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Abstract 

Karst environments are unusual because their dry, stony and shallow soils seem to be unfavorable to 

vegetation, and yet they are often covered with forests. How can trees survive in these environments ? 

Where do they find the water that allows them to survive? This study uses midday and predawn water 

potentials and xylem water isotopes of branches to assess tree water status and the origin of transpired 

water. Monitoring was conducted during the summers of 2014 and 2015 in two dissimilar plots of 

Mediterranean forest located in karst environments. The results show that the three monitored tree 

species (Abies alba Mill, Fagus sylvatica L, and Quercus ilex L.) use deep water resources present in the 

karst vadose zone (unsaturated zone) more intensively during drier years. Quercus ilex, a species well- 

adapted to water stress, which grows at the drier site, uses the deep water resource very early in the 

summer season. Conversely, the two other species exploit the deep water resource only during severe 

drought. These results open up new perspectives to a better understanding of ecohydrological 

equilibrium and to improved water balance modeling in karst forest settings. 
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1- Introduction: 

Changes in temperature and rainfall patterns across many forest ecosystems are expected to increase 

the risk of drought-induced tree mortality (Allen et al. 2010). Tree resistance to drought is therefore of 

concern to scientists (Chaves et al. 2002; Breda et al. 2006) and stakeholders (Spies et al. 2010; Keenan 

2015). To cope with drought, trees have developed various strategies at different time scales.  

Stomata closure is a universal process designed to limit transpiration (Limousin et al. 2010), avoid water 

potential drop, and prevent irreversible damage caused by embolism to the plant hydraulic system 

(Martin-StPaul et al. 2017). Other mechanisms that take place at longer time scales involve changes in 

leaf area to decrease water consumption (Limousin et al. 2009, van Hees 1997, Martin-StPaul et al. 

2013). Instead of regulating water loss, trees can also take up water from groundwater when the water 

table is accessible (e.g. Murray et al. 2003; Naumburg et al. 2005; Querejeta et al. 2007). This process 

helps to maintain transpiration and carbon assimilation rates and limits water potential drop and 

cavitation risk during drought (Rambal et al. 1984; Breda et al. 2006; Abrams et al. 1990; McElrone et al 

2004; Johnson et al. 2014). However, several examples in the literature show that despite extremely dry 

shallow resource conditions (θsoil < 0.5 % Ψsoil < -7 MPa, respectively, Rambal 1984; Plaut et al. 2012) and 

a water table that is inaccessible (> 100 m) to root prospection (Canadell et al. 1996), trees can continue 

to transpire. Increased biomass allocation to roots is also observed (van Hees 1997). This makes it 

possible to tap water from deeper resources (Fig. 1b) during the dry season and thus to sustain water 

fluxes. How does this deep water reservoir contribute to transpiration throughout drought periods ?  

To explain  summer tree survival in karst environments, it seems necessary to invoke deep water 

exploitation. Karst environments (Martel 1902; Cvijic 1960; Bakalowicz 2005) are rocky and often have 

steep landscapes resulting from the weathering of carbonate or evaporitic rocks. These landscapes are 

common world-wide (Chen et al. 2017), especially around the Mediterranean Sea (Bakalowicz and 

Dörfliger 2005). Soils in karst environments are generally poorly developed and rocky or even absent (Fig 

1) and karst’s high permeability causes these environments to be generally dry and apparently not well-

suited for vegetation development. Due to their low productivity, karst landscapes are rarely cultivated 

and are often covered with forest. These ecosystems are crucial because they constitute the recharge 

areas of karst aquifers that supply water to a large part of the world's population (e.g. 50% in Austria, 

30% in Belgium, (Hartmann et al. 2014)). Karst hydrosystems have high water storage capacity in the 

saturated zone (Ford and Williams 2007) and in the vadose zone (Fig. 1a). In the vadose zone, water 

storage can occur in: i) superficial horizons called epikarst, composed of soil and weathered rock (e.g. 

Perrin et al. 2003; Aquilina et al. 2006); or ii) deeper horizons (e.g. Emblanch et al. 2003; Carrière et al. 

