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Abstract 

In this work, elastohydrodynamic wide point contacts are studied under Zero Entrainment Velocity 

(ZEV) conditions. Contrary to classical rolling-sliding contacts, no hydrodynamic lift (oil wedge effect) 

is expected in stationary isothermal ZEV contacts. However, both experiments and numerical 

simulations taking into account temperature gradients in the thickness of the lubricant show the 

occurrence of a full-film lubrication regime over a large range of surface velocities, contact loads and 

external temperatures. Numerical simulations, including thermal effects but neither transient nor 

wall slip effects, are in good agreement with experimental film thickness measurements. They allow 

for both a qualitative description of the mechanisms at stake and to a first tentative minimum film 

thickness prediction under those specific conditions.  
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1 Introduction 

Mechanical components such as full complement bearings present a specific kinematic configuration 

that leads to elastohydrodynamically lubricated (EHL) contacts between consecutive rollers where 

both contacting surfaces move in opposite motion[1]. EHL contacts have been studied extensively, 

and predictive formulae exist to determine the values of central and minimum film thicknesses in 

pure rolling conditions([2]–[9]). However, these formulae all assume a non-zero value of the 

entrainment velocity. In the case of roller to roller contacts, zero entrainment velocity (ZEV) applies 

and the classical predictions from the literature can no longer be used. Nevertheless, both 

experimental measurements and numerical simulations prove the existence of a full-film separation 

of the surfaces in ZEV conditions[10]. Multiple theories have been proposed to explain film 
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generation at ZEV, such as transient effects[11][12] or wall slip[13]. Other authors have shown that in 

the absence of transient effects or wall slip, a phenomenon called the viscosity wedge is the sole 

responsible for the existence of this film(see Yagi et al.[14][15], Bruyere et al.[16], Guo et 

al.[17][18][19], Yang et al.[20] and Zhang et al.[10][21][22]). 

The term “viscosity wedge” was introduced by Cameron[23]. It refers to the influence of the 

temperature and viscosity gradients in the thickness of EHL contacts on the pressure generation[24]. 

In rolling/sliding contacts, Cheng[25] used the Generalized Reynolds equation[26] to take into 

account the variation of viscosity across the film thickness. Chiu[27] made calculations for high sliding 

ratios. He noted a particular “dimpled” film shape, where two local minimum film thicknesses were 

found on both sides along the central axis of the contact. This dimple is a feature commonly found in 

ZEV contacts ([10][14]–[22]).  

Having two different materials for the contacting bodies is a way for heat to be evacuated differently, 

which means that differences in temperature between the two solids can be achieved more easily. 

Cameron[24] even argued that having similar solid materials cannot lead to a permanent film of 

lubricant. Dyson and Wilson[28] conducted experiments that proved that idea wrong. They revealed 

that, for two similar materials under ZEV conditions, a sufficiently low roughness on both surfaces 

would allow a full-film lubrication regime. In the late 90’s, the National Aeronautics and Space 

Administration (NASA) [1][29][30][31] showed that ZEV contacts could be operated under 

elastohydrodynamic conditions with the same material on both solids. 

The main objective of this work is to initiate a minimum film thickness prediction under ZEV 

conditions. Experimental data will be used as a reference for the quantitative validation of a 

numerical model of ZEV line or wide point contacts. This model will provide a better understanding 

of the mechanisms involved in stationary Thermal ZEV contacts. From a given choice of materials and 

geometry, a set of operating conditions (normal loads, surface velocities and external temperatures) 

will be studied. 

2 Experiments and numerical model description 

2.1 Experiments 

Experiments were conducted on a barrel-on-disk apparatus (see schematic representation in Figure 

1). This tribometer was previously described by Yagi[32]. The radii of the barrel (��,� = 0.013 � and ��,� = 0.330 �) were fixed, with an ellipticity parameter 
 = 0.04. The lubricant was supplied on 

both sides of the ZEV contact (2 inlets) by a feeding system composed of an external bath (where the 

temperature was regulated at a value ��), a peristaltic pump with a volumetric flow of 34 ��/��� 
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and two projection nozzles oriented towards the two ZEV contact inlets. The rotational speeds of the 

disc and the barrel were controlled by two independent servomotors. The contact was loaded by 

moving the barrel up against the disk. 

