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Abstract

This study was prompted by the inadequacy of most dispersion quantification techniques to address
issues pertaining to scalability, implementation complexity, accuracy/error, uncertainty factors and
versatility. Therefore, a method for quantifying dispersion based on gap statistics was developed. A
dispersion quantity (D) was formulated from a Gap factor (G), Particle spacing dispersity (PSD,) and
Particle size dispersity (PSD,) factors. The summation of the factors resulted in the dispersion
parameter (D,) which must be equal to one for an ideal or uniformly distributed condition. The state
of dispersion increases as D — 100%. The concept was tested with simulated models having uniform
dispersion, random dispersion, small aggregate, three large aggregate and one large aggregate were
successfully quantified to show 99.34%, 82.42%, 34.17%, 8.95% and 3.65% respectively. For
validation of concept, the state of dispersion when samples with (scenario 1) and without (scenario 4)
silane treatment were quantified as 32,02% and 7.72% respectively. The concepts were then validated
using real microscopy images. This approach is robust, versatile and easy to implement.

Nomenclature

Acronyms  Meaning

D dispersion quantity [%]
D, dispersion parameter

Gy Gap Factor

PSD, particle spacing dispersity
PSD, particle size dispersity

initial inspected k-mean value or
final inspected k-mean value

Total interparticle spacing distance [pixels]

X; interparticle spacing

N number of particles

E* expected value calculated from a reference distribution
k estimated optimal number of clusters

n sample size

Wi pooled within-cluster sum of squares around cluster mean
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1. Introduction

There is increasing interest in polymer composite as an alternative to conventional material in the industrial
sector due to the ease of manufacture, low cost and the possibility of optimising properties [ 1-5]. The superior
benefits of polymer composites make the need for control and enhancement of its mechanical, physical and
chemical properties imperative. There are several categories of polymer composites however, polymer
nanocomposites are the most extensively researched as they find applications in multidisciplinary fields such as
in drug delivery [1], purification systems [3], polymer biomaterials [4] and chemical protection [5]. The
microscopic and mechanical properties of nanocomposites are significantly influenced by the nanoparticle
dispersion quality [6]. The disparity between the experimental and theoretical tensile strength of
nanocomposites can be attributed to the inhomogeneous dispersion of the nano-reinforcement [6-9]. The
possible states of dispersion are generally classified as either even, random or clustered [6, 10]. However, an
evenly and randomly dispersed state represents an optimal condition and usually correlates with enhanced
properties. Achieving these optimal states is challenging, and has been reported as a significant limiting factor in
nanocomposite fabrication [7, 8, 11]. The difficulty in achieving effective dispersion is attributed to the strong
interparticle Van Der Waals forces which exceed the particle—matrix bond and consequently results in
agglomeration [11]. Agglomerates resist intended property augmentation by compromising the mechanical
integrity of the nanocomposite through void formations which are a source of crack initiation and possible
failure during loading [7]. Therefore the need to improve dispersion and minimise agglomeration is vital to
improving properties such as the mechanical (strength and stiffness) [12—16], thermal [17, 18], electrical [14]
barrier [19, 20] and transparency [21]. Some of the techniques adopted for dispersion of nanofillers within the
polymer matrix include mechanical or high-speed stirring [8], sonication [9, 22], high shear mixing or melting
[23, 24], incorporating surfactants or compatibilisers [25] and casting solvents [26].

The traditional methods for assessing the state of nanoparticle dispersion is mostly qualitative via visual
inspection of images from optical microscopy [25, 27], Scanning electron microscope (SEM) [28, 291,
Transmission electron microscope (TEM) [30, 31] or Scanning probe microscope (SPM) [32, 33]. Other direct
approaches include Raman spectroscopy [34], UV-visible spectroscopy [35, 36], electrical conductivity [8, 23]
and fluorescence [37]. These visual and direct approaches are often highly subjective and prone to errors and
inconsistencies [38]. Therefore a quantitative means of assessment serves as an important step towards
understanding the effects and relationships between the bulk scale functional performance and nanoscale
structures of the nanocomposites [39]. Furthermore, quantification establishes a direct base for correlating the
properties of the composite material to a standardised measure while providing the variables for
optimisation [16].

