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Abstract
This studywas prompted by the inadequacy ofmost dispersion quantification techniques to address
issues pertaining to scalability, implementation complexity, accuracy/error, uncertainty factors and
versatility. Therefore, amethod for quantifying dispersion based on gap statistics was developed. A
dispersion quantity (D)was formulated from aGap factor ( )G ,0 Particle spacing dispersity (PSD1) and
Particle size dispersity (PSD2) factors. The summation of the factors resulted in the dispersion
parameter (Dp)whichmust be equal to one for an ideal or uniformly distributed condition. The state
of dispersion increases asD→100%. The concept was testedwith simulatedmodels having uniform
dispersion, randomdispersion, small aggregate, three large aggregate and one large aggregate were
successfully quantified to show99.34%, 82.42%, 34.17%, 8.95%and 3.65% respectively. For
validation of concept, the state of dispersionwhen samples with (scenario 1) andwithout (scenario 4)
silane treatment were quantified as 32,02% and 7.72% respectively. The concepts were then validated
using realmicroscopy images. This approach is robust, versatile and easy to implement.

Nomenclature

Acronyms Meaning

D dispersion quantity [%]

Dp dispersion parameter

G0 Gap Factor

PSD1 particle spacing dispersity

PSD1 particle size dispersity

a initial inspected k-mean value or

b final inspected k-mean value

S Total interparticle spacing distance [pixels]

xi interparticle spacing

N number of particles

*En expected value calculated froma reference distribution

k estimated optimal number of clusters

n sample size

Wk pooledwithin-cluster sumof squares around clustermean
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1. Introduction

There is increasing interest in polymer composite as an alternative to conventionalmaterial in the industrial
sector due to the ease ofmanufacture, low cost and the possibility of optimising properties [1–5]. The superior
benefits of polymer compositesmake the need for control and enhancement of itsmechanical, physical and
chemical properties imperative. There are several categories of polymer composites however, polymer
nanocomposites are themost extensively researched as they find applications inmultidisciplinary fields such as
in drug delivery [1], purification systems [3], polymer biomaterials [4] and chemical protection [5]. The
microscopic andmechanical properties of nanocomposites are significantly influenced by the nanoparticle
dispersion quality [6]. The disparity between the experimental and theoretical tensile strength of
nanocomposites can be attributed to the inhomogeneous dispersion of the nano-reinforcement [6–9]. The
possible states of dispersion are generally classified as either even, randomor clustered [6, 10]. However, an
evenly and randomly dispersed state represents an optimal condition and usually correlates with enhanced
properties. Achieving these optimal states is challenging, and has been reported as a significant limiting factor in
nanocomposite fabrication [7, 8, 11]. The difficulty in achieving effective dispersion is attributed to the strong
interparticle VanDerWaals forces which exceed the particle—matrix bond and consequently results in
agglomeration [11]. Agglomerates resist intended property augmentation by compromising themechanical
integrity of the nanocomposite through void formations which are a source of crack initiation and possible
failure during loading [7]. Therefore the need to improve dispersion andminimise agglomeration is vital to
improving properties such as themechanical (strength and stiffness) [12–16], thermal [17, 18], electrical [14]
barrier [19, 20] and transparency [21]. Some of the techniques adopted for dispersion of nanofillers within the
polymermatrix includemechanical or high-speed stirring [8], sonication [9, 22], high shearmixing ormelting
[23, 24], incorporating surfactants or compatibilisers [25] and casting solvents [26].

The traditionalmethods for assessing the state of nanoparticle dispersion ismostly qualitative via visual
inspection of images fromopticalmicroscopy [25, 27], Scanning electronmicroscope (SEM) [28, 29],
Transmission electronmicroscope (TEM) [30, 31] or Scanning probemicroscope (SPM) [32, 33]. Other direct
approaches include Raman spectroscopy [34], UV-visible spectroscopy [35, 36], electrical conductivity [8, 23]
andfluorescence [37]. These visual and direct approaches are often highly subjective and prone to errors and
inconsistencies [38]. Therefore a quantitativemeans of assessment serves as an important step towards
understanding the effects and relationships between the bulk scale functional performance and nanoscale
structures of the nanocomposites [39]. Furthermore, quantification establishes a direct base for correlating the
properties of the compositematerial to a standardisedmeasurewhile providing the variables for
optimisation [16].