Practical applications of contacts under ZEV conditions often involve two steel surfaces 

([1][29][30][31][12]). However, optical film thickness measurements rely on one transparent surface. 

As a compromise, a sapphire disk was chosen here for its thermal similarity with steel ([14][19]).  

Both surfaces were polished to reach an average surface roughness of �� = 5 ��. 

Each operating conditions is represented by three control parameters: the external temperature ��, 

the contact normal load ��� and the surface velocity of the solids �. Fifty cases were studied in 

total, as specified in Table 1. 

Film thicknesses were measured via white light Differential Colorimetric Interferometry (see [33] for 

a detailed description). Depending on the film thickness separating the two solids, the distance 

travelled by the light rays varied, leading to interferometric fringes between the light reflected on the 

sapphire disk lower surface and the one reflected by the steel barrel. 

For each of the 50 conditions in Table 1, 6 interferograms were randomly chosen to calculate average 

values. Error bars, which represent the standard deviation on each set of 6 values, are reported in 

the corresponding figures. 

2.2 Numerical model 

A numerical model is proposed to access local phenomena and to enable a better understanding of 

ZEV contacts. Two variants of the model are considered. The two dimensional (2D, on xy-plane) 

model aims to describe a wide point contact. The one dimensional (1D, along x-axis) model stands for 

a line contact representing the behaviour along the sliding direction. The properties of the chosen 

materials (steel and sapphire) are summarized in Table 2 (see [34]). The value of thermal conductivity 

for the steel in Table 2 was chosen according to the cited source [34] even though according to [35], 

its value would be closer to  21 �. �� . !� . The lubricant chosen is Shell T9, a mineral turbine oil 

with few additives, used in previous studies (see [36][37]).  

The fluid density is characterized by a Murnaghan[38] equation of state model (eq. 1). 

 
"#$, �% = "& 1

'1 + !)*!) $+�  ,-.
11 + /0#�� − �&% 

eq. 1 
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where !) = !��2�345.  

The fluid Newtonian behaviour is characterized by an improved WLF model[39] (eq. 2) and its non-

Newtonian behaviour by a Carreau-Yasuda model[40] (eq. 3).  

 

 6#$, �% = 67 8−2.303 9 :� − �;<=9� + :� − �;<= > eq. 2 

where �;#$% = �;� + ? ln #1 + ?�$% and =#$% = #1 + B $%CD  

 

E#$, �, FG% = 6#$, �%
H1 + H FGIJKL�MNL

 OMN� �MN
 

eq. 3 

 

where FG = PFQ�� + FQ�� with FQ� and FQ� the calculated shear stresses along x and y axes 

respectively. 

The viscosity model was fitted to experimental rheological data, obtained in a range of pressure from 

0 to 800 MPa, temperature from 303 to 423K, and shear stress up to 5 MPa. The maximum error 

between the viscosity model (eq. 2 and 3) and the experimental data is 5%. The fluid parameters are 

detailed in Table 3. 

The numerical model can be used for wide point contacts (2D) or line contacts (1D). It was developed 

and described successively by Raisin[11] and Wheeler[41]. The Generalized Reynolds equation can 

provide the pressure in the contact, taking into account the density and viscosity variations in the 

thickness of the lubricant film (eq. 4, eq. 5). 

 RSST 8'"E+G RSST$> = RSST:"∗SSSST< eq. 4 

where HVWLG = WXWX. "G* − "G**, "∗SSSST = H2�"G* EG + "G�0 L 

and 
 WX = Y ZQW[� , 

 WX. = Y QZQW[� , "G = Y "\][� , "G* = Y H" Y ZQ.WQ� L \][� , "G* = Y H" Y Q.ZQ.WQ� L \][�  

(1D) ^#_% = ^� + _�2�G` + a#_% 

eq. 5 

(2D) ^#_, b% = ^� + _�2��,� + b�2��,� + a#_, b% 

The film thickness is the sum of three terms: the rigid body separation ^� (always negative in the 

context of EHL because the elastic displacements are larger than the film thicknesses), the 

geometrical term and the equivalent body displacement a. Details on numerical stability method and 
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cavitation treatment can be found in Habchi[42]. In this study, the domain :Ωd< where Reynolds 

equation is solved is adapted from Habchi[42] to comply with ZEV conditions. The domain :Ωd< is 

defined as follows: _ ∈ f−6/1
; +6/1
i for line contacts (1D) or _ ∈ f−6/2
; +6/2
i  ×  b ∈f−3k2
; +3k2
i for wide point contacts (2D). Zero pressure is imposed at the edges of the calculation 

domain :Ωd<. 