Some studies have been conducted in attempts to provide quantification techniques for assessing dispersion.
Clark and Evans [40] quantified dispersion based on a randomly distributed determinant R. The distribution
was considered random when R = 1. The main drawback to this approach was the difficulty in selecting a
reference sample for comparison. In a study by Moore [41] dispersion was assessed with three parameters
namely; a variability index (VI), an anisotropic ratio (mean intercept size ratio) and a slice index which
determines the degree of partteness.

Bakashi et al[39], developed two parameters for quantifying the state of dispersion. These were an image-
based dispersion parameter (DP) and a clustering parameter (CP) derived via Delaunay triangulation. A
satisfactory state of dispersion is realised when DP is high, and CP is low simultaneously. This method is only
effective for comparing carbon nanotubes of similar concentration. Furthermore, the concept holds true only
for regions of high CNT density.

Xie etal [31] characterised dispersion using a degree of dispersion () and an average interparticle distance
per unit volume (\y) of particles parameter. The degree of dispersion () describes the percentage of clay
exfoliation while Ay provides a measure for the spatial separation of clay particles. Although the dispersion
quantity generates distinguishing numbers, the information on the state of dispersion is not definitive.

The quadrant method has been extensively researched for quantifying dispersion [42—46]. Quantification is
mainly based on the standard deviation of particle concentration within sections of the sample image. A higher
standard deviation implies poor dispersion while the inverse is true. The main drawback to the quadrant method
is in the selection of appropriate quadrant mesh size which can result in an unreliable and inconsistent
assessment.

In an attempt to improve upon the quadrant method, Michael and Raeymaekers [38] quantified dispersion
by formulating of a composite index which comprised a dispersion and size distribution indexes. Their
approach sought to improve on the limitations of the quadrant the method and succeeded in some respect,
however, the inherent limitation of results depending on the quadrant to particle size was not eliminated.

Glaskova et al[20], proposed a premise that dispersion was a function of particulate area and a dispersion
parameter (D). Where D was the probability of particles falling within a predetermined range of the particle area



distribution. An increase in D indicates an increase in inhomogeneity. The limitation of this method is that only
adispersion parameter is provided; however, an agglomeration parameter is absent.

Luo and Koo [47] presented a dispersion quantity (D) based on the integration of the probability density
function (PDF) for estimating the statistical distribution of particle spacing (mean spacing (1t)). A Good
dispersion was linked to high uniformity in the high spacing between integral bounds. The limitation of this
approach is the sole reliance on free path spacing which implies that identical dispersion states may result
regardless of the agglomerated group.

Tyson et al [48] improved on the approach of Luo and Koo [47] and developed two (2) quantities for
assessing the state of dispersion. A dispersion quantity (D) was obtained by measuring the spacing between
particles while the agglomeration quantity (A) was derived through particle size measurement. The disadvantage
of this method is the challenge of selecting a correct distribution function.

Recently, Blazer et al [6], designed model based on interparticle distance, nanoparticle volume loading (¢)
and fibre-to-particle diameter ratios (D/d). A high value of the dispersion quality (3) indicates high dispersion
state.

An approach for quantifying dispersion based on three main factors is presented. “This study varies from
other quantification techniques by being fundamentally based on the gap statistic for estimation of clusters,
interparticle spacing and particle size disparities. Most of the literature for quantification of dispersion either do
not consider an agglomeration factor or have separate values for dispersion and agglomeration. This method,
however, provides an overall state of dispersion by incorporating free path spacing and an agglomeration
component to comprehensively quantify the state of dispersion as a combined entity’. The dispersion percentage
provide a scalable measure of the state of dispersion and serve as a standard for comparative analysis. The merits
of the proposed techniques are critically analysed and characterized using model concepts and later validated
with real images.

