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Observer design for non-linear networked control systems with persistently exciting protocols Alejandro I. Maass, Dragan Nešić, Romain Postoyan, and Peter M. Dower

Abstract-We study the design of state observers for nonlinear networked control systems (NCSs) affected by disturbances and measurement noise, via an emulation-like approach. That is, given an observer designed with a specific stability property in the absence of communication constraints, we implement it over a network and we provide sufficient conditions on the latter to preserve the stability property of the observer. In particular, we provide a bound on the maximum allowable transmission interval (MATI) that guarantees an input-to-state stability (ISS) property for the corresponding estimation error system. The stability analysis is trajectory-based, utilises small-gain arguments, and exploits a persistently exciting (PE) property of the scheduling protocols. This property is key in our analysis and allows us to obtain significantly larger MATI bounds in comparison to the ones found in the literature. Our results hold for a general class of NCSs, however, we show that these results are also applicable to NCSs implemented over a specific physical network called WirelessHART (WH). The latter is mainly characterised by its multi-hop structure, slotted communication cycles, and the possibility to simultaneously transmit over different frequencies. We show that our results can be further improved by taking into account the intrinsic structure of the WH-NCS model. That is, we explicitly exploit the model structure in our analysis to obtain an even tighter MATI bound that guarantees the same ISS property for the estimation error system. Finally, to illustrate our results, we present analysis and numerical simulations for a class of Lipschitz non-linear systems and high-gain observers.

Index Terms-Networked control, Non-linear systems, Emulation, Observer design.

I. INTRODUCTION

Networked control systems (NCSs) have attracted global interest due to the features they offer, such as, ease of installation, lower cost and great flexibility. Nevertheless, new challenges arise in NCSs given the intrinsic limitations that come with communication networks, e.g. time-varying sampling, scheduling, transmission delays, packet dropouts and quantisation, among others. Although many solutions have been proposed to deal with these constraints, significant theoretical challenges in their analysis and design remain, see e.g. [START_REF] Heemels | Stability and stabilization of networked control systems[END_REF], [START_REF] Hespanha | A survey of recent results in networked control systems[END_REF].

We restrict our attention to the design of state observers that receive both sensor and actuator data through a communication network. In this context, we consider that the network is subject to scheduling constraints and time-varying sampling, i.e. only a subset of sensors/actuators is allowed to send their data to the observer at time-varying transmission instants. The sporadic and partial availability of data, which are respectively characterised by the maximum allowable transmission interval (MATI) and the scheduling protocol, requires the development of appropriate observer design tools. Relevant work available in the literature on observer design is listed as follows. In [START_REF] Dačić | Observer design for wired linear networked control systems using matrix inequalities[END_REF], sufficient conditions for the existence of an observerprotocol pair are derived in terms of matrix inequalities for linear systems. Motivated by the observer design of nonlinear sampled-data systems [START_REF] Karafyllis | From continuous-time design to sampleddata design of observers[END_REF], the authors in [START_REF] Postoyan | Observer design for classes of non-linear networked control systems[END_REF] derive an observation structure that ensures the global asymptotic stability of the origin of the observation error, when sensor measurements are subject to network-induced constraints. A framework for the synthesis of observers for non-linear NCSs has been proposed in [START_REF] Postoyan | A framework for the observer design for networked control systems[END_REF], via an emulaton-like approach, that encompasses the methods proposed in [START_REF] Karafyllis | From continuous-time design to sampleddata design of observers[END_REF] and [START_REF] Postoyan | Observer design for classes of non-linear networked control systems[END_REF] as particular cases. Provided that the continuous-time observer is sufficiently robust to measurement errors, sufficient conditions in terms of MATI bounds are given to guarantee the global convergence of the observation error for various in-network processing and Lyapunov uniformly globally exponentially stable (UGES) protocols. Newer results on observer design of NCSs that rely on a Lyapunov-based analysis can be found in [START_REF] Postoyan | Tracking control for nonlinear networked control systems[END_REF], in which the authors obtained a new MATI bound via an emulation procedure and a class of protocols that includes uniformly globally asymptotically stable (UGAS) protocols. The design of reduced-order observers via emulation in NCSs is studied in [START_REF] Postoyan | On emulated nonlinear reduced-order observers for networked control systems[END_REF].

In this paper, we propose a framework for observer design in non-linear NCSs via an emulation-like approach. Within this framework, plants whose dynamics are affected by disturbances and measurement noise are considered, which are more general and induce additional technical difficulties compared with the aforementioned literature. In [START_REF] Postoyan | A framework for the observer design for networked control systems[END_REF]- [START_REF] Postoyan | On emulated nonlinear reduced-order observers for networked control systems[END_REF], the UGES/UGAS property imposed on the protocols was shown to be key in the convergence of the estimation error. However, this property is quite strong as it requires more information than is typically available (NCS state information). A less restrictive property on the protocol is the one called persistence of excitation (PE), which was introduced in [START_REF] Tabbara | Stability of wireless and wireline networked control systems[END_REF] and translates into the existence of a fixed number of transmissions T within which all nodes of the NCS have transmitted. Whenever T is known, we say that the protocol is P E T . This property turns out to be more natural in the context of real networks. In particular, PE is verified by many network technologies [START_REF] Tabbara | Stability of wireless and wireline networked control systems[END_REF], such as Ethernet, IEEE 802.11, and IEEE 802.15.4 standard, including WirelessHART (WH) networks [START_REF] Maass | Lp stability of networked control systems implemented on WirelessHART[END_REF] discussed further below. Under PE protocols and other reasonable conditions, we provide a bound on the MATI that guarantees an input-to-state stability property for the estimation error system. More importantly, we illustrate via examples that our proposed bound is less conservative than the bound in [START_REF] Postoyan | A framework for the observer design for networked control systems[END_REF], which is mainly due to the PE property and the use of less conservative properties on the network-induced error dynamics.

In addition, we show that our framework can be used to study observer design of NCSs over WH networks. WH is a recent wireless communication protocol used in process automation. WH is a mesh network, which utilises field devices in a multi-hop fashion. Such devices act as buffers to forward data packets. Communications are precisely scheduled using time division multiple access, and using up to 15 available frequency channels for simultaneous transmissions. Existing results concerning estimation over WH can be found in e.g. [START_REF] Demirel | Modular design of jointly optimal controllers and forwarding policies for wireless control[END_REF], [START_REF] Pesonen | Stochastic estimation and control over WirelessHART networks: Theory and implementation[END_REF]. These works consider linear and discrete-time plant/observer models, together with equidistant transmission instants. Such assumptions may be hard to implement in real WH networks, where extra features need to be taken into consideration. NCSs implemented over WH, which we called WH-NCSs, have models that possess a very particular structure. In our previous work [START_REF] Maass | Lp stability of networked control systems implemented on WirelessHART[END_REF], we studied controller design of WH-NCSs over PE protocols. We showed that exploiting this WH network structure was key to obtaining less conservative MATI bounds in that context. In this current work, and inspired by [START_REF] Maass | Lp stability of networked control systems implemented on WirelessHART[END_REF], we use similar techniques in the context of observer design to show that exploitation of WH network structure yields less conservative MATI bounds guaranteeing an ISS property for the estimation error system. Moreover, we improve our previous results in [START_REF] Maass | Observer design for networked control systems implemented over WirelessHART[END_REF], where we used UGES protocols and Lyapunov-based analysis in the observer design problem over WH-NCSs. Finally, we illustrate our results in the design of high gain observers for a class of Lipschitz non-linear systems.

The primary contributions of this paper are summarised as follows:

1) We extend [START_REF] Postoyan | A framework for the observer design for networked control systems[END_REF] by considering non-linear systems with control inputs and measurement noise, and by imposing a less restrictive and more natural property on the protocols, namely PE (as opposed to UGES). 2) We derive an easily computable MATI bound that guarantees that an attendant estimation error system satisfies an ISS property, contingent upon the observer of interest satisfying a global asymptotic stability property in the absence of the network. This MATI bound is demonstrably less conservative than the bound proposed in [START_REF] Postoyan | A framework for the observer design for networked control systems[END_REF]. 3) We show that our results can be used to study WH-NCSs, which have a specific structure in their model. Such structure is exploited in our analysis to further reduce conservatism, yielding an even larger MATI bound. Moreover, we illustrate in examples that this bound is significantly larger than the bound proposed in [START_REF] Maass | Observer design for networked control systems implemented over WirelessHART[END_REF].

The paper is organised as follows: Preliminaries are presented in Section II. The problem is stated in Section III. Section IV presents the overall NCS model and the results for such model are derived in Section V. We then study WH-NCSs in Section VI. In Section VII, we apply our results to a class of Lipschitz non-linear systems and illustrate this application via a numerical simulation. Lastly, we draw conclusions in Section VIII.

II. PRELIMINARIES A. Notation

Denote by R the set of real numbers, R n the set of all real vectors with n components, and R m×n the set of all real matrices of dimension m × n. Let A n ≥0 denote the set of all n × n matrices with non-negative entries, and let R n

≥0 denote the non-negative orthant of R n . Let R ≥0 . = [0, ∞), R >0 . = (0, ∞), Z ≥0 . = {0, 1, 2, . . . }, and N . = {1, 2, 3, . . . }. Given a ∈ (0, ∞], a function α : [0, a) → R ≥0 is of class K if it is continuous, zero at zero and strictly increasing. It is of class K ∞ if it is of class K with a = ∞, and unbounded. For a, b ∈ (0, ∞], a function γ : [0, a) × [0, b) → R ≥0 is of class KK if, for any (s 1 , s 2 ) ∈ [0, a) × [0, b), γ(s 1 , •) and γ(•, s 2 ) are of class K. A continuous function β : R ≥0 × R ≥0 → R ≥0 is of class KL if β(•, t) is of class K for each t ≥ 0,
and if β(s, •) is non-increasing and satisfies lim t→∞ β(s, t) = 0 for each s ≥ 0. Given t ∈ R and a piecewise continuous function f : R → R n , we use the notation f (t + ) . = lim s→t,s>t f (s). Given an initial time t 0 ∈ R ≥0 , the corresponding initial condition (or value) of a variable x is denoted by x 0 = x(t 0 ). For simplicity, we use (x, y)

.

