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i 1 be a martingale difference sequence in a smooth Banach space. Let Sn = n i=1 Xi, n 1, be the partial sums of (Xi, Fi) i 1 . We give upper bounds on the quantity P (max 1 k n S k > nx) in terms of n 1 and x > 0 in two different situations: when the martingale differences have uniformly bounded exponential moments and when the decay of the tail of the increments is polynomial.

Introduction

Let (X i ) i 1 be a sequence of random variables with values in a separable Banach space (B, • ). Consider the partial sums S n := n i=1 X i , n 1. We are interested in establishing upper bound for the probabilities of large deviation, namely

P max 1 k n S k > nx , n 1, x > 0.
(1.1)

In the real valued case, we know that if (X i ) i 1 is centered, strictly stationary and ergodic, then the quantity P (max 1 k n S k > nx) converges to 0 for all fixed x. It is also the case when (X i ) i 1 is an L 2 bounded martingale differences sequence. In this note, we will generalise to Banach space the known results on the convergence rates of the probability of large deviation for real-valued martingale differences sequences, namely:

• in [START_REF] Lesigne | Large deviations for martingales[END_REF] (see Theorem 3.6 therein), Lesigne and Volný have established that if

C 1 := sup i 1 E [|X i | p
] is finite for some p 2, then, for all x > 0, P max

1 k n |S k | > nx 18p p p -1 p M p x p n -p/2 .
(1.2)

In particular, it implies P max

1 k n |S k | > n = O n -p/2 , n → ∞. (1.3)
They also showed that the power p/2 in the last equality is optimal even for stationary and ergodic martingale difference sequences.

• in Theorem 2.1 of [3], it is proved that if C 2 := sup i 1 E exp |X i | 2α 1-α
is finite for some α ∈ (0, 1), then, for all x > 0, P max

1 k n S k > nx C(α, x) exp - x 4 2α n α , ( 1.4) 
where

C(α, x) = 2 + 35C 1   1 x 2α 16 1-α + 1 x 2 3(1 -α) 2α 1-α α  
does not depend on n. In particular, with x = 1, it implies

P max 1 k n S k > n = O exp - 1 16 n α , n → ∞. (1.5) 
It is also showed that the power α in (1.5) is optimal even for stationary martingale difference sequences. See also [START_REF] Lesigne | Large deviations for martingales[END_REF] for the case of α = 1/3.

The extension of deviation or moment inequalities to Banach spaces is in general not an easy task. Most of the techniques working in the real-valued which led to deviation inequalities [2,4,[START_REF] Victorovich | On probability and moment inequalities for supermartingales and martingales[END_REF] does not seem to extend to Banach space valued martingales. Nevertheless, some inequalities are available in this context: see [START_REF] Giraudo | Deviation inequalities for Banach space valued martingales differences sequences and random field[END_REF] for polynomial decay and [9] for exponential inequality. This appears to be the adapted tool for the control of the large deviation probabilities. Here we will be concerned in two cases: when the exponential moments of the martingale differences are finite and when the conditional moments of the martingale differences are finite.

Before we state the results, we need to define the notion of Banach space valued martingale. Definition 1.1. Let (Ω, F, P) be a probability space and let (B, • B ) be a separable Banach space. For any p 1, we denote by L p B the space of B-valued random variables such that X p

L p B = E [ X p ] is finite. Let (F i ) i 1 be
a non-decreasing sequence of subσ-algebras of F. We say that a sequence of B-valued random variables (X i ) i 1 is a martingale difference sequence with respect to the filtration

