
HAL Id: hal-02283764
https://hal.science/hal-02283764v1

Submitted on 13 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

Roundtrip engineering of NoSQL databases
Jacky Akoka, Isabelle Comyn-Wattiau

To cite this version:
Jacky Akoka, Isabelle Comyn-Wattiau. Roundtrip engineering of NoSQL databases. Enterprise Mod-
elling and Information Systems Architectures, 2018, Special Issue on Conceptual Modelling in Honour
of Heinrich C. Mayr, 13, pp.281 - 292. �10.18417/emisa.si.hcm.22�. �hal-02283764�

https://hal.science/hal-02283764v1
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr


Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.22
Roundtrip engineering 281
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Roundtrip engineering of NoSQL databases

Jacky Akoka*,a, Isabelle Comyn-Wattiaub

a CEDRIC-CNAM & TEM-Institut Mines Telecom, Paris, France
b ESSEC Business School, Cergy-Pontoise, France

Abstract. In this article we present a framework describing a roundtrip engineering process for NoSQL
database systems. This framework, based on the Model Driven Engineering approach, is composed of a
knowledge base guiding the roundtrip process. Starting from a roundtrip generic scenario, we propose
several roundtrip scenarios combining forward and reverse engineering processes. We illustrate our
approach with an example related to a property graph database. The illustrative scenario consists of
successive steps of model enrichment combined with forward and reverse engineering processes. Future
research will consist in designing and implementing the main components of the knowledge base.

Keywords. Roundtrip Engineering • Forward Engineering • Reverse Engineering • Roundtrip Process •
Knowledge Base • NoSQL Database

1 Introduction

As stated by (Mayr et al. 2017), ”models are the
fundamental human instruments for managing
complexity and understanding” . Model driven en-
gineering (MDE) is considered as a methodology
providing several benefits such as an improved
code quality and a better traceability. It con-
sists of the application of models to increase the
level of abstraction required to develop and evolve
software products. Its aim is to offer software
development approaches in which abstract models
of software systems are created and transformed
facilitating their implementations. MDE is based
on model transformation which takes one or more
source models and transform them into one or
more target models.

Roundtrip engineering (RTE) represents one
facet of MDE. Since code and model are interre-
lated, changing code will change the model and
vice versa. RTE can be considered as a way to
improve the software engineering process. It con-
sists mainly of forward engineering and reverse
engineering. Forward engineering transforms

* Corresponding author.
E-mail. jacky.akoka@lecnam.net

conceptual models into source code. With re-
verse engineering, the source code is transformed
back into conceptual models. The combination
of the two paths leads to roundtrip engineering,
keeping the two views consistent (Booch et al.
1998). Demeyer et al. (1999) defines RTE as
the seamless integration between design diagrams
and source code, between modeling and imple-
mentation. Therefore the aim of RTE is to enable
a homogeneous integration between the design
and the implementation phases. Code generation,
described as a push method, is obtained using
forward engineering. The transformation of the
source code into a conceptual model is obtained
by a reverse engineering process based on a pull
method. Round-trip engineering corresponds to a
push-pull method.

RTE has been first used with UML. It has been
extended to other technologies such as graphical
user interface design, database design, and to other
software modeling artifacts. RTE is different from
the addition of forward and reverse engineering.
Optimizing forward and reverse engineering leads
to incremental transformation. Only the changed
modules are transformed, rather than all artifacts.

http://dx.doi.org/10.18417/emisa.si.hcm.22
jacky.akoka@lecnam.net


International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.22

282 Jacky Akoka, Isabelle Comyn-Wattiau
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

The RTE process preserves the information in the
target artifact on the return trip. RTE tends not
only to transform models but also to reconcile
them. It automatically maintains the consistency
of changing software artifacts. In other words,
changes made to one model are propagated and
reflected in another model using model transforma-
tion technologies (Sendall and Kozaczynski 2003;
Czarnecki and Helsen 2003). RTE is a solution
enabling the synchronization of models by keep-
ing them consistent, thus maintaining conceptual-
implementation mappings under evolution. RTE
focuses mainly on synchronization. According
to (Sendall and Kozaczynski 2003), RTE can be
divided into three steps:

• Deciding whether a model under consideration
has been changed,

• Deciding whether the changes cause any incon-
sistencies with the other models, and

• Once inconsistencies have been detected, up-
dating the other models so that they become
consistent again.