The total elastic displacement of both bodies, a, is calculated assuming an equivalent body and the 

load balance equation is considered. The domain #ΩG% where the elastic body displacements are 

calculated is _ ∈ f−30/1
; +30/1
i × ] ∈ f−60/1
; 0i for line contacts (1D) or _ ∈f−30/2
; +30/2
i × b ∈ f−30k2
; +30k2
i × ] ∈ f−60/2
; 0i for wide point contacts (2D). A fixed 

constraint is applied to the bottom edge of the domain :ΩG,�lm<, and the pressure calculated via the 

Reynolds equation is applied to a portion of the top surface :ΩG,mld< corresponding to :Ωd<.  

The energy balance of the system is computed (eq. 6) in the lubricant volume as well as in both solids 

(see [11][41]). 

 −R#noR�% + "o9dopSSToR� = qo  eq. 6 

where no, "o and 9$o are material characteristics that depend on the subdomain (r stands for fluid, k 

for barrel and \ for disk) in which the equation is written (� ∈ sr, k, \t) and pSSTo = H�o,��o,�L. Also: 

 qo = u 0 for � = sk, \t
E:RpSSTy<� − �" z"z� :pSSTyRSST$< for � = r  

eq. 7 

 

 

pSST� = H+�0 L 

pSSTZ = H−�0 L 

pSSTy = H�y,��y,�L =
{
|}

z$z_ 8~ ]*\]*EQ
� − EGEG* ~ \]*EQ

� > + 2�EG ~ \]*EQ
� − �

z$zb 8~ ]*\]*EQ
� − EGEG* ~ \]*EQ

� > �
�� 

To compute the energy equation, another geometry is required, in which the fluid and both solids 

have a geometry. The size of the fluid subdomain is 12/ � × ^ for line contacts (1D) or 6/�� ×6k�� × ^ for wide point contacts (2D). The size of the two solid subdomains is 12/ � × 3/ � for line 

contacts (1D) and 6/�� × 6k�� × 3/�� for wide point contacts (2D). The external temperature �� is 

imposed to the top and bottom external surfaces of the solids. �� is also imposed for the side 

surfaces of the solids and fluid where the local velocity pSSTo  is oriented towards the contact area. The 
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other external surfaces are submitted to a nil flux boundary condition. At both solid/fluid interfaces, 

flux conservation is imposed. 

3 Experimental and numerical results for a reference case 

A 2D reference case is defined for a steel on sapphire contact, with a surface velocity � = 5 �/�, an 

applied normal load ��� = 50 � and an external temperature �� = 293.15 !. It represents a 

central situation among the variety of cases presented in Table 1. Experimental and numerical results 

will be compared and the model assumptions discussed. Then the viscosity wedge process will be 

discussed to explain the asymmetries observed in both experiments and simulations. 

3.1 Description of the experimental film thickness profiles 

Figure 2 is an interferogram captured according to the technique previously described. The film 

thickness variation along the vertical dashed central line is reported in Figure 3. At both lateral sides 

of the contact, two lobes can be seen and are marked by the letter “A”. Those side lobes were first 

described by Guo[19] and are the location of the global minimum film thicknesses. They are limited 

to the lateral sides and do not extend to the edge of the exit zone, unlike what is observed in 

conventional EHD contacts.   

The central film thickness ^� is marked by the letter “B” in Figure 3. A typical feature of ZEV contacts 

is the fact that this central film thickness is a local maximum located at the center of a dimple. 

Two local minimum film thicknesses can also be found along the vertical dashed line, located close to 

the inlet/outlet areas of the contact. They are noted by the letters “C” and “D” in Figure 3. Their 

values differ slightly from one another ([19][15][10][43]) because of the dissimilarity in the properties 

of the solid materials in contact (see section 3.3). The highest local minimum film thickness is called ^��  and the lowest one is called ^�� . The average value of the two will be referred to as the minimum 

film thickness and will be noted ^�. 

