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The “Shapiro delay” experienced by an astronomical messenger traveling through a gravitational field
has been used to place constraints on possible deviations from the equivalence principle. The standard
Shapiro delay used to obtain these constraints is not itself an observable in general relativity, but is rather
obtained by comparing with a fiducial Euclidean distance. There is not a mapping between the constraints
obtained in this manner and alternative theories that exhibit equivalence principle violations. However,
even assuming that the comparison with the fiducial Euclidean distance is carried out in a way that is useful
for some class of alternative theories, we show that the standard calculation of these constraints cannot be
applied on cosmological scales, as is often done. Specifically, we find that the Shapiro delay computed in
the standard way (taking the Newtonian potential to vanish at infinity) diverges as one includes many
remote sources. We use an infinite homogeneous lattice model to illustrate this divergence, and also show
how the divergence can be cured by using Fermi coordinates associated with an observer. With this
correction, one finds that the Shapiro delay is no longer monotonic with the number of sources. Thus, one
cannot compute a conservative lower bound on the Shapiro delay using a subset of the sources of the
gravitational field without further assumptions and/or observational input. As an illustration, we compute
the Shapiro delay by applying the Fermi coordinate expression to two catalogs of galaxy clusters,
illustrating the dependence of the result on the completeness of the catalogue and the mass estimates.

DOI: 10.1103/PhysRevD.100.104047

I. INTRODUCTION

In the standard model of fundamental physics, different
types of electromagnetic and gravitational waves all travel
on null geodesics in the geometric optics limit (see, e.g.,
[1], who demonstrates this for gravitational waves).1 In
other words, they may be different either with respect to
their respective energies (e.g., gamma versus radio electro-
magnetic waves), or to the fundamental field they are
associated with (e.g., gravitational versus electromagnetic
waves), or other properties (e.g., polarization), and still
have trajectories that follow from the same null-geodesic
equation. Tests of this statement can also be extended to
uncharged massive objects with the same mass, e.g., matter
versus antimatter, which will follow the same timelike
geodesics. This property takes its root from the Einstein

equivalence principle that led to general relativity mini-
mally coupled to the standard model of particle physics.
Therefore, being able to test the universality of the geodesic
equation is a test of the equivalence principle, and any
deviation from it would be an indicator of physics beyond
the current standard model of physics.
As a consequence, there is a large collection of papers

dealing with this theme [3–37], starting with Longo [38],
Krauss and Tremaine [39], LoSecco [40], and Pakvasa
et al. [41], although three of these papers actually compared
objects following null and non-null geodesics (electromag-
netic waves and neutrinos or antineutrinos); LoSecco
compares neutrinos and antineutrinos.2 All of these papers
consider possible differences in the Shapiro delay [43]
experienced by messengers with different properties.3

1It has been shown that the propagation of gravitational waves
does not follow the laws of geometric optics for lenses with
masses less than approximately 105 M⊙ðf=HzÞ−1, where f is the
gravitational wave frequency [2]. However, this is not relevant for
the cases considered here.

2However, at the time those papers were written, it was not
known whether neutrinos had a mass, though [42] showed that the
neutrinos’ mass has a negligible effect on these constraints.

3Note that the “Shapiro time delay” is also known as the
“gravitational time delay” in the lensing community [44,45].
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The most recent surge of publications on this theme has
followed the quasicoincident detections of gravitational
waves (GW170817) and a short-duration gamma-ray burst
(GRB 170817A), from which many constraints on the
universality of the null-geodesic equation have been derived
in the literature, starting from the one of the LIGO, Virgo,
Fermi GBM, and INTEGRAL collaborations [46].
Although there exist various small differences between

these analyses, the vast majority of them—starting with
Longo [38]—assume that the metric perturbation is null at
infinity and then simply apply the usual parametrized post-
Newtonian Shapiro delay equation:

