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Abstract. Whereas it was possible to define the level of detail (LoD) of authoritative 

datasets, it is not possible for Volunteered Geographic Information (VGI), often char-

acterised by heterogeneous levels of details. This heterogeneity is a curb for map-

making, particularly when using traditional map derivation processes such as gener-

alisation. The paper proposes a method to infer the level of detail of VGI features. 

Then, inconsistencies between features with different levels of detail that get in the 

way of good mapmaking can be automatically identified. Some proposals are made 

to harmonise level of detail heterogeneities. The LoD inference is implemented and 

results are presented on OpenStreetMap data. 
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1 Introduction 

Volunteered Geographic Information (VGI) is more and more used by the GIScience 

research community but also by all users of geospatial data. Indeed, as crowdsourc-

ing communities, such as the OpenStreetMap community, continuously improve 

their processes the data quality increases (Girres and Touya 2010, Haklay 2010), en-

couraging companies and administrations that rely on geospatial data to trust VGI. 

Even National Mapping Agencies (NMA) that produce authoritative and high quali-

ty data intend to integrate VGI in their databases (e.g. Canada). Beyond data quality, 

validating VGI for use by governments raises issues of integration into authoritative 

datasets (Du and others 2012) and trust in the volunteers (Skarlatidou, Haklay and 

Cheng 2011). Moreover, it seems necessary to check if VGI can easily be used in the 

applications, based on the authoritative data it replaces or enriches. The main appli-

cation of geospatial data is mapmaking, which can be a very complex task when 

scale varies and generalisation is required. 

VGI and especially OpenStreetMap are successful because of their simplicity (Brando 

2012): almost anybody able to use a GPS device is able to contribute, as the specifica-

tions are not too complex to handle. The drawback of this simplicity is the heteroge-

neity of the produced data (Girres and Touya 2010). The level of detail (LoD) of fea-

tures is particularly heterogeneous. For instance, buildings with street display LoD 

coexist with land use parcels extracted from satellite imagery. Maps derived from 

VGI show that inconsistencies in LoD between spatially related features (e.g. a build-

ing and a containing built-up area) cause map conflicts (Das, van Elzakker and Kraak 



2012), which are big obstacles to good quality mapping. The aim of the paper is to 

propose a method to identify LoD inconsistencies in VGI datasets. Indeed, if LoD 

inconsistencies are identified in the map, it is possible to further correct them to make 

more legible and less confusing maps.  The key of our proposal to identify LoD in-

consistencies is a two step process: first infer a LoD for each feature of the map and 

then identify spatial relations between conflicting LoD features.  

Section 2 precisely defines the level of detail and its importance in mapmaking. Sec-

tion 3 presents our proposal to infer the LoD of geographical features and detect in-

consistencies. Section 4 shows some results on OpenStreetMap data. Section 5 briefly 

explores techniques to correct LoD inconsistencies and section 6 concludes and dis-

cusses further work.  

2 The Importance of Level of Detail 

2.1 Scale and Level of Detail 

The scale of a map has a simple definition; it is the homothety factor between ground 

size and map size of features. In cartography, the word scale may also convey repre-

sentation aspects: features cannot be mapped the same way at each mathematical 

scale, e.g. buildings can be mapped individually at large scales , e.g. 1:25, 000, but are 

represented as built-up areas at small scales, e.g. 1:200, 000.  

However, scale cannot be used to characterise geographical databases, because data 

are not only intended for cartographic representation, and the term level of detail is 

preferred. Ruas and Bianchin (2002) define the level of detail in a geographical data-

base as the conjunction of the conceptual schema of data, the semantic resolution, the 

geometrical resolution, the geometrical precision and the granularity. 

The conceptual schema component is the way ground truth is represented in the geo-

graphical database: representing forests as polygonal features or with point features 

representing each tree are conceptual schemas that correspond to different levels of 

detail. 

The semantic resolution is the quantity of details in the attribute data attached to geo-

graphic features. The issue is not related to mapping, so we will not focus on this 

component in the remaining of the paper. 

By analogy with raster resolution, the geometric resolution of vector features is 

approximately the minimum distance between two vertices of the geometry. 

