of the Krylov space. However, those methods result in a loss of approximation quality and push to use complex preconditioning techniques in order to improve the convergence speed of the algorithm , which in turn increases the overall computational cost [START_REF] Simpson | Fast sampling from a Gaussian Markov random eld using Krylov subspace approaches[END_REF]. Our Chebyshev algorithm doesn't share this storage aw, allowing it to make up for its relative lack of precision by the possibility to work with much higher orders of approximation without the headache of nding the right variation of Lanczos algorithm1 . Another attractive feature of the Chebyshev algorithm is the statistical stopping criterion derived in Section 4.4.1. This criterion was established by using the fact that u (K) C could be written as u (K) C = π K (S)ε where the coecients dening π K are deterministic (which in our case means that they are not linked to ε) and that therefore u (K) C is a Gaussian vector with known covariance. This is no longer the case when considering the Lanczos algorithm given that these same coecients would eectively depend on the entries of ε given that this vector is used to compute the matrices V K+1 and T K+1 used to dene u (K) L . The only available stopping criteria for the Lanczos algorithm are therefore linked to the actual approximation error uu (K) L and not the statistical properties of the vector we wish to simulate. Moreover, given that in practice u is not available, the stopping criteria actually rely on the link between the Lanczos algorithm and the Conjugate Gradient algorithm, using the residuals of the latter as a bound on the approximation error [START_REF] Aune | Iterative numerical methods for sampling from high dimensional gaussian distributions[END_REF].

Application

Simulation of stationary Matérn models

The Matérn model is a widely used covariance model in Geostatistics due to its great exibility. For a lag distance h ∈ R + , its isotropic formulation is [START_REF] Chilès | Geostatistics : Modeling Spatial uncertainty[END_REF]:

C(h) = σ 2 2 ν-1 Γ(ν) h φ ν K ν h φ
where σ 2 > 0 is the marginal variance, φ > 0 is a scaling parameter, ν > 0 is a shape parameter and K ν is the modied Bessel function of the second kind of order ν. The parameter ν can be seen as a "smoothness" parameter as the underlying process is ν -time mean-square dierentiable. [START_REF] Lindgren | An explicit link between gaussian elds 670 and gaussian markov random elds: the spde approach (with discussion)[END_REF] dene Markovian approximations GRF with Matérn covariance as numerical solutions of SPDE (2) with parameters:

κ = 1/φ, α = ν + d/2 ∈ N, τ = σκ ν (4π) d/2 Γ(ν + d/2)/Γ(ν)
using the nite element method with linear triangular elements. They show that the precision matrix of the weights of the nite element representation of the solution can be written as (3), with:

S = (1/κ 2 )C -1/2 GC -1/2 , D = (κ α /τ )C 1/2 , P : x → (1 + x) α (22) 
where:

C = [ ψ i , ψ j ], G = [ ∇ψ i , ∇ψ j ], C -1/2 = (C 1/2 ) -1 (23) 
and C 1/2 is a square-root of C. The matrices C and G are sparse. Following again the results from [START_REF] Lindgren | An explicit link between gaussian elds 670 and gaussian markov random elds: the spde approach (with discussion)[END_REF], C is replaced by a diagonal matrix with entries [ ψ i , 1 ], which yields a Markov approximation of the solution that has the same convergence rate as the full nite element method formulation. In this subsection, simulations of the Matérn elds are generated using two methods (for comparison purposes): the Cholesky factorisation algorithm presented in Section 2.1, and the simulation algorithm proposed in this paper and presented in Section 4.

When applied to the simulation of random elds using the nite element method, the proposed algorithm can actually be interpreted as an image convolution algorithm. To see that, notice that when dened as in ( 22), the matrix S can be interpreted as what is referred to as a shift operator in the GSP theory [START_REF] Shuman | The emerging eld of signal processing on graphs: Extending highdimensional data analysis to networks and other irregular domains[END_REF]. Namely, when (linear) triangular elements are used, S is a sparse matrix whose entry M ij is non-zero if the nodes i and j of the triangulation are adjacent or if they coincide. Therefore, the non-zeros entries of a polynomial of degree K of S correspond to nodes that are within a distance K from each other in the triangulation (i.e. there exist a chain of at most K adjacent nodes between them). Now, according to the workow provided in Section 4, the output vector z of the simulation algorithm can be written as z = D -1 P -1/2 (S)ε, where D is a diagonal matrix, ε is a vector indexed by the nodes of the triangulation and P -1/2 is a polynomial of degree K. So, the i-th entry of z is given by a linear combination of the entries of ε that correspond to nodes within a distance K of i, and weighted by the entries of i-th row of D -1 P -1/2 (S). Hence, z can be seen as a convolution of the entries ε. The bigger the degree of the polynomial, the bigger the size of the convolution kernel. 