2016). However, the total soil available water (TSAW) generally measured via pedologic pits in these 

environments is low (a few tens of mm) and does not explain vegetation transpiration during drought 

periods.  
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Figure 1: Conceptual diagram of (a) a karst hydrosystem, (b) water reservoirs available for trees in a karst 

setting: (i) shallow water resource in soil and weathered rock; (ii) deep water resource in the karst 

vadose zone. 

 

In the three last decades, stable isotope ratios of hydrogen (δ2H) and oxygen (δ18O) have been used to 

determine the source of water uptake by plants from soil, streams, and groundwater (e.g. Ehleringer and 

Dawson 1992; Bariac et al. 1994; Walker and Brunel 1990; Olge et al. 2014; Barbeta et al. 2015; Evaristo 

et al. 2015). It has been hypothesized that water that enters roots is not isotopically fractionated with 

respect to soil water (Dawson and Ehleringer 1991; Zimmermann et al., 1966). This idea has led many 

authors to use deconvolution to estimate the mixing ratio of xylem water between two pools (e.g. 

Dawson 1993; Phillips and Ehleringer 1995) or three pools (e.g. Parnell et al. 2010; Barbeta et al. 2015). 

However, earlier studies show that in halophyte and xerophyte plants (Sternberg and Swart 1987; Lin 

and Sternberg 1993; Ellsworth and Williams 2007) and avocado (Persea americana) trees (Vargas et al. 

2017), δ2H isotopic fractionation can occur during root water uptake. This isotopic fractionation of δ2H is 

noted in many studies (e.g. Brooks et al. 2010; Bertrand et al. 2014; Barbeta et al. 2015; Evaristo et al. 

2016; Bowling et al. 2017; Evaristo et al. 2017; Geris et al. 2017).  Fortunately, this fractionation effect 

has a disproportionately greater effect on δ2H than on δ18O (Ellsworth and Williams 2007; Vargas et al. 

2017). Moreover, Barbeta et al. (submitted) have shown that mixing proportion calculations performed 

with δ18O data provide consistent results when the δ2H estimation is distorted. 
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Leaf or stem water potential is a widely used proxy for plant water stress (Turner 1981). The more 

negative the leaf water potential, the greater the stress on the plant. Leaf water potential is generally 

measured with a Sholander pressure bomb (Sholander et al. 1965) but can also be measured with 

psychrometers to conduct continuous potential measurements (Taylor-Laine et al. 2016). Leaf water 

potential measured at predawn (ΨP) is generally considered representative of soil water potential in the 

rhizosphere (Tardieu et al. 1990; Brisson et al. 1993). Leaf water potential at midday (ΨM) depends not 

only on the soil water potential but also on plant hydraulic conductance and the evapotranspiration (ET) 

demand based on the Ohm’s law analogy (Brisson et al. 1993; Olioso et al 1996; Cruiziat et al. 2002; 

Martínez‐Vilalta et al. 2014). Hence, the difference between predawn water potential and midday water 

potential (ΔΨ) provides information about the sap flow driving force and indirectly the transpiration 

level (Brisson et al. 1993; Cruiziat et al. 2002). The greater the ΔΨ, the more the trees transpire; the 

smaller the ΔΨ, the less the trees transpire.  

Used independently, the two approaches presented above make it possible to determine the origin of 

water and the tree stress level, respectively. In this study we combine isotopic tracing and leaf water 

potential to determine if it is possible to relate extraction depth to stress level. For this reason, our 

measurements were done during two summer periods (2014-2015) in two forest types located on 

Mediterranean karst. One is a mountain forest (1340 m.a.s.l.) dominated by Abies alba and Fagus 

sylvatica trees, and the other, at lower elevation (530 m.a.s.l.), is a typical Mediterranean ecosystem 

covered by Quercus ilex. We sampled xylem water from three tree species, as well as shallow and deep 

water in the karst vadose zone for δ18O analysis. The main goal of this experiment was to answer the 

following three questions: 

(i) Do trees use deep karst water from the vadose zone during the dry season? 

ii) How does deep water use by trees vary according to the level of water deficit?  

iii) Does deep water uptake by trees vary among species? 

In this project, we used tools from ecology to improve our understanding of how karst systems function. 