3.2 Discussion on model assumptions 

For rolling EHD contacts, Nijenbanning[44] found that the film thickness along the central line of a 

wide point contact (2D) with 
 < 0.1 could be described by a line contact (1D) model. In this case, 

the barrel-on-plane contact is considered similar to a cylinder-on-plane contact. An equivalent line 

contact (1D) is defined by keeping the same Hertz pressure ($[ � = $[��) and same contact length 

(/ � = /��) by choosing �G` and � � as in eq. 8:  

 �$[ � = $[��/1
 = /2
 ⟺ ��2� = �*/2
/4$[��� � = �$[��/2
/2 eq. 8 
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The corresponding reference case in 1D is written with a corresponding normal load per unit length � � = 5.82 × 10� �. �� .  

The experimental film thickness profile along the vertical central line is represented in Figure 3. On 

the same figure, point contact (2D) and line contact (1D) numerical results are superimposed. 

The numerical (2D) central film thickness is very close to the experimental value (deviation of 2.8%). 

The numerical (2D) minimum film thickness overestimates the measurements by 23.9%, which is  

comparable to deviations between simulations and analytical predictions reported in [36] for 

classical pure rolling conditions. 

The (1D) numerical central film thickness is 28.3% lower than the experimental one and the (1D) 

numerical minimum film thickness is 3.3% larger than the experimental one, with ^��  and ^��  being 0.2% and 6.9% larger respectively which is exceptionally good with respect to the differences 

observed with the (2D) model. With this in mind, and with the close results between (1D) and (2D) 

models, the (1D) model will be retained in the rest of this document. 

3.3 Viscosity wedge and material dissimilarity 

In section 2.1, the fact that the thermal conductivity of steel may differ was noted. A (1D) simulation 

was conducted, with the same parameters as the (1D) reference case, but with a thermal 

conductivity of 21 �. �� . !� [35]. It is plotted in Figure 4. There is less than a 4% relative 

difference between the values of minimum and central film thicknesses found for the two cases, 

which indicates that the parameters in Table 2 are representative of the chosen steel in any case. 

The differences between ^��  and ^��  seen in 3.1 and Figure 3 can be explained by the fact that the 

solids in contact are made of materials that differ in thermo-mechanical properties (see [43]). Figure 

5 shows the temperature distribution in the reference case with ^��  on the right and ^��  on the left. 

The fluid external temperature conditions being the same on both sides far away from the contact 

area, the temperature of the fluid at the two inlets in the proximity of the surfaces entering the 

contact, is the same as indicated by the mention “��” in Figure 4. The viscosity wedge process 

develops as follows: the top surface goes from the left to the right and the bottom one from the right 

to the left. This creates a very intense shearing and the fluid heats up before exiting on the right side 

for the top surface and left side for the bottom one. This leads to high temperature gradients across 

the film thickness on both sides near the edges of the contact. The values of temperature and 

viscosity differences along the x-axis are plotted in Figure 4. 

The Navier-Stokes equation applied to thin films can be used to link pressure generation with the 

viscosity differences. For the line contact: 
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z$z_ = z#E��%z]  eq. 9 

This equation is the basis for Generalized Reynolds equation, which assumes that the pressure does 

not vary along ]T. By making the same assumption for eq. 9, an average value of this equation can be 

calculated between ] = 0 and ] = ^: 

 
z$z_ = 1̂ ~ z$z_[

� \] = 1̂ ~ z#E��%z][
� \] = #E��%[ − #E��%�^ = Δ#E��%^  eq. 10 

Pressure generation is proportional to the viscosity times shear rate difference between the two 

surfaces. This mechanism explains the load bearing capacity due to temperature gradients across the 

film thickness. 

This mechanism also explains the rather low asymmetry observed in sapphire/steel contacts. 

Because the thermal characteristics of both solids differ, heat is not exchanged at the same rate at 

each both fluid/solid interface. Indeed, for the reference case, a power per unit length of 7285 �/� 

is being evacuated through the fluid/steel interface while 7055 �/� is transferred through the 

fluid/sapphire interface. This leads to different maximum surface temperatures for both interfaces: 316 ! for the former and 321 ! for the latter. 

In Figure 4, the temperature differences between the surfaces is larger on the left side of the contact. 

The maximum viscosity differences found in the vicinity of the two surfaces, which occur mainly in 

the zone where the pressure is high (due to the pressure dependence of the viscosity), are of 48.2 �/. � and 7.0 �/. � on the left and right sides respectively. With more pressure generated on 

the left side of the contact, the pressure and displacement profiles are slightly shifted to the right. 