RTE is supported by methodologies and tools.
However most development tools only offer very
limited support. This is most probably a con-
sequence of the difficulty in keeping multiple
changing artifacts consistent.

The main advantage of RTE is that the design
and implementation artifacts are automatically
synchronized all the time (Kellokoski 2000). RTE
promotes design-led development and improves
design traceability since it enables an automatic
generation of source code from conceptual models
and automatic generation of the latter from source
code. One major advantage is a short time to
market and an improved quality of the software
product. RTE improves the software process
as well as its automation. Several qualities are
expected from RTE approaches such as the ability
to manage trace information and to facilitate the
detection of conflicts between RTE activities.

So far, there has been very little research on
roundtrip engineering of NoSQL database design.
The aim of this paper is to start filling this gap.

In particular, we propose a framework facilitating
the roundtrip process and we derive requirements
that this framework implies. Thus, it can be seen
as a roadmap for a roundtrip engineering process
of NoSQL databases. This article is organized as
follows: The following section presents the state of
the art related to RTE. Our framework is described
in Section ??. We then show the results of its
application using an illustrative scenario in Section
??. We derive our framework in Section ??. We
finally indicate in Section ?? some conclusions
and future work.

2 Related work

As we pointed out in the introduction, the basis of
RTE is a clear definition of required consistency
between the models. Therefore issues in RTE are
closely related to those of consistency manage-
ment. The latter is a technique for ensuring that
models are consistent (Sendall and Kozaczynski
2003). The methodology presented in (Engels
et al. 2001; Küster 2004) can be applied to define
consistency for a given set of UML models. (Aß-
mann 2003) introduces mathematical definitions
for RTE. The Fujaba System (Nickel et al. 2000)
supports RTE for class diagrams. The CODEX
system (Larrson and Burbeck 2003) aims at keep-
ing a model consistent with a set of views on
the model. The authors propose a RTE which
essentially synchronizes models by keeping them
consistent for maintaining conceptual-relational
mappings. The added value of (Ciccozzi et al.
2011) is to ensure that extra-functional concerns
modeled at design level are preserved at code ex-
ecution level. They introduce a back annotation
model containing information related both to trace-
ability and monitoring results. (Bork et al. 2008)
describe an approach towards model and source
code RTE. The approach is based on reverse en-
gineering of model-to-transformation (M2T) tem-
plates. They use (customizable) code generation
templates as a grammar to parse the generated
(and later modified) code. (Greiner et al. 2016)
propose an RTE approach requiring the specifica-
tion of QVT-R rules that relate two elements of

http://dx.doi.org/10.18417/emisa.si.hcm.22


Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.22
Roundtrip engineering 283
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

the respective meta-models. (Angyal et al. 2008)
present an approach for model and code RTE
based on differencing and merging abstract syntax
trees (AST). (Antkiewicz and Czarnecki 2006)
propose an RTE approach based on framework-
specific modeling languages. (Hettel et al. 2009)
propose an approach towards model RTE based
on abductive logic programming. (Macedo and
Cunha 2016) proposed an idea on how to circum-
vent some problems that are related to a QVT-R
script by using the language Alloy with their tool
Echo. In (Buchmann and Westfechtel 2013), the
authors examine a standard use case: incremental
round-trip engineering between design models
and source code. More specifically, they address
the coupling between a UML class diagram and a
Java source code. Both model and code may be ed-
ited concurrently, and changes may be propagated
back and forth to maintain consistency.