We hypothesize that vegetation may use water from the "deep" vadose zone (between a few meters and 

few tens of meters) to increase its resilience to drought. This article aims to provide a functional view of 

the interactions between vegetation and groundwater in the deep vadose zone.  

 

2- Material and methods: 

Experimental site location 

The experimental sites are located within the Fontaine de Vaucluse (FdV - France) karst hydrosystem, 

which hosts one of the largest karst springs in Europe (Fig.2b; Cognard-Plancq et al., 2006; Jourde et al. 

2018). This recharge area covers 1162 km² (Ollivier et al. 2019) and has a broad elevation gradient, 

making it possible to find a variety of tree species with differing drought resistance. The FdV observatory 

is part of OZCAR (http://www.ozcar-ri.org/), the French network of critical zone observatories. We 

selected two experimental sites: i) one in the southern part of the FdV recharge area near Rustrel village 

at an elevation of 530 m, and ii) one in the northern part of the FdV recharge area, on the northern slope 

of Mont Ventoux at an elevation of 1340 m. Table 1 summarizes the characteristics of each site. 

 

http://www.ozcar-ri.org/
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NAME COORDINATES HOLM OAK 

BASAL 

AREA (%) 

SILVER FIR 

BASAL 

AREA (%) 

BEECH 

BASAL 

AREA (%) 

PLOT 

SIZE (M) 

 

COARSE 

FRACTION 

IN SOIL (%) 

SOIL 

DEPTH 

(CM) 

MEAN 

ANNUAL 

RAINFALL 

(MM) 

NUMBER 

OF PITS 

GROUND-

WATER 

RUSTREL 

43°56’12.15’’N 

5°27’58.18’’E 

530 m.a.s.l. 

85 0 0 150x50 50 - 60 0 – 70 909 3 
Point D 

Point C 

MONT 

VENTOUX 

44°10’43.93’’N 

5°14’36.85’’E 

1340 m.a.s.l. 

0 86.3 13.7 100x100 48 - 63 50 - 60 1258 4 

MtS and 

Ctr 

springs 

Table 1: Main characteristics of the experimental sites. MtS and Ctr are Mont Serein and Contrat springs, 

respectively, and point D and point C are two seepages monitored within the Rustrel underground 

laboratory (http://lsbb.eu/presentation/). 

 

Environmental and groundwater settings 

The Rustrel forest is dominated by a sparse evergreen overstory of holm oak (Quercus ilex L.), which 

represents more than 85 % of the basal area (Carrière et al. 2017). The dominant tree height is about 

4 m. The understory is a sparse shrubby layer which represents 15 % of the basal area and includes Buxus 

sempervirens L., Juniperus communis L., and Juniperus phoenicea L. (Carrière et al. 2017). In this paper, 

we study only the holm oak on a plot of 150 x 50 m at the Rustrel site.  

The stand located on Mont Ventoux’s northern slope is dominated by silver fir (Abies alba Mill.) (86.3 % 

of the basal area) and beech (Fagus sylvatica L.) (13.7 % of the basal area). The dominant tree height is 

about 17.7 m. Our study was conducted on a plot of approximately 100 x 100m. This plot was previously 

studied in detail by Nourtier et al. (2014). They used ground-based geophysics (electrical resistivity 

tomography (ERT)) to characterize soil conditions and to relate silver fir mortality to drought. 

The two sites are located on similar karstified Cretaceous limestone. The subsurface karst at the Rustrel 

site is complex and heterogeneous due to numerous faults and karst features described in detail by 

Carrière et al. (2013). Carrière et al. (2016) used multiple geophysical techniques (ERT, Magnetic 

Resonance Sounding (MRS), Gravimetry) to show that mobile water is stored in the karst vadose zone 

down to 90 m, as demonstrated by significant seasonal water content variations. At both sites, the 

saturated water zone of the Fontaine de Vaucluse aquifer is inaccessible to trees; the water table is 

approximately 400 m below surface at Rustrel and 1200 m deep at Mont Ventoux.  