This explains the asymmetry observed in the film thickness. In Figure 4, the equivalent steel-on-steel 

calculation gives a symmetrical film thickness profile. For the reference case, the relative difference 

between ^��  and ^��  is 4.0% experimentally and 11.3% numerically. The average value between ^��  

and ^�� , called ^�, will be used primarily in the rest of this document to describe the minimum film 

thickness. 

Knowledge on the minimum film thickness and its prediction are of particular interest, since it has to 

be compared to surface roughness to anticipate the possible occurrence of solid to solid contacts. In 

the next section, the influence of the surface velocity on the minimum and central film thicknesses 

are studied for ZEV wide contacts by using the (1D) model, upon various load and external 

temperature conditions.  

4 Film thickness dependence on surface velocity, at various loads and external 

temperatures 
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In this section, the experimental results are compared with the line contact (1D) model for various 

surface velocities, loads and external temperatures. 

4.1 Influence of the surface velocity 

The surface velocity � is varied, for a normal load per unit length � � = 5.82 × 10� �. ��  and an 

external temperature �� = 293.15 K. The numerical model enables the calculation of film 

thicknesses at higher velocities (up to � = 17.7 �/�) than the limitation imposed by the test-rig (� =7.92 �/�). The variations of experimental and numerical (line contact), central and minimum film 

thicknesses are represented in Figure 6. In these conditions, the line contact (1D) model enables the 

accurate prediction of the minimum film thickness for any surface velocity, with the relative 

difference between experimental and numerical results between 0.3% and 11.6%. There is a steady 

increase of both experimental and numerical minimum film thicknesses with the surface velocity up 

to � = 10 �/�. This corresponds to the variations observed in the literature ([17][15][16][10]). 

The higher the surface velocity, the stronger the convection term in the energy equation. This 

directly impacts the location of the maximum temperature difference along the surfaces, as seen in 

Figure 7. Indeed, at 1.77 �/� the location of the maximum temperature difference between the two 

surfaces is 34 μ� to the left of the contact center whereas it is 65 μ� away at 7.92 �/�. Therefore, 

both the maximum viscosity differences and pressure gradients are found further away from the 

contact center. In Figure 7 at 1.77 �/�, the maximum pressure gradient is 2.1 × 10 � Pa/m and 

located 34 μ� to the left of the contact center whereas at 7.92 �/�, the maximum pressure 

gradient is 9.0 × 10 � Pa/m and located 62 μ� away from the center of the contact. In conclusion, 

the convection term increases with the surface velocity and shifts the location of maximum pressure 

gradients away from the center which corresponds to higher minimum film thicknesses. 

In Figure 6, though shifted by nearly 130 �� (relative difference between 14.2% and 28.1%), the 

experimental and numerical results show nearly no variation of the central film thickness with the 

surface velocity, as mentioned in ([17][15][16][10]). Pressure is generated closer to the center for 

smaller velocities. To comply with the load balance equation, this leads to bigger central pressures. 

Indeed, at 1.77 �/�, the central pressure is 0.79 I�/ when it is only 0.48 I�/ at 7.92 �/�, a 64% 

difference (see Figure 8). This leads to a central displacement at 1.77 �/� which is 8% larger than at 7.92 �/�. All the while, the rigid body separation is larger by a similar margin of 11%. To summarize, 

as the surface velocity increases, the rigid body separation increases while the central displacement 

decreases at a similar rate due to the wider pressure generation, which explains why the central film 

thickness barely varies with the surface velocity. 
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In Figure 6, at high velocities not accessible with the experiments, the numerical central and 

minimum film thicknesses 1D predictions become the same, indicating the disappearance of the 

central dimple. The film thickness decrease at the highest velocities is linked to a wider pressure 

profile, as can be seen in Figure 8. At the centre, the pressure decreases (leading to less surface 

displacement), which corresponds to a central/minimum film thickness decrease. 

A mean square power law approximation of the minimum film thickness variation with the surface 

velocity is plotted in Figure 6, for � ∈ f1.77; 7.92i�/�. In this case, the minimum film thickness 

varies with the surface velocity to a power 0.51, which is less than the one found for the entrainment 

velocity in rolling contacts([8][9]). Additionally, a power law approximation is not able to describe the 

complete behaviour over the full range of velocities.  

