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In this perspective, we discuss where and how accounting for electronic many-body

polarization affects the accuracy of classical molecular dynamics simulations of

biomolecules. While the effects of electronic polarization are highly pronounced for

molecules with an opposite total charge, they are also non-negligible for interactions

with overall neutral molecules. For instance, neglecting these effects in important

biomolecules like amino acids and phospholipids affects the structure of proteins

and membranes having a large impact on interpreting experimental data as well as

building coarse grained models. With the combined advances in theory, algorithms

and computational power it is currently realistic to perform simulations with explicit

polarizable dipoles on systems with relevant sizes and complexity. Alternatively, the

effects of electronic polarization can also be included at zero additional computational

cost compared to standard fixed-charge force fields using the electronic continuum

correction, as was recently demonstrated for several classes of biomolecules.

Keywords: molecular dynamics simulations, electronic polarization, electronic continuum correction,

biomolecules, phospholipids, amino acids, nucleic acids, ions

In molecular dynamics simulations, the interactions between molecules are described with
approximate potentials known as force fields that mimic the true Born-Oppenheimer energy
hypersurface. Among these methods, pairwise additive potentials are very popular for modeling
biomolecules such as proteins, lipids or nucleic acids (Ponder and Case, 2003; Lopes et al., 2015).
The current standard force fields (Huang and MacKerell, 2013; Maier et al., 2015; Robertson et al.,
2015), however, neglect important physical many-body effects such as the electronic polarization,
charge transfer, or many-body dispersion (cited in decaying magnitude order) (Kleshchonok and
Tkatchenko, 2018). Although such models have provided valuable insight into many phenomena
from various fields including biology, chemistry, biophysics, or material sciences, there are several
important cases in which accounting for polarizability is crucial.

PITFALLS OF NON-POLARIZABLE FORCE FIELDS

The limited predictive accuracy of non-polarizable force fields led the molecular modeling
community to develop new generation “polarizable” force fields (Gresh et al., 2007; Jorgensen,
2007; Stone, 2013; Shi et al., 2015; Piquemal and Jordan, 2017; Kleshchonok and Tkatchenko, 2018;
Martinek et al., 2018; Melcr et al., 2018, 2019; Antila et al., 2019; Jing et al., 2019) able to include the
missing physics with a special focus on the polarizability effects. Although such techniques are now
widely used in fields studying highly charged ionic liquids (Bedrov et al., 2019), their application
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cannot be limited only to such extreme cases. For instance,
neglecting the effects of the electronic polarizability in important
biomolecules like amino acids, nucleic acids, and phospholipids
affects the structure of proteins (Jiao et al., 2008; Shi et al.,
2009; Duboué-Dijon et al., 2018a), DNA (Babin et al., 2006),
and membranes (Harder et al., 2009; Catte et al., 2016; Melcr
et al., 2018) having a large impact on interpreting experimental
data (Hauser et al., 1977; Eisenberg et al., 1979; Kurland et al.,
1979; Feigenson, 1986; Mattai et al., 1989; Roux and Bloom,
1990, 1991; Böckmann and Grubmüller, 2004; Lund et al., 2008;
Vacha et al., 2009; Berkowitz et al., 2012; Melcrová et al., 2016;
Javanainen et al., 2017; Magarkar et al., 2017) as well as building
coarse grained models. Importantly, these results show that the
electronic polarization yields non-negligible effects also at overall
neutral molecules (Gresh et al., 2007; Melcr et al., 2018).

Secondary structure of proteins is to a large extent determined
by an intricate network of hydrogen bonds. The description
of hydrogen bonds in standard force fields, however, does
not contain important contributions, e.g., from polarization
and partially covalent character (Babin et al., 2006). It was
demonstrated in many cases including structure of water (Dang,
1998), binding of ligands to proteins (Friesner, 2005; Jiao
et al., 2008), and protein folding and unfolding (Morozov
et al., 2006; Freddolino et al., 2010; Piana et al., 2011, 2014;
Huang and MacKerell, 2014; Lemkul et al., 2016; Célerse et al.,
2019) that polarizability contributes significantly to the accuracy
of simulations of structures with hydrogen bonds. Also, salt
bridging between amino acids is likely overestimated in strength
when the effects of polarization are not included (Friesner, 2005;
Vazdar et al., 2013; Debiec et al., 2014; Ahmed et al., 2018; Célerse
et al., 2019; Mason et al., 2019). For instance, the interaction
of acidic side chains of glutamate and aspartate with cations is
overestimated in strength in classical non-polarizable force fields
(Patel et al., 2009; Duboué-Dijon et al., 2018a), while treatment of
polarizability in solvent relaxation affects salt bridge dissociation
(Célerse et al., 2019). Taken together, the secondary and tertiary
structural arrangements in the simulations of proteins are likely
biased to certain preferred configurations due to the lack of
polarizability depending on the chosen parametrization strategy
(Freddolino et al., 2009, 2010; Piana et al., 2011, 2014).