At both sites, the karst vadose zone isotopic signal is provided by underground seepage and springs. At 

Rustrel, two seepage zones named "point D" and "point C" (at 33 m and 256 m below the surface, 

respectively) have been monitored since 2003 (Garry et al. 2008; Blondel et al. 2010) in the Low Noise 

Underground Laboratory tunnel (http://lsbb.eu/presentation/). At the Mont Ventoux site, two springs 

are present: Mont Serein spring (MtS), located at a distance of 1.6 km from the experimental plot 

(44°10'51.47'' N; 5°15'48.25'' E; 1446 m.a.s.l.), and Contrat spring (Ctr) located at a distance of 3 km 

(44°11'03.83'' N; 5°16'51.24'' E; 1395 m.a.s.l.). 

Soils at both sites are shallow and rocky rendzina has developed due to the karst settings and slope. At 

Rustrel, the soil contains 50 to 60 % coarse elements and its thickness is relatively variable (from 0 to 

70 cm). The total soil available water (TSAW), estimated according to the Baize and Jabiol (2011) 

http://lsbb.eu/presentation/
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protocol, ranges between 0 and 65 mm. At Mont Ventoux, the soil contains 48 to 63 % coarse elements 

and its thickness ranges from 50 to 60 cm; TSAW ranges between 45 and 50 mm (table 1).  

The climate at both sites is Mediterranean, characterized by cool and wet winters, hot and dry summers, 

and a high inter-annual variability (see SI1). The two sites differ in terms of temperature and 

precipitation due to the elevation difference. Between 2003 and 2015, annual rainfall at Rustrel ranged 

from 407 to 1405 mm with a mean value of 909 mm, while the mean annual temperature was 12.9°C. At 

Mont Ventoux, annual rainfall ranged from 818 to 1842 mm during the same period and its mean value 

was 1258 mm, while the mean annual temperature was 6.53°C.  

 
Figure 2: (a) The Fontaine de Vaucluse recharge area located in southeastern France; (b) The 

experimental sites, Mont Ventoux at 1340 m and Rustrel at 530 m are located in the Fontaine de 

Vaucluse recharge area. They cover areas of 100m x 100m and 150m x 50m, respectively. 

Isotopic sampling  

Field work was conducted between July 2014 and August 2015, to sample two successive summer 

periods. The xylem isotopic signal was sampled on 3 to 5 trees every 1 to 2 months. Three to four sunny 

branches were collected from each tree at midday. Bark and phloem were removed to prevent 

interference with enriched water from the leaves. The twigs were immediately packed in parafilm and 

placed individually in sealed vials and then transferred in a portable cooler to prevent evaporation. All 

samples were stored frozen at the laboratory until water was extracted and analyzed. A punch was used 

to sample xylem from the trunk on one date (June 2015) at each site (Mont Ventoux and Rustrel). 

Sample conservation was similar to that of the stems. The shallow water isotopic signal was collected 

from precipitation and drainage water every 1 to 3 weeks. Precipitation was collected by pluviometer 

and stored in containers installed in a pit sheltered from light to limit temperature variations. In addition, 
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these containers were equipped with an atmospheric pressure capillary in accordance with the IAEA 

protocol (IAEA 2014) to limit exchanges between collected water and the atmosphere (see figure SI2). At 

each site, drainage water was collected at 20 cm below the surface through a mini-lysimeter directed to 

a container similar to those used for precipitation (see figure in SI2). We chose to collect drainage water 

because the subsurface is too rocky for auger drilling or porous candle sampling.  

Initially, rain and drainage water were analyzed separately, and because the two trends were similar, the 

two values were merged (arithmetical average) to represent the "shallow water" signal (Fig. 1) in figures 

3 and 4. Deep water was collected at two points for each site: i) seepage points D and C for Rustrel, ii) 

the Contrat spring (Ctr) and the Mont Serein spring (MtS) at the Mont Ventoux site. For each site, these 

two points were merged to represent the "deep water" signal (Fig. 1) of the karst vadose zone in figures 

3 and 4. We assume that this deep water represents the rock moisture described by Bowling et al. (2017) 

and Geris et al. (2017). 