2. Materials and methods

In this study, two composites were plates manufactured from using titanium (IV) oxide nanoparticles (21 nm)
and the silane coupling agent, 3-aminopropyltrimethoxysilane (APTMS), all acquired from Sigma Aldrich.
Silane functionalization was conducted by mixing a solution of 95% methanol, 5% distilled water and 1% silane
before the addition TiO, nanoparticle and heating at 95 °C to ensure complete evaporation of the alcohol [49].
The mixture was dried at 100 °C for 1 h and then crushed before dispersing via mechanical stirring within an
epoxy matrix at a fraction weight of 2 wt%. Samples with and without silane treatment were mould. The
TESCAN VEGA 3 XMU scanning electron microscope (SEM) equipment was used capturing the images and
MATLARB for image analysis. The cross-section of the SEM samples was prepared by cryo-fracturing [50]. The
samples were immersed in liquid nitrogen and then shattered. This method generally minimises distortions
when compared to the use of shear force from a cutter. Sample sizes of approximately 5 mm lateral dimension
were selected for experimentation.

3. Proof of concept

Five models simulating commonly occurring degrees of dispersion and agglomeration are presented for testing
the concept. A uniform dispersion (Model 1), random dispersion (Model 2), random dispersion with small
agglomerates (Model 3), random dispersion with three large agglomerates (Model 4) and random dispersion
with one large agglomerate are described in figures 1(a)—(e) respectively.

3.1. The gap statistic estimation

The Gap method proposed by Tibshirani et al [51] estimates the number of clusters within a data set and can
incorporate almost all clustering algorithms such as the hierarchical or the K-mean for assessing changes in
dispersion within clusters and a reference distribution. The number of clusters with the largest gap value is
estimated when using the gap criterion. The optimal number of clusters is obtained from a tolerance range of the
solution with the largest global or local gap value. The gap value is formulated as equation (1)

Gap, (k) = E; {log (W)} — log (W) (eY)

Where E, is the expected value calculated from a reference distribution using Monte Carlo sampling, 7 is the
sample size, k is the estimated optimal number of clusters, and W, is the pooled within-cluster sum of squares
around cluster mean or dispersion measurement. The drawback of the gap criterion is its expensive computation
which is a direct consequence of applying cluster algorithms to reference data for all cluster solution [51].



(a) (d)

Figure 1. Computer generated models for simulating possible particle distributions. (a) Model 1, (b) Model 2, (c) Model 3, (d) Model 4
and (e) Model 5.

1500

1000

500

.. o0
G o oee 00 00 @ 0 0 0O

1560
Model Segmentation Particle centroid location

Figure 2. The image data extraction process for Model 4.

To obtain data for Gap factor analysis, the models were segmented using the K-means algorithm [52],
transformed to binary images then the centroids of all segmented particles were extracted and plotted as
described in figure 2. The gap statistic criterion was applied to generate the observed and expected curves as
shown in figure 3.

The gap statistic curves observed in figure 3 clearly shows a widening as the level of agglomerates increase.
This implies that the gap between curves for Model 5 is greater than that for Model 5. This trend in gap behaviour
was used as a basis for formulating a gap factor (Gy) illustrated in figure 4 and expressed in equation (2). The gap
factor is, therefore, the difference between the area under the observed and expected curves.

Go = [fubl f(xe)dx] - [fabl f(xo)dx] @)

Where Gy is the gap factor or area between the expected curve (f (x,.)) and observed curve (f (x,)) while the
initial and final inspected k — mean values are represented by a and b respectively.

To ensure accuracy in the obtained results, some assumptions and considerations were adopted. (1) Particle
centroids were employed as a means for locating and extracting data from microscopy images. (2) To introduce
standardisation, an equal number of particles were used and (3) all model images were converted to
1500 x 1500 pixels. (5) while an equal number of inspected k values [ 1-8] for the cluster analysis was
implemented.