Although there are a number of round trip engin-
eering tools available, only a few of them have been
adopted by the developers’ community. (Nagowah
et al. 2013) present a state of the art of these tools,
including (Borland Software Solutions 2009; Ra-
tional Software 2006; ArgoUML (Odutola et al.
2001); Gentleware AG Poseidon For UML (Boger
et al. 2007); JBoss Seam (Orshalick and Assar
2010); Spring Web MVC framework (Winterfeldt
2012); AndroMDA 2012).

RTE is only one aspect of MDE. A general
definition of the latter is given by (Hailpern and
Tarr 2006). A characterization of MDE can be
found in (Ruiz et al. 2017). In the context of MDE,
model transformation plays an essential role. It
defines transformations rules between a source and
a target metamodel (Czarnecki and Helsen 2006).
Model transformation includes code generation
(Kleppe et al. 2003), models synchronization,
in particular at the same or at different levels
of abstraction (Ivkovic and Kontogiannis 2004),
model evolution (Zhang et al. 2005) and reverse
engineering from physical and/or logical levels to
conceptual levels and vice versa (Favre 2004).

As it can be seen from this literature review, to
the best of our knowledge, there is no approach

related to RTE of NoSQL databases. This is
precisely the aim of our approach described below.

3 Toward roundtrip engineering of
NoSQL databases

It is generally admitted that NoSQL databases
offer a flexible and a scalable solution to store and
query structured, semi-structured and unstructured
data. These databases offer a high level of query
performance. They can be designed to meet the re-
quirements of BI applications and analytics. Since
they become more and more mature, they have
been adopted by many companies. Maintaining
these databases require methodologies offering
some consistencies between their design models
and their implementation. MDE represents such a
methodology. It describes a system under consid-
eration by means of high-level models. The latter
are refined into low-level models until their level
of detail is conform to the underlying platform.
A model transformation is the process of map-
ping one input model into an output model. This
transformation process requires the specification
of transformation rules referring to metamodels.
Therefore, a model transformation defines a set
of rules to be applied between source and tar-
get metamodels. Transformations can be either
unidirectional or bidirectional. Unidirectional
transformations allow to map source metamodels
to target metamodels, but not the other way around.
Bidirectional transformations define mappings in
both directions. This bidirectional transforma-
tion between meta-models is the main principle
underlying roundtrip engineering. The goal of
the latter is to keep a set of related metamodels
synchronized. Whenever a change is applied to
one metamodel, the other metamodels need to be
adjusted to restore a consistent state.

For a specific application, roundtrip engineer-
ing is a method which allows the automatic syn-
chronization of the source code after modification
of the conceptual and/or the logical model and
vice versa. Roundtrip engineering allows a bi-
transformation between the model and the source
code. Besides, roundtrip engineering is a way to

http://dx.doi.org/10.18417/emisa.si.hcm.22


International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.22

284 Jacky Akoka, Isabelle Comyn-Wattiau
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

optimize the corrective, adaptive, evolutionary or
perfective maintenance of applications. Indeed,
anomalies can be detected, functionalities added
and/or removed, new tests performed, and migra-
tions to new platforms required during the life
cycle of the application.

Figure 1: Roundtrip generic scenario

Our roundtrip framework is composed of differ-
ent transformation rule sets which are all based on
a common generic scenario (Figure 1) in which
two metamodels (M1 and M2) are connected by
two sets of transformation rules (T1 and T2).
M1 and M2 can be conceptual, logical or phys-
ical metamodels. All possible combinations of
roundtrip scenarios are shown in Figure ??.

Figure 2: Characterizing roundtrip steps

Forward engineering occurs each time M2 has a
lower level of abstraction than M1. Three different
cases are to be considered:

• Case 2: M1 and M2 are respectively conceptual
and logical metamodels.

• Case 3: M1 and M2 are respectively conceptual
and physical metamodels. This is a case of
forward engineering. However skipping the

logical intermediate level can cause errors and
make maintenance of the resulting systems more
difficult.

• Case 6: M1 and M2 are respectively logical
and physical metamodels.

Reverse engineering is encountered when M2
has a higher level of abstraction than M1. Three
different cases occur:

• Case 8: M1 and M2 are respectively physical
and logical metamodels.