δT ¼ −
1þ γ

c3

Z
rO

rE

UðrðlÞÞdlþOðc−4Þ; ð1Þ

where rE and rO denote emission and observation positions,
respectively, UðrÞ is the Newtonian gravitational potential,
and the integral is computed along the trajectory. γ is the
parameter appearing in the space-space component of the
c−2 parametrized post-Newtonian metric. In the parame-
trized post-Newtonian framework, γ will be the same for
different messengers, since it is a property of the metric.
Nevertheless, for the tests of the equivalence principle we
are considering, the standard approach is to assign different
values of γ to different messengers, though this is not
derived from any specific alternative theory or fundamental
principle—see the discussion in Sec. II B.
Equation (1) is gauge dependent, so employing it to

constrain deviations from the equivalence principle involves
some assumptions, which are usually tacit and are discussed
further below. Additionally, it implicitly assumes that the
trajectory is short enough that one can treat the region of
spacetime containing it as Minkowski plus a linear pertur-
bation, to a good approximation. We will see that this
assumption is well justified for sources like GW170817, but
not for sources with redshifts z≳ 1, like, for instance, the
gamma-ray bursts at z ¼ 1.5, z ¼ 2.2, z ¼ 2.6, or even
z ¼ 11.97 considered in [14,23,19,25], respectively. While
Nusser [10] gives a formulation of the constraint that is
applicable to more distant sources, the previously cited
papers use the standard formulation in Eq. (1).
If one assumes Keplerian potentials (which is a good

approximation for all sources that are sufficiently far from
the line of sight), the previous equation reduces to [47]

δT ¼ ð1þ γÞ
X
P

GMP

c3

�
ln

�
rP þRPE þREO

rP þRPE −REO

��
þOðc−4Þ;

ð2Þ
where rP ≔ jjx⃗Pjj and RXY ≔ jjx⃗Y − x⃗Xjj (jj · jj denotes the
Euclidean distance).4 In this situation, one can check that

the Shapiro delay is monotonic with respect to the number
of sources. As a consequence, one is allowed to consider
only a subset of the sources in order to be able to estimate a
conservative minimum value of the Shapiro delay, which is
necessary in order to give a conservative limit on the
violation of the equivalence of the null-geodesic equation.
However, as mentioned above, Eq. (1) [and thus Eq. (2)]

is gauge dependent, in that it compares the propagation
time in the curved spacetime to that of the background
Minkowski spacetime in a particular set of coordinates.
If one changes the coordinates, then one can obtain both
positive and negative values of the time delay, as illustrated
in Gao and Wald [48]. Thus, applications of this expression
to equivalence principle constraints tacitly assume that the
coordinates used to obtain it are somehow preferred in the
context of the equivalence-principle violating theories
being tested, as discussed further in Sec. II.
Another issue with Eq. (2) is that on cosmological

scales—and even if the universe was flat and static—there
actually are many distant sources (all the way to infinity,
at least in the static universe case). Therefore, the assump-
tion that the gravitational potential is null at infinity is
at best an approximation. In what follows, we will show
that it is actually an inappropriate assumption on cos-
mological scales, because in some situations it can lead to
an unphysical divergence of the Shapiro delay with the
number of the gravitational sources contributing to the
delay.5 To demonstrate this divergence, we will use an
infinite homogeneous lattice toy model, because it allows
one to quantify the divergence arithmetically—and because
at the same time, it also has been shown to be a good model
of the cosmological metric in [49].
What we find is that assuming a null potential at infinity

corresponds to imposing an unsuitable choice of gauge
(related to an ambiguous choice of the coordinate time),
and that the unphysical infinite quantities disappear as soon
as one use an appropriate gauge (with a coordinate time
related for instance to the proper time of an observer).
Nevertheless, we also find that a corrected Shapiro delay
equation is no longer monotonic with the number of
considered sources, which implies that one cannot simply
use a subset of the sources in order to estimate a
conservative minimum of the Shapiro delay, which in turns
imply that one cannot get a conservative estimate of the test
of the universality of the null-geodesic equation, unless the
trajectory lies in a region of spacetime where one has
measurements of the gravitational field.
Overall, the goal of the present study is to show that,

even with the usual tacit assumptions made in constructing
the test, it is not possible to obtain a conservative bound on
violations of the equivalence principle in cosmological
situations with the standard method.

4Note that this equation can be given in various equivalent
forms by rearranging the terms in the parentheses in terms of
other geometrical quantities. See for instance Eq. (1) in [38].