 

Leaf water potential 

The leaf water potential was measured at predawn (ΨP) and at midday (ΨM or minimum) for 10 

individuals of each species on different dates throughout the summer seasons (June to September) of 

2014 and 2015, using a Scholander pressure bomb. Samples for minimum water potentials were 

collected from sunny branches when the weather was not cloudy. On each date and for each tree, at 

least three leaves were sampled, immediately placed in a plastic bag saturated with water vapor (by 

blowing into the bag), and stored in a cooler until measurement. Measurements were made less than 

one hour after sampling. Two of the three leaves were measured and the third was measured only if a 

difference greater than 0.2 MPa was found between the two first measurements. 

 

Water extraction and isotopic analyses 

Water from xylem samples was extracted by cryogenic vacuum distillation (Ehleringer and Osmond 1989; 

West et al. 2006). The stems were quickly cut into small pieces and placed in a flask heated to 90 to 

100 °C for 1 hour. The water was collected in two successive liquid nitrogen traps. Generally, 3 to 5 ml of 

xylem water was extracted. These liquid samples were stored in small vials until analyzed. 

Precipitation and deep water samples were analyzed on a Los Gatos Isotope Ratio Infrared Spectrometer 

(IRIS) at the University of Avignon (LGR DLT-100 liquid water stable analyzer accuracy ±0.2‰ vs V-SMOW 

for δ18O). However, because of possible spectral perturbations of IRIS measurements due to organic 

contaminants in xylem and drainage samples (Martín‐Gómez et al. 2015), δ18O of xylem and drainage 

samples were also analyzed using the Isoprime Isotope Ratio Mass Spectrometer (IRMS) at the LAMA 

laboratory of HydroSciences Montpellier, using the CO2 equilibration technique in dual inlet mode, 

yielding δ18O results with a ±0.6‰ precision. The isotopic ratios in this study are expressed as: 

 

                                    (1) 

 

Where Rsample and Rstandard are the heavy/light isotope ratios (18O/16O) of the sample and the standard 

(Vienna Standard Mean Ocean Water (VSMOW)), respectively.  
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Mixing model theory and uncertainty 

We assume that xylem water presents a mixed signal between deep and shallow water. If the origin of 

xylem water is linked to two sources without isotopic fractionation, the proportional contribution of 

each source may be resolved using a single isotope in a two-source system mass balance equation 

(Dawson 1993; Phillips and Ehleringer 1995): 

                     (2) 

 

Where δxyl is the plant xylem water δ18O, and the proportions shallow water (fsw) and deep water ( fdw) of 

the two sources have isotopic signatures δsw and δdw, respectively. We performed a single isotope ratio 

two-source mass balance approach and calculated the fraction of deep water (fdw) contribution to xylem 

from Eq. 2 as: 

    
        

       
  (3) 

We show the results of the ratio (figure 4) with uncertainties Wfsw quantified at each date following 

Genereux (1998): 

 

       
        

          
      

 

  
        

          
      

 

  
  

       
       

 
  (4) 

 

Where Wδsw, Wδdw, Wδxyl are the standard deviation for shallow water (precipitation and drainage), 

deep water (point D and point C or MtS and Ctr) and xylem water (value of the sampled tree at each 

site), respectively. 

Determining the origin of xylem water (shallow or deep water) based on water isotopes is possible only 

when these two mixing pools are significantly distinct. Because the two pools showed little difference in 

autumn and spring (figure 3), it was not possible to unravel the origin of the xylem signal for these two 

seasons.  

 

3- Results and interpretations 

Environmental data 

The two study years differed in terms of weather (Figure 3), as the summer of 2014 ranks in the 30% 

wettest years (return period = 3.4 years), whereas 2015 was drier than average summer conditions and 

is classified among the 40 % driest years (return period= 2.2 years) (Figure SI1). At Rustrel, during the 

2014 growing season (May to September) the mean temperature was 19.9 °C, cumulative precipitation 

was 271 mm, and mean vapor pressure deficit (VPD) was 857 hPa. By contrast, in 2015 the mean 

temperature was 21.2 °C, cumulative precipitation was only 101 mm, and the VPD reached 1059 hPa. At 

Mont Ventoux the trend was similar, the mean temperature was 11.9 °C, cumulative precipitation was 