A more complex formula is written to fit the plateau-like behaviour observed at high velocities:   

 ^� = ^�o� × #1 − exp#−�/��o�%% eq. 10 

where ^�o� = 345 �� and ��o� = 2.8 �/�, which respectively represent the film thickness plateau 

at high velocities and the inverse of the exponential decay constant. Their values are functions of all 

other parameters in the problem, which is the limit imposed by such a simplistic description. 

4.2 Extension to various load cases 

The variations of experimental and numerical (line model), central and minimum film thicknesses 

with the surface velocity � is represented for different normal loads in Figure 9. For the central film 

thickness, the relative difference between experiments and numerical results is between 14.2% and 34.8%. For the minimum film thickness, the relative difference between experiments and numerical 

results is between 0.3% and 15.5%. The qualitative behaviour is well captured for both the central 

and minimum film thickness, although only the latter is well predicted quantitatively. Experimentally, 

for the lower load, the increase of the central film thickness is monotonous, whereas for the higher 

load, a sharp increase at low velocities is followed by a rather constant decrease at higher velocities. 

A similar observation is made numerically, although no sharp increase is observed at higher loads and 

lower velocities. Both the central and minimum film thicknesses increase as the normal load 

increases for any surface velocity, which is a counter-intuitive result compared to the behaviour of 

classical rolling/sliding EHD contacts. This trend has also been confirmed for a range of loads in 

previous works, for line contacts [16] and for point contacts [10]. The present results bring 

experimental confirmation for line contacts. At 1.77 �/�, the minimum film thickness at 100 � is 5.8% larger than at 30 � whereas at 7.92 �/�, the increase is 8.9%. This means that the applied 

load has a relatively weak effect on the measured minimum film thickness for any velocity compared 

to other parameters as shown in ([17][15][16][10]). 
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Film thickness results from the sum of three terms which are affected by a change in contact normal 

load, as seen in eq. 5. First, as the load increases at � = 5 �/��  and �� = 293.15 K, a diminution of 

the rigid body separation ^� is observed from −0.86 μ� at 30 � to −2.07 μ� at 100 �. Second, the 

contact widens with an increasing load: the distance between the locations of ^��  and ^��  is 0.10 μ� 

at 30 � and 0.17 μ� at 100 �.Therefore, the location of the minimum film thickness is deported 

outwards, which means that the geometrical term of the film thickness (_� 2�G`¡ ) is increased from 0.11 μ� at 30 � to 0.27 μ� at 100 �. Third, increasing the load generates stronger displacements 

in the whole contact. Indeed, at the location of the minimum film thickness, the displacement a is 

increased from 1.03 μ� at 30 � to 2.11 μ� at 100 �. In the end, these variations compensate each 

other and this explains the weak variations of the minimum film thickness with the normal load, and 

even in some cases the increase of the film thickness with normal load. 

4.3 Extension to various temperature cases 

Figure 10 shows the central and minimum film thickness variations with the surface velocity for three 

different external temperatures (�� ∈ s293.15; 308.15; 323.15t!). Few experimental data points 

were obtained at �� = 308.15 ! and �� = 323.15 ! due to the minimum film thickness occurring on 

the sides (identified as zone A in Figure 2) becoming too low to safely continue measurements at 

lower velocities. The values of central film thickness obtained numerically underestimate the 

experimental values. For the minimum film thickness, the highest relative difference between the 

experiments and the simulations is of 11.6%, 22.2% and 23.5% at respectively 293.15 K, 308.15 K 

and 323.15 K. An increase in external temperature leads to a decrease of both the central and 

minimum film thicknesses. 

The viscosity at ambient pressure is overall higher at 293.15 K (0.020 �/. � ) than at 323.15 K 

(0.006 �/. �). Therefore, the viscosity variations across the lubricant thickness are by far larger at 

lower temperatures, as can be seen in Figure 11. The maximum value of ∆E is 48.2 �/. � at 293.15 K 

and 4.2 �/. � at 323.15 K. Moreover, this maximum is found further away from the contact center at 

lower temperatures (8.62 μ� to the left of the contact center at 293.15 K and 4.32 μ� at 323.15 K) 

which is linked to a larger pressure generation, as can also be seen in Figure 11. This also leads to a 

lower central pressure at lower temperatures, as seen in Figure 12, given the load balance must been 

satisfied. Indeed, the central pressure is 5.62 × 10£ �/ at 293.15 K and 7.05 × 10£ �/ at 323.15 K, 

a 25% increase. As a consequence, the central displacement is larger for hotter contacts but not 

enough to compensate for the decreasing rigid body separation. This explains why the central film 

thickness decreases with the temperature. 
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5 Conclusion 

Experiments were conducted on wide point contacts in Zero Entrainment Velocity conditions. A 

numerical model of thermal elastohydrodynamic contacts was also developed and used to provide 

useful information on local quantities such as the pressure, the temperature or the viscosity profiles. 

