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Abstract Given repeated observations of several sub-

jects over time, i.e. a longitudinal data set, this pa-

per introduces a new model to learn a classification of

the shapes progression in an unsupervised setting: we

automatically cluster a longitudinal data set in differ-

ent classes without labels. Our method learns for each

cluster an average shape trajectory (or representative

curve) and its variance in space and time. Representa-

tive trajectories are built as the combination of pieces

of curves. This mixture model is flexible enough to han-

dle independent trajectories for each cluster as well as

fork and merge scenarios. The estimation of such non

linear mixture models in high dimension is known to

be difficult because of the trapping states effect that

hampers the optimisation of cluster assignments dur-

ing training. We address this issue by using a tempered
version of the stochastic EM algorithm. Finally, we ap-

ply our algorithm on different data sets. First, synthetic

data are used to show that a tempered scheme achieves

better convergence. We then apply our method to dif-

Vianney Debavelaere
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ferent real data sets: 1D RECIST score used to mon-

itor tumors growth, 3D facial expressions and meshes

of the hippocampus. In particular, we show how the

method can be used to test different scenarios of hip-

pocampus atrophy in ageing by using an heteregenous

population of normal ageing individuals and mild cog-

nitive impaired subjects.

Keywords Longitudinal data analysis · Mixture

model · Branching population · Stochastic Optimiza-

tion · Statistical Model · Riemannian manifold.
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1 Introduction

The emergence of large longitudinal data sets (subjects

observed repeatedly at different time points) has al-

lowed the construction of different models improving

the understanding of biological or natural phenomenon.

Longitudinal studies have numerous applications: un-

derstating of the differences of progression in neurode-

generative disease such as Alzheimer’s, chemotherapy

monitoring, facial recognition, etc.. Such medical stud-

ies enable to retrieve the global progression of the dis-

ease while explaining the inter subject variability. In

particular, it would be interesting to highlight the in-

fluence of a disease on a normal ageing process and to

be able to differentiate those two processes. Clinicians

are also interested in the possibility to detect the mo-

ment when a disease begins to manifest itself, i.e. the

moment at which a subject branches from the normal
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dynamic. For instance, in the case of the Alzheimer’s

disease, we still do not know if the disease has a very

early genesis, leading to a specific aging pattern from an

early age or if it is a sudden deivation from the normal

ageing process. Another example is the monitoring of

tumors along treatment. Indeed, it is well known that

the whole population will not react the same way to a

given drug. Therefore, clustering patients would enable

a specific care. In both situations, the evolution may

not be smooth in the sense that the disease can show

variations in dynamics according to the stage of its de-

velopment. To tackle those problems, we consider that

populations can follow different dynamics over time.

Moreover, in order to detect subgroups with specific

patterns, we implement an unsupervised clustering of

the dataset. Here, our populations are therefore hetero-

geneous but without prior knowledge on the sub-groups

composing them, thus preventing from the use of super-

vised approaches.

We design our model such that it is able to detect a

certain fixed number of different dynamics in the pop-

ulation and, for each of them, to estimate a representa-

tive trajectory of that population together with the in-

ter subjects variability. The difficulty is in fact further

increased in this spatiotemporal setting since cluster-

ing may take various forms: sub-groups may follow in-

dependent trajectories, or they may follow trajectories

that fork or merge at specific time-points. The former

case is relevant to discover pathological sub-types hav-

ing different disease course. The latter is interesting for

a disease that is seen as a progressive deviation from a

normal aging scenario.

Usually, shape spaces are built by considering shape

data as points on a Riemannian manifold (Charon and

Trouvé, 2013; Vaillant and Glaunès, 2005; Miller and

Younes, 2001). In such shape spaces, descriptive (Dono-

hue et al., 2014) or generative (Jedynak et al., 2012;

Durrleman et al., 2013; Allassonnière et al., 2015) mod-

els have been constructed. To deform the shapes, the

Large Deformation Diffeomorphic Metric Mapping (LD-

DMM) framework is usually used. It allows us to com-

pute the deformation from one shape to the other by

coding deformations as geodesics on a Riemannian man-

ifold and using flows of deformations (Miller et al.,

2006). Given a data set of shapes, it is then possi-

ble to construct an atlas. An atlas is composed of a

shape that is representative of the population, as well as

the spatial variability within this population (Fletcher,

2013; Allassonnière and Kuhn, 2008; Lorenzen et al.,

2005; Su et al., 2014). The next logical step is to han-

dle longitudinal data sets. Once again, the trajectory

of a shape from one time point to the other will be

constructed by using flows of diffeomorphisms (Bône

et al., 2018; Lorenzi et al., 2011; Singh et al., 2016).

In this framework, a longitudinal atlas consists of a

representative trajectory, or template, and of the spa-

tiotemporal variability of the population. The repre-

sentative trajectory is a long-term scenario of changes

informed by sequences of short-term individual data.

It can be seen as a geodesic (Bône et al., 2018; Schi-

ratti et al., 2017) or a piecewise geodesic (Allasson-

niere et al., 2017) curve on the manifold. All these

methods however assumed that observations are drawn

from an homogeneous population that may be summa-

rized by a single representative trajectory. In this pa-

per, we explain with more details and examples the

work presented in (Debavelaere et al., 2019) where the

population is supposed to contain a certain fixed num-

ber of unknown clusters. To tackle this problem, we

construct a mixed-effect generative model. To estimate

the different parameters, we choose to use a variant

of the Expectation-Maximization algorithm called the

Markov Chain Monte Carlo Stochastic Approximation

Expectation Maximization algorithm (MCMC-SAEM)

(Delyon et al., 1999; Allassonnière et al., 2010). How-

ever, using those algorithms in a clustering context leads

to the problem of trapping states: changing class assign-

ment is often more costly than adjusting the parameters

of the current clusters, resulting in very few updates of

class assignment during optimization. Solutions have

already been presented in the case of cross sectional

data sets analysis but at very high computational costs

(Allassonnière and Kuhn, 2010). Here, we choose to

introduce temperate distributions in our Expectation-

Maximization algorithm to avoid being trapped in the

initial labelling.