Membrane proteins form a large part of cellular proteome and
are in direct contact with amphiphilic cellular membranes, which
influence their structure and activity (Lee, 2004). Membranes
themselves are crucial cell organelles which define the inner
resp. outer cellular environment. They are predominantly
composed of amphiphilic phospholipids, which self-assemble
into stable bilayer structures (Harayama and Riezman, 2018).
The force fields for phospholipids have been tuned to the
level that the simulations of commonly used simplified
model lipid membranes can reproduce a large variety of
experimentally measured properties, phenomena and structural
features including lipid self-diffusion, x-ray scattering patterns,
bilayer thickness, area per phospholipid, and acyl chain order
parameters (Pluhackova et al., 2016).

This could make an impression that the currently available
non-polarizable lipid force fields provide comparable accuracy
to the models with explicit polarization at a fraction of

the computational cost. While the non-polarizable models
yield accurate results in many cases (Lucas et al., 2012;
Chowdhary et al., 2013a), simulation studies have revealed
that such models gradually lose their predictive accuracy with
increasing complexity beyond model systems used during
their parametrization, e.g., when membranes are put into
contact with buffers of physiological ionic strengths (Catte
et al., 2016). For instance, improvements in the electrostatics
of phospholipid membranes have a great impact on the
membrane dipole potential, permeation of water through
membranes, and viscosity of organic liquids (Harder et al.,
2009; Venable et al., 2019). Moreover, the interactions between
phospholipids and cations, especially divalent cations like
calcium, are overestimated in the classical non-polarizable
models (Catte et al., 2016; Melcr et al., 2018; Antila et al.,
2019).

In general, the structure of divalent cations complexes that
are widespread in biosystems is traditionally problematic in
non-polarizable simulations (Kohagen et al., 2015). In contrast,
simulations with explicit or implicit treatment of polarization
yield comparable accuracy to DFT-based ab-initio calculations
and neutron scattering experiments, as was demonstrated for
biologically relevant divalent cations Ca2+ and Mg2+ (Piquemal
et al., 2006b; Wu et al., 2010; Martinek et al., 2018). While
accounting for the electronic polarization overall improves the
predictive accuracy of simulations in general, it is not sufficient
in some cases like zinc chloride ion pairing, where more complex
physics beyond “mere” electronic polarization is at play (Gresh
et al., 2005, 2007; Piquemal et al., 2007; Duboué-Dijon et al.,
2018b).

IMPLICIT TREATMENT OF ELECTRONIC

POLARIZATION VIA ELECTRONIC

CONTINUUM CORRECTION

The necessity of polarizability and screening in modeling
lipid bilayers has been an issue from the very beginning
of computational modeling of model membranes. The first
pioneering works on phospholipid bilayers document the need of
including polarizability and extra screening in the development
of the first models, which was achieved at that time through
an empirical scaling factor for the partial atomic charges of the
phospholipids (Egberts et al., 1994). A similar strategy supported
by continuum theory was used in the recent developments
of phospholipid force fields, which implicitly account for the
electronic polarization using Electronic continuum correction
(ECC) (Leontyev and Stuchebrukhov, 2009, 2010a; Mason et al.,
2012; Pegado et al., 2012; Pluhařová et al., 2013; Martinek et al.,
2018). Despite the approximate treatment of the polarizability
using ECC, such lipid force fields provide accurate interactions
between phospholipid bilayers and cations in agreement with
experiments (Melcr et al., 2018). In particular, in the case of
the neutral phosphatidylcholine (PC), ECC improved the cation
binding affinity for monovalent, and divalent cations reaching
agreement with experiments (Melcr et al., 2018), while for
negatively charged phosphatidylserine (PS) it has also improved
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the overall structure of the phospholipid and the interactions
with other lipids (Antila et al., 2019; Melcr et al., 2019).