 

Figure 1a shows that such a definition should be handled carefully as the distance 

between vertices is always shorter in sharp bends. Like Ruas and Bianchin (2002), we 



consider that the resolution value of a database should be used as a rough estimate of 

the features resolution. 

 

Figure 1. (a) two lines with different resolutions. (b) the granularity of a building. 

The geometrical precision is simply the positional shift between ground truth and 

represented feature. Granularity describes the size of the smallest shapes of fea-

tures, e.g. the smallest protrusion of buildings (

 

Figure 1b). 

In the remainder of the paper, we consider LoD as the aggregation of all four com-

ponents described above. We call high LoD a level of detail with high precision, reso-

lution etc., and low LoD a level of detail with low precision, resolution etc. Despite 

this definition, LoD is a relative notion that is difficult to measure quantitatively or 

qualitatively. Section 3.1 of the paper describes of we propose to measure high and 

low LoD. 

2.2 Case studies from OpenStreetMap 

In order to illustrate the issue of level of detail inconsistencies and to test our propo-

sitions, three case studies were extracted from the French OpenStreetMap (OSM) da-

taset, as OpenStreetMap is a VGI source aiming at making maps. The case studies 

cover and share different kind of landscapes: urban, rural, suburban and mountain-

ous areas (Figure 2). 

 

Figure 2. Extracts from the three case studies: an urban area, a mountainous area, 

and a suburban one ©OpenStreetMap. 



All three case studies contain a large amount of LoD inconsistencies, as OSM seeks to 

indifferently gather very detailed features such as cycle lanes and less detailed fea-

tures such as sea routes or built-up areas. The inconsistencies are increased by the 

heterogeneity of capture tools and techniques used by OSM contributors. For in-

stance, capturing a building automatically from cadastral image (as in French OSM), 

or from GPS field work do not yield similar LoDs. 

The most common and obvious type of inconsistency in the case studies is the coex-

istence of detailed buildings and land use parcels. In Figure 3, buildings intersect a 

forest limit which is unlikely, or lie just outside the built-up area they should be part 

of. 

 

Figure 3. Examples of LoD inconsistencies: the upper left buildings intersect the for-

est limit and buildings on the right lie outside the built-up area ©OpenStreetMap. 

Even in rural areas where OSM datasets are less complete, the few existing features 

are LoD inconsistent. In Figure 4, we can see public bathrooms and an access path 

connected to less detailed footpaths, which coexist with very undetailed lake and 

river features. A footpath even crosses the lake because the lake is very imprecise at 

the footpath level of detail. 

 



Figure 4. Examples of LoD inconsistencies: a public bathrooms spot and its path co-

exist with less detailed footpaths (dashed lines) and even less detailed lake and river 

©OpenStreetMap. 

2.3 Mapmaking with Inconsistent LoDs 

Inconsistent LoDs in the source data of a map may cause bad quality maps for two 

main reasons: 

 It causes legibility problems at multiple scales. 

 It may convey misleading information. 

Inconsistent LoDs may make small scale maps, where high LoD features should not 

appear, not legible. Indeed, the knowledge of eye perception limits allows the defini-

tion of legibility thresholds (e.g. perception, separation, differentiation, etc.): below 

these thresholds, the eye only perceives noise that disturbs map reading, whatever 

the map legend is (Duchêne, Christophe and Ruas 2011). Figure 5a shows an extract 

from OSM standard maps where most buildings are too small to be legible and dis-

turb the reading. Here, generalisation is required, for instance by increasing building 

size. In the same time, too dense layers cause symbol overlapping problems, such as 

points of interest on a legible background map (Figure 5b). Although OSM is not de-

signed to make maps with all its features, legibility problems may occur at most 

scales, even large ones.  

 

Figure 5. (a) The building LoD is inconsistent with roads, rivers and land use LoD 

bringing noise to the map reader at this scale (©OpenStreetMap) (b) Point of interest 

symbols overlap at this scale. 