= [x T y T ] T ∈ R n+m , for any x ∈ R n and y ∈ R m . For x = (x 1 , . . . , x n ) ∈ R n , we define |x| . = n i=1 |x i | 2 1/2
. The same notation is used to denote the induced 2-norm of a matrix. λ min (•) and λ max (•) denote the smallest and largest eigenvalue of a real symmetric matrix, respectively. We use 

I N n . = [I n • • • I n ] N to denote the matrix [I n • • • I n ] ∈ R n×N n .
(i) = 1 if i ∈ S, and 1 S (i) = 0 if i / ∈ S. Given a (Lebesgue) measurable function f : R → R n , f Lp . = R |f (s)| p ds 1/p , for p ∈ N, f L∞ . = ess sup t∈R |f (t)|, and f L∞[a,b] . = ess sup t∈[a,b] |f (t)|. We say that f ∈ L p for p ∈ [1, ∞] whenever f Lp < ∞. Given [a, b] ⊂ R, we use the notation f Lp[a,b] . = [a,b] |f (s)| p ds 1/p , to denote the L p norm of f when restricted to the interval [a, b]. Given x = (x 1 , . . . , x n ), y = (y 1 , . . . , y n ) ∈ R n ,
a partial order is given by x y ⇐⇒ x i ≤ y i , for all i ∈ {1, . . . , n}. An analogous partial order on elements of A n ≥0 is defined in the natural way, i.e. A B ⇐⇒ B -A ∈ A n ≥0 .

B. Underlying system and stability notions

Consider the jump-flow (hybrid system) model Σ,

ẋ = f (t, x, w), t ∈ [t i , t i+1 ], (1a) x(t + i ) = h(i, x(t i )), (1b) y = H(t, x), ( 1c 
)
where x ∈ R nx is the state, w ∈ R nw is an exogenous perturbation, y ∈ R ny is a prescribed output, n x , n w , n y ∈ N, and {t i } i∈N is a sequence of increasing time instants such that, for some τ ∈ R and ε > 0, ε ≤ t i+1 -t i ≤ τ < ∞ for all i ∈ N. Suppose Σ is initialised at (t 0 , x 0 ). For a given w, we assume enough regularity on f and h to guarantee existence of the solution x(•) = x(•, t 0 , x 0 , w) on the interval of interest, see e.g. [START_REF] Filippov | Differential equations with discontinuous righthand sides: control systems[END_REF]. By a solution we mean a (not necessarily unique) function x(•) such that ẋ(t) = f (t, x(t), w(t)) for almost all t ∈ [t i , t i+1 ], satisfying (1b). A solution x(t, t 0 , x 0 , w), t ∈ [t k , t k+1 ) can be constructed inductively by integrating (1a) from (t k , h(k, x(t k ))). This construction forgoes the discussion of the maximum interval of definition, for which we refer the reader to [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF]. We now define the stability notions used throughout this paper.

Definition 1: Let p ∈ N ∪ {+∞} and γ ≥ 0 be given. We say that Σ is L p stable from w to y with gain γ if there exists

K ≥ 0 such that y Lp[t0,t] ≤ K|x 0 | + γ w Lp[t0,t] for all t ≥ t 0 ≥ 0, w ∈ L p [t 0 , t] and x 0 ∈ R nx .
Definition 2: We say that system Σ is input-to-output stable (IOS) from w to y if there exist β ∈ KL and γ ∈ K such that |y(t)| ≤ β(|x 0 |, t -t 0 ) + γ( w L∞[t0,t] ) for all t ≥ t 0 ≥ 0, w ∈ L ∞ and x 0 ∈ R nx . If y = x then system Σ is input-tostate stable (ISS) w.r.t. w. If γ(•) is a linear function, then we say that the system Σ is IOS (ISS) with linear gain γ.

Definition 3: We say that system Σ is bounded-input bounded-state (BIBS) with input w if there exist α, γ ∈ K,

such that |x(t)| ≤ α(|x 0 |) + γ( w L∞[t0,t] ) for all t ≥ t 0 ≥ 0, w ∈ L ∞ and x 0 ∈ R nx . III. PROBLEM STATEMENT Consider a non-linear plant ẋp = f (x p , u, w), y = g(x p ) + v, (2) 
where x p ∈ R nx is the state, u ∈ R nu is the control input, w ∈ R nw is the external disturbance, y ∈ R ny is the plant output affected by the noise v ∈ R ny , and n x , n u , n w , n y ∈ N. To ease notation, we suppress the time-dependence of the variables in [START_REF] Hespanha | A survey of recent results in networked control systems[END_REF]. The functions u : R → R nu and v : R → R nv are assumed to be Lebesgue measurable and differentiable almost everywhere. Moreover, these functions and their timederivatives are assumed to have a finite L ∞ norm. We assume an observer has been designed for the above plant and has the form

ż = f z (z, u, y -y z ), xp = g z (z), y z = g(x p ), (3) 
where z ∈ R nz is the observer state, n z ∈ N, xp ∈ R nx is the estimate of the state x p , and y z ∈ R ny is the output estimate. Notice that we allow the dimension of the observer to be bigger than the system dimension, hence covering immersionbased observers for instance. It is implicit in (3) that we measure u and y, whereas w and v are unmeasured. The stability property we will prove is natural for this setting.

We study the scenario depicted in Fig. 1, in which the plant communicates with the observer over a communication network. In particular, the control signal u is directly available to the plant and transmitted to the observer via the network. We denote the control signal received by the observer by û. The noisy output y is also transmitted to the observer via the network. The output received by the observer is likewise denoted by ŷ. We emphasize that the observer has no longer access to (u, y) as in classical control theory, but to their networked versions (û, ŷ).

Under the setup described above, our main objective is to provide conditions on the observer and the network, in particular on the scheduling protocols and the MATI, under which the state estimate xp (approximately) converges to the state of the plant x p .

IV. NCS MODELLING

A. Network model

We consider a scenario where the sensors and actuators of the plant (2) are grouped into nodes (depending on their spatial location) which are connected to the network. At each transmission instant t i , i ∈ N, only one node is granted access to the network by the scheduling protocol. The transmission sequence {t i } i∈N is such that ε ≤ t i+1 -t i ≤ τ for all i ∈ N, where τ ∈ R >0 is the MATI and ε is the lower bound on the minimum achievable transmission interval given by the hardware constraints (see, e.g. [START_REF] Maass | Lp stability of networked control systems implemented on WirelessHART[END_REF], [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF], [START_REF] Wang | Observer design for networked control systems with FlexRay[END_REF]). Notice that the transmission intervals t i+1 -t i may be time-varying and uncertain. In fact, the stability results we present later in this paper hold even if we do not exactly know the transmission interval at each time instant, as these results will be given in terms of the MATI. Moreover, the emulated observer does not need to know the exact value of the transmission instant to be implemented.

We next present the dynamics of the networked versions of y and u, that is ŷ and û, respectively. Let (y, u) = (y 1 , . . . , y ny , u 1 , . . . , u nu ) and (ŷ, û) = (ŷ 1 , . . . , ŷny , û1 , . . . , ûnu ). Suppose that the node j ∈ {1, . . . , }, ∈ {1, . . . , n y + n u }, is selected by the protocol at time t i , i ∈ N, and say that the components y jy and u ju of y and u, respectively, are associated to node j, with j y ∈ {1, . . . , n y } and j u ∈ {1, . . . , n u }. Then,

ŷjy (t + i ) = y jy (t i ), ûju (t + i ) = u ju (t i ), (4) 
while for all other components of ŷ and û,

ŷky (t + i ) = ŷky (t i ), ûku (t + i ) = ûku (t i ), (5) 
where k y ∈ {1, . . . , n y } and k u ∈ {1, . . . , n u } satisfy k y = j y and k u = j u . This means that the components of ŷ and û corresponding to the j-th node are updated and the other components are kept unchanged. Between transmission instants, ŷ and û are generated according to the in-network processing implementation. For simplicity, we use zero-order hold devices which translates into ẏ = 0 and u = 0 for t ∈ [t i , t i+1 ] and i ∈ N.

B. Observer implementation over the network

When the observer ( 3) is implemented over the network, it no longer receives (y, u) but (ŷ, û), which is generated from the most recently transmitted measurement and control input as per Section IV-A. The dynamics of the observer now become

ż = f z (z, û, ŷ -ŷz ). (6) 
Furthermore, we note that ( 6) does not depend on its output y z , as in ( 3), but on ŷz , which is an artificially introduced networked version of y z . The idea of using ŷz instead of y z was suggested in [7, Section VIII] and it allows stronger stability properties for the estimation error system to be established. A similar idea is proposed in [START_REF] Ahmed-Ali | High gain observer design for some networked control systems[END_REF] for the design of high-gain observers.

The variable ŷz is constructed to evolve along the same vector field as ŷ between two successive transmission instants, i.e. ẏz = 0 for t ∈ [t i , t i+1 ]. Let y z = (y z,1 , . . . , y z,ny ) and ŷz = (ŷ z,1 , . . . , ŷz,ny ). At each transmission of a component of ŷ, say ŷjy with j y ∈ {1, . . . , n y }, the corresponding component of ŷz , that is ŷz,jy , is reset to y z,jy , that is

ŷz,jy (t + i ) = y z,jy (t i ), if ŷjy (t + i ) = y jy (t i ), ŷz,jy (t i ), otherwise. (7) 

C. Scheduling protocols

For the sake of analysis, we introduce the network-induced errors on the plant output e y .

= ŷ-y, and the input e u . = û-u. To be consistent, we also define a network-induced error on the observer output e yz .

= ŷz -y z . Using these definitions, we rewrite (6) as

ż = f z (z, u + e u , y -y z + e y -e yz ). (8) 
We can see that the dynamics of the observer are affected by e y -e yz and e u , thus we define the overall network-induced error as e .