Order of the polynomial approximation

First, the eect of the order of the polynomial approximation on the resulting simulation is investigated. To do so, simulations of a Matérn eld are generated on a 200x200 grid, with range 25, sill 1 and smoothness parameter 1, and with a growing order. In Figure 3, simulations obtained for degree values of 1, 5, 20 and 100 and the associated variogram (averaged over 50 simulations) are displayed. As a comparison, the same model simulated using the classical Cholesky factorisation algorithm is displayed in Figure 2.

As noticed in Figure 3, increasing the order of the polynomial tends to add smoothness and structure to the simulation. This is expected from a convolution algorithm as the size of the kernel, which is directly linked to the order of the polynomial, grows (center images in Figure 3). Moreover, there seems to be a point from which adding more polynomials doesn't change the simulation. This observation is just a consequence of the result presented in Subsection 4.4.2.

Remark also that the variogram of the simulations in Figure 3 tends to be respected as the order of the polynomial grows. This fact was predictable and is due to the fact that the proposed algorithm ensures that any linear combinations of the vectors generated by the algorithm have the right variance within a given tolerance (see subsection 4.4.1). Consequently, this will ensure that the variogram is respected given that its value at particular lag h is just the variance of the dierence between two particular entries of the simulated vector that correspond to nodes of the triangulation separated by an Euclidean distance of h.

Inuence of the model

The inuence of the covariance model parameters on the resulting approximations is now investigated. To do so, simulations of Matérn elds with dierent values of range and smoothness parameters are generated (cf. Figure 4). For each set of parameters, the order of approximation is set so that the probability of rejection on the statistical tests with signicance α = 0.05 is equal to (1+10%)α, which corresponds to a threshold on the approximation error (18) of 3.0e-02 (cf. Table 1). Following the result of subsection 4.4.2, the eective order of approximation used to generate the simulation is reduced by considering a tolerance η = √ 10 -4 n where n = 200 2 is the size of the simulated vector. The order of approximation used for each simulation is reported in Figure

Simulation of non-stationary elds

Following the modeling approach of [START_REF] Fuglstad | Exploring a new class of non-stationary spatial gaussian random elds with varying local anisotropy[END_REF], an expression for the precision matrix of a nite element solution of the SPDE (2) with locally varying coecients is derived, resulting in a non-stationary eld with local anisotropies. Specically, let's consider a numerical solution of the SPDE:

κ 2 Z(x) -div (H(x)∇Z(x)) = τ W(x)
where κ, τ > 0, W is a spatial Gaussian white noise and H is a eld of positive denite matrices indexed by the space. Using weak formulations of this SPDE, it can be shown that the precision matrix of the weights has the same expression as in the stationary case presented in the previous subsection (with α = 2) but where the matrix G is now dened by:

G = [ ∇ψ i , H∇ψ j ]
Notice that the matrix G contains all the "anisotropy" parameters of the model in the sense that, similarly as in [START_REF] Fuglstad | Exploring a new class of non-stationary spatial gaussian random elds with varying local anisotropy[END_REF], its elements are constructed by locally accounting for the varying coecients of the SPDE in expressions ( 23).

(a) Anisotropy eld : each line represents the local direction of the anisotropy. The anisotropy ratio is locally proportional to the thickness of the layer (maximum value : 1.5).

(b) Simulation. Just like in Subsection 5.1, the Chebyshev approximation simulation algorithm to generate realizations of solutions of the SPDE. The results are displayed in Figure 5.

Conclusion

In this paper, an algorithm for simulating Gaussian random vectors whose precision matrix can be expressed as a polynomial P of a sparse matrix S is proposed. This case arises in particular when simulation is carried out by solving numerically some SPDEs using nite element method. In doing so, random elds with a Matérn covariance can be generated. But this approach can also be used to simulate non-stationary random elds arising when SPDEs with varying coecients are considered [START_REF] Fuglstad | Exploring a new class of non-stationary spatial gaussian random elds with varying local anisotropy[END_REF].