(F i ) i 1 if (1) for any i 1, X i is F i -measurable and belongs to L 1 B ; (2) for any i 2, E [X i | F i-1 ] = 0 almost surely.
For the validity of deviation inequalities, some assumptions on the geometry of the involved Banach space have to be made. Definition 1.2. Following [START_REF] Pisier | Martingales with values in uniformly convex spaces[END_REF], we say that a Banach space (B, • ) is r-smooth (1 < r 2) if there exists an equivalent norm • ′ such that

sup t>0 1 t r sup x + ty ′ + x -ty ′ -2 : x ′ = y ′ = 1 < ∞.
From [START_REF] Assouad | Espaces p-lisses et q-convexes, inégalités de Burkholder[END_REF], we know that if B is r-smooth and separable, then there exists a constant D such that for any sequence of B-valued martingale differences (X i ) i 1 ,

E n i=1 X i r D n i=1 E X i r .
(1.6) Definition 1.3. Let 1 < r 2 and D > 0. We say that a Banach space B is (r, D)-smooth if B is r-smooth and inequality (1.6) holds for all B-valued martingale difference sequences (X i ) i 1 .

Main results

We start by a result for martingales difference sequences whose tail have a uniform exponential decay.

Theorem 2.1. Let α ∈ (0, 1). Assume that (X i , F i ) i 1 is a sequence of martingale differences in a (2, D)-smooth separable Banach space and satisfies sup i 1 sup t>0 exp t 2α 1-α P ( X i > t) C 1 (2.1)
for some constant C 1 . Then, for all x > 0,

P max 1 k n S k > nx C(α, x) exp - x 4D 2α n α , (2.2)
where

C(α, x) = 2 + 1007156e 2 D 2 C 1   1 x 2α 16 1-α D 2(1-α) + 1 x 2 3(1 -α) 2α 1-α α   .
does not depend on n. In particular, with x = 1, it holds

P max 1 k n S k > n = O exp - 1 (4D) 2α n α , n → ∞. (2.3)
Remark 2.2. The condition on the decay on the tail can be rewriten as

sup i 1 sup s>0 sP exp X i 2α 1-α > s C 1 .
(2.4)

In particular, it does not imply finiteness of E exp X i Remark 2.3. In [7], for P (max 1 k n S k > n), a rate of order e -n can be obtained under the condition that for some δ > 0,

E [exp {δ |X i |} | F i-1 ]
K almost surely for some constant K. On one hand, the obtained rate is better than the one we obtained. On the other hand, there are situations where our results apply but not the one in [7]. For example, let (Y i ) i 0 be an independent sequence of random variables where for i

1, P (Y i = 1) = P (Y i = -1) = 1/2 and Y 0 is a non-bounded random variable such that sup t>0 exp t 2α 1-α P (|Y 0 | > t) is finite for some α ∈ (0, 1). Letting F i := σ (Y j , 0 j i) and X i := Y 0 Y i , then (X i , F i ) i 1 is a martingale difference sequence. Since |X i | = |Y 0 |, it follows that E [exp {δ |X i |} | F i-1 ] = exp {δ |Y 0 |}, which is not bounded.
We also investigate the case of the martingale differences having polynomial tail probability.

Theorem 2.4. Let B be an (r, D)-smooth separable Banach space where 1 < r 2. Let

p 2 p 1 > r. Assume that (X i , F i ) i 1 is a sequence of B-valued martingale differences and satisfies sup i 1 sup t>0 t p 1 P ( X i > t) C 1 and sup i 1 sup t>0 t p 2 P (E [ X i r | F i-1 ]) 1/r > t
C 2 for some constants C 1 and C 2 . Then, for all x > 0, P max

1 k n S k > nx K 1 (p 1 , p 2 , r, D)C 1 x -p 1 1 n p 1 -1 + K 2 (p 1 , p 2 , r, D)C 2 x -p 2 1 n p 2 -p 2 /r , (2.5) where K 1 (p 1 , p 2 , r, D) = 2 2p 2 2 2p 2 -1 2 1-r 2 p 1 +2p 1 p 2 /r D p 1 /r and K 2 (p 1 , p 2 , r, D) = 2 2p 2 2 2p 2 -1 2 1-r 2 p 2 +2p 2 2 /r D p 2 /r p 2 p 2 -r p 2 /r (2.6)
do not depend on n or x. In particular, with x = 1, it holds

P max 1 k n S k > n = O 1 n min{p 1 -1,p 2 -p 2 /r} , n → ∞.
(2.7)

Remark 2.5. When B = R and p 1 = p 2 = p, the rate for P (max

1 k n S k > n) is n -p/2
. We thus recover the optimal convergence rate of [START_REF] Lesigne | Large deviations for martingales[END_REF]. Notice that Theorem 3.6 (up to the constants) is stated under weaker assumptions, since we do not need a finite moment of order p for X i .