= (e y -e yz , e u ). This error is useful to model the scheduling mechanism of the network. That is, considering (4), ( 5) and ( 7), we can model transmissions by the so-called protocol equation below

e(t + i ) = (I -Ψ(i))e(t i ), (9) 
where Ψ is a time-varying matrix such that if the j-th node gets access to the network at time instant t i , then the corresponding error component is reset to zero, i.e. e j (t + i ) = 0. For simplicity, we concentrate on static protocols, i.e. protocols in which Ψ is independent of e. This can be easily extended to cover dynamic protocols, where Ψ is allowed to depend on e, similarly to [START_REF] Tabbara | Stability of wireless and wireline networked control systems[END_REF]. As foreshadowed in the introduction, we would like to implement scheduling protocols that are PE.

Assumption 1: The protocol ( 9) is said to be persistently exciting in T (P E T ) if there exists T ∈ N such that i+T -1 k=i (I -Ψ(k)) = 0, for every i ∈ N. This property means that there is a fixed (finite) number of transmissions T such that all nodes of the NCS have transmitted within T transmissions. It is shown in [START_REF] Tabbara | Stability of wireless and wireline networked control systems[END_REF], for the controller design of NCSs, that protocols satisfying the P E T property lead to the L p stability of the closed-loop for high enough transmission rates. In this work, we use this property to ensure that the state estimate (approximately) converges to the state of the plant under high enough transmission rates. We next include an example of a P E T protocol that can be implemented in NCSs. A more detailed study of persistently exciting protocols is provided in [START_REF] Tabbara | Stability of wireless and wireline networked control systems[END_REF], where more examples can be found. In physical networks such as WH, examples of P E T protocols can be found in [START_REF] Maass | Lp stability of networked control systems implemented on WirelessHART[END_REF].

Example 1 (Round-Robin): Round-robin scheduling is employed in the token ring and token bus network protocols [START_REF] Wheels | Process control communications: Token bus, CSMA/CD, or token ring?[END_REF]. Nodes in the network are visited in a predetermined and cyclic manner [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF]. For this scheduling protocol, we have that Ψ in ( 9) is defined as

Ψ(i) . = diag {δ 1 (i)I n1 , . . . , δ (i)I n }, i ∈ N, where I ns is the identity matrix of dimension n s ∈ N, s ∈ {1, . . . , }, with s=1 n s = n e .
= n y + n u , and δ s (i) = 1 if i = s + σ , σ ∈ Z ≥0 , or δ s (i) = 0 otherwise. By following similar lines as in Lemma 11 in [START_REF] Maass | Lp stability of networked control systems implemented on WirelessHART[END_REF], it is straightforward to show that the round-robin protocol satisfies Assumption 1 with T = .

D. Hybrid model

We are now in a position to present the hybrid model for the NCS in Fig. 1. We introduce for this purpose the estimation error χ . = x p -xp , and d . = (d u , d v ), where d u and d v denote the time derivative of the input signal u and of the noise v, respectively. Then, by using (2), ( 3), ( 8), ( 9), we have that

χ = f χ (χ, z, e, u, v, w), ∀t ∈ [t i , t i+1 ], (10a) ż = f z (χ, z, e, u, v), ∀t ∈ [t i , t i+1 ], (10b) ė = g e (χ, z, e, u, v, w, d), ∀t ∈ [t i , t i+1 ], (10c) 
χ(t + i ) = χ(t i ), (10d) z(t + i ) = z(t i ), (10e) e(t + i ) = (I -Ψ(i))e(t i ), (10f) 
where f χ , f z and g e are defined in [START_REF] Demirel | Modular design of jointly optimal controllers and forwarding policies for wireless control[END_REF]. Note that we are interested in different properties for the χ-system and the zsystem. In particular, we want to prove a convergence property for the observation error χ, but only some well defined or bounded behaviour for all time is desired for the observer state z.

V. NCS STABILITY In this section, we use the model [START_REF] Maass | Lp stability of networked control systems implemented on WirelessHART[END_REF] to obtain a bound on the MATI that guarantees an ISS stability property for the

f χ (χ, z, e, u, v, w) . = f (χ + g z (z), u, w) - ∂g z ∂z f z (z, u + e u , g(χ + g z (z)) + v -g(g z (z)) + e y -e yz ) , (11a) 
f z (χ, z, e, u, v) . = f z (z, u + e u , g(χ + g z (z)) + v -g(g z (z)) + e y -e yz ) , (11b) 
g e (χ, z, e, u, v, w, d) . = - ∂g ∂x p f (χ + g z (z), u, w) -d v + ∂g ∂ xp ∂g z ∂z f z (z, u + e u , g(χ + g z (z)) + v -g(g z (z)) + e y -e yz ), -d u . (11c) 
estimation error system. Before presenting the main results of this section, we list our assumptions. Assumption 2: There exist a matrix A ∈ A ne ≥0 and a continuous function ỹ :

R nx ×R nz ×R nu ×R nv ×R nw ×R nu+nv → R ne ≥0 such that the error dynamics (10c) satisfy 1 ḡe (χ, z, e, u, v, w, d) Aē + ỹ(χ, z, u, v, w, d), (12) 
for all χ ∈ R nx , z ∈ R nz , e ∈ R ne , u ∈ R nu , v ∈ R nv , w ∈ R nw , and d ∈ R nu+nv .
Assumption 2 is the vector analogue of the dissipation-type inequality used in Assumption 3 in [START_REF] Postoyan | A framework for the observer design for networked control systems[END_REF]. A similar assumption was used in the context of controller design for NCSs in [START_REF] Tabbara | Stability of wireless and wireline networked control systems[END_REF], [START_REF] Maass | Lp stability of networked control systems implemented on WirelessHART[END_REF]. We further assume the following. Assumption 3:

There exist γ χ 2 ∈ R ≥0 and σ ∈ K ∞ such that ỹ in (12) satisfies |ỹ(χ, z, u, v, w, d)| ≤ γ χ 2 |χ| + σ(|(u, v, w, d)|), for all χ ∈ R nx , z ∈ R nz , u ∈ R nu , v ∈ R nv , w ∈ R nw , and d ∈ R nu+nv .
In addition, we assume the designed observer (3) ensures some global asymptotic stability property in the absence of the network, disturbances and noises.

Assumption 4: There exist β 1 ∈ KL, γ e 1 ∈ R ≥0 and µ ∈ K ∞ such that, for any χ 0 ∈ R nx and (e, v, w) ∈ L ∞ , solutions to (10a) satisfy

|χ(t)| ≤ β 1 (|χ 0 |, t -t 0 ) + γ e 1 e L∞[t0,t] + µ (v, w) L∞[t0,t] , (13) 
for all t ≥ t 0 ≥ 0. This type of ISS condition has already been used for observer design in sampled-data systems and NCSs [START_REF] Karafyllis | From continuous-time design to sampleddata design of observers[END_REF], [START_REF] Postoyan | Observer design for classes of non-linear networked control systems[END_REF], respectively. A similar assumption can be found in the control of non-linear NCSs [START_REF] Maass | Lp stability of networked control systems implemented on WirelessHART[END_REF], [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF]. Note that the bound on ỹ and χ in Assumptions 3 and 4, respectively, are independent of z. These assumptions hold for Lipschitz non-linear systems, and for high-gain observers, circle criterion observers, and those observers whose design is based on linear parameter-varying techniques, see e.g. [START_REF] Rajamani | Observers for Lipschitz nonlinear systems[END_REF]- [START_REF] Khalil | Nonlinear control[END_REF]. We provide one example in Section VII. Assumptions 3 and 4 can be relaxed so that they also depend on z, as we later show in Theorem 2, at the expense of getting practical convergence w.r.t. MATI.

Given Assumptions 2-4, the stability of χand e-dynamics can be investigated separately from the system interconnection [START_REF] Maass | Lp stability of networked control systems implemented on WirelessHART[END_REF]. Note that we are only interested in the stability of the aforementioned dynamics and the z-dynamics are not expected to converge. In that way, it is only left to assume that the observer dynamics behave nicely, i.e. no finite escape behaviour for bounded control inputs, noises, and errors.

Assumption 5: System (10b) is forward complete with input (χ, e, u, v, w) ∈ L ∞ [START_REF] Angeli | Forward completeness, unboundedness observability, and their Lyapunov characterizations[END_REF]. That is, there exist ν 1 , ν 2 , ν 3 ∈ K and c ∈ R ≥0 such that, for any

z 0 ∈ R nz and (χ, e, u, v, w) ∈ L ∞ , |z(t)| ≤ ν 1 (t)+ν 2 (|z 0 |)+ν 3 ( (χ, e, u, v, w) L∞[t0,t]
)+c, for all t ≥ t 0 ≥ 0. Note that Assumption 5 can be written in terms of forward completeness of the plant, provided extra assumptions on g z in (3) are asserted. In particular, recalling that χ = x p -g z (z), Assumption 5 implies forward completeness of the plant via Assumption 4 if g z is continuous. Assumption 5 is also equivalent to the forward completeness of the plant if g z is invertible.

We are now ready to state the results of this section. The main underlying idea is to consider system [START_REF] Maass | Lp stability of networked control systems implemented on WirelessHART[END_REF] as the interconnection of three subsystems in χ, z and e, and apply smallgain arguments to conclude a certain stability property for the overall system. The proofs can be found in the Appendix.

Proposition 1: Suppose Assumptions 1 and 2 hold. If MATI satisfies τ ∈ [ε, τ * e ), where τ * e = ln(2)/(|A|T ), then the system (10c), (10f) is IOS from ỹ to e, where ỹ is per Assumption 2, with linear gain

γ(τ ) = T exp(|A|(T + 1)τ )(exp(|A|τ ) -1) |A| (2 -exp(|A|T τ )) . ( 14 
)
Theorem 1: Suppose Assumptions 1-5 hold. Let x be the solution of (i) There exist β ∈ KL, η 1 ∈ K and η 2 ∈ KK such that, for all (χ 0 , e 0 ) ∈ R nx+ne and

γ χ 2 γ e 1 T x 1+2/T -γ χ 2 γ e 1 T x 1+1/T + |A|x -2|A| = 0, (15) 
(u, v, w, d) ∈ L ∞ , |(χ(t), e(t))| ≤ β(|(χ 0 , e 0 )|, t -t 0 ) + η 1 ( (v, w) L∞ ) + η 2 (τ, (u, v, w, d) L∞ ) (16)
holds for all t ≥ t 0 ≥ 0. (ii) System ( 10) is forward complete with input (u, v, w, d) ∈ L ∞ . We can see from Theorem 1 that the estimation error χ and the network-induced error e converge to a ball centred at the origin and whose radius depends on the L ∞ norm of the input (u, v, w, d). We can see that χ and e do not a priori converge to the origin even when w = v = 0, since in this case we have that

|(χ(t), e(t))| ≤ β(|(χ 0 , e 0 )|, t -t 0 ) + η 2 (τ, (u, d u ) L∞ ).
However, we can always reduce τ so that η 2 is small, and thus the effect of (u, d u ) is reduced. In the absence of inputs, i.e. w = v = u = 0, the estimation error indeed asymptotically converges to the origin.