Electronic continuum correction is a very efficient alternative
to otherwise computationally demanding explicit modeling of
electronic polarization (Bedrov et al., 2019). The accuracy of the
ECC method was shown to yield promising results on several
polar organic solvents (Leontyev and Stuchebrukhov, 2010b,
2012; Lee and Park, 2011; Vazdar et al., 2013), while it proved
to be necessary yet sufficient for an accurate description of the
structure of several monovalent and divalent ions in aqueous
solutions (Mason et al., 2012; Pegado et al., 2012; Pluhařová et al.,
2013). To date, the array of force fields utilizing ECC has grown
from a wide range of biologically relevant ions (Kohagen et al.,
2014, 2015; Martinek et al., 2018), to protein moieties (Vazdar
et al., 2013; Duboué-Dijon et al., 2018a; Mason et al., 2019),
and whole phospholipid molecules (Melcr et al., 2018) making
realistic simulations of e.g., membrane proteins at physiological
ionic conditions possible.

In ECC all particles are assumed to have equal polarizabilities
and the electric field and electron density within each particle
is homogenous (Leontyev and Stuchebrukhov, 2009). Such
approximations simplify the calculations of the polarization
to such an extent that it can be simply included in the
interactions as a pre-determined charge-scaling factor (Leontyev
and Stuchebrukhov, 2009), which is derived from the high-
frequency dielectric constant of electrons, εel, as 1/

√
εel ≈ 0.75

for aqueous solutions. Importantly, εel is close to 2 for a wide
variety of biologically relevant environments meaning that even
interfaces like biological membranes do not give rise to large
gradients. Despite the coarseness of the approximations, the
effects of electronic polarization are described sufficiently well
for a variety of biologically relevant molecules in a condensed
phase (Duboué-Dijon et al., 2018a,b; Martinek et al., 2018;
Melcr et al., 2018). Moreover, ECC accounts for the effects of
electronic polarization at zero additional computational cost
compared to standard fixed-charge force fields. Although, a
new generation of simulation codes performing large scale
simulations with explicit polarization models starts to emerge
(Lagardère et al., 2018), ECC yields the benefit of employing
the widely adopted and already highly optimized codes for
classical MD.

The common implementation of ECC via charge rescaling
profoundly resembles an empirical scaling factor, which,
obviously, reduces the interaction of charged molecules. From
both the derived ECC theory (Leontyev and Stuchebrukhov,
2010a) and its applications, which compare ECC to also other
methods (Pegado et al., 2012; Martinek et al., 2018), it is however
clear that the improvements pertinent to ECC can be attributed
to the electronic polarization. For instance, interactions of
sulfate anions were directly compared between simulations with
ECC, solvent shell model (Rick and Stuart, 2003) and ab-initio
calculations (Pegado et al., 2012). This comparison has revealed
that ECC performed comparably well to the other methods
at a fraction of the computational cost. Moreover, ECC was
concluded as preferable over the explicit solvent shell model for

sulfate anions as it was closer to the structures from ab-initio
calculations (Pegado et al., 2012).

CAPTURING EFFECTS BEYOND

ELECTRONIC POLARIZATION

The accuracy of the implicit methods including ECC is limited
and gradually becomes inadequate in cases, which do not adhere
to the assumed approximations. For instance, the complex
electronic structure of Zn2+ makes it difficult to capture
the ion pairing of zinc chloride with ECC unless specific
ad hoc interaction terms between the ions are introduced
(Duboué-Dijon et al., 2018b). Hence, resorting to more accurate
modeling strategies including explicit polarizable dipoles—or
even effects beyond electronic polarization—becomes necessary
in such cases.

The AMOEBA force field with explicit polarizable dipoles
correctly reproduces water structure around Zn2+ in bulk
solution and its free energy of hydration, however, it still does
not capture the fine details of zinc chloride ion pairing. The
reason for that is that Zn2+ exhibits considerably large charge
transfer effects prefiguring what is happening with transition
metals where back-donation effects become important (Gresh
et al., 2005, 2007; Piquemal et al., 2007). Simulations then need
to utilize more complex polarizable force fields able to separately
evaluate the different physical contributions. Indeed, short-range
electrostatics in such systems is anything but classical as it is
strongly affected by quantum penetration effects in the overlap
region (Piquemal et al., 2003, 2006a; Gresh et al., 2005, 2007;
Wang et al., 2015). On the contrary, many-body polarization
interactions which are usually cooperative (i.e., the total energy
being larger that the purely additive contributions) do not behave
in such a way (Gresh et al., 2007, 2016; Zhang et al., 2012;
Jing et al., 2018). Divalent metal cations in particular locally
reverse the physical trends and exhibit net anticooperativity as
the total energy becomes smaller than the sum of individual
contributions. For example SIBFA (Sum of Interactions Between
Fragments Ab initio computed) incorporates a many-body
explicit charge transfer (Gresh et al., 2005, 2007; Piquemal et al.,
2007) and a penetration correction for electrostatics (Piquemal
et al., 2003; Narth et al., 2016), and is able to deal with such
difficult systems.