The proposed algorithm is based on a computationally ecient polynomial approximation of a square-root of the covariance matrix, using a Chebyshev polynomial approximation of the function 1/ √ P, and can generate random vectors in O(Kn nz ) operations, where K is the order of approximation and n nz is the number of non-zeros of S. The error of approximation on 1/ √ P was proved to be directly linked to the statistical properties of the random vectors generated by the algorithm, namely the variance of linear combinations of their components, providing a criterion on the level of approximation for the simulated vectors to satisfy the right properties within a given tolerance. Due to its low computational complexity and memory requirements, this algorithm can be used to generate large random vectors, arising for instance from the discretization of the solutions of SPDEs in 3 dimensions, even with large smoothness parameters. This approach is implemented in the R package RGeostats [START_REF] Renard | RGeostats: The geostatistical package[END_REF].

The proposed algorithm is a tool particularly well suited for the simulation of random elds represented as numerical solutions of SPDEs using nite element methods, and in particular Matérn elds and their extensions to manifolds, and oscillating and non-stationary covariances as presented in [START_REF] Lindgren | An explicit link between gaussian elds 670 and gaussian markov random elds: the spde approach (with discussion)[END_REF]. Although only the case α ∈ N (in SPDE (2)) has been examined, the generalization to non-integer values of α is quite straightforward, as the resulting elds can be approximated by a linear combinations of elds with α ∈ N [START_REF] Lindgren | An explicit link between gaussian elds 670 and gaussian markov random elds: the spde approach (with discussion)[END_REF]. The main limitation seems rather to come from the nite element method itself which for small values of ν = α -d/2 requires thinner and thinner meshes and hence, bigger and bigger matrix sizes.

Finally, the proposed algorithm could be applied to the simulation of more general random elds than Matérn elds. Indeed, the function 1/ √ P approximated by the algorithm and used to generate the simulations, is proportional, for Matérn elds, to the actual square-root of the spectral density of the eld. A way of generalizing the algorithm, which is under study and shows promising results, is to generate simulations of general Gaussian isotropic random elds using the same nite elements matrices as the one used here, but by replacing the approximation of the function 1/ √ P by the approximation of the square-root of the spectral density of the targeted eld. expressed for some N,γ > 0 as follows :

|X -1| ≤ N,γ ⇒ γ α (X) ≤ γ (B.1)
For xed values of γ, α and N the value of N,γ is determined numerically by nding the two roots of the equation γ α (X) = γ.

The condition on X in (B.1) can be written in terms of variances:

v T (Σ -Σ s )v v T Σ s v ≤ N,γ
which in turn, by denoting Σ 1/2 s = P approx (S)D -1 , can be expressed as:

Σ 1/2 s v Σ 1/2 s v
T P approx (S) -1 (P(S) -1 -P approx (S) 2 )P approx (S) -1 Σ

1/2 s v Σ 1/2 s v ≤ N,γ
Noticing the Rayleigh quotient (cf. Appendix Appendix A.1) on the left side of the inequality, this relation can be satised for any v ∈ R n by simply imposing:

λ max magn P approx (S) -1 (P(S) -1 -P approx (S) 2 )P approx (S) -1 ≤ N,γ

where λ max magn (.) denotes the eigenvalue with the greatest magnitude of a matrix. In turn, if [a, b] denotes an interval containing all the eigenvalues of S, this last condition can be satised by imposing :

max λ∈[a,b]
1/P(λ) -P approx (λ) 2 P approx (λ) 2 ≤ N,γ

Fig. 1 :

 1 Fig. 1 : First 5 Chebyshev polynomials over [-1, 1].

Fig. 2 :

 2 Fig. 2 : (Left) Simulations of a Matérn eld on a 200x200 grid using Cholesky factorisation. (Right) Mean variograms over 50 simulations (solid line) and model (dotted line) : range=25, sill=1, smoothness=1.

  (Left) Simulations of a Matérn model with range 25, sill 1 and smoothness parameter 1 on a 200x200 grid using Chebyshev approximation with growing order. (Center) Convolution kernels associated with the simulation. (Right) Mean variograms over 50 simulations (solid line) and model (dotted line). (a) Range = 25, Smoothness = 1 : Order = 76 (Eective order = 52) (b) Range = 50, Smoothness = 1 : Order = 166 (Eective order = 102) (c) Range = 25, Smoothness = 3 : Order = 84 (Eective order = 40) Fig. 4 : (Left) Simulations using Chebyshev approximation of a Matérn eld on a 200x200 grid with various model parameters. (Center) Convolution kernels associated with the simulation. (Right) Mean variograms over 50 simulations (solid line) and model (dotted line).