Inconsistent LoDs may also convey misleading information to the map reader that is 

not aware of each feature LoD and interprets the map as consistent. Figure 6 shows 

an example where inconsistent LoDs between buildings and forest in OpenStreetMap 

mislead the reader on the fact that buildings are in the forest. The forest LoD should 

restrict its use to small scale maps where buildings are not represented. Moreover, a 

map reader traditionally expects consistent LoD and his cognitive interpretation of 

the map may be biased by the inconsistency. 



 

Figure 6. The forest LoD is inconsistent with the buildings in OSM misleading the 

reader because buildings are not in the forest but in a clearing.  

Finally, automated mapping requires complex processes such as cartographic gener-

alisation to make the geographical information legible at a given scale. Generalisation 

processes are mostly designed for NMA data that are homogeneous in LoD (Stani-

slawski and others 2012). Cartographic generalisation of VGI data has not been tack-

led yet: research projects are starting but do not focus on LoD heterogeneity (e.g. 

Klammer and Burghardt (2012) focus on generalising tile-based maps) and OSM 

based projects such as Mapnik1 or CloudMade2 only provide very simple generalisa-

tion operations, e.g. line filtering and feature selection. Thus, detecting LoD incon-

sistencies would greatly help to improve the way maps made with VGI data are per-

ceived by a reader. 

3 Detecting LoD Inconsistencies 

This section describes our proposed approach to detect LoD inconsistencies: first, the 

LoD of features is inferred and then, spatial relations between features with different 

LoD are identified. The first subsection briefly presents the proposed LoD classifica-

tion that is used to measure LoD. The second subsection deals with the inference of a 

LoD for individual features, based on criteria derived from LoD components (2.1). 

The last subsection deals with the detection of inconsistencies that relies on spatial 

relations. 

3.1 Classification of Levels of Detail 

LoD is a quite relative and fuzzy concept as its five components cannot be clearly and 

quantitatively defined, so we propose to measure it qualitatively with a Likert scale 

(Likert 1935) classification. We defined five LoD categories extracted from French 

geoportal3 from the most detailed to the least: street, city, county, region and country. 

                                                 

1 mapnik.org 

2 cloudmade.com 

3 geoportail.gouv.fr 



The street LoD contains features represented for parcel management or street orienta-

tion, e.g. the British OS MasterMap®. The city LoD contains features represented to 

describe what is visible on the ground (buildings, roads, rivers, forests, etc.). The 

county LoD contains features that represent a small region to allow displacements 

like the ones of a tourist in the area (i.e. visits, trekking, cycle rides). The regional LoD 

is related to the representation of a large region and the country LoD is even less de-

tailed, for the representation of countries or big regions. 

The LoD inference described in the next section classifies features in one of these five 

categories by the means of quantitative and qualitative criteria. 

3.2 Assessing Features LoD 

3.2.1 Criteria to Assess Geographic Features LoD 

The components of LoD presented in 2.1 allow the definition of several criteria that 

are computed for each feature of the dataset to infer its LoD: 

 Feature type criterion (conceptual schema component) 

 Vertex density criterion (resolution component) 

 Median edge length criterion (resolution component) 

 Capture source criterion (geometrical precision component) 

 Shortest edge criterion (granularity component) 

 Size criterion (granularity component) 

 Coalescence criterion (granularity component) 

Each criterion is designed to give a value normalised between 0 and 1, 1 being the 

lowest LoD, country. The empirical normalisation of each criterion implies some im-

precision and fuzziness in the criteria values, which will have to be taken into ac-

count by the method using the criteria. 

The feature type criterion analyses the feature type of features in relation to the data 

specifications and to a geographical ontology to infer LoD. The presence of some fea-

ture types in a map reveals the conceptual schema component of LoD. For instance, 

buildings or points of interest have higher LoD than built-up areas features. 

The vertex density criterion analyses the number of vertices compared to feature 

length to give a clue on geometrical resolution, which is fuzzily defined. To empiri-

cally normalise the density, vertex density values have been studied for different 

types in datasets with different LoDs from the French NMA. The criterion value is 

computed according to (vertex_density_value = (1 – vertexDensity)8  (Eq. 1).  

 vertex_density_value = (1 – vertexDensity)8  (Eq. 1) 

The median edge length criterion analyses the median of edges length between two 

vertices to complete the assessment of resolution. Girres (2011) states that it is the 

best criterion to assess geometrical resolution on roads and rivers. A piecewise func-

tion from  to [0,1] was empirically derived from values in the French NMA datasets 

and from the conclusion of Girres (2011). 