Some studies have been conducted in attempts to provide quantification techniques for assessing dispersion.
Clark and Evans [40] quantified dispersion based on a randomly distributed determinant R. The distribution
was considered randomwhenR=1. Themain drawback to this approachwas the difficulty in selecting a
reference sample for comparison. In a study byMoore [41] dispersionwas assessedwith three parameters
namely; a variability index (VI), an anisotropic ratio (mean intercept size ratio) and a slice indexwhich
determines the degree of partteness.

Bakashi et al [39], developed two parameters for quantifying the state of dispersion. Thesewere an image-
based dispersion parameter (DP) and a clustering parameter (CP) derived viaDelaunay triangulation. A
satisfactory state of dispersion is realisedwhenDP is high, andCP is low simultaneously. Thismethod is only
effective for comparing carbon nanotubes of similar concentration. Furthermore, the concept holds true only
for regions of highCNTdensity.

Xie et al [31] characterised dispersion using a degree of dispersion (χ) and an average interparticle distance
per unit volume (λV) of particles parameter. The degree of dispersion (χ) describes the percentage of clay
exfoliationwhileλV provides ameasure for the spatial separation of clay particles. Although the dispersion
quantity generates distinguishing numbers, the information on the state of dispersion is not definitive.

The quadrantmethod has been extensively researched for quantifying dispersion [42–46]. Quantification is
mainly based on the standard deviation of particle concentrationwithin sections of the sample image. A higher
standard deviation implies poor dispersionwhile the inverse is true. Themain drawback to the quadrantmethod
is in the selection of appropriate quadrantmesh size which can result in an unreliable and inconsistent
assessment.

In an attempt to improve upon the quadrantmethod,Michael andRaeymaekers [38] quantified dispersion
by formulating of a composite indexwhich comprised a dispersion and size distribution indexes. Their
approach sought to improve on the limitations of the quadrant themethod and succeeded in some respect,
however, the inherent limitation of results depending on the quadrant to particle size was not eliminated.

Glaskova et al [20], proposed a premise that dispersionwas a function of particulate area and a dispersion
parameter (D).WhereDwas the probability of particles fallingwithin a predetermined range of the particle area
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distribution. An increase inD indicates an increase in inhomogeneity. The limitation of thismethod is that only
a dispersion parameter is provided; however, an agglomeration parameter is absent.

Luo andKoo [47] presented a dispersion quantity (D) based on the integration of the probability density
function (PDF) for estimating the statistical distribution of particle spacing (mean spacing (μ)). AGood
dispersionwas linked to high uniformity in the high spacing between integral bounds. The limitation of this
approach is the sole reliance on free path spacingwhich implies that identical dispersion statesmay result
regardless of the agglomerated group.

Tyson et al [48] improved on the approach of Luo andKoo [47] and developed two (2) quantities for
assessing the state of dispersion. A dispersion quantity (D)was obtained bymeasuring the spacing between
particles while the agglomeration quantity (A)was derived through particle sizemeasurement. The disadvantage
of thismethod is the challenge of selecting a correct distribution function.

Recently, Blazer et al [6], designedmodel based on interparticle distance, nanoparticle volume loading (f)
andfibre-to-particle diameter ratios (D/d). A high value of the dispersion quality (β) indicates high dispersion
state.

