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ABSTRACT

An important part of Digital Pathology is the analysis of mul-
tiple digitised whole slide images from differently stained tis-
sue sections. It is common practice to mount consecutive
sections containing corresponding microscopic structures on
glass slides, and to stain them differently to highlight specific
tissue components. These multiple staining modalities re-
sult in very different images but include a significant amount
of consistent image information. Deep learning approaches
have recently been proposed to analyse these images in or-
der to automatically identify objects of interest for patholo-
gists. These supervised approaches require a vast amount of
annotations, which are difficult and expensive to acquire—a
problem that is multiplied with multiple stainings. This ar-
ticle presents several training strategies that make progress
towards stain invariant networks. By training the network on
one commonly used staining modality and applying it to im-
ages that include corresponding but differently stained tissue
structures, the presented unsupervised strategies demonstrate
significant improvements over standard training strategies.

Index Terms— multi-stain analysis, digital pathology,
whole slide images, deep convolutional networks

1. INTRODUCTION

The field of digital pathology emerged with the introduction
of whole slide imaging (WSI) scanners and lead to the devel-
opment of new tools for analysing histopathology slides [1].
Meanwhile, deep learning architectures were developed that
outperformed most state-of-the-art algorithms in image anal-
ysis. Deep learning has thus been quickly applied to solve
digital pathology problems [2, 3, 4]. Nonetheless supervised
deep learning approaches require large amounts of annotated
data. Unlike classic computer vision applications, annotating
histopathology slides requires in-depth knowledge and there-
fore can only be done by trained experts such as pathologists.
Consequently, the acquisition of large annotated histopatho-
logical datasets is a complicated task [5].
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Image datasets in digital pathology applications often
consist of consecutive slides stained differently, each staining
providing specific information on the same region of inter-
est (see Figure 1, first row). Even though differently stained
slides appear very different, there is often a significant amount
of consistent information between them. For example, they
may both share the same counterstain (e.g. haematoxylin), or
they may highlight different parts of the same structure.

The analysis and integration of information from different
stainings is usually performed with reference to a specific or-
gan, structure, or pattern observed in the tissue. For example,
to diagnose pathologies such as breast cancer or kidney allo-
graft rejection it is necessary to study the inflammatory micro-
environment of the organ. In these cases, the relevant infor-
mation is the distribution of immune cells (e.g. macrophages
or lymphocytes) in relation to important structures of the or-
gan, such as glomeruli for the kidney, or lobules for the breast.

To automatically perform such an analysis, the structure
of interest (glomeruli, lobules, etc.) should be detected in
each section irrespective of the individual staining modality.
This is a typical application of deep learning, assuming that
annotations for each staining are available. Thus, there is a
high demand for annotations in digital pathology, currently
limited by the availability of experts and the complexity of
the required expert knowledge [5].

This article presents several training strategies that make
progress towards stain invariant networks (i.e. a network that
can generalise between stainings). By training the network
using a commonly acquired staining in renal pathology Pe-
riodic acid-Schiff reaction (PAS, a histochemical reaction to
detect certain types of suger-containing tissue components)
and applying the same network to images with different
stainings, the presented strategies demonstrate significant
improvements over standard training strategies. These can
be used in settings where there is not enough data or anno-
tations for the desired application staining. Alternatives in
the literature are concerned with transfer learning or domain
adaptation strategies where some take advantage of networks
pretrained on huge natural image datasets [6]. Most of these
works consider the problem of tissue variability between
images that have the same staining [7, 8] or between im-
ages from different tissues [9]. These approaches are much



more complex to implement as they require specific network
architectures.

The adopted CNN architecture and proposed training
strategies are presented in the next section, Section 3 presents
inter-staining glomeruli segmentation results and analysis
thereof, and Section 4 presents the study’s conclusions.