The capture source criterion analyses metadata on the capture source of features 

(e.g. GPS tracks, aerial images) to infer geometrical precision from knowledge on the 

sources. The values for the OpenStreetMap tag “source” were analysed in several 

French datasets, and a LoD value was assigned to each source value. For instance, 

features captured from the national cadastre have a 0.1 value for this criterion while 

features imported in OSM from CORINE Land Cover dataset (i.e. European land use 

dataset) have 0.7 value. 

The shortest edge criterion analyses the length of the shortest edge between two ver-

tices to infer granularity. It is a classical measure to assess building granularity in 

cartographic generalisation (Stöter and others 2010). It was also calibrated using 

OSM and French NMA datasets to obtain a piecewise function from  to [0,1]. 

The size criterion analyses the size of features to complete granularity inference. In-

deed, the presence of small features indicates high granularity. We used the legibility 

thresholds of eye perception to relate features size to the LoD categories. 

Finally, the coalescence criterion is dedicated to the inference of linear features 

granularity. It is based on the principle that if a linear feature symbol coalesces at a 

given symbol width (Figure 7), it means that the feature cannot be displayed at a 

scale that requires such a width for eye perception issues (Girres 2011). To relate 

symbol width to scale and then to LoD categories, we studied the symbols used in 

the French NMA map series. 

 

Figure 7. Linear granularity assessed by coalescence tests: (a) line has higher granu-

larity than (b) as it coalesces quicker when symbol width is increasing. 

In order to infer a feature LoD from the seven criteria, multiple criteria decision tech-

niques are required. The next section presents the multiple criteria decision method 

we used, ELECTRE TRI (Figueira, Mousseau and Roy 2005). 

3.2.2 Assessing LoD with ELECTRE TRI 

Multiple criteria decision analysis is a field of computer science that develops tech-

niques to make an appropriate decision based on multiple criteria. The decision can 

be: inferring the best element, sorting elements or classifying them. In our case, the 



decision we want to make is classify a feature into one of the LoD categories defined 

above. ELECTRE TRI is a multiple criteria decision method that classifies elements, 

using the principles of the ELECTRE multiple criteria decision methods (Figueira, 

Mousseau and Roy 2005). ELECTRE methods only compare elements criterion by 

criterion and do not compare values from different criteria (i.e. it does not compare 

apples with oranges). It was previously used in map generalisation by Taillandier 

and Taillandier (2012). 

The ELECTRE TRI method should be used when the following conditions are met 

(Figueira, Mousseau and Roy 2005): 

 Classification into ordered categories (e.g. from ‘street’ LoD to ‘country’ LoD. 

 More than 3 criteria (7 here). 

 Heterogeneous criteria (e.g. it is hard to compare the granularity and source crite-

ria). 

 For some criteria, a small value difference may be not significant, while the addi-

tion of several small differences may become significant. It compensates for the 

imprecision of our criteria. 

ELECTRE TRI classifies vectors of values for each criterion (the dimension of the vec-

tor is the number of criteria), which correspond to the measured criteria for a given 

feature. For each category, two vectors are defined representing the lower bound of 

the category and its upper bound. For instance, for the category ‘street LoD’, the ver-

tex density criterion value (vertex_density_value = (1 – vertexDensity)8  (Eq. 1) of 

the lower bound vector is 0 (it is the first category) and the value of the upper bound 

vector is 0.2. 

The ELECTRE TRI principle is to compare the vector for a given feature to the bound 

vectors of each category using an outranking relation: a feature is classified in a cate-

gory if its vector outranks the lower bound vector of the category and is outranked 

by the upper bound vector. The comparison of two vectors, i.e. the computation of 

the outranking relation, is inferred from the comparison of the vector value for each 

criterion alone, two different criteria values are never compared (Figure 8). For one 

criterion, a value can be preferred to the other or both are considered equivalent for 

this criterion. Using this preference, each criterion votes for the assertion “vector u 

outranks vector v” (Figueira, Mousseau and Roy 2005). 