Fig. 5 :

 5 Fig. 5 : Simulation using Chebyshev approximation of a non-stationary Matérn eld with local anisotropy dened on a layer. Overall extension of the domain : 500x200. Model : range=150, sill=1.

Table 1 :

 1 Values of the precision threshold N,γ for dierent values of sample size N and of degradation of the type I error γ. The signicance of the test is α = 0.05

	Then, for

Table 2 :

 2 Values of the precision threshold N,γ for dierent values of sample size N and of degradation of the type I error γ. The signicance of the test is α = 0.01

m, l ∈ N * :

Note also that the comparison is carried out under the assumption of exact arithmetic. In oating points computations, a loss of orthogonality of V K+1 is observed as K grows, leading to larger approximation errors(Musco et al., 

2017) and forcing the user to adapt is algorithm using workarounds such as re-orthogonalisation techniques or restart techniques (thus increasing the overall complexity of the algorithm).

It can be noticed that increasing the range results in signicantly higher orders of approximation to achieve the same accuracy, whereas the eect of the smoothness parameters seems more limited. This is just another consequence of the "convolution" nature of the algorithm, as explained at the beginning of the section. The bigger the range is, the bigger the size of the kernel used to generate the simulation from a white noise image should be as bigger "spots" must be created, and therefore the bigger the order of approximation is. On the other hand, the smoothness parameter mainly aects the smoothness of the kernel, not its size.

Appendix A. Some elements of matrix analysis

Let n ∈ N * . Let M = (M ij ) i,j∈ [[1,n]] be a real symmetric n × n matrix. M is diagonalizable in an orthonormal basis. Denote λ min = λ 1 ≤ • • • ≤ λ n = λ max its eigenvalues, and (v (1) , . . . , v (n) ) the corresponding eigenvectors (forming the orthonormal basis).

Appendix A.1. Rayleigh quotient Denition. The Rayleigh quotient R(M , x) associated with M and x ∈ (R n ) * is the ratio:

Proof. Simply notice that x can be decomposed in the orthonormal basis (v (1) , . . . , v (n) )

as:

which is just a weighted sum of the eigenvalues with positive weights.

All the eigenvalues of M are therefore included in the interval [-Trace (M 2 ), Trace (M 2 )].

Proof. Notice that Trace

i and therefore the statement is also true.

Theorem. Gerschgorin circle theorem [START_REF] Gerschgorin | Uber die abgrenzung der eigenwerte einer matrix[END_REF]. Any eigenvalue λ of M satises:

Proof. Take λ an eigenvalue of M and v = (v 1 , . . . , v n ) T an associated eigenvector. Let i 0 be the index of the component of v with the largest magnitude:

Let's perform a chi-squared test for the variance on hypothesis H v 0 . The statistic t(v) of this test is:

v T Σv where S 2 (v) is the (unbiased) sample variance dened as:

s H v 0 will not be rejected with signicance α if t(v) satises :

where χ 2 p,N -1 is the p-th quantile of the chi-squared distribution with N -1 degrees of freedom (denoted χ 2 (N -1)).

In particular, the probability R α (v) that H v 0 is rejected with signicance α is given by:

where t s (v) is the statistic dened by:

Hence, t s (v) follows a χ 2 (N -1) distribution. So, if F χ 2 (N -1) denotes the cumulative distribution function of the χ 2 (N -1) distribution:

If the variance of the simulated sample were to be equal to the true variance (i.e. X = 1), the probability R α of rejecting the test would be α, the type I error of the test. But here, this error depends on the ratio X. Due to the non-symmetry of the chi-squared distribution, it can even be smaller than the signicance level α of the test. However, when the size of the sample increases, the χ 2 distribution tends to regain symmetry and the minimum of the function R α (X) tends to be achieved at X = 1 for a value α.

Denote γ α (X) the ratio:

γ α (X) = R α (X) -α α This ratio measures the degradation of the type I error of test, due to the fact that the simulated sample has variance v T Σ s v instead of v T Σv. A condition on the value of X so that γ α (X) ≤ γ for some xed proportion γ ≥ 0 can be