In this paper, we will first explain in section 2 the

geometrical framework allowing us to compute the rep-

resentative trajectories and deformations towards the

subjects. Because this framework allows us to define

our model by a finite number of parameters, we will

present in section 3 the statistical model and the al-

gorithm used to estimate those parameters. Finally, we

will apply our work to different data sets. We will quan-

titatively validate it on simulated 2D data. We will then

perform experiments on real data: we will work with 1D

RECIST score used to monitor the growth of a tumor

(Therasse et al., 2000), with a data set of 3D faces ex-

pressing different expressions and with a 3D data set

of hippocampi of patients with or without Alzheimer’s

disease.
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2 Geometrical model

2.1 Construction of the representative trajectory

In the following, we consider a longitudinal data set of n

subjects, each being observed ki times: (yi,j)1≤i≤n,1≤j≤ki
at time (ti,j)1≤i≤n,1≤j≤ki , where each observation yi,j
is a point of Rd, d ∈ N.

We briefly recall the Large Deformation Diffeomor-

phic Metric Mapping (LDDMM) framework for shape

matching (Miller et al., 2006). Given two shapes y0 and

y1, we want to solve the registration problem consisting

in finding a diffeomorphism φ1 that transforms y0 onto

y1. In the framework of LDDMM, diffeomorphisms are

built as the flow of a velocity vector vt over t ∈ [0, 1]:
∂φt
∂t

= vt ◦ φt

φ0 = Id .
(1)

We suppose here that our velocity fields belong to a

Reproductive Kernel Hilbert Space V with kernel Kg.

V is in fact the set of squared integrable functions

regularized by the convolution by the kernel Kg. We

place ourselves in the finite setting where, given a set

of ncp control points (c0,i)1≤i≤ncp
and momenta vec-

tors (m0,i)1≤i≤ncp in Rd, we can define a velocity vector

v0 ∈ V at a point x ∈ Rd by:

v0(x) =

ncp∑
i=1

Kg(c0,i, x)m0,i . (2)

The value of v0 at a point x is obtained as the interpo-

lation of the momenta at the control points.

We then say that φ1 is a solution of the registration

problem if it transforms y0 into y1 while minimizing the

energy:

d(Id, φ1) =

∫ 1

0

‖vt‖2V dt , (3)

where ‖.‖V is the norm of the RKHS V . in particular,

this implies that φ1 defines a geodesic path.

It has been shown in (Miller et al., 2006) that if the

initial velocity field v0 is the interpolation of momentum

vectors at control points as in Eq. (2), then the velocity

field minimizing Eq. (3) keeps the same form along the

geodesic:

vt(x) =

ncp∑
i=1

Kg(c(t)i, x)m(t)i . (4)

m(t) and c(t) are time dependent momenta and con-

trol points solutions of the Hamiltonian equations:{
ċ(t) = Kg(t)m(t)

ṁ(t) = ∇c(t)
(
m(t)TKg(t)m(t)

) (5)

with initial conditions m(0) = (m0,k)1≤k≤ncp , c(0) =

(c0,k)1≤k≤ncp
and where Kg(t) is the ncp × ncp kernel

matrix (Kg(ci(t), cj(t)))1≤i,j≤ncp
.

If a diffeomorphism solving this problem exists, we

can then represent it by its set of control points and

momenta at t = 0. In practice, we don’t solve the exact

registration problem but we relax the problem to find

φ1 the extreme-path diffeomorphism that warps y0 onto

a shape as close as possible to y1 for a certain distance

dε. Depending on the application, we place ourselves

in the current (Vaillant and Glaunès, 2005) or varifold

(Charon and Trouvé, 2013) framework, allowing us to

compute the distance dε between shapes without any

point correspondence.

To sum up, given a set of initial control points, the

initial velocity is parametrized by the momentum vec-

tors attached to them (see Eq. (2)). By integrating the

Hamiltonian equations (5), one can compute the evo-

lution of those control points and momenta over time

and obtain the velocity vector at any time t (Eq. (4)).

By integrating the flow equation (1), we can obtain the

diffeomorphism φ1 deforming the ambient space. By ap-

plying this diffeomorphism at a point cloud or mesh y0,

we are finally able to deform it.

Given initial control points c0 and time t0, this defines

an exponential operator: Expc0,t0,t(m0) = φt and a

finite dimensional subgroup of diffeomorphisms M ={
Expc0,t0,1(m0)|m0 ∈ Rncp×d

}
.

We now come back to the longitudinal framework.

Instead of matching one shape onto another, we want to

construct a representative trajectory, or template, from

which we will derive the individual trajectories of the

subjects using the tools and methods previously intro-

duced. A usual way to solve this problem is to model

the representative trajectory as the action of a geodesic

in M on an initial shape. However, to deal with pos-

sible change of dynamics in the population, we do not

represent it as a geodesic but as a piecewise geodesic

curve γ0 i.e. as a combination of K different geodesics

following each other, generalizing the work done in (Al-

lassonniere et al., 2017) in dimension 1. In particular,

each of the geodesics defining γ0 describes a dynamic

of the population, different from the others, on a par-

ticular time segment.