 

Figure 8. In ELECTRE TRI, the comparison between two vectors (i.e. the outranking 

relation) is inferred from the comparisons for each criterion. 



In order to allow this comparison of values for a criterion despite their imprecision 

and fuzziness, four properties have to be added to criteria: 

 Weight: it conveys the importance of this criterion compared to the others. 

 Preference threshold: if the difference between values for this criterion is bigger 

than preference, the vector with bigger value is preferred considering this criteri-

on. It adjusts to the normalisation used for the criterion. For instance, vertex den-

sity has a 0.2 preference while size has a 0.5 preference. 

 Indifference threshold: if the difference between values for this criterion is less than 

indifference, both vectors are considered as equivalent for this criterion. For in-

stance, for shortest edge, a difference less than 0.25 is not significant. 

 Veto threshold: if the difference between values for this criterion is bigger than 

veto, than the vector with bigger value will always be preferred to the other, 

whatever the other criteria. For instance, size has a high veto threshold as it is 

never possible to infer LoD only with this criterion. 

The output of the ELECTRE TRI method for a given feature is its LoD category with 

a confidence rate on the classification, e.g. “this particular road feature has a topo-

graphic LoD with 80% confidence rate”.  

3.3 Spatial Relations Based LoD Inconsistencies Detection 

Taking into account spatial relations is fundamental in automatic mapmaking and 

generalisation (Duchêne, Ruas and Cambier 2012). Brando, Bucher and Abadie (2011) 

state that the identification of implicit spatial relations helps to define good specifica-

tions for VGI contributors. (Brando 2012) follows the idea proposing to add integrity 

constraints checking on spatial relations in VGI contributing software (e.g. verify that 

roads do not cross buildings or that bus stops are along roads). We believe that the 

same approach could be used to identify places where LoD heterogeneity is a prob-

lem for mapmaking. If two features should respect a spatial relation for integrity rea-

sons but do not, and if the features involved in the relation have a different LoD, 

there is a LoD inconsistency (Figure 9a). Conversely, if a forbidden spatial relation 

does exist with involved features having a different LoD, there is a LoD inconsisten-

cy (Figure 9d). 



 

Figure 9. (a) building should be inside built-up area. (b) no intersection between 

paths and lakes. (c) bus stop should be along the road. (d) a group of houses should 

be in a clearing ©OpenStreetMap. 

Therefore, the proposed method uses as parameters a set integrity spatial relations 

and automatically process features to identify instances of these relations between 

LoD different features. For instance, if the set of integrity relations contains the four 

spatial relations depicted in Figure 9, the method searches the instances of buildings 

just outside a built-up area, etc. The reification of relations follows Duchêne, Ruas 

and Cambier (2012) idea that defines spatial relations instances to guide generalisa-

tion. 

4 Application on OpenStreetMap Case Studies 

The criteria for individual LoD inference have been calibrated with features from 

zone 3 (see 2.2) and tested on both remaining zones. The method was implemented 

on CartAGen open source generalisation platform (Renard, Gaffuri and Duchêne 

2010). Figure 10 shows some of the automatic inferences on road, building, path or 

land use features. As expected land use parcels are classified as LoD 1 (street LoD) as 

they are imported from European dataset CORINE Land Cover. Buildings, imported 

from cadastral maps, are mostly classified as LoD 5, but large buildings, that have 

fewer details, have a lower LoD. Roads are classified heterogeneously: some very 



detailed features such as the cycle lanes at the bottom right of Figure 10 are classified 

as LoD 4, while straight important roads are classified as LoD 2. After evaluation of 

the zone, results comply with a visual assessment of LoD. 

 

Figure 10. Some results of individual LoD inference in zone 2. 

Figure 11 shows how buildings found in zone 2 can be classified into different LoDs, 

depending on their characteristics (only granularity, resolution and precision may 

vary here). 

 

Figure 11. Illustration of the individual LoD inference of some highlighted buildings 

in zone 2. 