2. METHOD

2.1. CNN architecture

The U-Net architecture [10] is adopted as it has been proven
successful in biomedical imaging [11] and, in particular,
glomeruli detection [2]. Glomeruli segmentation is framed
as a two classes problem: glomeruli (patches centred on a
glomeruli), and tissue (that does not contain a glomeruli,
randomly sampled). The slide background (non-tissue) is
removed by thresholding each image by its mean value then
removing small objects from the result and closing holes.
Initial experiments revealed that the same training parameter
values lead to convergence irrespective of the strategy used
(batch size of 8, learning rate of 0.0001, 60 epochs, and the
network that achieves the lowest validation loss is kept). The
input patch size is 512× 512 pixels.

To mitigate the lack of training samples, the use of elas-
tic deformation [12] is proposed by the original authors. In
addition to this (using the parameters σ = 10, α = 100),
the following augmentations are applied with an independent
probability of 0.5 (batches are augmented ‘on the fly’):
affine: random rotation sampled from the interval [0◦, 180◦],
random shift sampled from [−205, 205] pixels, random mag-
nification sampled from [0.8, 1.2], and horizontal/vertical flip;
noise: additive Gaussian noise1 with σ ∈ [0, 2.55];
blur: Gaussian filter1 with σ ∈ [0, 1];
brightness enhance2 with a factor sampled from [0.9, 1.1];
colour enhance2 with a factor sampled from [0.9, 1.1];
contrast enhance2 with a factor sampled from [0.9, 1.1];
stain variation by colour deconvolution [13], α sampled
from [−0.25, 0.25] and β from [−0.05, 0.05].
These values were chosen as they result in realistic images.
All samples are standardised to [0, 1] and normalised by the
mean and standard deviation of the training set.

2.2. Training strategies

The standard approach for segmenting histopathological
slides is to present the three colour channels to the net-
work to exploit both colour and texture/structure information
(referred to herein as RGB). Henceforth ‘structure’ refers to
tissue appearance (i.e. is not used in a biological sense).

It is hypothesised that since histopathological slides of the
same staining exhibit very low colour variance when com-

1Using the appropriate scikit-image functions.
2Using the appropriate PIL functions.

pared to natural images, a deep learning approach will rapidly
learn to rely upon structures being present in specific chan-
nels (or combinations thereof), which may limit the network’s
ability to generalise to unseen stainings. The effects of this are
already known when dealing with inter-laboratory variance of
the same staining [13, 14].

Objects to be segmented, e.g. glomeruli, are generally eas-
ily identified between stainings as globally they exhibit the
same structure and texture, see Figure 1. It should therefore
be possible to bias the network to learn stain invariant fea-
tures. This work investigates this possibility by modifying
the data presented to the network in an unsupervised manner.
Borrowing domain adaptation terminology, herein the stain-
ing used for training and validation is referred to as as the
source staining (irrespective of any transformations), and the
stainings to which the network are applied as target stainings.

The simplest approach is to remove the colour component
from the data (referred to herein as Greyscale). Each sample
is converted to greyscale using the formula I = 0.2125R +
0.7154G + 0.0721B1. The result has all colour information
compressed into one channel, forcing the network to learn
structural features.

A more biologically motivated approach is to extract the
haematoxylin channel from each staining by deconvolving
the image using Ruifrok and Johnston’s approach [15] (re-
ferred to herein as Haematoxylin). Haematoxylin is com-
monly used as a counterstain and should therefore highlight
the same structures in each staining. This strategy should
therefore remove stain specific information and force the net-
work to learn features that generalise well.

The above-mentioned strategies either compress informa-
tion contained in the colour channels (Greyscale) or focus on
consistent inter-staining information (Haematoxylin) with the
aim of simplifying the problem. They are therefore applied
during training, validation, and testing. Another approach is
to preserve the colour information, but modify it in such a way
that the network does not learn to rely on colour specific struc-
ture. These are therefore only applied during training and
validation. A brute-force approach to this is to randomly per-
mute the colour channels. This strategy—Channel Swap—is
simple to implement; however, the range of colours generated
will be far greater than those encountered in application.