We now formalize this: we introduce a subdivision of R:
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(tR,1 < ... < tR,K−1 < tR,K := +∞) where (tR,k)1≤k≤K−1

are called rupture times i.e. times when the representa-

tive curve switches from one geodesic to another. It is at

those times that the population switches from one dy-

namic to the other. Given a set of initial control points

c1 ∈ Rncp×d, of rupture times tR ∈ RK−1, an initial

shape x1 and K momenta (m0,m1, ...,mK−1), we de-

fine the representative trajectory as:

γ(t)(x1) = Expc1,tR,1,tR,1−t(m0) · x11t≤tR,1

+

K−1∑
k=1

Expck,tR,k,t−tR,k
(mk) · xk1tR,k≤t≤tR,k+1

with, for k ≥ 2 :

ck = Expck−1,tR,k−1,tR,k−tR,k−1
(mk−1) · ck−1

xk = Expck−1,tR,k−1,tR,k−tR,k−1
(mk−1) · xk−1

Here, the ck and xk are respectively the position of the

control points and the value of the representative curve

at times tR,k. For k ≥ 2, they are fixed to assure the

continuity of the trajectory.

It can be noticed that the first rupture time has a par-

ticular role as we must define a geodesic before it, de-

termining the trajectory from −∞ to the first rupture

time and another after it, determining the trajectory

from the first rupture time to the second. The control

points c1 and momenta m0, m1 are used to compute the

velocities at the time tR,1 defining the geodesic before

and after it. The other momenta m2, ...mK−1 and con-

trol points c2, ...cK−1 define the subsequent geodesics.

2.2 Deformations towards the subjects

From this representative trajectory featuring the group

characteristic path, we want to derive individual tra-

jectories following different behaviour. To achieve this

goal, we take into account both spatial and temporal

differences by introducing a time reparametrization and

a diffeomorphic spatial deformation. Indeed, each indi-

vidual can follow its own rhythm of progression, differ-

ent from the representative curve and varying from one

time segment to another, hence the need to introduce

time reparametrizations.

For each subject i, let ξi,0, ...ξi,K−1 be acceleration co-

efficients and τi,0, ..., τi,K−1 time shifts. We write for

every subject i:

ψi,0(t) = tR,1 − eξi,0 (tR,1 − t+ τi,0)

and, for each time segment k ≥ 1,

ψi,k(t) = tR,k + eξi,k (t− tR,k − τi,k) .

ψi,k codes the temporal reparametrization of the sub-

ject i on the time segment k. Once again, a first time

reparametrization must be defined before the first rup-

ture time.

The time shifts τi,k allow the subjects to be at different

stage of evolution while the acceleration factors ξi,k al-

low an inter-subject variability in the pace of evolution

on each geodesic (quicker evolution if ξi,k > 0, slower if

ξi,k < 0).

Each subject has its own rupture times tR,i,k repre-

senting the times the subject i goes through a change

of dynamic and such that tR,k = ψi,k(tR,i,k) i.e. tR,i,k =

tR,k+τi,k. To assure the continuity of the time reparame-

trization at each of those rupture times, we also fix all

the time shifts but τi,0 by continuity conditions: we im-

pose for all k ψi,k−1(tR,i,k) = ψi,k(tR,i,k), i.e.: τi,0 = τi,1
and, for k ∈ [|2,K − 1|],

τi,k = τi,k−1 + (tR,k − tR,k−1)(e−ξi,k−1 − 1) . (6)

From now on, we note τi = τi,0. Finally, we set:

ψi(t) = ψi,0(t)1t≤tR,i,1
+

K−1∑
k=1

ψi,k(t)1tR,i,k≤t≤tR,i,k+1
.

As proposed in (Bône et al., 2018), we will account

the space variability by using exp-parallelizations, i.e.

the generalization of parallelism to geodesically com-

plete manifolds (Schiratti et al., 2015). More precisely,

we introduce for each subject i a space-shift momen-

tum wi. We note P
(w)
γ the parallel transport which

transports any vector w ∈ Rncp×d along the trajec-

tory γ. Practically, we compute it using the fanning

scheme (Louis et al., 2017). Then, to code the deforma-

tion field at a time t, we transport the momentum w

along the curve γ(t) and then compute the flow given

by this new momentum. The given trajectory is the

exp-parallelization of γ by wi. Hence, we define:

ηt(w) = Expγ(t)(c1),0,1(Pγ(t)(w)) .

Finally, given x1 the value of the representative curve

at the first rupture time, the deformation of the repre-

sentative curve γ by the space shift w is given by:

γw(t) = ηt(w) ◦ γ(t) ◦ x1 .

We summarize the space deformation process on Fig. 1

by computing the exp-parallelization of a geodesic on

a sphere and on Fig 2 by presenting an example in a

space of shapes.

We model this space shift as a linear combination of

ns sources: we suppose that w = A(m0,...,mK−1)⊥s with

A(m0,...,m1)⊥ a ncp × ns matrix called the modulation

matrix and s ∈ Rns the sources. By projecting all the

columns of A(m0,...,mK−1)⊥ on (m0, ...,mK−1)⊥ for the
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Fig. 1 Example of parallel transport on a sphere. On

the left, we draw the geodesic γ and the momenta to

transport w. On the center, we transport w along γ.

On the right, we compute the exp-parallelization of γ

by w.

Fig. 2 Samples from a piecewise geodesic (top) and a

parallel deformation (bottom). The red momenta codes

the template evolution, lowering then raising an arm af-

ter the rupture time. The blue momenta is transported

along the piecewise geodesic and defines the deforma-

tion frame.

metric Kg, we impose orthogonality between the space

shifts and the momentum vectors. It has been shown in

(Schiratti et al., 2017) that this condition is necessary

to assure the identifiability of the model by preventing a

confusion between the space shifts and the acceleration

factors. Finally, we deform the template γ(t)(x1) by

setting:

γi(t) = γw(ψi(t)) .