499 mm, and the VPD was 432 hPa during the 2014 growing season, whereas in 2015 the mean 

temperature was 14 °C, cumulative precipitation was 370 mm, and the VPD reached 632 hPa.  
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Raw isotopic results: δ18O vs time 

The temporal variation of isotopic signals for the years 2014-2015 is presented in Figure 3. The δ18O 

signal of the shallow resource is highly variable throughout the year because it is strongly affected by 

rainfall, which has a marked seasonal signal (Celle-Jeanton et al. 2001). The isotopic composition of rain 

is affected by several factors, including air temperature, the origin of atmospheric moisture, and rainfall 

intensity (Rozanski et al. 1992; Celle-Jeanton et al. 2004), which explains the high variability of the 

precipitation signal at both seasonal and rain event time scales. The isotopic composition of deep water 

has a more stable signal corresponding to the average precipitation signal during the recharge period. 

These results are consistent with those of Emblanch et al. (2003) and Lastenet (1994) on the same karst 

hydrosystem.  Shallow water and deep water at Mont Ventoux are notably more depleted in 18O than 

the water at Rustrel. This effect is consistent with the well-known altitudinal precipitation gradient 

(Rozanski et al. 1993; Lastenet 1994; Celle 2000). 

The tree xylem water δ18O signal followed the shallow water signal during the summer of 2014. By 

contrast, in 2015, the xylem signal deviated from the shallow water δ18O signal and approached the deep 

water signal as drought increased. This means that during the summer of 2015, xylem water was a 

mixture of shallow and deep water, and that trees therefore exploited the deep water reservoir. 

 

 
 

Figure 3: Precipitation and evolution of isotopic signals of shallow water, deep water, and xylem water in 

2014 and 2015, at a) Rustrel (Holm oak) and b) Mont Ventoux (Beech and Holm oak). 

 

Determination of plant water sources and water stress 

Significant temporal and inter-specific variations in the origin of xylem water were observed (Figure 4). 

All species of trees used comparatively deeper water in the drier summer of 2015 than in 2014. On 

average for all species, 9% of xylem water came from deep water in 2014 as compared to 38% in 2015. 

We also noticed a broad variation among species, but this observation should be interpreted with 

caution because it is difficult to unravel the effects due to the site and that due to species. The two 
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species on Mont Ventoux used less ground water compared to those at Rustrel. Beech used 7% deep 

water on average during the 2014 summer, with a maximum of up to 13% at the end of summer and 

46% in 2015 (summer average), with a maximum up to 63% at the end of summer. On average, silver fir 

consumed 0% of deep water in 2014 compared to 27% in 2015, and a maximum of 54% at the end of the 

summer of 2015. At Rustrel, holm oak consumed on average 21% deep water in 2014 and 40% in 2015 

(up to 42% at the end of summer).  

Leaf water potentials and cumulative precipitation corroborated the isotopic results and confirmed that 

the drought was considerably more severe in 2015 than in 2014. Leaf water potentials varied among 

species. Holm oak had the most highly variable water potentials (ΨP and ΨM) over time, with values 

always lower than the other two species; this species reached ΨP < -2.5 MPa in July 2015 due to very low 

rainfall. Holm oak water potentials gradually decreased during the 2015 summer period. The difference 

between ΨP and ΨM (ΔΨ) also decreased during the same period. For beech, ΨP and ΨM potentials were 

relatively constant throughout the summer periods (-0.3 < ΨP < -0.5 MPa for ΨP and -1.5 < ΨM < -2 MPa 

until July 2015 for ΨM, respectively). However, during the severe drought of August 2015, ΨP almost 

doubled while ΨM increased. As a consequence, the ΔΨ amplitude dropped sharply from 1.5 to 0.8 MPa, 

indicating decreased transpiration. The silver fir exhibited behavior distinct from the other species. Its 

water potentials (ΨP and ΨM) showed a more limited variation range. When drought came, ΔΨ 

decreased regularly down to less than 0.5 MPa, because of increased ΨM and a concomitant decrease of 

ΨP. 
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Figure 4: For each species, (top) the proportion of shallow water and deep water in the xylem, (center) leaf water potential at predawn (ΨP) and 

at midday (ΨM), and (bottom) cumulative precipitation during the 20 days preceding sampling, a) Beech, b) Silver fir, c) Holm oak. 
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4- Discussion 

The results of this paper show that when tree water stress increases, the fraction of deep water in xylem 

water increases. These results are consistent with those of other authors who have shown that trees 

take up water from deeper horizons during drought periods in a diverse range of ecosystems (e.g. 