Such effects also exist with variablemagnitude in biomolecular
simulations, and resorting to more accurate methods employing
physics even beyond explicit polarization will be likely required
for predictive accuracy in many cases, e.g., metalloproteins,
which shall be interesting playgrounds for such modeling (Gresh
et al., 2007, 2016; Zhang et al., 2012; Jing et al., 2018).
Improvements in capturing correct physics is a general trend
in current developments, and besides SIBFA, the AMOEBA
force field is gradually evolving into the AMOEBA+ potential,
which additionally includes such physical effects (Liu et al.,
2019). Moreover, several other general polarizable potentials are
emerging (Huang et al., 2017; Das et al., 2019; Rackers and
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Ponder, 2019) indicating the start of next-generation polarizable
force fields development (Piquemal et al., 2006a; Duke et al., 2014;
Piquemal and Cisneros, 2016).

ARE POLARIZABLE SIMULATIONS

COMPUTATIONALLY TRACTABLE?

This being said the question remains: is there any practically
achievable perspective application of such advanced models
to meaningfully large simulations of biologically relevant
systems?—Certainly yes. If the use of polarizable models has
been doomed by their computational cost for years, things have
dramatically improved. In terms of computational requirements,
the approaches utilizing Drude particles (Lopes et al., 2013)
traditionally appeared more feasible compared to explicit point
dipole approaches (Lipparini et al., 2014; Lagardère et al., 2015),
as their computational cost in standard high-performance codes
was higher by a factor 2–4 depending on implementation and
reference settings compared to non-polarizable force fields (Jiang
et al., 2011), while the explicit point dipoles models were
roughly twice slower. However, such models cannot utilize long
time-steps because of their use of extended Lagrangian, which
practically imposes a speed limit (Wang and Skeel, 2005; Albaugh
and Head-Gordon, 2017). In contrast, utilizing advanced
algorithms for solving polarization and dynamical integration is
possible within explicit point dipole approaches leading to strong
speed increases to the performance level of Drude approach
(even for higher-level multipolar electrostatics approaches such
as AMOEBA) when compared to usual non-polarizable models
simulation (Lagardère et al., 2019). However, the numerous
available point dipole force fields (AMOEBA, SIBFA etc. . . ) had
in practice another handicap besides their computational cost:
they were not available in high performance/production codes
such as GROMACS or NAMD (Phillips et al., 2002; Van Der
Spoel et al., 2005).

This situation has gradually changed in recent years. First,
in link with the improved multi-timestep integration, the key
mathematical problem of solving the point dipole equations
using iterative methods was alleviated using new non-iterative
approaches such as the Truncated Conjugate Gradient (TCG-
1) (Aviat et al., 2017a,b) that allows for a fix cost evaluation
of polarization. When coupled to an analytical evaluation
of gradient such an approach fully preserves energy and,
hence, allows for long time step simulations. Second, the
availability of massively parallel MPI codes able to efficiently
use supercomputers using 3D domain decomposition techniques
such as Tinker-HP (Lagardère et al., 2018; Jolly et al., 2019)
[the high performance engine of the Tinker molecular package
Rackers et al., 2018] shed first rays of light at the end of the
tunnel leading toward simulations of biologically relevant large
systems on long enough timescales with explicit polarization.
Moreover, GPU accelerated implementations of AMOEBA in
OpenMM (Huang et al., 2018) and Tinker-OpenMM (Harger
et al., 2017) are available whereas the support of hybrid
(multi)CPUs-GPUs is coming in Tinker-HP (O. Adjoua et al.,
personal communication).

Overall, methodology has made a key progress and will
continue in this direction for all types of polarizable force fields
as the accessible computer power quickly increases reducing
therefore the computational gap with additive potentials.
Whereas specialized highly accurate water potentials based on
many-body expansions emerge such as MBPOL (Riera et al.,
2019) and allow for a better understanding of fine physical effects
in clusters and bulk water, the availability of general polarizable
force fields such as AMOEBA offering water (Ren and Ponder,
2003), ions, organochlorine compounds (Mu et al., 2014),
proteins and nucleic acids (Shi et al., 2013; Zhang et al., 2018)
now enables performing enough sampling to achieve highly
accurate and biologically meaningful simulations. The Drude
approaches parametrization is expanding as well (Lamoureux
et al., 2003; Chowdhary et al., 2013a,b; Lopes et al., 2013).
Moreover, accelerated sampling methods start to be applied also
to polarizable approaches (Célerse et al., 2019) offering improved
simulation capabilities and access to accurate and fast evaluation
of free energies of binding thanks to GPUs (Harger et al., 2017).
Such capabilities allow to tackle hard systems as in the case of
the Phosphate binding mode of the Phosphate-binding protein
where it was possible to highlight the critical effect of the buffer
solution ending a long standing controversy thanks to free energy
computations (Qi et al., 2018).