• Case 7: M1 and M2 are respectively physical
and conceptual metamodels. Although it is
undesirable to do so, it is nonetheless a case
of a possible reverse engineering. Once again,
skipping the logical step can lead to inconsistent
results.

• Case 4: M1 and M2 are respectively logical
and conceptual metamodels.

Mapping a conceptual metamodel M1 into a
conceptual metamodel M2 is required when two
different conceptual formalisms coexist (Case 1).
This the case when, for example, M1 is an Ex-
tended Entity Relationship metamodel and M2
is a UML metamodel. When both formalisms
are equally expressive, T1 and T2 are reversible
transformation rules. This mapping is classical
in database engineering and does not present any
specific challenge in the context of NoSQL sys-
tems.

Finally, two cases deal with migration of data-
bases, either at a logical level (Case 5) or at a
physical level (Case 9). For example, migrat-
ing from Neo4j to OrientDB is an example of
physical migration whereas migrating from graph
database to relational database illustrates a logical
migration.

Roundtrip engineering may encompass several
combinations of the cases described above. The
generic roundtrip engineering problem may be re-
duced to the paths described at Figure ??, without
loss of generality. The process also contains
enrichment of models due to new requirements
and/or reengineering of models.

http://dx.doi.org/10.18417/emisa.si.hcm.22


Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.22
Roundtrip engineering 285
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Figure 3: Recommended paths for NoSQL database roundtrip engineering

Each arrow refers to either Case 2, Case 4, Case
6, or Case 8. We don’t represent the arrows corres-
ponding to Case 1 since it is not specific to NoSQL
systems. We also don’t take into account Cases
3 and 7 since they skip the logical level, which
is not considered as a good practice. Finally, we
don’t represent Cases 5 and 9 since we recommend
always to maintain the consistency between levels.
Migrating from a logical model to another one
requires defining a conceptual intermediate step.
In the same way, migrating from a physical model
to another one requires at least defining a logical
intermediate step and, if needed, a subsequent
conceptual step.

Even if there is no roundtrip engineering ap-
proach for NoSQL databases, nevertheless the
literature contains several contributions corres-
ponding either to one arrow of Figure ?? or to
two consecutive arrows constituting an acyclic
path. Moreover, existing approaches only define
transformation rules but don’t take into account
the additional information required to anticipate
the roundtrip paths.

4 Illustrative scenario

In this section, we illustrate our framework with an
example. Let’s consider the following conceptual
model representing information about publications
(Fig. 4), taken from (Akoka et al. 2017). Entities
contain information about scientific papers, their
sources (journals, conferences), their authors, and

their affiliations. Let us note the reflexive citation
relationship between papers. Terms are keywords
characterizing papers. We also added a reviewer
entity and a researcher entity. Author and reviewer
are subtypes of researcher entity. We suppose
that an author may have several affiliations but
when he/she publishes a paper, he/she has to
declare a unique affiliation. Thus, we represent a
ternary relationship between papers, authors, and
affiliations.

Figure 4: Example of conceptual model (Akoka et al.
2017)

http://dx.doi.org/10.18417/emisa.si.hcm.22


International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.22

286 Jacky Akoka, Isabelle Comyn-Wattiau
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

A first step performing a forward engineering
process is described as follows. A set of trans-
formation rules (described in (Akoka et al. 2017))
allowed us to generate a logical property graph
database (Figure ??). As an example of a rule,
the ternary relationship writes in the conceptual
model becomes a node of the graph. This node
is connected to the three nodes resulting from the
transformation of the three entities involved in the
relationship. As an additional information, our
approach provides also the logical graph with its
estimated size (volume attribute). Another set of
rules leads to a physical Neo4j graph. In addi-
tion, the information regarding the size enables
the generation of a Neo4j test database contain-
ing as many nodes and edges as estimated by the
designer.