3.2. Particle spacing and size dispersity

To provide comprehensive quantification, two more factors namely; particle spacing dispersity (PSD;) and
particle size dispersity (PSD,) were formulated to complement the gap factor. An algorithm was developed in
MATLARB to calculate the minimum distance between all particles as the initial step for calculating PSD;. For
every point in boundary B, the distances to every point in boundary A were found as shown in figure 5. All the
distances (S) where calculated using equation (3).

S = \/(Boundary Ax — Boundary Bx)* + (Boundary Ay — Boundary By)? 3)

Where x and y are the Cartesian locations and A and B represent two particle boundaries. The closest points,
minimum distances and overall minimum distances were determined and used for the dispersity assessment.
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Figure 3. Plotted centroids and corresponding Gap curves for Model 1 (a) and (b), Model 2 (c) and (d), Model 3 (e) and (f), Model 4 (g)

and (h) and Model 5 (i) and (j).
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Figure 4. [llustrations of the Area Under a Curve Method (AUCM) for dispersion quantification.

/ Boundary A

Boundary B

Figure 5. An illustration of interparticle spacing.

Similarly, the area of all the particles was used for calculating the particle size dispersity PSD,. The general
expression for calculating the dispersity (PSD) is presented in equation (4).

o5 (5]

Where x; is the interparticle spacing or particle size while N is the number of variables (Particles).

3.3. Dispersion quantification

The dispersion quantity (D) shown in equation (5) was formulated based on a dispersion parameter (Dp) which
comprises the summation of Gy, PSD; and PSD, as expressed in equation (6). For an ideal condition such as a
uniformly distributed system, D = 100% and Dp = 3. This implies that Particle Size Dispersity, Particle spacing
Dispersity and Gap factor each have a value =1.

Dispersion Quantity (D) = (Di) X 100% (5)
P
Dp = Gy + PSD; + PSD, 6)

The quantified dispersion for the models is reported in table 1.




Table 1. Average particle spacing and size with corresponding standard deviations for the simulated models in pixels.

Model Ave. particlespacing ~ Weightedaverage ~ Std DEVIATION  Ave. particlesize ~ Weighted average Std deviation

Model 1 7,84E + 02 6,93E + 02 3,75E + 02 2,42E + 03 2,43E + 03 9,18E + 01
Model 2 7,44E + 02 8,06E + 02 3,70E + 02 2,42E + 03 2,43E + 03 9,18E + 01
Model 3 7,71E + 02 8,06E + 02 4,07E + 02 1,23E + 04 7,12E + 04 2,70E + 04
Model 4 8,42E + 02 1,11E + 03 4,57E + 02 1,45E + 04 4,01E + 05 7,52E + 04
Model 5 9,14E + 02 1,10E + 03 4,59E + 02 1,26E + 04 9,89E + 05 L,12E + 05

Table 2. Degree of dispersion in the simulated models.

Model G PSD, PSD, D, D
Model 1(Uniform Distr.) 1,02 1 1 3,02 99, 34%
Model 2 (Random Distr.) 1,56 1,08 1 3,64 82,42%
Model 3 (Small Agg.) 1,93 1,05 5,8 8,78 34,17%
Model 4 (Three Agg) 4,49 1,32 27,7 33,51 8,95%
Model 5 (One Agg) 2,59 1,2 78,38 82,17 3,65%

4. Results and discussion

4.1. Simulated models

The formulated dispersion quantity (D) was tested using the five simulated models. The resulting data was
utilised to generate valuable characteristics such as average particle spacing and average particle spacing with
their corresponding weighted averages and standard deviations for each model as presented in table 1. The
average particle spacing for Models 1,2 and 3 was similar and smaller than for Models 4 and 5. This observation
correlates with the visual assessment as large aggregates were embedded in models 4 and 5. The spacing standard
deviation for the uniform and randomly dispersed models (1 and 2) are smaller than the models with
agglomeration. The average particle size and standard deviations for Models 3—4 with agglomerates were greater
than Models 1 and 2 which had same particle sizes.