Rambal (1984) and Barbeta et al. (2015) in Mediterranean forests; Le Roux et al. (1995) in savannas; 

Huang et al. (2011) and Liu et al. (2011) in tropical forest).  Barbeta et al. (2015) showed that the 

groundwater proportion varies between 25 and 50%. However, they did not identify any difference 

between the studied species. Our study shows that the three species monitored in this study exploit the 

deep water pool in different ways. Silver fir exploits deep water only under severe drought conditions. 

Beech exploits more deep water and earlier in the summer period. Holm oak exploits deep water for 

most of the summer period and the deep water contribution increases regularly during drought. Such 

differences between species can be associated with both (i) site characteristics, and (ii) species 

physiology. 

i) The characteristics of the study sites are similar from a geological and pedological point of view, but 

the climatic conditions are significantly  different. The Rustrel site, where holm oak grows, receives less 

rain and has higher potential evapotranspiration. This climatic context makes the Rustrel site more arid 

(Table 1; Fig. 3), which would constrain oak trees to rely more on deep water to sustain their water 

demand than trees at the other site. The Ventoux site is wetter and drought occurs later in the summer 

period. This is probably why beech and silver fir exploit mainly shallow water until the beginning of 

severe drought (August 2015). 

ii) Physiology can also explain the differences between species. Beech and fir can be easily compared 

because they have the same geological, pedological, and climatic conditions at the Ventoux site. We 

identify differences in how these two cohabiting species use the deep water pool. Our findings contrast 

with previous isotopic results on a different system (Barbeta et al. 2015) but are consistent with other 

studies (Evaristo et al. 2017). The difference (p-value = 3.10-4) in ΨP between silver fir (-0.88 Mpa on 

average) and beech (-0.64 Mpa) indicate that they do not have access to the same total available water 

(TAW). Considering that the two species are present at the same site, we assume that these differences 

in TAW are due to differences in rooting depth. The systematically lower ΨP of silver fir means that its 

global rooting depth is lower. This hypothesis is consistent with  isotopic results that show that silver fir 

takes almost no water from the deep water reserve except during severe drought (August 2015). Our 

results confirm the study conducted by Nourtier et al. (2014) at the same site, which attributed the high 

mortality of silver fir to drought. These authors highlighted with geophysics (ERT) that mortality was 

higher for individuals located on developed soil areas. They hypothesize that in areas where the shallow 

water reserve is large, trees live and grow without exploiting the deep water pool. These trees do not 

develop enough deep roots to exploit the deep water resource within karst vadose zone. As a result, 

they are more vulnerable to severe droughts that can cause massive tree mortality (Cailleret et al. 2012; 

2014). 

From a methodological point of view, we have shown that the combination of isotopic tracing and leaf 

water potential monitoring is relevant. Isotope tracing alone helps to determine the origin of water. Leaf 

water potential monitoring by itself makes it possible to evaluate the stress level related to water. By 

combining these two approaches, we have succeeded in showing that trees adapt their water uptake 

according to drought level. The greater the drought, the deeper the water that the trees exploit. 
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This study has major implications for water balance modeling in karst settings. These models generally 

use TSAW measured in the field in pedologic pits. In karst areas, the measured TSAW does not represent 

the TAW reserve for trees. In fact, the TSAW represents only the superficial part of the TAW within the 

soil because the depth of pedologic pits is usually limited due to high rock content. Thus, the TSAW 

measured in the field cannot explain tree survival (Davi and Cailleret 2017) or the hydrodynamics of the 

studied karst system (Ollivier 2019). Modelers therefore increase the TAW to simulate a deep reservoir 

that presents a calibration difficulty. For example, they often multiply by a factor of 2 the field-measured 