Figure 5: Resulting graph logical model (Akoka et al.
2017)

Let us suppose that the database administrator
received additional data describing papers such
as year of publication, number of pages, and
language. Through a reverse engineering process,
this information is propagated into the logical
graph and to the subsequent conceptual model.
We performed this reverse process by applying
the set of rules described in (Comyn-Wattiau and
Akoka 2017). The final result is presented at
Figure ??.

Let us consider that the end users then asked
to enrich the database with historical information
on past affiliations of researchers. This led us

to the model of Figure ?? where the relationship
mentions links researchers, affiliations, and dates.
A new forward engineering process containing
two steps allowed us to generate the updated Neo4j
database.

Finally, let us suppose that the end users would
like also to automatically access not only to the
information on papers but also to the full text pa-
pers. Neo4j is not able to store documents. Thus
the database administrator proposes to migrate
the database toward an OrientDB environment.
OrientDB combines graph and document logical
models. The resulting logical schema is presented
at Figure ??. At the physical level, the nodes
representing paper information are linked to doc-
uments storing full-text papers, but this is not
visible at the logical level. Moreover, to maintain
the consistency with different modeling levels, we
have to generate the updated conceptual model of
Figure 9 mentioning the full-text attribute.

We summarize the main steps of our illustrat-
ive scenario at Figure ??. It consists mainly of
successive steps of model enrichment, forward
engineering, and reverse engineering steps. Let’s
compare the initial conceptual model of Figure ??
and the final one of Figure ??. The different en-
richments allowed us to complete the description
of conceptual objects (entities or relationships)
and/or to add new objects. Moreover, the success-
ive execution of forward and reverse engineering
processes are not all inverse transformations. In
our example, the main difference lies in the ternary
writes relationship which is transformed into a
node and, conversely, becomes an entity with three
binary relationships respectively with author, affil-
iation and paper entities, which is less expressive.
A round-trip engineering process must be able to
keep trace of the forward transformation in order
to be able to reverse it. If this trace mechanism
is not available, a quality analysis of the concep-
tual model generated through the reverse process
should be able to detect the semantic poverty of
the writes entity and its associated relationships
w1, w2, w3. This quality analysis may suggest to
the designer to provide a better naming of such
objects.

http://dx.doi.org/10.18417/emisa.si.hcm.22


Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.22
Roundtrip engineering 287
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Figure 6: New conceptual model (reversed)

Figure 7: Enriched conceptual model

http://dx.doi.org/10.18417/emisa.si.hcm.22


International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.22

288 Jacky Akoka, Isabelle Comyn-Wattiau
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Figure 8: Updated logical graph model

5 The resulting framework

Like any software system, NoSQL databases re-
quire maintenance efforts. Software maintenance
usually is categorized into four types. Corrective
maintenance is dedicated to fix problems. Adapt-
ive maintenance includes modifications applied to
keep the software up-to-date and aligned with its
environment. Perfective maintenance takes into
account new user requirements. Finally preventive
maintenance occurs when organizations anticipate
future problems.

Corrective maintenance impacts the physical
level of the database. Such modification must
be propagated at both the logical and the concep-
tual levels through a reverse process. At each
abstraction level, a quality analysis may lead to a
roundtrip engineering path composed successively
of Case 8, Case 4, Case 2, and Case 6.

Adaptive maintenance may, for example, lead to
the migration of a database due to a new release of
its platform. In such a case, the editors generally
ensure an ascending compatibility, limiting the
impact to the physical level.

Perfective maintenance occurs each time new
user requirements have to be considered. It
should be a classical forward engineering pro-
cess propagating the new requirements from the
conceptual level to the logical and physical levels.
However, if the only artifact is the code and/or
if previous changes have been integrated at the
physical level without performing a backward

propagation, a roundtrip engineering path com-
posed successively of Case 8, Case 4, Case 2, and
Case 6 must be executed.

Preventive maintenance takes place in many
companies where relational databases reach their
limits in their capability to meet the volume and/or
variety requirements. A migration to a NoSQL
system (Case 5) is necessary. In such a situation,
the recommended path is composed successively
of Case 4, Case 2, and Case 6. Another prevent-
ive maintenance happens when non-functional
requirements (security, performance, etc.) are
no longer met. A migration to another physical
environment (Case 9) may be the solution. A path
composed successively of Case 8 and Case 6 is
recommended.