The gap factor (Gy), particle spacing dispersity and particle size dispersity for the uniform dispersion were
1,02, 1 and 1 which resulted in a dispersion (D) value 0£ 99,34% == 100% that represents an Ideal state of
dispersion. Model 5 had the worst dispersion state of 3,65%. From table 2, the entire results indicate a decrease in
dispersion percentage from Model 1 to 5 which was the expected trend from visual inspection. The PSD, for
Model 1 and Model 5 were 1 and 78,38 respectively. Furthermore, the most significant factor was the PSD,
which brings to for the importance of incorporating an agglomeration component for a comprehensive
assessment of dispersion [48]. In theory, as D — 100%, the state, of dispersion improves.

4.2. Validation using real images

The theoretical proof of concept has been established, however, validation using real SEM images was essential.
Four SEM Images with different levels TiO, nanoparticles dispersed within the matrix as shown in figure 6 were
used to test the concept. The state of dispersion was categorised into four scenarios to test the robustness and
versatility of the approach. Every scenario underwent segmentation to highlight nanoparticle, conversion to
centroid scatter plots and generation of gap statistic curves. The summary of results is presented in tables 3 and 4.
Allimage resolutions were converted to 1500 x 1500 pixels.

The analysis of the data for all four Scenarios is presented in tables 3 and 4. The average particle spacing
values were relatively similar for scenarios 1 (7,40E + 02),2 (7,01E + 02)and 3 (6,96E + 02) however, for
scenario 4, the average spacing (9,03E + 02) was significantly higher in comparison. A high average spacing
usually indicates the presence of large agglomerates. The standard deviation values did not show any significant
variations. High average particle sizes values of 6,11E + 02 and 2,44E + 03 were observed for scenarios 1 and 4
respectively. Similarly, the standard deviations also showed higher values of 1,59E + 03 and 1,76E + 04 for
Scenario 1 and 4 respectively.

A high average particle size and standard deviation value could indicate the presence of large agglomerates as
in the case of scenario 4 or a sparsely dense particle distribution with relatively large size variations of smaller
agglomerates as in Scenario 1. The above reasons shows that using just the particle spacing, particle size and
standard deviations is not a sufficient enough approach for assessment of dispersion. These results confirm the
finding of [47, 51]. This study found that gap factor, particle spacing, and size dispersity are critical components
of the dispersion parameter (D,) for a comprehensive estimation of the dispersion quantity (D). The state of
dispersion for Scenarios 1, 2, 3 and 4 were 31, 02%, 28, 60%, 22.95% and 7, 72% respectively. Scenario 1 was
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Table 3. Average particle spacing and size with corresponding standard deviations for real image scenarios in pixels.

Real Images Ave. particle spacing ~ Weighted average Std deviation Ave. particle size Weighted average Std deviation
Scenario 1 7,40E + 02 9,46E + 02 3,46E + 02 6,11E + 02 4,65E + 03 1,59E + 03
Scenario 2 7,01E + 02 6,40E + 02 3,59E + 02 6,67E + 01 3,59E + 02 1,94E + 02
Scenario 3 6,96E + 02 7,81E + 02 3,94E + 02 6,40E + 01 5,05E + 02 1,36E + 02
Scenario 4 9,03E + 02 1,25E + 03 3,73E + 02 2,44E + 03 8,13E + 04 1,76E + 04

Table 4. Degree of dispersion for real image scenarios.