The experimental results demonstrated that significant film thicknesses exists in ZEV conditions for 

wide point contacts. Because neither transient effects nor wall slip were implemented in the model, 

the generation of a film thickness has been attributed to the viscosity wedge effect only. 

The comparison of the results obtained by the two approaches has revealed that line contact models 

can be used to quantitatively represent the variations of the minimum film thicknesses of a wide 

point ZEV contact. In the worst case (high external temperature), the minimum film thickness was 

predicted with an accuracy of 23.5%. 

Over the range of the tested parameters, the minimum film thickness increases with the surface 

velocity while the central film thickness has shown a non-monotonous response. At high velocities, 

the central dimple disappears as the central and minimum film thicknesses become equal. Over the 

range of tested velocities, an exponential fit describes the variation of minimum film thickness better 

than a power law. 

The higher the load, the higher the central film thickness because the load is mainly supported at the 

centre. The effect on minimum film thickness is less visible. 

The increase of the external temperature leads to a decrease of both the minimum and central film 

thicknesses. At high external temperatures, the viscosity gradients are less pronounced. 

The set of results presented in this work obtained from both experimental and numerical studies 

enables the understanding of the film thickness build-up mechanism in ZEV conditions and 

constitutes a first basis on which semi-analytical tools could be written. 
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Figures 

 

 

Figure 2 – White light interferogram for the reference case (� = 5 �/�, ��� = 50 � and �� = 293.15 !). 

 

 

Figure 1 – Representation of the experimental apparatus. 
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Figure 3 – Film thickness profiles for the reference case (� = 5 �/�, ��� = 50 � or  � � = 5.82 × 10� �. ��  and �� = 293.15 !), from experiments (along the dashed line in Figure 2) and simulations. 
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Figure 4 – For the reference case (� = 5 �/�, � � = 5.82 × 10� �. ��  and �� = 293.15 !): On the left axis, temperature 

and viscosity differences between the fluid/steel interface and the fluid/sapphire interface for the steel/sapphire contact. On 

the right axis, numerical film thickness in the steel/sapphire contacts (two different values of n) and the steel/steel contact. 
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Figure 5 – Temperature variation in the fluid and solids for the reference case (� = 5 �/�, � � = 5.82 × 10� �. ��  and �� = 293.15 !). The equivalent body displacement is assigned to the top solid (steel). The bottom solid (sapphire) is 

considered rigid. 
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Figure 6 – Central and minimum film thickness variation with the surface velocity at � � = 5.82 × 10� �. ��  and �� =293.15 !. 
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Figure 7 – Temperature differences (in red, left axis) between the two interfaces and pressure gradient (in blue, right axis) 

in the fluid at � � = 5.82 × 10� �. ��  and �� = 293.15 !, for two different surface velocities. 
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Figure 8 – Pressure profiles at � � = 5.82 × 10� �. ��  and �� = 293.15 !, for three different surface velocities. 
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(a) 

 

(b) 

Figure 9 – (a) Central and (b) Minimum film thickness variation with the surface velocity, for different loads at �� =293.15 !. 
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(a) 

 

(b) 

Figure 10 – (a) Central and (b) Minimum film thickness variation with the surface velocity, for different external 

temperatures at � � = 5.82 × 10� �. �� . 
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Figure 11 – Viscosity differences (in red, left axis) between the two interfaces and pressure gradient (in blue, right axis) in 

the fluid at � = 5 �/� and � � = 5.82 × 10� �. �� , for two different external temperatures. 
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Figure 12 – Pressure profiles at � = 5 �/� and � � = 5.82 × 10� �. �� , for two different external temperatures. 
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Tables 