Roundtrip engineering systematically propag-
ates changes forward or backward. Although this
appears to be an additional task, it enables an-
ticipating and facilitating any changes that the
maintenance of the system, whatever it may be
(corrective, adaptive, perfective, or preventive),
requires.

Implementing a roundtrip engineering process
therefore requires the design of a knowledge base
that combines rule sets, trace templates, and qual-
ity assessment models. Some of the latter have
been developed for relational databases. Much re-
mains to be done in the field of NoSQL databases.
The framework sketched at Figure ?? summarizes
our approach.

The first step consists in taking into account
maintenance demands and qualifying them. A
guiding step then recommends a RTE scenario.
The latter is implemented using the knowledge
base. It is followed by a quality analysis allowing
the software engineer to commit the changes or to
reiterate the process.

6 Conclusion and further research

Roundtrip engineering allows us to perform the
transformations imposed by different types of
software maintenance. In this paper, we studied
the case of NoSQL database maintenance. We

http://dx.doi.org/10.18417/emisa.si.hcm.22


Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.22
Roundtrip engineering 289
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Figure 9: Final conceptual model

Figure 10: The illustrative process

http://dx.doi.org/10.18417/emisa.si.hcm.22


International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.22

290 Jacky Akoka, Isabelle Comyn-Wattiau
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Figure 11: Final conceptual model

proposed a framework dedicated to roundtrip en-
gineering of NoSQL databases. The framework
encompasses a knowledge base and a guiding pro-
cess. The knowledge base is composed of four
main modules: a maintenance expert module, a set
of guiding rules, several transformation rule sets,
trace models, and quality evaluation models. The
RTE process starts by qualifying the maintenance
demand, then recommends a scenario, applies it
and evaluates the resulting quality.

Starting from a roundtrip generic scenario, we
propose several roundtrip scenarios combining
forward and reverse engineering processes. We
demonstrate the feasibility of our approach with
an illustrative scenario related to a property graph
database. The illustrative scenario consists of
successive steps of model enrichment combined
with forward and reverse engineering processes.

Future research will consist in designing and
implementing the main components of the know-
ledge base. In order to validate the approach, we
will test the resulting prototype with several case
studies. Some components of the framework will
reuse the results obtained for relational database
systems while others will be created ex nihilo.

We dedicate this article to Heinrich Mayr for
his fruitful contributions to conceptual modeling.

References

Akoka J., Comyn-Wattiau I., Prat N. (2017) A Four
V’s Design Approach of NoSQL Graph Databases

In: Advances in Conceptual Modeling: ER 2017
Workshops AHA, MoBiD, MREBA, OntoCom,
and QMMQ de Cesare S., Frank U. (eds.) Springer
International Publishing, pp. 58–68 https://doi.org/
10.1007/978-3-319-70625-2_6

AndroMDA. http://www.andromda.org/. Last Ac-
cess: Accessed: 2017-12-26

Angyal L., Lengyel L., Charaf H. (2008) A Syn-
chronizing Technique for Syntactic Model-Code
Round-Trip Engineering. In: 15th Annual IEEE
International Conference and Workshop on the
Engineering of Computer Based Systems (ecbs
2008), pp. 463–472

Antkiewicz M., Czarnecki K. (2006) Framework-
Specific Modeling Languages with Round-trip
Engineering. In: Proceedings of the 9th Interna-
tional Conference on Model Driven Engineering
Languages and Systems. MoDELS’06. Springer-
Verlag, Genova, Italy, pp. 692–706 http://dx.doi.
org/10.1007/11880240_48

Aßmann U. (2003) Automatic Roundtrip Engineer-
ing. In: Electronic Notes in Theoretical Computer
Science 82(5) SC 2003, Workshop on Software
Composition (Satellite Event for ETAPS 2003),
pp. 33–41