An approach for quantifying dispersion based on threemain factors is presented. ‘This study varies from
other quantification techniques by being fundamentally based on the gap statistic for estimation of clusters,
interparticle spacing and particle size disparities.Most of the literature for quantification of dispersion either do
not consider an agglomeration factor or have separate values for dispersion and agglomeration. Thismethod,
however, provides an overall state of dispersion by incorporating free path spacing and an agglomeration
component to comprehensively quantify the state of dispersion as a combined entity’. The dispersion percentage
provide a scalablemeasure of the state of dispersion and serve as a standard for comparative analysis. Themerits
of the proposed techniques are critically analysed and characterized usingmodel concepts and later validated
with real images.

2.Materials andmethods

In this study, two composites were platesmanufactured fromusing titanium (IV) oxide nanoparticles (21 nm)
and the silane coupling agent, 3-aminopropyltrimethoxysilane (APTMS), all acquired fromSigmaAldrich.
Silane functionalizationwas conducted bymixing a solution of 95%methanol, 5%distilledwater and 1% silane
before the additionTiO2 nanoparticle and heating at 95 °C to ensure complete evaporation of the alcohol [49].
Themixturewas dried at 100 °C for 1 h and then crushed before dispersing viamechanical stirringwithin an
epoxymatrix at a fractionweight of 2 wt%. Samples with andwithout silane treatment weremould. The
TESCANVEGA3XMU scanning electronmicroscope (SEM) equipment was used capturing the images and
MATLAB for image analysis. The cross-section of the SEM samples was prepared by cryo-fracturing [50]. The
samples were immersed in liquid nitrogen and then shattered. Thismethod generallyminimises distortions
when compared to the use of shear force from a cutter. Sample sizes of approximately 5mm lateral dimension
were selected for experimentation.

3. Proof of concept

Fivemodels simulating commonly occurring degrees of dispersion and agglomeration are presented for testing
the concept. A uniformdispersion (Model 1), randomdispersion (Model 2), randomdispersionwith small
agglomerates (Model 3), randomdispersionwith three large agglomerates (Model 4) and randomdispersion
with one large agglomerate are described infigures 1(a)–(e) respectively.

3.1. The gap statistic estimation
TheGapmethod proposed by Tibshirani et al [51] estimates the number of clusters within a data set and can
incorporate almost all clustering algorithms such as the hierarchical or theK-mean for assessing changes in
dispersionwithin clusters and a reference distribution. The number of clusters with the largest gap value is
estimatedwhen using the gap criterion. The optimal number of clusters is obtained from a tolerance range of the
solutionwith the largest global or local gap value. The gap value is formulated as equation (1)

*= -( ) { ( )} ( ) ( )Gap k E W Wlog log 1n n k k

Where *En is the expected value calculated from a reference distribution usingMonte Carlo sampling, n is the
sample size, k is the estimated optimal number of clusters, andWk is the pooledwithin-cluster sumof squares
around clustermean or dispersionmeasurement. The drawback of the gap criterion is its expensive computation
which is a direct consequence of applying cluster algorithms to reference data for all cluster solution [51].



To obtain data forGap factor analysis, themodels were segmented using theK-means algorithm [52],
transformed to binary images then the centroids of all segmented particles were extracted and plotted as
described infigure 2. The gap statistic criterionwas applied to generate the observed and expected curves as
shown infigure 3.

The gap statistic curves observed infigure 3 clearly shows awidening as the level of agglomerates increase.
This implies that the gap between curves forModel 5 is greater than that forModel 5. This trend in gap behaviour
was used as a basis for formulating a gap factor ( )G0 illustrated infigure 4 and expressed in equation (2). The gap
factor is, therefore, the difference between the area under the observed and expected curves.
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Where G0 is the gap factor or area between the expected curve ( ( )f xe ) and observed curve ( ( )f xo )while the
initial and final inspected k−mean values are represented by a and b respectively.

To ensure accuracy in the obtained results, some assumptions and considerations were adopted. (1)Particle
centroids were employed as ameans for locating and extracting data frommicroscopy images. (2)To introduce
standardisation, an equal number of particles were used and (3) allmodel imageswere converted to
1500×1500 pixels. (5)while an equal number of inspected k values [1–8] for the cluster analysis was
implemented.