The last strategy, named Colour Transfer, restricts this to
within meaningful bounds at the expense of being more com-
plicated. The colour profile of each training patch is replaced
with that of a randomly selected staining during training with
probability N−1

N , where N is the number of stainings in the
dataset. Therefore each ‘staining’ (including the source) is
presented to the network with equal probability. The colour
transfer is achieved by deconvolving the patch and applying
its stain concentrations to stain vectors taken from another
staining. Various approaches to this exist [16, 17, 18] (includ-
ing computer vision approaches [19]), in this work we use that
proposed by Macenko et al. due to its simplicity (automatic

https://scikit-image.org
https://python-pillow.org


determination of stain vectors) and realistic output (see Fig-
ure 1, bottom row). It is necessary, however, to have samples
of the target stainings to determine their stain vectors (this re-
quirement can be removed by using predetermined stain vec-
tors and Ruifrok and Johnston’s approach [15]). During train-
ing, a random patch from a random target staining is selected
and the target stain vectors are determined.

N.B. the intention is to present plausible colour profiles to
the network. This does not necessarily correspond to biolog-
ically relevant image information but is explored for any po-
tential for the tested staining modalities. Potential limitations
are addressed, e.g. in Figure 1 the bright red colour (chro-
mogenic reaction used to detect CD34, a marker of blood ves-
sel inner lining) could be successfully transferred but it is not
localised as in the original image.

3. EXPERIMENTS AND RESULTS

3.1. Data

Tissue samples were collected from a cohort of 10 patients
who underwent allograft nephrectomy after complete loss of
function of a transplanted kidney due to chronic graft fail-
ure. These kidneys displayed several signs of rejection. The
paraffin-embedded samples were cut into 3 µm thick sections
and stained with either Jones H&E, PAS or Sirius Red, in
addition to two immunohistochemistry markers (CD34 and
CD68), N = 5, using an automated staining instrument (Ven-
tana Benchmark Ultra). Whole slide images were acquired
using an Aperio AT2 scanner at 40×magnification (a reso-
lution of 0.253 µm/pixel). All the glomeruli in each WSI
were annotated and validated by pathology experts by outlin-
ing them using Cytomine [20]. The dataset was divided into
4 training, 2 validation, and 4 test patients. The number of
glomeruli in each staining dataset was: PAS – 666 (train.),
580 (valid.), 1074 (test); Jones H&E – 1005 (test); Sirius Red
– 922 (test); CD34 – 1013 (test); CD68 – 990 (test). The
training set comprised all glomeruli from the source staining
training patients (666) and 4662 tissue patches (to account for
the variance observed in non-glomeruli tissue).

3.2. Experiments

For each strategy described in Section 2.2, a CNN was trained
on the source staining (PAS) and applied to the target stain-
ings (PAS, Jones H&E, Sirius Red, CD34, and CD68). Test
patient whole slides were segmented and precision, recall and
F1 score of the glomeruli were taken. To evaluate robustness,
five repetitions of each experiment were performed. Table 1
shows the means and standard deviations of the repetitions for
each measure.

The segmentation results trained on and applied to the
source staining (PAS) form the controls. State-of-the-art per-
formance [2, 21, 22] is achieved or surpassed and this estab-
lishes a baseline for the best achievable inter-staining perfor-

mance. The segmentation results trained on the source stain-
ing and applied to the target stainings (RGB strategy) form
the negative controls and, as the network essentially fails to
detect anything, demonstrate the need for a transfer strategy.

The first strategy relies on compressing structural infor-
mation into one band: Greyscale. This vastly increases target
performance compared to RGB (with no affect on source per-
formance) and leads to decent segmentation on Jones H&E
and CD34, which are structurally the most similar to PAS.

Next is a strategy to extract biological information that is
consistent across different stainings—the haematoxylin coun-
terstain. Despite this biological plausibility, it does not result
in good results. Indeed, the haematoxylin transformed images
vary greatly between the different stainings (see Figure 1, sec-
ond row). Several factors may explain this: 1) haematoxylin’s
concentration relative to the primary stain may vary from one
staining to another, resulting in different shades of blue and
fixation amount; 2) as a counterstain, haematoxylin may be-
come mixed with another stain in structures that are targeted
by both. These result in a color mixing that is in practice not
perfectly unmixed by a color deconvolution algorithm.