The dependence on the control input u in ( 16) may look surprising a priori. This comes directly from Assumption 2 and the definition of g e in [START_REF] Maass | Lp stability of networked control systems implemented on WirelessHART[END_REF], i.e. the network-induced error dynamics. As we already mentioned, this term can be made small by reducing MATI. However, this dependence can also be removed for certain particular cases, which our general setup covers. For instance, given a linear system and a fullstate Luenberger observer, g e would only depend on e u and not u. Also, if the observer is collocated with the controller such that it has direct access to u, then g e would not depend on u explicitly. On the other hand, the use of in-network processing algorithms such as the predictive-type or model-based holding functions [START_REF] Karafyllis | From continuous-time design to sampleddata design of observers[END_REF]- [START_REF] Postoyan | A framework for the observer design for networked control systems[END_REF] may overcome this issue, which is outside the scope of this paper.

In the following, we relax Assumptions 3 and 4, and state the corresponding stability result. That is, we replace Assumptions 3 and 4 with two new assumptions with weaker assertions. The proof follows similar steps as the proof of Theorem 1, and it is thus omitted.

Assumption 6:

There exist γ χ 2 , γ z 2 ∈ R ≥0 and σ ∈ K ∞ such that ỹ in (12) satisfies |ỹ(χ, z, u, v, w, d)| ≤ γ χ 2 |χ| + γ z 2 |z| + σ(|(u, v, w, d)|), for all χ ∈ R nx , z ∈ R nz , u ∈ R nu , v ∈ R nv , w ∈ R nw , and d ∈ R nu+nv .
Assumption 7: There exist β 1 ∈ KL, γ e 1 ∈ R ≥0 and µ ∈ K ∞ such that, for any (χ 0 , z 0 ) ∈ R nx+nz and (e, v, w) ∈ L ∞ , solutions to (10a) satisfy

|χ(t)| ≤ β 1 (|(χ 0 , z 0 )|, t -t 0 ) + γ e 1 e L∞[t0,t] + µ( (v, w) L∞[t0,t] ),
for all t ≥ t 0 ≥ 0. By relaxing Assumptions 3 and 4, we can no longer analyse (χ, e)-dynamics separately from the whole system [START_REF] Maass | Lp stability of networked control systems implemented on WirelessHART[END_REF]. That is, assuming forward completeness of z-dynamics in (10b) is not enough. However, it is sufficient to assume a boundedness property for the state of system (10b), which acts as a replacement of Assumption 5.

Assumption 8: There exist α 3 ∈ K, γ e 3 ∈ R ≥0 and µ z ∈ K ∞ such that, for all (χ 0 , z 0 ) ∈ R nx+nz and (e, u, v, w) ∈ L ∞ , the following holds along solutions to (10b),

|z(t)| ≤ α 3 (|(χ 0 , z 0 )|) + γ e 3 e L∞[t0,t] + µ z ( (u, v, w) L∞[t0,t]
), for all t ≥ t 0 ≥ 0.

Replacing Assumptions 3, 4, 5 with 6, 7, 8 subsequently yields the following replacement for Theorem 1.

Theorem 2: Suppose Assumptions 1, 2, 6, 7 and 8 hold. Let x be the solution of

(γ χ 2 γ e 1 + γ z 2 γ e 3 )T x 1+2/T -(γ χ 2 γ e 1 + γ z 2 γ e 3 )T x 1+1/T + |A|x -2|A| = 0, (17) with x ∈ [1, 2], and define τ * = ln(x)/(|A|T ). If τ ∈ [ε, τ * ),
then the following holds.

(i) There exist β ∈ KL, η 1 ∈ K and η 2 , η ∈ KK such that, for any ∆ ∈ R ≥0 , (χ 0 , e 0 , z 0 ) ∈ R nx+ne+nz with |(χ 0 , e 0 , z 0 )| < ∆, and

(u, v, w, d) ∈ L ∞ , |(χ(t), e(t))| ≤ β(|(χ 0 , e 0 , z 0 )|, t -t 0 ) +η 1 ( (v, w) L∞ )+η 2 (τ, (u, v, w, d) L∞ )+ η(τ, ∆),
holds for all t ≥ t 0 ≥ 0. (ii) System ( 10) is BIBS with (u, v, w, d) as input. Theorem 2 is more general than Theorem 1. We can see that even if w = v = u = 0, the estimation error does not converge to the origin a priori, but to a ball centred at 0 with radius η(τ, ∆). However, for a given ∆, η(τ, ∆) can still be made small by reducing MATI. This implies a trade-off between the domain of attraction, transmission rate, and estimation error bound. That is, an increase in ∆ and a decrease in η requires a decrease in τ .

Remark 1: Note that Assumptions 2-8 lead to global stability results in Theorems 1 and 2, hence why they can be strict. However, these can be further relaxed by following the same steps the authors in [START_REF] Nešić | Input-to-state stability of networked control systems[END_REF] made to extend the global results in [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF] to semi-global practical results for controller design. The drawback of doing this extension is that the explicit formula to compute MATI in Theorems 1 and 2 would be lost. We could make a less general extension in which it is possible to relax the current assumptions to hold semi-globally or practically, in which case explicit MATI bounds would be possible to derive. However, this would induce technicalities that would obstruct the main message of this paper. In fact, as this is the first paper on observer design for non-linear systems under persistently exciting protocols, we present global results as a foundation for more general future work.

VI. APPLICATION TO WIRELESSHART-NCSS

In this section, we present our results on observer design for WH-NCSs. We show that, exploiting the structure that WH provides, less conservative MATI bounds can be computed.

A. WH-NCS Model

Consider Fig. 2, in which the generic network of Fig. 1 has been replaced by a WH network (we refer the reader to [START_REF] Maass | Lp stability of networked control systems implemented on WirelessHART[END_REF], [START_REF] Group | HART Communication Protocol[END_REF], [START_REF] Maass | Emulationbased stabilisation of networked control systems over WirelessHART[END_REF] for a better understanding of WH and its features). We consider y ∈ Z ≥0 field devices interconnected in the ypath and u ∈ Z ≥0 in the u-path. We label the field devices as D y α and D u β , where α = 1, . . . , y and β = 1, . . . , u . For each field device, its inputs and outputs are depicted in Fig. 2. Note that the signals that actually reach the observer in Fig. 2, i.e. y y and u u , are denoted as ŷ and û, to be consistent with Fig. 1 and existent NCS literature. We model field devices as buffers, for which we introduce a buffer state variable, denoted by b y α and b u β for field devices in the ypath and u-path, respectively. In the following, we explain the reception and transmission behaviour of field devices, and we present the equations associated with this process.

Reception: Suppose a field device D y α receives a packet at time instant t i . Then, D y α updates the content of its buffer via its input. During this process, the output of D y α remains unchanged. We write this as follows,

ẏα (t) = 0, t ∈ [t i , t i+1 ], (18a) ḃy α (t) = 0, t ∈ [t i , t i+1 ], (18b) b y α (t + i ) = y α-1 (t + i ), (18c) y α (t + i ) = y α (t i ), (18d) 
for all α = 1, . . . , y . Note that y 0 ≡ y for α = 1, i.e. device one samples the value of the plant output.

Transmission: Suppose a field device D y α is scheduled to transmit at time instant t i . Here, D y α sends the content of its buffer through its output, and keeps it until a new packet is received. This can be written as follows,

ẏα (t) = 0, t ∈ [t i , t i+1 ], (19a) ḃy α (t) = 0, t ∈ [t i , t i+1 ], (19b) y α (t + i ) = b y α (t i ), (19c) b y α (t + i ) = b y α (t i ), (19d) 
for all α = 1, . . . , y .

As we did for the generic network in Section IV-D, we need to introduce appropriate network-induced errors for the WH case. That is, we introduce errors for the y-path and u-path, which we denote by

ζ y ∈ R n ζ y , n ζ y . = 2 y n y , and ζ u ∈ R n ζ u , n ζ u . = 2 u n u , respectively. ζ y . = b y 1 -y, b y 2 -y 1 , . . . , b y y -y y -1 , y 1 -b y 1 , y 2 -b y 2 , . . . , y y -b y y , (20a) 
ζ u . = b u 1 -u, b u 2 -u 1 , . . . , b u u -u u -1 , u 1 -b u 1 , u 2 -b u 2 , . . . , u u -b u u . (20b) 
The first components of ζ , ∈ {y, u}, are related to the buffer update during reception. The remaining components of ζ are related to the transmission of such buffer value through their output. In particular, we will reset to zero these errors to model reception and transmission. This is a major difference with previous models of non-linear NCSs treated in Section IV or the literature [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF], [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF], [START_REF] Walsh | Asymptotic behavior of nonlinear networked control systems[END_REF], where the network-induced error for the plant output and input are given by e y = ŷ -y and e u = û -u, respectively (i.e. no specific network is considered, and buffer dynamics are ignored).