Boger M., Graß E., Köster M. (2007) Poseidon for
UML Users Guide

http://dx.doi.org/10.18417/emisa.si.hcm.22
https://doi.org/10.1007/978-3-319-70625-2_6
https://doi.org/10.1007/978-3-319-70625-2_6
http://www.andromda.org/
http://dx.doi.org/10.1007/11880240_48
http://dx.doi.org/10.1007/11880240_48


Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.22
Roundtrip engineering 291
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Booch G., Rumbaugh J., Jacobson I. (1998) The
Unified Modeling Language User Guide. Addison-
Wesley

Bork M., Geiger L., Schneider C., Zündorf
A. (2008) Towards Roundtrip Engineering - A
Template-Based Reverse Engineering Approach
In: Model Driven Architecture – Foundations and
Applications: 4th European Conference, ECMDA-
FA 2008 Schieferdecker I., Hartman A. (eds.)
Springer Berlin Heidelberg, pp. 33–47 https://doi.
org/10.1007/978-3-540-69100-6_3

Borland Software Solutions (2009) Borland To-
gether

Buchmann T., Westfechtel B. (2013) Towards In-
cremental Round-Trip Engineering Using Model
Transformations. In: 39th Euromicro Conference
on Software Engineering and Advanced Applica-
tions, pp. 130–133

Ciccozzi F., Cicchetti A., Sjodin M. (2011) To-
wards a Round-Trip Support for Model-Driven
Engineering of Embedded Systems. In: 37th EUR-
OMICRO Conference on Software Engineering
and Advanced Applications, pp. 200–208

Comyn-Wattiau I., Akoka J. (2017) Model-Driven
Reverse Engineering of NoSQL Property Graph
Databases. In: Big Data 2017: IEEE International
Conference on Big Data. IEEE, pp. 453–457

Czarnecki K., Helsen S. (2003) Classification of
Model Transformation Approaches. In: Proceed-
ings of the 2nd OOPSLA Workshop on Generative
Techniques in the Context of the Model Driven
Architecture, USA

Czarnecki K., Helsen S. (2006) Feature-based
survey of model transformation approaches. In:
IBM Systems Journal 45(3), pp. 621–645

Demeyer S., Ducasse S., Tichelaar S. (1999)
UML shortcoming for coping with round-trip
engineering. In: UML’99 Conference Proceedings.
Springer-Verlag

Engels G., Küster J. M., Heckel R., Groenewe-
gen L. (2001) A Methodology for Specifying and
Analyzing Consistency of Object-oriented Behavi-
oral Models. In: Proceedings of the 8th European
Software Engineering Conference (ESEC) and 9th
ACM SIGSOFT Symposium on the Foundations
of Software Engineering (FSE-9). ACM, Vienna,
Austria, pp. 186–195 http://doi.acm.org/10.1145/
503209.503235

Favre J. M. (2004) CaCOphoNy: metamodel-
driven software architecture reconstruction. In:
11th Working Conference on Reverse Engineer-
ing, pp. 204–213

Greiner S., Buchmann T., Westfechtel B. (2016)
Bidirectional transformations with QVT-R: A case
study in round-trip engineering UML class models
and java source code. In: 4th International Confer-
ence on Model-Driven Engineering and Software
Development (MODELSWARD), pp. 15–27

Hailpern B., Tarr P. (2006) Model-driven devel-
opment: The good, the bad, and the ugly. In: IBM
Systems Journal 45(3), pp. 451–461

Hettel T., Lawley M., Raymond K. (2009) Towards
Model Round-Trip Engineering: An Abductive
Approach In: Theory and Practice of Model
Transformations: Second International Confer-
ence (ICMT 2009) Paige R. F. (ed.) Springer
Berlin Heidelberg, pp. 100–115 https://doi.org/10.
1007/978-3-642-02408-5_8

Ivkovic I., Kontogiannis K. (2004) Tracing evolu-
tion changes of software artifacts through model
synchronization. In: 20th IEEE International Con-
ference on Software Maintenance. IEEE, pp. 252–
261

Kellokoski P. (2000) Round-trip Engineering. MA
thesis, University of Tampere, Finland

Kleppe A. G., Warmer J., Bast W. (2003) MDA Ex-
plained: The Model Driven Architecture: Practice
and Promise. Addison-Wesley Longman Publish-
ing Co., Inc.