TSAW (via pedologic pits) (Davi and Cailleret 2017). Ollivier et al. (2019) also increased TAW to better 

simulate the outflow simulated by a hydrogeological model of the Fontaine de Vaucluse system. These 

results show that trees extract water not only from the soil reservoir but also from a deeper reservoir. It 

remains difficult to quantify the exact contribution of this deep reservoir, but our results make it possible 

to qualitatively validate these assumptions. The goal of further studies will be to quantify this 

contribution by adding sap flow measurements or ecophysiological modeling to the current isotopic 

monitoring. In this way we could convert the water proportions as water volumes from each pool. These 

quantities would be easier to interpret and would be useful for ecophysiological and hydrogeological 

modeling. Another way to provide a better estimate of TAW, complementary to isotopic tracing, is to use 

geophysics. Geophysical tools such as magnetic resonance sounding (MRS) or electrical resistivity 

tomography (ERT) are promising tools for obtaining better estimates of TAW and its spatial variability at 

the plot scale (Carrière et al. accepted). 

This paper shows that the interaction among climate, soil, and species determines deep water 

exploitation patterns. This observation needs to be repositioned in the climate change perspective 

because the impact of repeated and prolonged droughts on interactions between vegetation and 

groundwater resources is still poorly understood (Brolsma et al. 2010, Anderegg et al. 2013, Schäfer et al. 

2014). Two extreme and opposite evolutions can be envisioned: i) droughts will cause massive dieback 

and defoliation of vegetation, which will limit the transpiration of vegetation cover, which can in turn 

increase infiltration and groundwater recharge. Or, ii) forests will adapt to drought, trees will consume 

less water quantitatively, but they will intercept and use a larger proportion of rainfall. In the latter case, 

with lower precipitation (P) and a higher ratio ET/P, groundwater recharge could decrease drastically. It 

is difficult to predict which scenario will occur, but it is likely that the future reality will follow an 

intermediate path between the two. Experiments on forest plots with rain exclusion seem to validate the 

second scenario (Barbeta et al. 2015). However, other studies using complementary approaches (e.g. 

surface based geophysics, remote sensing) need to be conducted to confirm these hypotheses at the 

broadest scales and in different ecological contexts. Importantly, our results suggest that deep water 

could constitute a much larger buffer than soil water alone. It is also essential to integrate human 

activities (e.g. planting new species, tree felling) to make these scenarios realistic.  
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5- Conclusions 

The combination of isotope tracing and leaf water potentials in a monitoring study conducted over two 

summer periods has provided useful results. The two methods provide complementary results that 

furnish new insights into water regulation during drought conditions in karst environments. We observed 

a concomitant decrease in ΨP and ΔΨ as drought increased. This indicates the presence of transpiration 

regulation, a primary mechanism of drought response (Maseda and Fernandez 2006). The results of this 

paper also show that when tree water stress increases due to drought, the fraction of deep water in the  

xylem increases in comparison to the shallow water resource. This increased contribution of deep water 

was observed during the drought period (summer) for all three species. However, each species exploits 

this deep water reserve in a different way. This reflects different adaptation to drought among species. 

We show that it is essential to take into account the deep water resource in the calculation of total 

available water for transpiration. Taking this deep water into account will improve water balance 

modeling for ecological purposes (i.e. tree resistance to drought) and hydrogeological purposes (i.e. 

characterization of karst recharge). The scientific community must continue to study these interactions 

between vegetation cover and groundwater to better predict the evolution of these two interdependent 

entities. 
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SUPPLEMENTARY INFORMATION 
 

SI1: Climatic analysis 

 
Figure SI1: Summer ratio between annual rainfall and potential evapotranspiration (PPT/PET) at the 

study site for the period from 1959 to 2016, for the months of June, July, August, September (JJAS). 

Lower values of the ratio correspond to drier years. The dotted horizontal line indicates the mean of the 

PPT/PET ratio over the study period. The years 2014 and 2015 used as reference in our analyses are 

represented by vertical blue and red lines, respectively. Daily weather datasets used to derive these 

estimations were extracted from the SAFRAN climate reanalysis (Vidal et al. 2010) at an 8km spatial 

resolution. PET was estimated using the Penman-Monteith formula. 
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SI2: Rain and drainage water collecting system 

 
 

 

 

 

 