We also introduce an artificial variable ŷz . It evolves along the same vector field as ŷ between two successive transmission instants, i.e. ẏz = 0 for t ∈ [t i , t i+1 ]. At jumps, it evolves exactly as when y is sent through the network. Therefore, for analysis purposes, we introduce auxiliary field devices with buffer states b z 1 , . . . , b z y and outputs y z,1 , . . . , ŷz . Then, we define the corresponding network induced error on the observer output

ζ yz . = b z 1 -y z , b z 2 -y z,1 , . . . , b z y -y z, y -1 , y z,1 -b z 1 , y z,2 -b z 2 , . . . , ŷz -b z y . (21) 
This will help to ensure that the update of ŷz with y z happens at the same time that ŷ gets updated with y, so they can Fig. 2: NCS implemented over a WH network with y field devices in the y-path and u field devices in the u-path.

be properly compared through the observation error y -y z . Hence, we artificially send y z through a model of the y-path of the network at the same time that y is sent, to construct ŷz . The introduction of ζ yz is a key difference with Section IV-D (recall that e yz , the analogue of ζ yz in the generic model [START_REF] Maass | Lp stability of networked control systems implemented on WirelessHART[END_REF], is defined as e yz . = ŷz -y z ) and previous work on observer design [START_REF] Postoyan | A framework for the observer design for networked control systems[END_REF], [START_REF] Postoyan | Tracking control for nonlinear networked control systems[END_REF], [START_REF] Wang | Observer design for networked control systems with FlexRay[END_REF], and it is used here as a consequence of how WH operates.

Using the definitions of ζ y , ζ u and ζ yz we can write

ż = f z z, u + I 2 u nu • ζ u , y -y z + I 2 y ny • ζ e , (22) 
where ζ e . = ζ y -ζ yz corresponds to the network induced error on the observation error y -y z . Note the difference between the network-induced errors appearing in [START_REF] Angeli | Forward completeness, unboundedness observability, and their Lyapunov characterizations[END_REF] and in [START_REF] Postoyan | On emulated nonlinear reduced-order observers for networked control systems[END_REF]. The network-induced errors in [START_REF] Arcak | Observer-based control of systems with slope-restricted nonlinearities[END_REF] and ( 21) are useful to model scheduling in WH networks. Given that the dynamics of the observer in [START_REF] Angeli | Forward completeness, unboundedness observability, and their Lyapunov characterizations[END_REF] = n ζ y + n ζ u . We are now in a position to present the model for the overall WH-NCS of Fig. 2. By using (2), ( 18), ( 19), ( 20), ( 21) and [START_REF] Angeli | Forward completeness, unboundedness observability, and their Lyapunov characterizations[END_REF], we present the hybrid model for the block diagram in Fig. 2,

χ = f χ (χ, z, ς, u, v, w), ∀t ∈ [t i , t i+1 ], (23a) ż = f z (χ, z, ς, u, v), ∀t ∈ [t i , t i+1 ], (23b) ς = g ς (χ, z, ς, u, v, w, d), ∀t ∈ [t i , t i+1 ], (23c) χ(t + i ) = χ(t i ), (23d) z(t + i ) = z(t i ), (23e) ς(t + i ) = (I -Ψ(i))ς(t i ), (23f) 
where f χ , f z and g ς are defined in [START_REF] Group | HART Communication Protocol[END_REF]. As we already mentioned, the introduction of an appropriate network-induced error, namely ς, is required to have a model that covers the WH specifications. However, the protocol equation (23f) maintains the same form as in the generic model [START_REF] Maass | Lp stability of networked control systems implemented on WirelessHART[END_REF] (see (10f)). The difference is that now the matrix Ψ is defined differently as the scheduling protocols in WH are determined by the multi-hop nature of the network. That is, the matrix Ψ in the WH model ( 23) is fully determined by the

f χ (χ, z, ς, u, v, w) . = f (χ + g z (z), u, w) - ∂g z ∂z f z z, u + I 2 u nu • ζ u , g(χ + g z (z)) + v -g(g z (z)) + I 2 y ny • ζ e , (24a) 
f z (χ, z, ς, u, v) . = f z z, u + I 2 u nu • ζ u , g(χ + g z (z)) + v -g(g z (z)) + I 2 y ny • ζ e , (24b) 
g ς (χ, z, ς, u, v, w, d) .

= g ς,1 (χ, z, ς, u, v, w, d), 0, . . . , 0, -d u , 0, . . . , 0 , (24c)

g ς,1 (χ, z, ς, u, v, w, d) . = - ∂g ∂x p f (χ + g z (z), u, w) -d v + ∂g ∂ xp ∂g z ∂z f z z, u + I 2 u nu • ζ u , g(χ + g z (z)) + v -g(g z (z)) + I 2 y ny • ζ e . ( 24d 
)
scheduling of field devices in the communication frame. We next provide only one of the many scheduling protocols that can be implemented on WH , see [START_REF] Maass | Lp stability of networked control systems implemented on WirelessHART[END_REF], [START_REF] Maass | Emulationbased stabilisation of networked control systems over WirelessHART[END_REF], [START_REF] Maass | Stabilization of non-linear networked control systems closed over a lossy WirelessHART network[END_REF] for more protocols.

Example 2: We consider a scheduling protocol that establishes a full-duplex communication link that uses two different frequency channels for measurements and actuation operations. In particular, we consider the communication frame given by Table I, where devices are scheduled in each frequency channel in a round-robin manner. We call this protocol Frequency Division Duplex Round Robin (FDD-RR) [START_REF] Maass | Lp stability of networked control systems implemented on WirelessHART[END_REF]. For this protocol, we have that (see (23f)) Ψ(i)

. = I -H(i), where H(i) . = diag {H y (i), H u (i)}, and 
H (i) . = ∆ (i) 0 I -∆ (i) Γ (i) , ∆ (i) . = diag δ 1 (i)I n , . . . , δ (i)I n , Γ (i) . =      γ 1 (i)I n 0 (1 -γ 1 (i))I n γ 2 (i)I n . . . . . . 0 (1 -γ -1 (i))I n γ (i)I n     
, with ∈ {y, u}, and δ y α (i)

. = 1 -1 D y α (i), δ u β (i) . = 1 -1 D u β (i), γ y α (i) . = 1 -1 Dy α (i), and γ u β (i) . = 1 -1 Du β (i), where D y α . = {i ∈ N : i = α + ( y + 1)σ, σ ∈ Z ≥0 }, D u β . = {i ∈ N : i = β + ( u + 1)σ, σ ∈ Z ≥0 }, Dy α . = {i ∈ N : i = α + 1 + ( y + 1)σ, σ ∈ Z ≥0 }, Dy β . = {i ∈ N : i = β + 1 + ( u + 1)σ, σ ∈ Z ≥0 } for α = 1, .
. . , y and β = 1, . . . , u . It is possible to show that the FDD-RR protocol satisfies Assumption 1 with T = max{2 y + 1, 2 u + 1}.

B. Stability results

In order to reveal the mathematical structure of the WH-NCS model, we re-arrange the error vector ς via a change of coordinates. That is, we define ς . = T ς, where T is given by

T . =               I ny 0 • • • 0 0 0 • • • 0 0 0 • • • 0 I nu 0 • • • 0 0 I ny • • • 0 0 0 • • • 0 . . . . . . . . . . . . . . . . . . . . . . . . 0 0 • • • I ny 0 0 • • • 0 0 0 • • • 0 0 I nu • • • 0 . . . . . . . . . . . . . . . . . . . . . . . . 0 0 • • • 0 0 0 • • • I nu               . ( 25 
)
TABLE I: Superframe table for the FDD-RR protocol.

t 1 t 2 • • • t y t y +1 CH 1 P → D y 1 D y 1 → D y 2 • • • D y y-1 → D y y D y y → C CH 2 C → D u 1 D u 1 → D u 2 • • • D u u → P
With this change of coordinates, we have that

ς = g ς (χ, z, ς, u, v, w, d) . = T g ς (χ, z, ς, u, v, w, d) = (g ς,1 (χ, z, ς, u, v, w, d), -d u , 0, . . . , 0) , ( 26 
)
where g ς,1 (χ, z, ς, u, v, w, d) has been defined in [START_REF] Group | HART Communication Protocol[END_REF]. This way of looking at the error is helpful for the stability analysis that follows. Note that the first two components of ς are nonzero while the rest are zero. Similar to Section V, we assume the following. 

R nx ×R nz ×R nu ×R nv ×R nw × R nu+nv → R nς ≥0 such that the error dynamics (23c) satisfy ḡς (χ, z, ς, u, v, w, d) Aς + ỹ(χ, z, u, v, w, d), (27) 
for all χ ∈ R nx , z ∈ R nz , ς ∈ R nς , u ∈ R nu , v ∈ R nv , w ∈ R nw , d ∈ R nu+nv .
Assumption 9 is the analogue of Assumption 2 for WH networks. However, in Assumption 2, the function g e does not have the structure in (26) that follows directly from our WH-NCS model. Note that g ς depends on sums of components of ς rather than the whole error like g e does (recall definitions of g e and g ς in [START_REF] Demirel | Modular design of jointly optimal controllers and forwarding policies for wireless control[END_REF] and [START_REF] Group | HART Communication Protocol[END_REF], respectively). In particular, it depends on

ζ e 1 +• • •+ζ e 2 y and ζ u 1 +• • •+ζ u 2 u
, thus we assume a linear bound on each component of ( 26) as in Assumption 2, which leads to Assumption 9. That is, we assume there exist

L 1 ∈ A n ζ y 1 ×n ζ y 1 ≥0 , L 2 ∈ A n ζ y 1 ×n ζ u 1 ≥0 and ỹ1 : R nx ×R nz ×R nu × R nv ×R nw ×R nv → R n ζ y 1 ≥0 , such that ḡς,1 (χ, z, ς, u, v, w, d) ≤ L 1 ( ζe 1 +• • •+ ζe 2 y )+L 2 ( ζu 1 +• • •+ ζu 2 u )+ ỹ1 (χ, z, u, v, w, d v ).
Then, given that ς

= (ζ e 1 , ζ u 1 , ζ e 2 , . . . , ζ e 2 y , ζ u 2 , . . . , ζ u 2 u ), we get ḡς          L 1 L 2 L 1 I 2 y -1 ny L 2 I 2 u-1 nu 0 0 0 0 0 0 0 0 . . . . . . . . . . . . 0 0 0 0          ς +         ỹ1 du 0 . . . 0         . By defining L 11 . = [L 1 L 2 ],
we get what is stated in Assumption 9. A similar assumption in the context of controller design for WH-NCSs can be found in [START_REF] Maass | Lp stability of networked control systems implemented on WirelessHART[END_REF].