3.2. Particle spacing and size dispersity
Toprovide comprehensive quantification, twomore factors namely; particle spacing dispersity (PSD1) and
particle size dispersity (PSD2)were formulated to complement the gap factor. An algorithmwas developed in
MATLAB to calculate theminimumdistance between all particles as the initial step for calculatingPSD1. For
every point in boundary B, the distances to every point in boundary Awere found as shown infigure 5. All the
distances (S)where calculated using equation (3).

= - + -( ) ( ) ( )S Boundary Ax Boundary Bx Boundary Ay Boundary By 32 2

Where x and y are theCartesian locations andA andB represent two particle boundaries. The closest points,
minimumdistances and overallminimumdistances were determined and used for the dispersity assessment.

Figure 1.Computer generatedmodels for simulating possible particle distributions. (a)Model 1, (b)Model 2, (c)Model 3, (d)Model 4
and (e)Model 5.

Figure 2.The image data extraction process forModel 4.



Figure 3.Plotted centroids and correspondingGap curves forModel 1 (a) and (b),Model 2 (c) and (d),Model 3 (e) and (f),Model 4 (g)
and (h) andModel 5 (i) and (j).



Similarly, the area of all the particles was used for calculating the particle size dispersityPSD2. The general
expression for calculating the dispersity (PSD) is presented in equation (4).
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Where xi is the interparticle spacing or particle size whileN is the number of variables (Particles).

3.3.Dispersion quantification
The dispersion quantity (D) shown in equation (5)was formulated based on a dispersion parameter (DP)which
comprises the summation of G ,0 PSD1 andPSD2 as expressed in equation (6). For an ideal condition such as a
uniformly distributed system, =D 100% and =D 3.P This implies that Particle Size Dispersity,Particle spacing
Dispersity andGap factor each have a value=1.
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The quantified dispersion for themodels is reported in table 1.

Figure 4. Illustrations of the AreaUnder aCurveMethod (AUCM) for dispersion quantification.

Figure 5.An illustration of interparticle spacing.



4. Results and discussion

4.1. Simulatedmodels
The formulated dispersion quantity (D)was tested using thefive simulatedmodels. The resulting data was
utilised to generate valuable characteristics such as average particle spacing and average particle spacingwith
their corresponding weighted averages and standard deviations for eachmodel as presented in table 1. The
average particle spacing forModels 1,2 and 3was similar and smaller than forModels 4 and 5. This observation
correlates with the visual assessment as large aggregates were embedded inmodels 4 and 5. The spacing standard
deviation for the uniform and randomly dispersedmodels (1 and 2) are smaller than themodels with
agglomeration. The average particle size and standard deviations forModels 3–4with agglomerates were greater
thanModels 1 and 2which had same particle sizes.

The gap factor (G0), particle spacing dispersity and particle size dispersity for the uniformdispersionwere
1,02, 1 and 1which resulted in a dispersion (D) value of 99,34%≈100% that represents an Ideal state of
dispersion.Model 5 had theworst dispersion state of 3,65%. From table 2, the entire results indicate a decrease in
dispersion percentage fromModel 1 to 5whichwas the expected trend fromvisual inspection. ThePSD1 for
Model 1 andModel 5were 1 and 78,38 respectively. Furthermore, themost significant factor was thePSD2

which brings to for the importance of incorporating an agglomeration component for a comprehensive
assessment of dispersion [48]. In theory, asD→100%, the state, of dispersion improves.

4.2. Validation using real images
The theoretical proof of concept has been established, however, validation using real SEM images was essential.
Four SEM Imageswith different levels TiO2 nanoparticles dispersedwithin thematrix as shown infigure 6were
used to test the concept. The state of dispersionwas categorised into four scenarios to test the robustness and
versatility of the approach. Every scenario underwent segmentation to highlight nanoparticle, conversion to
centroid scatter plots and generation of gap statistic curves. The summary of results is presented in tables 3 and 4.
All image resolutionswere converted to 1500×1500 pixels.