�� #!% �#�/�% w�¥#�% $[#I�/% w ¥#�. �� % 
Number of 

Cases 293.15 ¦1.77; 1.99; 2.26; 2.51; 2.81;3.16; 3.54; 3.97; 4.46; 5.00;5.61; 6.30; 7.06; 7.92 § 

30 0.390 4.14 × 10� 14 293.15 50 0.462 5.82 × 10� 14 293.15 100 0.582 9.24 × 10� 14 308.15 s3.16; 3.97; 5.00; 6.30; 7.92t 50 0.462 5.82 × 10� 5 323.15 s5.00; 6.30; 7.92t 50 0.462 5.82 × 10� 3 

Table 1 – Sets of measurements 

 Steel Sapphire � f�/i 210 × 10¨ 360 × 10¨ © 0.3 0.34 " fnª. ���i 7850 4000 9$ f«. nª� . !� i 470 750 n f�. �� . !� i 46 40 

Table 2 – Material properties (from [34]) 

9$y f«. nª� . !� i 1900 ?1 188.95 

ny f�. �� . !� i 0.118 ?2 f�/� i 0.533 × 10�¨ "� fnª. ���i 872 B1 f�/� i 7.37 × 10�¨ !�� f�/i 9.234 × 10¨ B2 −0.6171 !)* 10.545 �ª� f!i 204.68 /0  f!� i 7.734 × 10�� $� f�/i 0 ¬­  f!� i 6.09 × 10�� /JK 5 6; f�/. �i 1 × 10 � �JK 0.35 91 15.9035 IJK f�/i 7 × 10® 92 14.1596   

Table 3 – Fluid properties (from [36][37]) 
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Nomenclature 

Subscript Description  k Steel barrel  \ Sapphire disk  r Fluid  0 Reference value  

Superscript Description  1
 Refers to the line contact model  2
 Refers to the wide point contact model  

Variable Description Formula /JK  Carreau-Yasuda parameter f−i  /0 Murnaghan parameter f!� i  ?  WLF parameter f!i  ?� WLF parameter f�/� i  / � Line contact static dimension along _T f�i :8� ��G` ��*⁄ <^#1/2% 

/�� Wide point contact static dimension along _T f�i :3�����,� 2�*⁄ <^#1/3% B  WLF parameter f�/� i  B� WLF parameter f−i  k�� Wide point contact static dimension along bT f�i :3�����,� 2�*⁄ <^#1/3% 

9d Thermal heat capacity f«. nª� . !� i  9  WLF parameter f−i  9� WLF parameter f!i  
 Ratio of ellipticity f−i ��,�/��,� 

� Young modulus f�/i  �* Equivalent Young modulus f�/i 2/�* = #1 − ±��%/�� + #1 − ±m�%/�m IJK  Carreau-Yasuda parameter f−i  ^ Film thickness f�i  ^�  Central film thickness f�i  ^� Average minimum film thickness f�i #^�� + ^�� %/2 ^��  Lowest local minimum film thickness f�i  ^��  Highest local minimum film thickness f�i  ^� Rigid body separation f�i  n Thermal conductivity f�. �� . !� i  !�� Murnaghan parameter f�/i  !�* Murnaghan parameter f−i  �JK Carreau-Yasuda parameter f−i  
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$ Pressure f�/i  $� Room pressure f�/i  $[ � Line contact Hertz pressure f�/i 2� �/�/ � $[�� Wide point contact Hertz pressure f�/i 3���/2�#/��%� �G` Equivalent line contact radius f�i  ��,� Primary radius of the barrel f�i  ��,� Secondary radius of the barrel f�i  ��  Average surface roughness f��i  �� External temperature f!i  �;� Glass transition temperature of the fluid f!i  � Surface velocity f�/�i  

pSST Velocity vector  

� � Linear Load f�. �� i  ��� Load f�i  R$ Pressure gradient along _T f�//�i R$ = z$ z_⁄  ��  Shear rate f�� i  a Equivalent displacement f�i – Always negative  Δ Difference between top and bottom interfaces  E Non-Newtonian viscosity f�/. �i  6 Newtonian viscosity f�/. �i  6� Newtonian viscosity at �� f�/. �i  6; Viscosity at �;� f�/. �i  

± Poisson ratio f−i  " Density fnª. ���i  "� Density at �� = 20°9 fnª. ���i  FG Normal value of the shear stress f�/i  FQ�  Shear stress along _T f�/i  F��  Shear stress along bT f�/i  

 