In the following, we impose assumptions analogue to Assumptions 3-5 in WH-NCSs. Note that these are essentially the same, but the networked-induced error is now different, and also the dynamics in [START_REF] Nešić | Input-to-state stability of networked control systems[END_REF].

Assumption 10:

There exist γ χ 2 ∈ R ≥0 and σ ∈ K ∞ such that ỹ in (27) satisfies |ỹ(χ, z, u, v, w, d)| ≤ γ χ 2 |χ| + σ(|(u, v, w, d)|), for all χ ∈ R nx , u ∈ R nu , v ∈ R nv , w ∈ R nw , and d ∈ R nu+nv .
Assumption 11: There exist

β 1 ∈ KL, γ ς 1 ∈ R ≥0 and µ ∈ K ∞ such that, for any χ 0 ∈ R nx and (ς, v, w) ∈ L ∞ , solutions to (23a) satisfy |χ(t)| ≤ β 1 (|χ 0 |, t -t 0 ) + γ ς 1 ς L∞[t0,t] + µ (v, w) L∞[t0,t] , (28) 
for all t ≥ t 0 ≥ 0. Assumption 12: System (23b) is forward complete with input (χ, ς, w) ∈ L ∞ [START_REF] Angeli | Forward completeness, unboundedness observability, and their Lyapunov characterizations[END_REF]. That is, there exist ν 1 , ν 2 , ν 3 ∈ K and c ∈ R ≥0 such that, for any

z 0 ∈ R nz and (χ, ς, u, v, w) ∈ L ∞ , |z(t)| ≤ ν 1 (t) + ν 2 (|z 0 |) + ν 3 ( (χ, ς, u, v, w) L∞[t0,t] ) + c, for all t ≥ t 0 ≥ 0.
We are now ready to state the main results of this section. These follow by mimicking the steps of the proof of Proposition 1 and Theorem 1, but instead of using Theorem 5.1 in [START_REF] Tabbara | Stability of wireless and wireline networked control systems[END_REF], we use Proposition 1 in [START_REF] Maass | Lp stability of networked control systems implemented on WirelessHART[END_REF], which is tailored to WH.

Proposition 2: Suppose Assumptions 1 and 9 hold. If MATI satisfies τ ∈ [ε, τ * ς ), where τ * ς = ln(1 + 1/ √ )/(|L 11 |T ), . = max{2 y , 2 u }, then the system (10c), (10f) is IOS from ỹ to ς, where ỹ is per Assumption 9, with linear gain

γ(τ ) = T exp(|A|(T + 1)τ )(exp(|A|τ ) -1) |A| 1 - √ (exp(|L 11 |T τ ) -1) . ( 29 
)
Theorem 3: Suppose Assumptions 1, 9-12 hold. Let x be the solution of

γ χ 2 γ ς 1 T x 1+2/T -γ χ 2 γ ς 1 T x 1+1/T + √ |A|x |L11|/|A| -(1 + √ ) |A| = 0, (30) 
and define τ * = ln(x)/(|A|T ). If τ ∈ [ε, τ * ), then the following holds. (i) There exist β ∈ KL, η 1 ∈ K and η 2 ∈ KK such that, for all

(χ 0 , ς 0 ) ∈ R nx+nς and (u, v, w, d) ∈ L ∞ , |(χ(t), ς(t))| ≤ β(|(χ 0 , ς 0 )|, t -t 0 ) + η 1 ( (v, w) L∞ ) + η 2 (τ, (u, v, w, d) L∞ ) (31) 
holds for all t ≥ t 0 ≥ 0.

(ii) System ( 23) is forward complete with input (u, v, w, d) ∈ L ∞ . Remark 2: Note that the results in Theorems 1 and 2 hold for NCS models of the form [START_REF] Maass | Lp stability of networked control systems implemented on WirelessHART[END_REF], and the WH-NCS model [START_REF] Nešić | Input-to-state stability of networked control systems[END_REF] fits that model. Therefore, these results can be directly applied to WH-NCSs, but they do not explicitly exploit the mathematical structure [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF] of the model [START_REF] Nešić | Input-to-state stability of networked control systems[END_REF]. The same can be said for the results in [START_REF] Postoyan | A framework for the observer design for networked control systems[END_REF], and we compare our results to it in the next section. Theorem 3 is the simile to Theorem 1 but tailored to the specific structure encountered in WH-NCSs, and thus the corresponding MATI bound not only depends on |A|, but also on |L 11 | (see [START_REF] Farza | Observer design for a class of mimo nonlinear systems[END_REF]). Recall that L 11 comes from Assumption 9, and note that |L 11 | ≤ |A|. It is not immediately clear how [START_REF] Farza | Observer design for a class of mimo nonlinear systems[END_REF] behaves for different values of |A| and |L 11 |, however, we later illustrate with an example that, as expected, the bound in Theorem 3 is larger than the bound in Theorem 1. In a similar fashion, we can derive an analogue theorem to Theorem 2 that is better suited for WH-NCSs, but it is omitted for brevity.

VII. CASE STUDY

In this section, we study Lipschitz non-linear systems as an example to illustrate our results. The observer design problem for Lipschitz non-linear systems have been studied actively in the literature, see e.g. [START_REF] Rajamani | Observers for Lipschitz nonlinear systems[END_REF], [START_REF] Arcak | Observer-based control of systems with slope-restricted nonlinearities[END_REF], [START_REF] Gauthier | A simple observer for nonlinear systems applications to bioreactors[END_REF]- [START_REF] Zemouche | On LMI conditions to design observers for lipschitz nonlinear systems[END_REF], when the observer is directly connected to the plant. We now show how to apply our non-linear framework to this class of systems, in which the observer communicates with the plant via a WH network.

A. Analysis

We study the architecture in Fig. 2, where the plant and observer are Lipschitz non-linear systems communicating over a WH network. We want to obtain the MATI bound that ensures stability of the NCS via Theorem 3. To that end, we first show that Lipschitz non-linear systems verify the standing assumptions of Theorem 3 (i.e. Assumptions 1,[START_REF] Tabbara | Stability of wireless and wireline networked control systems[END_REF][START_REF] Maass | Lp stability of networked control systems implemented on WirelessHART[END_REF][START_REF] Demirel | Modular design of jointly optimal controllers and forwarding policies for wireless control[END_REF][START_REF] Pesonen | Stochastic estimation and control over WirelessHART networks: Theory and implementation[END_REF]. Then, we provide the required parameters to compute the MATI bound that ensures stability of the NCS. Consequently, we consider non-linear plants of the form

ẋp = A p x p + π(x p ) + w, y = Cx p + v, (32) 
where x p ∈ R nx , y ∈ R ny , A p and C are constant matrices of appropriate dimensions, and π : R nx → R nx is globally Lipschitz with constant Π ≥ 0. We design an observer of the form

ż = A p z + π(z) + K(y -y z ), y z = Cz, (33) 
where z = xp ∈ R nx and K ∈ R nx×ny is a matrix such that the following holds. Assumption 13: There exist K ∈ R nx×ny and a real symmetric positive definite matrix P ∈ R nx×nx such that for V : χ → χ T P χ, ∇V (χ), (A p -KC)χ + π(χ + z) -π(z) ≤ -cV (χ) for all χ ∈ R nx , z ∈ R nx and some c ∈ R >0 . Assumption 13 is a general way of writing that the observer is designed such that the estimation error converges to zero in absence of disturbances. There is a body of works for Lipschitz non-linear systems in which this assumption is satisfied for a large number of observer designs, see e.g. [START_REF] Rajamani | Observers for Lipschitz nonlinear systems[END_REF]- [START_REF] Khalil | Nonlinear control[END_REF], [START_REF] Zemouche | On LMI conditions to design observers for lipschitz nonlinear systems[END_REF].

We now implement the observer (33) over a WH network, in which transmissions are scheduled by the FDD-RR protocol in Example 2. As in Section VI, we have that, for this case study,

f χ (χ, z, ς, v, w) = (A p -KC)χ + π(χ + z) -π(z) -K(I 2 y ny • ς + v) + w, (34a) 
f z (χ, z, ς, v) = A p z + π(z) + K(I 2 y ny • ς + v) + KCχ, (34b) 
g ς (χ, z, ς, v, w, d v ) = -C(A p -KC)χ -Cw -d v -C(π(χ + z) -π(z)) + CK(I 2 y ny • ς + v), 0, . . . , 0 . (34c) 
Note that ς = ς = ζ e in this case since system [START_REF] Zemouche | On LMI conditions to design observers for lipschitz nonlinear systems[END_REF] has no control input. We then verify that Assumptions 1,9-11 hold in the proposition below. Proposition 3: Consider system (23) with f χ , f p and g ς as per [START_REF] Lewis | Neural network control of robot manipulators and non-linear systems[END_REF], and the FDD-RR protocol is used to schedule field devices. Suppose Assumption 13 holds, then (i) Assumption 1 holds with T = max{2 y + 1, 2 u + 1}. (ii) Assumption 9 holds with Since π in (33) is globally Lipschitz, Assumption 12 always applies in view of Theorem 3.2 in [START_REF] Khalil | Nonlinear systems, 3rd[END_REF]. Then, a direct consequence of Proposition 3 is that all conditions of Theorem 3 are satisfied, hence it can be directly applied. Moreover, all parameters needed to calculate the MATI bound in Theorem 3 are given in Proposition 3. This is formalised via the following corollary.

A =      CK • • • CK 0 • • • 0 . . . . . . . . . 0 • • • 0      , ỹ =      ỹ1 0 . . .
Corollary 1: Consider system (23) with f χ , f z and g ς as per [START_REF] Lewis | Neural network control of robot manipulators and non-linear systems[END_REF], and the FDD-RR is used to schedule field devices. Suppose Assumption 13 holds. Let x be the solution of [START_REF] Farza | Observer design for a class of mimo nonlinear systems[END_REF] with γ χ 2 , γ ς 1 , A and T as per Proposition 3, and define τ * = ln(x)/(|A|T ). If MATI satisfies τ ∈ [ε, τ * ), then (31) holds.