2.3 Mixture and branching process

This construction builds a piecewise geodesic model of

progression. We now propose an extension for the anal-

ysis of heterogeneous populations. More precisely, we

suppose there exists N different representative curves

in a given population, each of the subjects i being in

the cluster cl(i) defined by the particular representative

curve γcl(i). This representative curve comes with its

own set of rupture times (t
cl(i)
R,1 < ... < t

cl(i)
R,K−1), initial

shape x
cl(i)
1 , control points c

cl(i)
1 , momenta (m

cl(i)
0 , ...,

m
cl(i)
K−1) and modulation matrix A

cl(i)

(m
cl(i)
0 ,...,m

cl(i)
K−1)⊥

.

This mixture framework enables to compare and

test hypothesis on the clusters. For instance, some of

the time segments can be shared by several clusters.

This imposes the representative curves of these clusters

on these time segments to be the same. In particular,

if we want some of the clusters to be equal on the first

time segment, we impose tkR,1, xk1 , ck1 and mk
0 to be the

same for these clusters. This allows us to handle pop-

ulations forking or merging at the rupture times. The

rupture times will then not only be times when a change

of dynamic occurs but also times when the population

will fork or merge.

3 Statistical Model and estimation

3.1 Statistical Model

In the previous part, we have presented a complex geo-

metrical model allowing us to compute global trajec-

tories and the deformations towards subjects. Those

global trajectories can take a wide variety of forms. But,

in all cases, our model is parametrized by a finite num-

ber of parameters. Hence, we can define a mixed effects

statistical model allowing us to estimate those different

parameters. We note:

zrpop = (mr
0, (m

r
k, t

r
R,k)1≤k≤K−1, x

r
1, c

r
1, A

r
(mr

0,...,m
r
K−1)⊥)

the population parameters of the cluster r and

zi = ((ξi,k)0≤k≤K−1, tR,i,0, si)

the deformation parameters of the subject i with ξi the

acceleration parameters, si the sources and tR,i,0 the

first individual rupture time. As all the time shifts but

the first one are fixed by continuity conditions (cf Eq.

(6)), all subsequent individual rupture times are fixed

by an expression depending only of the first individ-

ual rupture time, the acceleration parameters and the

global rupture times of the cluster.

We suppose that the subject i is obtained as a noisy

deformation of the representative curve γcl(i): ∀i ∈ [|1, n|],
∀j ∈ [|1, ki|],

yi,j |cl(i), zcl(i)pop , zi ∼ N (γi(ti,j), σ
2Id) .

We also suppose that the deformation parameters zi
verify:

zi|cl(i) ∼ N (µcl(i), Σcl(i))

where for all cluster r, Σr is a positive-definite matrix

and µr = (0, ..., 0, trR,0). Unlike in (Debavelaere et al.,
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2019), we suppose that the first rupture time of each

piecewise-geodesic trR,0 is not a random variable but a

parameter of our model, defined as the mean of the law

of the individual rupture times. Indeed, those individual

rupture times are here considered as random variables,

while in (Debavelaere et al., 2019) we only considered

the time-shifts. It allows to accelerate the computation

time of each iteration while improving the stability of

our algorithm.

The cluster r is drawn with a probability pr i.e.

cl(i) ∼
N∑
r=1

prδr

and finally, we suppose zrpop ∼ N (z̄rpop, vpop) where vpop
are small fixed variances so that our model belongs to

the curved exponential family. Finally, our model is de-

fined with parameters θ =
(
(trR,0, Σ

r, pr, z̄rpop)1≤r≤N , σ
)
.

For effectiveness in the high dimension low sample

size setting, we work in the Bayesian framework and set

as priors:

trR,0 ∼ N (trR,0, vtR)

Σr ∼ W−1(V,mΣ)

σ ∼ W−1(v,mσ)

p ∼ D(α)

z̄rpop ∼ N (¯̄zrpop, v̄pop)

(7)

where W is the inverse Wishart distribution, D is the

Dirichlet distribution and trR,0, vtR , V , mΣ , v, mσ, α,
¯̄zrpop and v̄pop are hyperparameters of the model.

Finally, if we note Λ the dimension of the space in

which the residuals ‖yi,j − γi(ti,j)‖2 are computed, the

complete log-likelihood writes:

logq(y, zpop, z, c, θ) =

−
n∑
i=1

 ki∑
j=1

1

2σ2
‖yi,j − γcl(i)(ti,j)‖2 −

Λki
2

log(σ2)


− 1

2

N∑
r=1

(zrpop − z̄rpop)T v−1
pop(z

r
pop − z̄rpop)

− 1

2

n∑
i=1

(
(zi − µcl(i))T (Σcl(i))−1(zi − µcl(i))

− log |Σcl(i)|
)

+

n∑
i=1

log pc(i) +

N∑
r=1

α log pr

+

N∑
r=1

(mΣ

2
(log |V | − log|Σr|)− tr(V Σ−1

r )
)

+mσ log
( v
σ

)
− mσ

2

( v
σ

)2

− 1

2

N∑
r=1

(z̄rpop − ¯̄zrpop)
T v̄−1

pop(z̄
r
pop − ¯̄zrpop)

−
N∑
r=1

(trR,0 − trR,0)2

2v2
tR

+ cste .