Although training a network using compressed structural
information vastly improves inter-staining generalisation, ac-
ceptable segmentation performance is not achieved. The third
strategy attempts to preserve color information but force the
network not to specify the structure to particular colours. The
Channel Swap strategy provides results equal to or better than
the previous strategies in all but one staining (CD34), how-
ever this is achieved at the expense of stability due to the ran-
domised colour channels.

Finally, colour variance is restricted to a more realis-
tic range using colour transfer, giving the best results in all
cases. It should be noted that the quality of the result is highly
dependent on the degree of structural similarity between the
target and source staining. Visually, there is a large differ-
ence between histochemical staining methods (e.g. H&E,
PAS, Jones) and immunohistochemistry (antibody-mediated
detection of certain structures like immune cells of blood
vessel inner lining) with weak blue counterstain. Therefore,
some limitations of the approach are expected, and the degree
of variation may explain why detection of glomeruli in the
CD68 staining did not work well with PAS as source staining.

4. CONCLUSIONS

It has been shown that the efficacy of simple transfer strate-
gies depend on the degree of structural similarity between the
source and target staining. The presented work dramatically
improves the inter-staining segmentation performance when
compared to standard training approaches, and this gain is
correlated with the complexity of the strategy used. Never-
theless, it appears that a limit has been reached and strategies
other than modifying training data should be the focus of fu-
ture research into developing stain invariant networks.
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Fig. 1: Glomeruli patch examples with different transformations. Each column corresponds to a different staining, and each
row a transformation. The colour transfer (4th row) results are applied to a PAS patch, using each staining as a target.

Training
Strategy Score Test Staining

PAS Jones H&E CD68 Sirius Red CD34

RGB
F1 0.901 (0.006) 0.031 (0.015) 0.000 (0.000) 0.015 (0.012) 0.011 (0.009)
precision 0.873 (0.014) 0.023 (0.014) 0.372 (0.292) 0.009 (0.007) 0.052 (0.017)
recall 0.932 (0.021) 0.075 (0.031) 0.000 (0.000) 0.063 (0.067) 0.006 (0.006)

Greyscale
F1 0.899 (0.004) 0.599 (0.080) 0.030 (0.033) 0.301 (0.059) 0.596 (0.050)
precision 0.867 (0.013) 0.444 (0.088) 0.154 (0.098) 0.464 (0.072) 0.703 (0.058)
recall 0.934 (0.007) 0.944 (0.007) 0.017 (0.020) 0.238 (0.078) 0.523 (0.071)

Haematoxylin
F1 0.872 (0.010) 0.676 (0.036) 0.002 (0.001) 0.001 (0.000) 0.042 (0.019)
precision 0.807 (0.019) 0.609 (0.096) 0.029 (0.024) 0.003 (0.003) 0.079 (0.041)
recall 0.948 (0.003) 0.785 (0.075) 0.001 (0.001) 0.000 (0.000) 0.034 (0.020)

Channel
Swap

F1 0.889 (0.005) 0.671 (0.050) 0.106 (0.111) 0.508 (0.133) 0.379 (0.139)
precision 0.846 (0.012) 0.659 (0.063) 0.167 (0.124) 0.658 (0.116) 0.605 (0.139)
recall 0.936 (0.013) 0.700 (0.111) 0.090 (0.108) 0.457 (0.156) 0.299 (0.146)

Colour
Transfer

F1 0.882 (0.015) 0.813 (0.042) 0.153 (0.083) 0.739 (0.070) 0.709 (0.028)
precision 0.834 (0.039) 0.748 (0.078) 0.417 (0.133) 0.742 (0.106) 0.726 (0.062)
recall 0.938 (0.015) 0.899 (0.017) 0.099 (0.059) 0.746 (0.073) 0.706 (0.089)

Table 1: Quantitative results for each strategy trained on PAS (source staining) and tested on different stainings (target stain-
ings). The numbers in parentheses are the standard deviations of the corresponding scores.
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