The analysis of the data for all four Scenarios is presented in tables 3 and 4. The average particle spacing
valueswere relatively similar for scenarios 1 (7,40E+02), 2 (7,01E+02) and 3 (6,96E+02)however, for
scenario 4, the average spacing (9,03E+02)was significantly higher in comparison. A high average spacing
usually indicates the presence of large agglomerates. The standard deviation values did not show any significant
variations. High average particle sizes values of 6,11E+02 and 2,44E+03were observed for scenarios 1 and 4
respectively. Similarly, the standard deviations also showed higher values of 1,59E+03 and 1,76E+04 for
Scenario 1 and 4 respectively.

A high average particle size and standard deviation value could indicate the presence of large agglomerates as
in the case of scenario 4 or a sparsely dense particle distributionwith relatively large size variations of smaller
agglomerates as in Scenario 1. The above reasons shows that using just the particle spacing, particle size and
standard deviations is not a sufficient enough approach for assessment of dispersion. These results confirm the
finding of [47, 51]. This study found that gap factor, particle spacing, and size dispersity are critical components
of the dispersion parameter (Dp) for a comprehensive estimation of the dispersion quantity (D). The state of
dispersion for Scenarios 1, 2, 3 and 4were 31, 02%, 28, 60%, 22.95%and 7, 72% respectively. Scenario 1was

Table 1.Average particle spacing and sizewith corresponding standard deviations for the simulatedmodels in pixels.

Model Ave. particle spacing Weighted average StdDEVIATION Ave. particle size Weighted average Std deviation

Model 1 7,84E+02 6,93E+02 3,75E+02 2,42E+03 2,43E+03 9,18E+01
Model 2 7,44E+02 8,06E+02 3,70E+02 2,42E+03 2,43E+03 9,18E+01
Model 3 7,71E+02 8,06E+02 4,07E+02 1,23E+04 7,12E+04 2,70E+04
Model 4 8,42E+02 1,11E+03 4,57E+02 1,45E+04 4,01E+05 7,52E+04
Model 5 9,14E+02 1,10E+03 4,59E+02 1,26E+04 9,89E+05 1,12E+05

Table 2.Degree of dispersion in the simulatedmodels.

Model G0 PSD1 PSD2 Dp D

Model 1(UniformDistr.) 1, 02 1 1 3, 02 99, 34%

Model 2 (RandomDistr.) 1, 56 1, 08 1 3, 64 82, 42%

Model 3 (Small Agg.) 1, 93 1, 05 5, 8 8, 78 34, 17%

Model 4 (Three Agg) 4, 49 1, 32 27, 7 33, 51 8, 95%

Model 5 (OneAgg) 2, 59 1, 2 78, 38 82, 17 3, 65%



observed as themost homogenously dispersedwhile scenario 4was the least homogeneous and highly
agglomerated.

4.3. Influence of interparticle spacing and particle size
The elastic property of a nanocomposite is a function of particle size, weight fraction, particle contiguity, state of
filler packing etc [53]. Particle distribution, contiguity and their interactions directly influence the

Figure 6.Data extraction process andGap plots for real image scenarios 1, 2, 3 and 4.

Table 3.Average particle spacing and sizewith corresponding standard deviations for real image scenarios in pixels.

Real Images Ave. particle spacing Weighted average Std deviation Ave. particle size Weighted average Std deviation

Scenario 1 7,40E+02 9,46E+02 3,46E+02 6,11E+02 4,65E+03 1,59E+03
Scenario 2 7,01E+02 6,40E+02 3,59E+02 6,67E+01 3,59E+02 1,94E+02
Scenario 3 6,96E+02 7,81E+02 3,94E+02 6,40E+01 5,05E+02 1,36E+02
Scenario 4 9,03E+02 1,25E+03 3,73E+02 2,44E+03 8,13E+04 1,76E+04

Table 4.Degree of dispersion for real image scenarios.