Remark 2.6. Theorem 2.3 in [START_REF] Giraudo | Deviation inequalities for Banach space valued martingales differences sequences and random field[END_REF] gives a similar result as our Theorem 2.4 in the case r = 2. The condition therein is in appearence different, because the condition of boundedness of the weak-L p -moments is replaced by the existence of random variables X and V such that for all i and all t, P (|X i | > t) P (X > t) and

P (E [ X i r | F i-1 ] > t) P (V > t).
However, if X has a finite weak-L p -moment, then C := sup i 1 sup t>0 t p 1 P ( X i > t) is finite. Conversely, if C is finite, then we can assume, by rescaling, that C = 1; then take X such that P (X > t) = min {1, t -p }.

What the result of Theorem 2.4 brings is the following. First, the case of r-smooth Banach spaces is considered here, whereas in Theorem 2.3 in [START_REF] Giraudo | Deviation inequalities for Banach space valued martingales differences sequences and random field[END_REF], only the case of 2smooth Banach spaces is considered. Second, in our result, the constants are explicit.

Theorem 2.4 can also be used for sequences of independent centered random variables, which are particular cases of martingale differences. Since the random variables

E [ X i r | F i-1
] are constant, one can apply Theorem 2.4 for any p 2 . In particular, we can choose p 2 such that the decay in n in the right hand side of (2.5) is the same for both terms, namely, p 2 = (p 1 -1) r/ (r -1).

Corollary 2.7. Let B be an (r, D)-smooth separable Banach space where 1 < r 2. Let p > r. Assume that (X i ) i 1 is an independent sequence of B-valued random variables and satisfies sup i 1 sup t>0 t p P ( X i > t) C for some constant C. Then, for all x > 0, P max

1 k n S k > nx K(p, r, D) x -p C + sup i 1 (E X i r ) p/r x -(p-1)r/(r-1) 1 n p-1 ,
(2.8) where

K(p, r, D) = 2 2p 2 2 2p 2 -1 2 1-r 2 p+2pp 2 /r D p/r
, with p 2 = (p -1) r/ (r -1) , (2.9)

does not depend on n or x. In particular, with x = 1, it holds

P max 1 k n S k > nx = O 1 n p-1 .
(2.10)

Remark 2.8. It has been shown in Proposition 2.6 in [START_REF] Lesigne | Large deviations for martingales[END_REF] that the power p-1 is optimal, even for i.i.d. sequences with a finite moment of order p.

Proof of Theorems

3.1. Proof of Theorem 2.1. The proof will be done by a truncation argument, similar method for univariate martingale differences can be found in Lesigne and Volný [START_REF] Lesigne | Large deviations for martingales[END_REF]. For the bound part, we shall need the following Pinelis' inequality (cf. Theorem 3.5 of Pinelis [9]).

Lemma 3.1. Assume that (X i , F i ) i 1 is a sequence of martingale differences in a (2, D)-smooth separable Banach space and satisfies X i ∞ b for all i 1. Then, for all x 0, P max

1 k n S k x exp - x 2 2D 2 nb 2 . (3.1)
Let (X i , F i ) i 1 be a sequence of martingale differences in a (2, D)-smooth separable Banach space. Given u > 0, define