SUMMARY: BIOMOLECULAR

SIMULATIONS OF THE FUTURE ARE

POLARIZABLE

In summary, we have presented several important classes and
case studies of biomolecules, where including polarizability
is an important factor for the simulation accuracy. Cytosolic
environment in cells is mostly composed of water solutions
of ions, for which polarizability is necessary for the accurate
description of the solvated structure of ions, their pairing and
interaction with other biomolecules (Piquemal et al., 2006b; Wu
et al., 2010; Mason et al., 2012; Pegado et al., 2012; Pluhařová
et al., 2013; Duboué-Dijon et al., 2018a,b; Martinek et al., 2018;
Melcr et al., 2018). Polarizability is an important factor for
accurate interactions between amino acids, namely salt bridges
between them, which are overestimated in strength in current
non-polarizable force fields (Friesner, 2005; Vazdar et al., 2013;
Ahmed et al., 2018; Célerse et al., 2019; Mason et al., 2019).
Moreover, polarizable force fields yield a better description of
the hydrophobic effect and hydrogen bond networks in proteins,
which to a large extent determine the dynamic structure and
conformational changes of proteins (Dill et al., 1995; García-
Moreno et al., 1997; Fitch et al., 2002; Morozov et al., 2006;
Freddolino et al., 2010; Piana et al., 2011, 2014; Huang and
MacKerell, 2014; Lemkul et al., 2016; Célerse et al., 2019; Venable
et al., 2019). Polarizability is necessary for accurate structure and
interactions of both neutral and charged phospholipids, which
constitute a dominant part of cellular membranes (Harder et al.,
2009; Catte et al., 2016; Melcr et al., 2018).

The representation of electronic polarization in classical MD
simulations can vary largely with Drude and induced point
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dipoles approaches on one side and continuum approximations
on the other (Cieplak et al., 2009; Lopes et al., 2009; Leontyev
and Stuchebrukhov, 2011; Schröder, 2012; Baker, 2015; Shi
et al., 2015; Lemkul et al., 2016; Bedrov et al., 2019; Jing
et al., 2019). With the advances in both computational power
together with theory and algorithms it is practically achievable
to perform simulations with explicit polarizable dipoles on
systems with relevant sizes and complexity (Qi et al., 2018;
Bedrov et al., 2019; Lagardère et al., 2019; Loco et al., 2019).
In particular, it is currently realistic to perform simulations
with explicit polarization at time scales, which are competitive
to the standard fixed-charge simulations (Lemkul et al., 2016;
Lagardère et al., 2018; Célerse et al., 2019). Moreover, advanced
polarizable potentials (e.g., SIBFA, AMOEBA+) including effects
even beyond electronic polarization are being actively developed
to tackle systems with complex structure like metalloproteins,
kinases or ribozymes (Gresh et al., 2007, 2016; Zhang et al.,
2012; Jing et al., 2018, 2019; Das et al., 2019; Liu et al.,
2019; Rackers and Ponder, 2019). Also, approximate implicit
solutions like ECC, which circumvent the computational costs of
explicit polarization, gradually gain on popularity and provide a
promising solution for a variety of applications in biomolecular
simulations (Duboué-Dijon et al., 2018a,b; Martinek et al.,
2018; Melcr et al., 2018, 2019; Mason et al., 2019). Finally,
as fully variational polarizable embeddings are now possible
in hybrid QM/MM molecular simulations (Loco et al., 2016,
2017, 2019), one can expect that hybrid explicit polarization/ECC
simulations will be possible in the near future offering a multi-
level global treatment of polarization across very large complex
molecular systems.

Biomolecules in the real world cannot turn off their
polarizability. Hence, molecular dynamics simulations, which
aim to give a realistic, robust, and predictive results, cannot
afford to neglect this important contribution to the electrostatic

interaction. Currently, polarizable force fields for a large
variety of biomolecules and simulation codes implementing
polarizability exist and are readily available to solve various
biophysical problems (Wu et al., 2010; Chowdhary et al., 2013a;
Lemkul et al., 2016; Duboué-Dijon et al., 2018a,b; Lagardère et al.,
2018; Martinek et al., 2018; Melcr et al., 2018; Zhang et al., 2018;
Bedrov et al., 2019; Célerse et al., 2019; Jing et al., 2019; Liu et al.,
2019). We expect that the popularity of such approaches will
grow and will become a common tool in biomolecular research
in the near future.
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