B. Numerical simulation

We now provide a physical example that belongs to the class of Lipschitz non-linear systems studied in Section VII-A, for which we numerically compute the MATI bounds using Corollary 1. To that end, consider a single-link rigid robot manipulator modelled via Lagrange mechanics by [START_REF] Lewis | Neural network control of robot manipulators and non-linear systems[END_REF] M (q)q + C(q, q) q + g(q) = T u + w, where q is the joint variable vector, M (q) is the inertia matrix, C(q, q) is the Coriolis and centripetal matrix, g(q) is the gravity vector, w denotes an external disturbance, and T u is the input torque. Pick M (q) = 1, C(q, q) = 1, g(q) = 0.1 cos(q), T u = 0, and define x p . = (q, q) and y . = q + v, where v corresponds to the measurement noise. We can then re-write the dynamics as

ẋp = 0 1 0 -1 x p + 0 -0.1 cos(x p,1 ) + w, (35a) 
y = 1 0 x p + v. (35b) 
We note that [START_REF] Jiang | Small-gain theorem for ISS systems and applications[END_REF] has the form in [START_REF] Zemouche | On LMI conditions to design observers for lipschitz nonlinear systems[END_REF], i.e. this robot manipulator belongs to the class of Lipschitz non-linear systems analysed in Section VII-A. Therefore, we can apply Corollary 1 to numerically compute the MATI bound that ensures stability. Note in particular that

A p = 0 1 0 -1 , π(x p ) = 0 -0.1 cos(x p,1 )
, C = 1 0 , for which the Lipschitz constant is given by Π = 0.1. The robot communicates with an observer of the form (33) over a WH network with y = 2 and u = 0. To design this observer, we need to find K such that Assumption 13 holds. To do that, we resort to observer design tools in the literature for the class of non-linear plants [START_REF] Zemouche | On LMI conditions to design observers for lipschitz nonlinear systems[END_REF], see e.g. [START_REF] Rajamani | Observers for Lipschitz nonlinear systems[END_REF], [START_REF] Zemouche | On LMI conditions to design observers for lipschitz nonlinear systems[END_REF]. In particular, Assumption 13 holds if there exist matrices P = P T > 0 and R of adequate dimensions so that the following LMI condition is satisfied [START_REF] Rajamani | Observers for Lipschitz nonlinear systems[END_REF], [32]

A T p P + P A p -R T C -C T R + I np P P -(1/Π 2 )I np < 0.
Then, the stabilising gain K is given by K With the above, it is possible to find that c in Assumption 13 is given by c = 886.36. To compute the MATI bound for this example, we resort to Proposition 3 and Corollary 1. Specifically, we have that T = 2 y + 1 = 5, γ χ 2 = 1.66, γ ς 1 = 8.24, and

= P -1 R T .
A =     1.19 1.19 1.19 1.19 0 0 0 0 0 0 0 0 0 0 0 0     .
We can now compute τ * cor.1 , which denotes the MATI bound given by Corollary 1. We also compute the MATI bound τ * thm.1 given by Theorem 1, and the MATI bounds that can ∼ 5 • 10 5 % be found in the literature [START_REF] Postoyan | A framework for the observer design for networked control systems[END_REF], [START_REF] Maass | Observer design for networked control systems implemented over WirelessHART[END_REF], denoted by τ * [6] and τ * [START_REF] Maass | Observer design for networked control systems implemented over WirelessHART[END_REF] respectively. With all the above, Table II 4) The bound τ * cor.1 exploits the structure of the WH-NCS model to obtain an even tighter bound than τ * thm.1 . Similar to [START_REF] Maass | Lp stability of networked control systems implemented on WirelessHART[END_REF], the bounds get less conservative as the number of field devices increases. Consider the following external disturbance w(t) = (0.6 sin(40t), 0.3 sin(30t)) and measurement noise v(t) = 1.3 sin(80t), and assume transmissions in the network happen equidistantly, i.e. they are such that t i+1 -t i = τ for all i ∈ N and some τ ∈ R >0 . We run simulations for 200 different initial conditions randomly distributed in a ball of radius 5. For each of these simulations we increased τ and find τ * sim such that the estimation error remains close to the origin for τ ∈ (0, τ * sim ). We take the minimum of all the two hundred τ * sim , and we use it as a simulation-based estimate of the real MATI of the system. This value is equal which is only about 2.15 times more conservative that the bound on MATI observed in simulations. Note that previous bounds such as τ *

[13] are about 13000 times more conservative than the simulated bound. A simulation with initial conditions χ 0 = (1.46, 2.82) can be found in Fig. 3 for τ = 8[ms] < τ * cor.1 . We see that the estimation error indeed converges to a neighbourhood of the origin, which is in agreement with Theorem 3.

VIII. CONCLUSIONS

We proposed an emulation approach for the observer design problem for non-linear NCSs affected by disturbances and measurement noise. In particular, we provided MATI bounds which ensure the convergence of the observation error under network-induced constraints. Our results exploit the persistence of excitation property of the implemented protocols, which allowed us to obtain larger MATI bounds compared with the literature, where more restrictive properties are used, such as UGES. We also showed that our approach is applicable to WH-NCSs, for which we obtain tailored results that exploit the intrinsic structure of WH. By doing so, we provided even tighter MATI bounds.

APPENDIX PROOF OF PROPOSITION 1

Let e(t 0 ) = e 0 ∈ R ne , ỹ ∈ L ∞ and τ ∈ [ε, τ * e ). Also let [t 0 , t max ) denote the maximum existence interval for system (10c), (10f), where t max ∈ (t 0 , ∞]. Let t ∈ [t 0 , t max ) and recall ỹ from Assumption 2, which represents a disturbance term to e-dynamics. From the proof of Theorem 

where c . = -ln(λ) > 0. In the last equality, we have used the fact that e(t 0 ) = e 0 and that |x| = |x| for any x ∈ R n . Now we set the initial condition e 0 = 0 and compute the contribution of the input ỹ by directly applying Theorem 5.1 in [START_REF] Tabbara | Stability of wireless and wireline networked control systems[END_REF]. That is,

ē L∞[t0,t] ≤ γ(τ ) ỹ L∞[t0,t] . (37) 
By summing [START_REF] Spivak | Calculus on manifolds: a modern approach to classical theorems of advanced calculus[END_REF] and (37), we conclude that system (10c), (10f) is IOS from ỹ to e with linear gain γ(τ ), completing the proof.

PROOF OF THEOREM 1 This proof employs a similar argument to that of Theorem 2.1 in [START_REF] Jiang | Small-gain theorem for ISS systems and applications[END_REF] and Theorem 1 in [START_REF] Postoyan | A framework for the observer design for networked control systems[END_REF]. For brevity, we omit some obvious intermediate algebraic steps.

(i) The proof of the first assertion follows via two steps. In the first step we prove that (χ, e)-system is BIBS with input w. In the second step we show convergence, i.e. the required ISS property [START_REF] Wang | Observer design for networked control systems with FlexRay[END_REF].

Step 1 (BIBS Property) Let (χ 0 , e 0 , z 0 ) ∈ R nx+ne+nz , (u, v, w, d) ∈ L ∞ and τ ∈ [ε, τ * ). Let [t 0 , t max ) denote the maximum existence interval for system [START_REF] Maass | Lp stability of networked control systems implemented on WirelessHART[END_REF], where t max ∈ (t 0 , ∞]. Let t ∈ [t 0 , t max ). We first show that 1 -γ(τ )γ χ 2 γ e 1 > 0, which we need throughout the proof. Note that, in [START_REF] Filippov | Differential equations with discontinuous righthand sides: control systems[END_REF], γ(0) = 0 and γ(τ ) → ∞ as τ → τ * e . Also note that γ(τ ) in ( 14) is differentiable and monotonically increasing in τ for τ ∈ [ε, τ * e ] and thus, in view of the inverse function theorem [START_REF] Spivak | Calculus on manifolds: a modern approach to classical theorems of advanced calculus[END_REF], there exists a unique solution τ * to γ(τ )γ χ 2 γ e 1 = 1, which satisfies τ * < τ * e (note that ε is sufficiently small so that 1/(γ χ 2 γ e 1 ) is always in the range of γ(τ ) for τ ∈ [ε, τ * e ]). That is, γ χ 

where γ(τ ) is as per [START_REF] Filippov | Differential equations with discontinuous righthand sides: control systems[END_REF], which defines a class-K function on [0, τ * ). Therefore, in view of ( 13) and ( 38), . Therefore, (χ, e)-system is BIBS in view of Definition 3 and t max = ∞.

Step 2 (Convergence Property) For any t 0 ≤ t 10 ≤ t 20 ≤ t 11 ≤ t 21 , using time invariance and causality of the inequalities [START_REF] Maass | Observer design for networked control systems implemented over WirelessHART[END_REF] + γ χ 2 µ( (v, w) L∞ ) + σ( (u, v, w, d) L∞ ) .

Recall that γ(τ )γ χ 2 γ e 1 < 1, since τ < τ * . We now use Lemma A.1 in [START_REF] Jiang | Small-gain theorem for ISS systems and applications[END_REF], with z(t) = |e(t)|, β(s, t) = β 2 (s, t/2) + γ(τ * )γ 
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 1 Fig. 1: Block diagram of our networked observer architecture.

with x ∈ [ 1 , 2 ]

 12 , and define τ * = ln(x)/(|A|T ). If τ ∈ [ε, τ * ), then the following holds.

  are affected by ζ e and ζ u , we define ς . = (ζ e , ζ u ), where ς ∈ R nς , n ς .

Assumption 9 :ζ y 1 ×(n ζ y 1 +n ζ u 1 )

 9111 Let L 11 ∈ A n There exists a matrix A ∈ A nς ≥0 of the form A = L 11 L 12 0 0 , and a continuous function ỹ :

  (A p -KC)χ -C(π(χ + z) -π(z)) + CKv -Cw -d v . (iii) Assumption 10 holds with γ χ 2 = |C(A p -KC)| + Π|C| and σ(s) = max{|CK|, |C|, 1}3s. (iv) Assumption 11 holds with β 1 (s, t) = λ max (P )/λ min (P ) exp(-ct/8)s, ) |P | 2s, where P and c are as per Assumption 13.