X ′ i = X i 1 { X i u} -E[X i 1 { X i u} |F i-1 ], X ′′ i = X i 1 { X i >u} -E[X i 1 { X i >u} |F i-1 ], S ′ k = k i=1 X ′ i , S ′′ k = k i=1 X ′′ i .
Then (X ′ i , F i ) i 1 and (X ′′ i , F i ) i 1 are two martingale difference sequences in a (2, D)smooth separable Banach space and S k = S ′ k + S ′′ k . Let t ∈ (0, 1). For any x > 0, it holds

P max 1 k n S k > x P max 1 k n S ′ k > xt + P max 1 k n S ′′ k > x(1 -t) . (3.2)
Using Lemma 3.1 and the fact that X ′ i 2u, we get

P max 1 k n S ′ k > xt exp - x 2 t 2 8D 2 nu 2 .
(3.3) Using Theorem 4.1 of Pinelis [9], we get

P max 1 k n S ′′ k > x(1 -t) 7200e 2 D 2 x 2 (1 -t) 2 n i=1 E X ′′ i 2 . (3.4) Let F i (x) = P( X i > x), x 0.
By assumption we have, for all i and x 0,

F i (x) C 1 exp{-x 2α 1-α }.
Using the inequality

E X -E [X | G] 2 4E X 2 , (3.5) one gets that E X ′′ i 2 4E X i 2 1 { X i >u} . It is easy to see that E X ′′ i 2 -4 ∞ u t 2 dF i (t) = 4u 2 F i (u) + ∞ u 8tF i (t)dt 4C 1 u 2 exp{-u 2α 1-α } + 8C 1 ∞ u t exp{-t 2α 1-α }dt. (3.6) 
Notice that the function g(t

) = t 3 exp{-t 2α 1-α } is decreasing in [β, +∞) and is increasing in [0, β], where β = 3(1-α) 2α 1-α 2α . If 0 < u < β, we have ∞ u t exp{-t 2α 1-α }dt β u t exp{-t 2α 1-α }dt + ∞ β t -2 t 3 exp{-t 2α 1-α }dt β u t exp{-u 2α 1-α }dt + ∞ β t -2 β 3 exp{-β 2α 1-α }dt 3 2 β 2 exp{-u 2α 1-α }. (3.7) If β u, we have ∞ u t exp{-t 2α 1-α }dt = ∞ u t -2 t 3 exp{-t 2α 1-α }dt ∞ u t -2 u 3 exp{-u 2α 1-α }dt = u 2 exp{-u 2α 1-α }. (3.8) 
By (3.6), (3.7) and (3.8), it follows that

E X ′′ i 2 12C 1 (u 2 + β 2 ) exp -u 2α 1-α . (3.9) 
From (3.4), we get

P max 1 k n S ′′ k > x(1 -t) 12 × 7200e 2 D 2 C 1 n x 2 (1 -t) 2 (u 2 + β 2 ) exp -u 2α 1-α . (3.10)
Combining (3.2), (3.3) and (3.10) together, we obtain

P max 1 k n S k > x 2 exp - x 2 t 2 8D 2 u 2 n + 12 × 7200e 2 D 2 C 1 n (1 -t) 2 u 2 x 2 + β 2 x 2 exp -u 2α 1-α . Taking t = 1 √ 2 and u = x 4D √ n 1-α
, we get, for all x > 0, P max

1 k n S k > x C n (α, x) exp - x 2 16D 2 n α , where C n (α, x) = 2 + 86400 1 -1/ √ 2 2 e 2 D 2 C 1 n 1 x 2α (16D 2 n) 1-α + β 2 x 2 .
Hence (using the fact that 86400

(1-1/ √ 2) 2 1007156), for all x > 0, P max

1 k n S k > nx C(α, x) exp - x 4D 2α n α ,
where

C(α, x) = 2 + 1007156e 2 D 2 C 1   1 x 2α 16 1-α D 2(1-α) + 1 x 2 3(1 -α) 2α 1-α α   .
This completes the proof of Theorem 2.1.

3.2. Proof of Theorem 2.4. Theorem 2.4 will be proven by an application of Theorem 1.3 in [START_REF] Giraudo | Deviation inequalities for Banach space valued martingales differences sequences and random field[END_REF], which states the following.