Then, the four spatial relations from Figure 9 are selected as a set of relations to iden-

tify LoD inconsistencies: (i) building should be inside built-up area; (ii) no intersec-

tion between paths and lakes; (iii) bus stop should be along the road; (iv) a group of 

houses should be in a clearing. Instances of these relations between LoD inconsistent 

features were automatically computed in the case studies. Figure 12a shows a group 

of houses inside a forest whose LoD explains the lack of clearing around the group. 

Figure 12b shows buildings identified as lying just outside a low detail built-up area. 

Figure 12c shows with the red cross a bus stop too far to be along the road unlike the 

two at the bottom of the picture. Figure 12d shows a detailed footpath intersecting a 

low detail lake. 



 

Figure 12. Automatic detection of LoD inconsistencies for the four selected spatial 

relations (highlighted in red). 

5 Resolving LoD Inconsistencies 

Since LoD inconsistencies prevent good quality maps, strategies have to be devel-

oped to resolve the inconsistencies. When the aim is to make a map at a given scale 

from VGI, three strategies can be used. This section discusses the strategies but we 

have not implemented them yet. 

The first strategy would be to build a multiple-resolutions database (MRDB) out of 

the VGI dataset as proposed in (Müller and Wiemann 2012). It would allow adapting 

the displayed content to the representations corresponding to a given LoD. Building 

a MRDB would require matching techniques, maybe benefiting from linked data 

(Hahmann and Burghardt 2010). 

The second strategy would be the harmonisation of LoDs to the closest LoD to the 

map scale. When trying to make a map at a small scale, the harmonisation is the gen-

eralisation of the high LoD features, with specific constraints to correct the LoD in-

consistencies. When trying to make a map at a large scale, the harmonisation is the 

enhancement of the low LoD features that have LoD inconsistencies. Figure 13 shows 

a simple automatic tool we developed on CartAGen open source generalisation plat-

form (Renard, Gaffuri and Duchêne 2010), which enhances the built-up area LoD to 

put the buildings that should be in the area back into it: buffers are computed around 

the buildings belonging to the identified inconsistent relations and then merged with 



the built-up area. This tool is suited for harmonising undetailed areas that contain 

very detailed features and similar tools should be developed for the other types of 

LoD inconsistencies. 

 

Figure 13. Initial data (©OpenStreetMap) with several buildings outside a low LoD 

built-up area. The correction (automatically obtained) increases the built-up area LoD 

and includes the inconsistent buildings in it. 

The last strategy is to act when the VGI dataset is compiled, or updated, by automati-

cally proposing a reconciliation if the contribution introduces LoD inconsistency. 

Brando (2012) proposed a reconciliation tool to avoid integrity constraints violation 

during VGI contribution: for instance, it displaces the building off a road if a contri-

bution introduces a building on a road. Harmonisation tools could reconcile contri-

butions the same way for LoD inconsistencies, e.g. extend the built-up when a build-

ing is added near its limit. 

6 Conclusion and Future Work 

To conclude, the paper presented the problems raised by the LoD heterogeneity of 

VGI for mapmaking and proposed a method to infer the LoD of VGI features as a 

starting point for solving the problem. The method was successfully applied to 

French OpenStreetMap data. 

As pointed all along the paper, there is still a lot to do to handle LoD heterogeneity 

problems in automatic mapmaking procedures. First, it would be interesting to inte-

grate semantic resolution in LoD, using the ideas of Mooney and Corcoran (2012) on 

heavily edited OSM objects. Then, it is necessary to adjust LoD inferences consider-

ing populations and not only individual features. Clutter (i.e. visual overload, 

Rosenholtz, Li and Nakano 2007, Stigmar and Harrie 2011) or high local density of 

features should increase the LoD of the concerned features. Moreover, the techniques 

presented for correcting LoD inconsistencies are just basic ideas that require further 

research. Finally, it would be interesting to study the sensitivity of existing automatic 

generalisation procedures to data with LoD inconsistencies. It would help to identify 

the weaknesses of these procedures regarding LoD homogeneity and correct them 

like Stanislawski and others (2012) did for river network pruning.  
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