Fig. 3 :

 3 Fig. 3: Estimation error χ for a MATI satisfying the bound in Theorem 3.

  5.1 in[START_REF] Tabbara | Stability of wireless and wireline networked control systems[END_REF], we can compute the contribution of the initial condition by setting the disturbance term ỹ = 0, which gives|ē(t)| ≤ exp(|A|T τ )λ m |ē(t 0 )|, for any m ∈ N such that t ∈ (t mT -1 , t (m+1)T -1 ), where λ . = exp(|A|T τ ) -1, and T comes from Assumption 1. Note that 0 < λ < 1 for τ < τ * e . We also have that t -t 0 ≤ (m + 1)T τ , then|ē(t)| ≤ exp(|A|T τ ) λ λ m+1 |ē(t 0 )| ≤ exp(|A|T τ ) λ λ (t-t0)/(T τ ) |ē(t 0 )| = exp(|A|T τ ) λ exp -c T τ (t -t 0 ) |e 0 |,

2 γ e 1 T

 1 exp(|A|(T + 1)τ )(exp(|A|τ ) -1) -|A| (2 -exp(|A|T τ )) = 0, for which we define x . = exp(|A|T τ ) and thus get (15) with x ∈ [1, 2]. Then, by monotonicity of γ(τ ), we have that γ(τ )γ χ 2 γ e 1 < 1 for any τ ∈ [ε, τ * ).By using Proposition 1 and Assumption 3, we have that|e(t)| ≤ β 2 (|e 0 |, t -t 0 ) + γ(τ ) γ χ 2 χ L∞[t0,t]+ σ( (u, v, w, d) L∞ ) ,

eγ e 1 × γ χ 2 β 1 (χ 2 + 1 ,

 1121 L∞[t0,t] ≤ β 2 (|e 0 |, 0) 1 -γ(τ )γ χ 2 γ e 1 + γ(τ ) 1 -γ(τ )γ χ 2 |χ 0 |, 0) + γ χ 2 µ( (v, w) L∞ ) + σ( (u, v, w, d) L∞ ) . = M e (τ, χ 0 , e 0 , (u, v, w, d) L∞[t0,t] ). (39)On the other hand, we have thatχ(t) L∞[t0,t] ≤ β 1 (|χ 0 |, 0) + γ e 1 M e + µ( (u, v) L∞ ) . = M χ (τ, χ 0 , e 0 , (u, v, w, d) L∞[t0,t] )(40)Note that we have omitted the argument of the function M e for the purpose of clarity. In the following, we do the same for M χ . It follows from the above that|(χ(t), e(t))| ≤ M χ + M e ≤ α(|(χ 0 , e 0 )|) + µ( (v, w) L∞ ) + ϑ 1 (τ )µ( (v, w) L∞ ) + ϑ 2 (τ )σ( (u, v, w, d) L∞ ), ϑ 2 (τ ) =(γ e 1 +1)γ(τ ) 1-γ(τ )γ χ

2

 2 

χ 2 β 1 γ e 1 × γ χ 2 µγ e 1 ×

 1121 (s, t/4), s = M e + M χ , ρ(s) = γ(τ )γ χ 2 γ e 1 s, d = γ(τ ) × γ χ 2 µ( (v, w) L∞ ) + σ( (u, v, w, d) L∞ ) , and µ = 1/4, to show that there exist λ 2 ∈ (1, ∞) and β2 ∈ KL such that |e(t)| ≤ β2 (M e + M χ , t -t 0 ) + λ 2 γ(τ ) 1 -γ(τ )γ χ 2 ( (v, w) L∞ ) + σ( (u, v, w, d) L∞ ) . (43)In a similar fashion, in view of (42), it can be shown that there exist β1 ∈ KL andλ 1 ∈ (1, ∞) such that |χ(t)| ≤ β1 (M e + M χ , t -t 0 ) + λ 1 1 -γ(τ )γ χ 2 µ( (v, w) L∞ ) + γ(τ )γ e 1 σ( (u, v, w, d) L∞ ) . (44)

  For the given A p , C and Π above, the LMI gives

	P =	46.99 -2.01 -2.01 48.15	, R = 54.13 47.14 , K =	1.19 1.03	.

TABLE II :

 II MATI bound comparison for the robot manipulator.

		FDD-RR protocol
	τ * cor.1 in [ms]	10.74
	τ * thm.1 in [ms]	10.69
	τ * [13] in [ms]	1.77 • 10 -3
	τ * [6] in [ms]	2.13 • 10 -3
	τ * cor.1 vs. τ * [13]	∼ 6 • 10 5 %
	τ * cor.1 vs. τ * [6]	

  is constructed. In order to have a clear comparison, we have included in the last three rows, the percentage of improvement 2 between the relevant bounds. Note that the MATI bounds in TableIIdo not explicitly depend on external disturbances. For instance, the MATI bounds τ * cor.1 and τ * thm.1 depend on the values of γ χ 2 , γ ς 1 , A and T that we computed in Section VII-A for our case study. Further below, we simulate the response of the NCS for which external disturbances and noise are reflected in the estimation error. The following comments can be made from TableII.1) Our recent work[START_REF] Maass | Observer design for networked control systems implemented over WirelessHART[END_REF] was a first attempt to obtaining MATI bounds tailored to observer design in WH-NCSs. This bound τ *[START_REF] Maass | Observer design for networked control systems implemented over WirelessHART[END_REF] is quite conservative in the context of WH, as we discuss further below.2) As shown in[START_REF] Maass | Lp stability of networked control systems implemented on WirelessHART[END_REF], assuming a P E T condition on the protocols allows for less conservative MATI bounds in the context of controller design. The same condition is used in this work in the context of observer design.

	We can see
	from Table II that our proposed bounds are significantly
	larger than both τ * [6] and τ * [13] . 3) Note that τ * [13] and τ * [6] are equivalent to 574 Mbps and
	477 Mbps, respectively (if we transmit packets of 127
	bytes, which is the maximum packet length in WH). How-
	ever, the maximum data rate allowed in WH networks is
	250 kbps, meaning that τ * [13] and τ * [6] cannot be achieved in WH. On the contrary, our bound τ * cor.1 = 10.74[ms] is
	equivalent to 95 kbps, which is achievable on current WH
	networks.

  and (38), we have|χ(t 11 )| ≤ β 1 (|χ(t 10 )|, t 11 -t 10 ) + γ e 1 e L∞[t10,t11] + µ( (v, w) L∞ ), (42a) |e(t 21 )| ≤ β 2 (|e(t 20 )|, t 21 -t 20 ) + γ(τ ) × γ χ 2 χ L∞[t20,t21] + σ( (u, v, w, d) L∞ ) . (42b) Let t ∈ [t 0 , ∞),and take t 10 = (t -t 0 )/4 + t 0 , t 20 = (tt 0 )/2 + t 0 , t 21 = t, and t 11 ∈ [(t -t 0 )/2 + t 0 , t]. In view of (39), (40), and (42), we have that |e(t)| ≤ β 2 (M e , (t -t 0 )/2) + γ(τ

* )γ χ 2 × β 1 (M χ , (t -t 0 )/4) + γ(τ ) × γ χ 2 γ e 1 e L∞[(t-t0)/4+t0,∞)

Recall that for any x ∈ R n , x . = (|x 1 |, . . . , |xn|) T .

We define the percentage of improvement between τ A > 0 and τ B > 0, where τ A ≥ τ B , as 100 × (τ A -τ B )/τ B .

His work is supported in part by ANR via grant HANDY, number ANR-18-CE40-0010.

Define

β . = β1 + β2 . Combining (43) and (44), and noting that 1/(1 -γ(τ )γ χ 2 γ e 1 ) = 1 + γ(τ )γ χ 2 γ e 1 /(1 -γ(τ )γ χ 2 γ e 1 ), it follows that |(χ(t), e(t))| ≤ β(M e + M χ , t -t 0 )

According to (41), and using several times the fact that β(a + b, t) ≤ β(2a, t) + β(2b, t) for any a, b, t ∈ R ≥0 since β(•, t) ∈ K, we have that

Consequently, in view of ( 45) and ( 46), we have that ( 16) holds with β(s, t

, then we have that η 2 (•, s) ∈ K, getting the desired result [START_REF] Wang | Observer design for networked control systems with FlexRay[END_REF].

(ii) Using the forward completeness characterisation given in Corollary 2.3 in [START_REF] Angeli | Forward completeness, unboundedness observability, and their Lyapunov characterizations[END_REF], proving that system (10) is forward complete is equivalent to proving that there exist ν1 , ν2 , ν3 ∈ K and c ∈ R ≥0 such that, for any (χ 0 , z 0 , e 0 ) ∈ R nx+nz+ne and (u, v, w, d) ∈ L ∞ , we have that |(χ(t), z(t), e(t))| ≤ ν1 (t) + ν2 (|(χ 0 , z 0 , e 0 )|) + ν3 ( (u, v, w, d) L∞ ) + c, for all t ≥ t 0 ≥ 0. From ( 16) and Assumption 5, we have that

where clearly PROPOSITION 3 (i) This part follows directly from the proof of Lemma 11 in [START_REF] Maass | Lp stability of networked control systems implemented on WirelessHART[END_REF], and the definition of the FDD-RR protocol in Example 2.

(ii) By using [START_REF] Lewis | Neural network control of robot manipulators and non-linear systems[END_REF], we have that ḡς CKI 2 y ny • ς, 0, . . . , 0 + ỹ1 , 0, . . . , 0 , and the result follows from the definition of I (iv) Under Assumption 13, we have that along solutions to χ = f χ (χ, z, ς, v, w), Peter received a computer engineering degree (with hons., university medal) from the University of Newcastle, Australia, and a systems engineering PhD from the Australian National University. He subsequently was a post-doctoral fellow in the Department of Mathematics at the University of California at San Diego (UCSD). His research expertise is in the area of optimal control and robust stability analysis for nonlinear dynamical systems, with an emphasis on dynamic programming, Hamilton-Jacobi-Bellman PDEs, idempotent analysis, convex analysis, semigroup theory, and computational methods. He was a co-recipient, with W.M.