(8)

Our model belongs to the curved exponential family

with sufficient statistics defined for all class r as:

Sr1(y, z, zpop) = zrpop Sr2(y, z, zpop) =

n∑
i=1

1cl(i)=r

S3(y, z, zpop) =

n∑
i=1

ki

Sr4(y, z, zpop) =

n∑
i=1

1cl(i)=r

(
Σ−1
cl(i)

)
N,N

Sr5(y, z, zpop) =

n∑
i=1

1cl(i)=r(zi − µi)t(zi − µi)

Sr6(y, z, zpop) =

n∑
i=1

1cl(i)=r

(
Σ−1
cl(i)

)
N

(ξi,0, ...ξi,N−1, tR,i,0)

S7(y, z, zpop) =

n∑
i=1

ki∑
j=1

‖yi,j − γi(ti,j)‖2

(9)

with
(
Σ−1
cl(i)

)
N

the N th column of Σ−1
cl(i) and µi =

(0, ..., 0, trR,0).

3.2 Estimation

To estimate the parameters θ, we want to compute a

maximum a posteriori estimator by using a stochas-

tic version of the Expectation Maximization algorithm

known as MCMC-SAEM (Allassonnière and Kuhn, 2010).

It consists in the following steps: (i) simulation of (z, zpop, cl),

(ii) stochastic approximation of the sufficient statistics

of the curved exponential model and (iii) maximization

using the updated stochastic approximation. We can

remark that the joint distribution is in the curved expo-

nential family which guaranties the convergence of the

MCMC-SAEM algorithm, as proven in (Allassonnière

et al., 2010).

Concerning the sampling, we simulate (z, zpop, cl)

as an iterate of an ergodic Monte Carlo Markov Chain

with stationary distribution q(zpop, z, cl|y, θ). More pre-

cisely, we use a symmetric random walk Monte-Carlo
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Markov Chain within Gibbs sampler with adapted vari-

ance.

We then compute a stochastic approximation of the suf-

ficient statistics using Eq. (9) and a decreasing positive

sequence of step size ∆k: if m is the current iteration of

our algorithm, 1 ≤ r ≤ N and 1 ≤ k ≤ 7, we compute

srm,k = srm−1,k +∆m−1(Sk(y, z, zpop)− srm−1,k).

Finally, the update of the parameters θ in the maxi-

mization step of the MCMC-SAEM at iteration m can

be derived: for all 1 ≤ r ≤ N ,

z̄rpop =
v̄pops

r
m,1 + vpop ¯̄zrpop
vpop + v̄pop

trR,0 =
vtRs

r
m,6 + trR,0

vtRs
r
m,4 + 1

Σr =
srm,5 +mΣV

srm,2 +mΣ

σ2 =
srm,7 +mσv

Λsrm,3 +mσ

pr =
srm,2

r + α

n+ αN

. (10)

The intricate update of the parameters trR,0 and Σr is

solved by iterative replacement.

However, using the algorithm as presented above

yields to bad results in exploring the support of the con-

ditional probability distribution. This issue is known as

trapping states: once a label is given to an observation,

the probability of changing to another is almost zero.

This leads to no change of class after a few iterations.

To solve this problem, we use a tempered version of

the MCMC-SAEM. Instead of targetting q(c|y, θ) in the

MCMC step, we rather sample from an ergodic Markov

Chain with density 1
C(Tk)q(c|y, θk)

1
Tk where k is the cur-

rent iteration of the algorithm, Tk is a sequence of tem-

perature converging towards 1 and C(Tk) is the normal-

izing constant. The higher the temperature, the flatter

the distribution and the more the clusters are likely to

explore the entire set.

Finding a good distribution of temperatures such that

meaningful representative curves are found without im-

mediately fixing the clusters nor forcing them to move

throughout the whole algorithm is quite difficult. Sev-

eral choices have been proposed in (Allassonnière and

Chevallier, 2019) but we choose here a distribution that

takes into account the current state of the algorithm.

For each subject i and each cluster k, we set τki =

log
(
q(cl(i)=j)

q(cl(i)=k)

)
where cl(i) is the cluster of the subject i,

j the index of that cluster during the previous iteration

and q is the complete log likelihood. τki is in fact the

logarithm of the acceptance rate of the MCMC-SAEM

algorithm for the subject i to go from the cluster j to

the cluster k. We then take:

T =


Median(τ)

diter/10e
5− iter%10

5
+ 1− 5− iter%10

5

if iter%10 < 5

1 otherwise

(11)

where % is the modulo operator and iter is the current

iteration.

Such a distribution of temperature allows the represen-

tative curves to fix themselves when iter%10 ≥ 5 while

forcing the clusters to explore the whole space when

iter%10 < 5.

If this temperature scheme allows us to observe mean-

ingful clusters, as showed later in section 4, it must be

remarked that it depends of the acceptance rate τ and

so of the previous state of the algorithm. The conver-

gence of tempered SAEM algorithms has already been

proven in (Allassonnière and Chevallier, 2019) and can

easily be generalized in the case where the temperature

depends of the previous state of the algorithm. How-

ever, for the MCMC-SAEM case used here, the geomet-

ric ergodicity of the Markov Chain should be proven in

order to conclude that the algorithm converges.

3.3 Initialization and influence of the hyperparameters

Now that we have presented the algorithm estimating

θ, we interest ourselves in its initialization and in the

influence of the choice of the hyperparameters.

Concerning the initialization, all the representative

trajectories of the different clusters are chosen equals

by building a constant trajectory equal to the first ob-

servation of the first subject at all times. Similarly, we

initialize the individual parameters such that there is

no deformation towards the subjects. Hence, at first,

all individual trajectories are equals.