Real Images Gy PSD, PSD, D, D

Scenario 1 0,79 1,28 7,6 9,67 31,02%

Scenario 2 4,21 0,91 5,37 10, 49 28,60%

Scenario 3 4,06 1,12 7,89 13,07 22,95%

Scenario 4 4,07 1,39 33,38 38,84 7,72%

observed as the most homogenously dispersed while scenario 4 was the least homogeneous and highly

agglomerated.

4.3. Influence of interparticle spacing and particle size
The elastic property of a nanocomposite is a function of particle size, weight fraction, particle contiguity, state of
filler packing etc [53]. Particle distribution, contiguity and their interactions directly influence the



thermomechanical properties of the nanocomposite [53]. Some have indicated that as the interparticle distance
becomes smaller in comparison to the nanoparticle diameter, significant enhancement of mechanical properties
such as toughness and stiffness takes place [54-56]. When such a condition occurs, a three-dimensional physical
network often constructs within the interphase to dominate the nanocomposites performance [54, 56].
However, this is only true for homogenously distributed nanoparticles as observed in table 1, where both models
1 and 5 had smaller average interparticle spacings of 7,84E + 02 and 9,14E + 02 respectively than their
respective average particle sizes 2,42E 4 03 and 1,26E + 04. The standard deviations of the average interparticle
spacing show that model 1 with a smaller value of 3,75E + 02 is more homogeneous than model 5 with

4,59E + 02. Therefore, the role of interparticle spacing and particle size are critical for enhancing the
mechanical properties of nanocomposites.

4.4. Particle matrix-interphase improvement

The particle matrix-interphase directly influence both particle distribution and contiguity. A critical assessment
of the area surrounding an embedded particle within a matrix reveals a rather complicated phenomenon
comprising shrinkage induced mechanical stresses, particle geometry induced even stress singularities or high-
stress gradients, bonding imperfections, void contents and microcracks to mention a few [53]. Majority of the
above-stated complex factors can be overcome by improving hydrophobicity of particles which minimises the
occurrence of imperfect wetting. Therefore, the state of dispersion can be significantly improved by
functionalizing with oxidising agents and cavitation or ultrasonication dispersion which has proven to be an
efficient approach [57—-60]. Scenario 1, 2 and 3 which were selected from the silane functionalized sample and
clearly showed better dispersion states due to better wettability from the silane treatment than Scenario 4 which
was not treated. Hydrophobicity of the nanoparticles was achieved via the formation of a film with Ti-O-Si
chemical bonding and cross-linking bonds of Si—-O-Si after the silane treatment [61].

5. Conclusion

A method was developed for deductively quantifying dispersion and agglomeration within particle reinforced
polymer composites. The approach was successfully applied to simulated models and validated with SEM
images. It was observed that for a comprehensive determination of the dispersion state of a system, the
dispersion parameters, the gap factor, particle spacing and particle size dispersity are vital components as
standard deviation data alone was not sufficient for accurate assessment. In theory, as (D) approaches 100%, the
state of dispersion improves. The current technique is versatile and capable of analysing optical and electron
microscopy images. The results can be used as a platform for introducing some measure of standardisation
aimed at benchmarking dispersion quality. This proposed method can be modified to analyse 3D images with
ease. The aim of the composite design is to manufacture superior performance materials using optimal
parameters. This study has shown that optimisation of the degree of dispersion within composites is possible
since a reliable numerical measurement for accurate quantification has been provided. The new approach avoids
the limitations of previous methods such as the over-reliance on standard deviation, means and varied
probability distribution functions. Dispersion directly impacts the thermomechanical properties of
nanocomposites, therefore as technology advances customising the state of dispersion to impart specific
properties will become a reality and approaches such as in this study will be key for customisation of such
nanocomposites. The dispersion quantity is easy to implement and execute and shows reliable and consistent
outputs that are very similar to visual assessments. The formulation ensures robustness and some level of
sophistication without the complexity of other methods. Furthermore, a stepwise increase in magnifications can
be used to generate various images that can be employed to give a better representation of the dispersion state
within the entire sample.
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