Lemma 3.2. Let (B, • ) be a separable (r, D)-smooth Banach space, where 1 < r 2.

For any B-valued martingale difference sequences (X i , F i ) i 1 , the following inequality holds for each n 1 and q, x > 0:

P max 1 i n S i > x I 1 (q, x) + I 2 (q, x), (3.11)
where

I 1 (q, x) = 2 q-r q 2 q -1 1 0 P max 1 i n X i > 2 -1-q/r D -1/r xu u q-1 du, I 2 (q, x) = 2 q-r q 2 q -1 1 0 P n i=1 E [ X i r | F i-1 ] 1/r > 2 -1-q/r D -1/r xu u q-1 du
and D is a constant satisfying (1.6) for any n and any martingale difference sequences.

Applying inequality (3.11) with q = 2p 2 and x replaced by nx, we get for each n 1 and p 2 , x > 0:

P max 1 i n S i > nx I 1 (2p 2 , nx) + I 2 (2p 2 , nx), ( 3.12) 
In order to control the terms appearing in the right hand side of (3.12), we introduce the following quantity, for p > 1 N p (X) := sup Then by definition, for all random variable X, P (|X| > t) t -p N p (X). Therefore, P max

1 i n X i > 2 -1-2p 2 /r D -1/r nxu n i=1 P X i > 2 -1-2p 2 /r D -1/r nxu n i=1 2 -1-2p 2 /r D -1/r nxu -p 1 N p 1 (X i ) C 1 n 1-p 1 2 p 1 +2p 1 p 2 /r D p 1 /r x -p 1 u -p 1 . (3.14)
Using the last bound, we derive that

I 1 (2p 2 , nx) 2 2p 2 2 2p 2 -1 2 1-r 2 p 1 +2p 1 p 2 /r D p 1 /r C 1 n 1-p 1 x -p 1 . (3.15)
In order to control the second term of (3.12), we would like to use the uniform control on N p 2 (E [ X i r | F i-1 ]) 1/r . However, the triangle inequality fails for N p 2 . This leads us to introduce the weak-L p -norm defined for p > 1 as

X p,∞ := sup P (A) -1+1/p E [ X 1 A ] , A ∈ F, P (A) > 0 . (3.16)
Then • p,∞ defines a norm and is linked to N p in the following way:

N p (X) X p,∞ p p -1 N p (X) .

(3.17)

The first inequality follows from the estimate bound P ( X > t) by t -p N p (X) p and compute the remaining integral. It follows from (3.17) that for a fixed y > 0, Applying this to I 2 (2p 2 , nx) with y = 2 -1-2p 2 /r D -1/r xun and integrating in u gives

t p P { X > t} E [ X 1 { X > t}] X p
P   n i=1 E [ X i r | F i-1 ] 1/r > y   = P n i=1 E [ X i r | F i-1 ] > y r y -p 2 N p 2 /r n i=1 E [ X i r | F i-1 ] p 2 /r y -p 2 n i=1 E [ X i r | F i-1 ] p 2 /r p 2 /r,∞ y -p 2 n i=1 E [ X i r | F i-1 ] p 2 /
I 2 (2p 2 , nx) 2 2p 2 2 2p 2 -1 2 1-r 2 p 2 +2p 2 2 /r D p 2 /r p 2 p 2 -r p 2 /r C 2 x -p 2 n p 2 /r-p 2 .
(3.21)

The combination of (3.12), (3.15) and (3.21) completes the proof of Theorem 2.4.

,

  which was assumed in Theorem 2.1 of [3].

t>0t

  p P (|X| > t) . (3.13)

P

  ,∞ (P { X > t}) 1-1/p . (3.18) For the second one, fix A ∈ F such that P (A) > 0. We writeE [ X 1 A ] = +∞ 0 ({ X > t} ∩ A) dt +∞ 0 min {P ( X > t) , P (A)} dt, (3.19)