The influence of the different parameters defining

the priors is shown in the update of θ (cf Eq. (10)).

All those updates can in fact be seen as barycenters

between a quantity defined by the sufficient statistics

and another depending on the prior. For instance, z̄rpop
is the barycenter between Sr1(y, z) and ¯̄zrpop with re-

spective weight
v̄pop

v̄pop+vpop
and

vpop
v̄pop+vpop

. Hence, we can

choose the prior to influence the final value of z̄rpop and

also choose the weight given to this a priori. Similar

remarks can be done with all parameters.
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Algorithm 1: MCMC-SAEM algorithm

Data: (yi,j), (ti,j), total number of iterations K,
s0 = 0 and (∆k)k∈N a decreasing positive step
size sequence

for 1 ≤ k ≤ K do

Sample (zpop, z) using a single step of a
Symmetric Random-Walk Metropolis Hastings
within Gibbs sampler targeting the posterior
distribution q(zpop, z|y, θk).

Compute Tk using Eq. 11 and sample c using a
single step of a Symmetric Random-Walk
Metropolis Hastings within Gibbs sampler
targeting the posterior distribution 1

Tk
q(c|y, θk).

Compute the stochastic approximation
sk = sk−1 +∆k−1(S(z, zpop, y)− sk−1) where S
are the sufficient statistics given by Eq. 9.

Update the parameters θk to maximize the
posterior likelihood q(θ|y) using Eq. 10:

θk = θ̂(sk).

Finally, we must also choose the kernel used to com-

pute the deformations. Here, we take a Gaussian ker-

nel: Kg(x, y) = exp
(
‖x−y‖22
σ2
g

)
. We choose the kernel

width σg in the range of the distance between the con-

trol points such that the whole shape can be deformed

smoothly.

The final algorithm is summarized below.

4 Results

4.1 2D simulated data

We first test our algorithm on simulated data mimick-

ing the shape of a dancing man. We create 100 sub-

jects by deforming a branching piecewise-geodesic rep-

resentative curve with two components. More precisely,

we draw three random momenta. We first apply one of

them on a fixed shape to obtain the first common com-

ponent and then we apply the two others momenta on

the same fixed shape to obtain the two distinct compo-

nents forking at the rupture time. We then create our

100 individuals by sampling random accelerations, time

shifts and space shifts. Finally, we add a gaussian noise

of variance 0.02 to each subject and apply our algo-

rithm to find the two clusters, the representative curves

and the spatiotemporal deformations towards the data

sequence of each subject. Results in Fig. 3 show that

there is only little differences between the true and es-

timated representative trajectories (left), and no no-

ticeable differences between the true and reconstructed

observations. To quantify the reconstruction error, we

compute the varifold norm of the errors for all subjects

along the iterations on Fig. 4 (left).

97% of the subjects are classified in their right clus-

ter. As for the others subjects, in most cases, no mea-

surement is done after the rupture time or the second

acceleration coefficient is so small that the shape prac-

tically does not vary after the rupture time, which ex-

plains why the algorithm cannot find the right cluster.

We also show the necessity of using tempered distri-

butions by plotting the error of classification with and

without temperature on Fig. 4 (right). The oscillations

we see on those figures are due to the oscillating evolu-

tion of the temperature. We can see that the classifica-

tion and hence the final reconstructions are better with

tempered distributions.

Finally, we launch the algorithm on the same data

set 10 times to compute the errors on the estimation of

the different parameters. We can first remark that, on

average, 96.88% of the subjects are well classified with

a standard deviation of 2.08 over the 10 runs.

On the table 1, we display the relative errors of the indi-

vidual parameters. All those errors are below 10%, with

particular good estimation for the individual rupture

times. The high standard deviation observed is in fact

due to the badly classed subjects. Indeed, for those sub-

jects, the individual parameters often take absurd val-

ues: practically null accelerations, large rupture times,

etc..

On the table 2, we present the errors of reconstruction

for the varifold norm. We can remark that both the sub-

jects and the templates are very well reconstructed. The

error on the template is a bit higher due to the repercus-

sion of the small errors in the temporal reparametriza-

tion. Indeed, the small errors in accelerations can cause

the time lines between the real template and the esti-

mated one to differ causing small errors when compar-

ing them at the same time point.

We also present the errors on our parameters table 3.

Here, we can remark the very poor estimation of Σ.

Once again, this is due to the presence of badly classed

subjects having absurd individual parameters provok-

ing, for example, a very high variance in the estimated

individual rupture times. If we try to compute the es-

timated Σ taking into account only the subjects in the

correct cluster, we then find more correct results: an

error of 8.12% with a standard deviation of 3.97.

Finally, we test the ability of our model to predict

new data by using cross validation. We create 100 new
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Fig. 3 In red, the exact simulated data, in black, the results given by our algorithm. On the left, the representative

curves that split up at a certain rupture time. On the right side, two subjects given with their reconstructions.

Fig. 4 Left: evolution of the varifold distances between the subjects and their reconstructions. Right: percentage

of error in the classification along the first 100 iterations. With tempered distribution, the oscillating temperature

coerces a lot of subjects to change classes. After 500 iterations, the error is 31.3% smaller.

ξi,0 ξi,1 tR,i,0

5.89%±7.01 8.60%±10.7 0.76%±1.61

Table 1 Mean and standard deviation of the relative

errors for the temporal parameters.