Küster J. (2004) Consistency Management of
Object-Oriented Behavioral Models. PhD thesis,
University of Paderborn, Germany, pp. 1–306

http://dx.doi.org/10.18417/emisa.si.hcm.22
https://doi.org/10.1007/978-3-540-69100-6_3
https://doi.org/10.1007/978-3-540-69100-6_3
http://doi.acm.org/10.1145/503209.503235
http://doi.acm.org/10.1145/503209.503235
https://doi.org/10.1007/978-3-642-02408-5_8
https://doi.org/10.1007/978-3-642-02408-5_8


International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.22

292 Jacky Akoka, Isabelle Comyn-Wattiau
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Larrson H., Burbeck K. (2003) CODEX – An
Automatic Model View Controller Engineering
System.. Proceedings of Workshop Model Driven
Architecture, Foundations and Applications, CTIT
Technical Report TR-CTIT—03-27, University of
Twente

Macedo N., Cunha A. (2016) Least-change bid-
irectional model transformation with QVT-R and
ATL. In: Software & Systems Modeling 15(3),
pp. 783–810 https://doi.org/10.1007/s10270-014-
0437-x

Mayr H. C., Michael J., Ranasinghe S., Shekhovt-
sov V. A., Steinberger C. (2017) Model Centered
Architecture In: Conceptual Modeling Perspect-
ives Cabot J., Gómez C., Pastor O., Sancho M. R.,
Teniente E. (eds.) Springer International Publish-
ing, pp. 85–104 https://doi.org/10.1007/978-3-
319-67271-7_7

Nagowah L., Goolfee Z., Bergue C. (2013) RTET
- A round trip engineering tool. In: International
Conference of Information and Communication
Technology (ICoICT), pp. 381–387

Nickel U., Niere J., Wadsack J., Zündorf A. (2000)
Roundtrip Engineering with FUJABA. In: Ebert
J., Kullbach B., Lehner F. (eds.) Proceedings of
2nd Workshop on Software-Reengineering (WSR),
Bad Honnef, Germany, Fachberichte Informatik,
Universität Koblenz-Landau

Odutola K., Oguntimehin A., Tolke L., Wulp M.
(2001) ArgoUML Quick Guide

Orshalick J., Assar N. (2010) JBoss Seam: Agile
Ria Development Framework, Red Hat Inc

Rational Software (2006) IBM Rational Rose –
Data Sheet

Ruiz F. J. B., Molina J. G., García O. D. (2017)
On the application of model-driven engineering
in data reengineering. In: Information Systems
72(Supplement C), pp. 136–160

Sendall S., Kozaczynski W. (2003) Model trans-
formation: the heart and soul of model-driven
software development. In: IEEE Software 20(5),
pp. 42–45

Winterfeldt D. (2012) JSpring by Example, Ver-
sion 1.2.1

Zhang J., Lin Y., Gray J. (2005) Generic and
Domain-Specific Model Refactoring Using a
Model Transformation Engine In: Model-Driven
Software Development Beydeda S., Book M.,
Gruhn V. (eds.) Springer Berlin Heidelberg,
pp. 199–217 https://doi.org/10.1007/3-540-28554-
7_9

This work is licensed under
a Creative Commons
‘Attribution-ShareAlike 4.0
International’ licence.

http://dx.doi.org/10.18417/emisa.si.hcm.22
https://doi.org/10.1007/s10270-014-0437-x
https://doi.org/10.1007/s10270-014-0437-x
https://doi.org/10.1007/978-3-319-67271-7_7
https://doi.org/10.1007/978-3-319-67271-7_7
https://doi.org/10.1007/3-540-28554-7_9
https://doi.org/10.1007/3-540-28554-7_9
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