Real Images G0 PSD1 PSD2 Dp D

Scenario 1 0, 79 1, 28 7, 6 9, 67 31, 02%

Scenario 2 4, 21 0, 91 5, 37 10, 49 28, 60%

Scenario 3 4, 06 1, 12 7, 89 13, 07 22, 95%

Scenario 4 4, 07 1, 39 33, 38 38, 84 7, 72%



thermomechanical properties of the nanocomposite [53]. Some have indicated that as the interparticle distance
becomes smaller in comparison to the nanoparticle diameter, significant enhancement ofmechanical properties
such as toughness and stiffness takes place [54–56].When such a condition occurs, a three-dimensional physical
network often constructs within the interphase to dominate the nanocomposites performance [54, 56].
However, this is only true for homogenously distributed nanoparticles as observed in table 1, where bothmodels
1 and 5 had smaller average interparticle spacings of 7,84E+02 and 9,14E+02 respectively than their
respective average particle sizes 2,42E+03 and 1,26E+04. The standard deviations of the average interparticle
spacing show thatmodel 1with a smaller value of 3,75E+02 ismore homogeneous thanmodel 5with
4,59E+02. Therefore, the role of interparticle spacing and particle size are critical for enhancing the
mechanical properties of nanocomposites.

4.4. Particlematrix-interphase improvement
The particlematrix-interphase directly influence both particle distribution and contiguity. A critical assessment
of the area surrounding an embedded particle within amatrix reveals a rather complicated phenomenon
comprising shrinkage inducedmechanical stresses, particle geometry induced even stress singularities or high-
stress gradients, bonding imperfections, void contents andmicrocracks tomention a few [53].Majority of the
above-stated complex factors can be overcome by improving hydrophobicity of particles whichminimises the
occurrence of imperfect wetting. Therefore, the state of dispersion can be significantly improved by
functionalizingwith oxidising agents and cavitation or ultrasonication dispersionwhich has proven to be an
efficient approach [57–60]. Scenario 1, 2 and 3whichwere selected from the silane functionalized sample and
clearly showed better dispersion states due to better wettability from the silane treatment than Scenario 4which
was not treated. Hydrophobicity of the nanoparticles was achieved via the formation of afilmwith Ti–O–Si
chemical bonding and cross-linking bonds of Si–O–Si after the silane treatment [61].

5. Conclusion

Amethodwas developed for deductively quantifying dispersion and agglomerationwithin particle reinforced
polymer composites. The approachwas successfully applied to simulatedmodels and validatedwith SEM
images. It was observed that for a comprehensive determination of the dispersion state of a system, the
dispersion parameters, the gap factor, particle spacing and particle size dispersity are vital components as
standard deviation data alonewas not sufficient for accurate assessment. In theory, as (D) approaches 100%, the
state of dispersion improves. The current technique is versatile and capable of analysing optical and electron
microscopy images. The results can be used as a platform for introducing somemeasure of standardisation
aimed at benchmarking dispersion quality. This proposedmethod can bemodified to analyse 3D images with
ease. The aimof the composite design is tomanufacture superior performancematerials using optimal
parameters. This study has shown that optimisation of the degree of dispersionwithin composites is possible
since a reliable numericalmeasurement for accurate quantification has been provided. The new approach avoids
the limitations of previousmethods such as the over-reliance on standard deviation,means and varied
probability distribution functions. Dispersion directly impacts the thermomechanical properties of
nanocomposites, therefore as technology advances customising the state of dispersion to impart specific
properties will become a reality and approaches such as in this studywill be key for customisation of such
nanocomposites. The dispersion quantity is easy to implement and execute and shows reliable and consistent
outputs that are very similar to visual assessments. The formulation ensures robustness and some level of
sophisticationwithout the complexity of othermethods. Furthermore, a stepwise increase inmagnifications can
be used to generate various images that can be employed to give a better representation of the dispersion state
within the entire sample.
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