Subjects Templates
1.23%±1.96 5.56%±2.60

Table 2 Mean and standard deviation of the errors of

reconstruction for the subjects and templates.

tR,0 Σ σ p
0.25%±0.17 160%±223 7.19%±4.01 2%

Table 3 Mean and standard deviation of the errors on

the parameters θ.

subjects deformed from the same representative curve

as before. We then ask our algorithm to classify and

reconstruct the trajectories while fixing the parameters

and the representative curve by those learned previ-

ously. This time, 91% of the subjects are well classified

and the error of reconstruction is only 0.84% with a

standard deviation of 1.93. Hence, our model can pro-

cess new data without problem, proving that we have

no problem of overfitting or selection bias.

We want now to test hypothesis about the hetero-

geneity of the population. We run our algorithm sup-

posing first that the two representative trajectories are

different. We then run it again supposing that their first

component is the same and that they fork at the rup-

ture time. To select the model, we first compute the

log-likelihood ratio test. However, in this case, this test

is not enough to determine which model to choose. In-

deed, with two independent representative curves, the

algorithm can reconstruct the subjects as precisely as

with branching representative curves. Hence, the differ-

ence between the likelihoods of the two models is too

small to conclude and the test unstable between runs.

To overcome this problem, we choose to compute the
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Bayesian Information Criterion (BIC):

BIC = ln(n)m− 2ln(q(y, z, θ))

where m is the total number of parameters involved in

the model.

This criterion takes into account the complexity of the

model by adding a penalty proportional to the num-

ber of parameters involved. Hence, we will penalize the

model with two independent trajectories (as it involves

more parameters) even if the reconstruction is simi-

lar. This time, we have there is a difference of 2.98%

between the two BIC criterions, leading us to choose,

as expected, the model with branching representative

curves.

4.2 1D RECIST scores

In this 1D case, shapes are just curves on R and we

work with a logistic metric. The parallel transport is

just a translation of the geodesic. That is why we rather

considerate another space reparametrization, as done

in (Allassonniere et al., 2017): for all classes i and all

components l, we set:

φi,l(x) = γcl(i)(t
cl(i)
R ) + eρ

l
i

(
x− γcl(i)(tcl(i)R )

)
+ δli .

ρli is a dilatation factor and δli is a translation factor. As

with the time reparametrization, all the translation fac-

tors but the first one are fixed by continuity conditions

and we note δ0
i = δi. Finally, our individual curve is

defined by deforming spatially each component of γcl(i)

by ψi,l and temporally by φi,l.

With only two components, the piecewise geodesics

for the logistic metric can be parameterized, for all class

r, by:
γr1(t) =

γrinit + γrescape
art+br

1 + eart+br

γr2(t) =
γrfin + γrescape

−(crt+dr)

1 + e−(crt+dr)

γr(t) = γr1(t)1]−∞,trR] + γr2(t)1]trR,+∞[ ,

(12)

with γrinit, γ
r
escap, γ

r
fin ∈ R. We fix ar, br, cr and dr by

asking the geodesics γ1
0,r and γ2

0,r to be ν-near their

geodesics at an initial time tr0, at the rupture time

trR and at a final time tr1 (see (Allassonniere et al.,

2017) for more details). Hence, rather than sampling

momenta and control points, we will sample zrpop =

(γrinit, γ
r
escap, γ

r
fin, t

r
0, t

r
1). This whole process is summa-

rized Fig. 5.

Fig. 5 Model description. In blue, the template with

the different parameters defining it and in orange one

subject obtained by deforming it. Here, t0 = 0, the

rupture points are represented by diamonds and the

final times t1 by stars.

We test the algorithm on real data. We consider a

database of patients suffering from the metastatic kid-

ney cancer and taking antiangiogenic drugs. They come

on a regular basis at the hospital to check the tumor

evolution. Two behaviours are expected in the popu-

lation: for all patients, the tumor first regresses. But

then, for some, it stabilizes while for others the tumor

size increases again forcing to change the treatment.

The RECIST score is a feature that measures the tu-

mor size and is used in the majority of clinical trials

evaluating cancer treatments for objective response in

solid tumors. Our dataset consists in the evaluation of

the RECIST score for 176 patients with an average of

7 visits per subject and an average duration of 90 days

between consecutive visits.

First, we launch our algorithm looking for two dif-

ferent representative curves. The result is displayed on

the first line of figure 6. Our algorithm is indeed able

to explain the variability of the population. However,

it seems that our algorithm favours size over response

dynamic as a clustering feature: small initial tumors

(blue curve, 28% of the patients) are separated from

big initial tumors (orange curve, 72% of the patients).

For example, the orange reconstructed trajectory (top

right plot) is classified with the blue template (top left

plot) even if the treatment stays effective.

To overcome this trivial differentiation based on the

tumor initial size, we ask the two templates to be the

same until the rupture time using a branching process.

This time, on the second line of figure 6, we really see

two different behaviours: for one of the template, the

RECIST score increases a lot more (blue curve, 37% of
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the patients) than for the other (orange curve, 63% of

the patients). As for the clustering, we see indeed that

the subjects whose RECIST score do not increase after

the rupture time are pooled together (green, red, orange

and blue curves). Hence, we are able to separate the pa-

tients whose tumor becomes resistant to the treatment

from the others. It can also be remarked that we have

fewer time points for patients whose tumor becomes

resistant because the clinicians change the treatment

when this resistance is remarked and so the record of

score for this patient stops.

4.3 3D faces

We now obtain shapes of subjects expressing different

facial expressions from the Birmingham University 3D

dynamic facial expression database (Yin et al.). This

database contains short videos from 101 subjects ex-

pressing happiness or surprise. We uniformly extract 8

frames, from the first to the 36-th one, which corre-

spond to a subsampling of the first 1.4 seconds of each

video. We do not work directly with the texture video,

but with a set of 75 semi-automatically extracted land-

marks, which were readily available along with this data

set. Every set of 3D landmarks is registered to a refer-

ence one by Procrustes alignment.

We first apply our algorithm to find two classes, with

only one component geodesic for each template. As we

can see Fig. 7 and 8, the faces are well reconstructed and

we can recognize the two expressions of surprise and

happiness on the two templates. In particular, for the

surprise class, the mouth is more widely open, while the

eyes are wide open and the eyebrows higher. Moreover,

68.5% of the subjects are well classified. However, we

can remark that the subjects who are badly classified

often have a non neutral expression at the first image.

For example, some subjects expressing surprise smile at

the beginning of the experience, causing the algorithm

to class them in the ”happiness” class.

4.4 Hippocampi dataset

We finally test the algorithm on 100 subjects obtained

from the Alzheimer’s Disease Neuroimaging Initiative

database (adni.loni.usc.edu). 50 of those subjects are

control patients (CN) and 50 are Mild Cognitive Im-

pairment subjects eventually diagnosed with Alzheimer’s

disease (MCIc). Meshes of the right hippocampus is seg-

mented from the rigidly registered MRI. We first run

our algorithm with a forking model as presented in the

synthetic experiment. As there is no reason for the con-

trol subjects to have two different dynamics, we also ask

one of the cluster (i.e. one of the evolution scenario) to

follow the same geodesic before and after the rupture

time. Our algorithm splits the patients in two clusters,

one of them presenting a quicker and different pattern

of atrophy (Fig. 11 and left side of Fig. 9 where the hip-

pocampi volume is plotted along time). Moreover, 72%

of the subjects are classified as expected: the CN in the

cluster with a single dynamic showing a slower atrophy

and the MCIc in the cluster with a faster atrophy after

the rupture time. We have also studied the relation be-

tween our rupture time and the age of diagnosis. The

individual rupture times are strongly correlated to the

diagnostic age, indicating that we have been able to de-

tect a change of behaviour correlated with the date of

diagnosis (Fig. 10).

We run again the algorithm, this time looking for

two clusters with separate trajectories, one of them with

only one dynamic. The results are presented Fig. 12 and

on the right side of Fig. 9 for the hippocampi volumes

evolution. It is interesting to remark that the cluster

with only one dynamic also presents a slower atrophy,

as expected with a normal ageing. We can also detect

different pattern of atrophy before and after the rup-

ture time for the cluster with two dynamics. This time,

70% of the subjects are classified as expected: CN in

the cluster with one dynamic and MCIc in the cluster

with two dynamics and a quicker rate of atrophy.

As we are given two possible evolution scenarii, it is

natural to try to quantify the goodness of fit of each of

them, allowing for a choice of a better explanation of

the disease. As for synthetic data, we use the Bayesian

Information Criterion. We find a difference of 2.92% be-

tween the two BIC values leading to choose the branch-

ing model. Hence, this suggests that the MCI subjects

first follow a normal aging scenario but deviate from it

at the rupture time. It must however be remarked that

our model is quite complex with a lot of high dimen-

sional variables, making model selection quite difficult.

5 Conclusion

We proposed a mixture model for longitudinal shape

data sets where representative trajectories take the form

of piecewise geodesic curves. Our model can be applied

in a wide variety of situations to test whether sub-

populations are independant from each other or fork or

merge at different time-points. We showed on simulated

examples that our tempered optimization scheme is key

to achieve convergence of such a mixed effect model
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Fig. 6 At the top, the results given with two different templates, at the bottom, with two templates whose first

component is the same. To the left, our templates. To the right, 6 subjects and their reconstructed trajectories.

In dotted lines, subjects in the cluster of the orange template. In plain lines subjects in the cluster of the blue

template.

Fig. 7 Results of the algorithm when applied to a

dataset of surprised or happy visages. At the top, the

evolution of the template of the happiness class, at the

bottom, the evolution of the template of the surprised

class, one component for each template.

combining discrete variables with continuous variables

of high dimension. We have shown the versatility of our

model by applying it to a lot of different cases: trajec-

tories with one or several dynamics, branching or not

after a rupture time, with one part of the population

still following the same dynamic or not after the rupture

time. Its application on 1D data allowed us to present

results of the same model in another setting while the

Fig. 8 Reconstitution of a subject expressing surprise.

In red, the exact data, in black the reconstitution.

application with 3D faces showed that we can highlight

different meaningful dynamics in a same population.

Finally, the hippocampi data set allowed us to investi-

gate the relationship between normal and pathological

ageing.

Different questions still have to be answered. In par-

ticular, our scheme of temperature depends of the cur-

rent state of the algorithm and a proof of convergence

should be provided in this situation. Moreover, specific

model selection criterion should be devised in this com-

plex longitudinal setting. Those criterion should in par-

ticular help us to detect the optimal number of clusters

and rupture times.
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Fig. 9 Left: volume evolution for two branching clusters. Right: volume evolution for two clusters with separate

trajectories.

Fig. 10 Comparison of the age at diagnosis with the

individual rupture time for the MCIc patients in the

case of the branching model, R2 = 0.91
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Stéphanie Allassonnière and Juliette Chevallier. A new

class of em algorithms. escaping local minima and

handling intractable sampling. 2019.
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man, and Stéphanie Allassonnière. Clustering of lon-

gitudinal shape data sets using mixture of separate

or branching trajectories. 2019.

Bernard Delyon, Marc Lavielle, Eric Moulines, et al.

Convergence of a stochastic approximation version

of the em algorithm. The Annals of Statistics, 27(1):

94–128, 1999.

Michael C Donohue, Hélène Jacqmin-Gadda, Mélanie
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