5The divergence already arises at the level of the metric
perturbation.
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As a consequence, we think that most (if not all) of the
constraints on violations of the equivalence principle from
propagation over cosmological distances given in the
literature so far should be taken with a great deal of caution.
In Sec. II, we discuss the basics of the Shapiro delay

constraints on the equivalence principle considered in the
literature, including the tacit assumptions underlying them.
In Sec. III, we present a preliminary discussion on the
relevance of considering a perturbed Minkowski spacetime
on cosmological scales. In Sec. IV, we use a homogeneous
lattice universe in order to arithmetically show that the
gauge conditions that are usually implicitly used in the
literature lead to a divergence of the Newtonian potential,
and we give a cure to this nonphysical divergence. In
Sec. V, using a fiducial gauge that is tied to an observer’s
proper time, we derive an analytical expression of the
Shapiro delay in an infinite inhomogeneous flat Keplerian
universe in order to show that the Shapiro delay is no
longer monotonic with the number of considered sources in
general, contrary to the conventional wisdom. In Sec. VI,
we apply our Shapiro delay expression to two catalogs of
galaxy clusters in order to further show the behavior of the
Shapiro delay with realistic distributions of matter. We give
some concluding remarks in Sec. VII. Additionally, we
compute the affine distance in a post-Newtonian metric in
Appendix A and give a convergence proof for some lattice
sums we consider in the Appendix B.

II. BASICS OF SHAPIRO DELAY CONSTRAINTS
ON THE EQUIVALENCE PRINCIPLE

A. Definition of the Shapiro delay

Shapiro delay-based constraints on the equivalence
principle only consider a portion of the full propagation
time between two spacetime points—the full propagation
time is also known as the one-way propagation time.6

This one-way propagation time can be obtained unambig-
uously from an observable in some situations, and therefore
is itself observable in those situations. Indeed, if one con-
siders a stationary spacetime, with the observer and source
at rest, then the one-way propagation time is just half of the
two-way propagation time, where the two-way propagation
time would be the proper time measured by an observer
between sending a signal to a reflector and receiving the
reflection.
However, even in a case where the one-way propagation

time is observable, one still has to define a way of splitting
what one refers to as the Shapiro delay from the total propa-
gation time. Such a splitting is, in general, gauge dependent,
as discussed for instance in [48]. In asymptotically flat cases,

one obtains the usual expression in Eq. (1) in the standard
parametrized post-Newtonian (PPN) gauge (see Sec. 2.4 in
[51]) used to obtain the PPN expression. This expression is
the basis of the original tests in Longo [38] and Krauss and
Tremaine [39].
Nevertheless, again assuming asymptotic flatness, one

can also obtain the same Shapiro delay expression (in the
GR case), up to higher-order PN corrections, by consid-
ering the (gauge-invariant) affine distance daff (discussed
in, e.g., Sec. 2.4 of [52]). We compute the affine distance
for a general post-Newtonian metric in Appendix A,
showing that it gives the distance one would naïvely
compute using the background Minkowski metric in the
coordinates in which the post-Newtonian metric is given for
an observer at rest with respect to that background metric.
One then obtains the Shapiro delay (plus higher-order PN
effects) by subtracting daff=c (where c is the speed of light)
from the total one-way propagation delay. This assumes
that the metric is known, which allows one to compute the
affine distance. Therefore, at least in asymptotically flat
and stationary cases, there is a gauge-invariant definition of
the Shapiro delay. However, this definition is observer-
dependent, because the affine distance depends on the
observer 4-velocity. One notably gets the standard defi-
nition for a specific class of observers which are at rest with
respect to the fiducial background metric. Also, note that
while the affine distance is gauge invariant, it cannot be
obtained directly from standard astronomical observations.
However, the affine distance is also the distance one

would obtain by starting from the angular distance and
correcting for the magnification due to gravitational
lensing [see, e.g., Eq. (42) in [52] for this definition
of the magnification]. In any space-time geometry, and
for any theory of gravity in which the reciprocity rela-
tion holds and the intensity is conserved, the angular
distance dang and the luminosity distance dlum are related
by dlumðzÞ ¼ ð1þ z2ÞdangðzÞ, where z is the redshift
[53–56]. The luminosity distance is an observable for
compact binary coalescence observations with gravitational
waves as well as for electromagnetic observations of a
source with known luminosity (a “standard candle”).
In practice, for negligible redshift, this means that if one

can measure both the luminosity distance dlum, or the
angular distance dang, and the one-way propagation time T,
the Shapiro delay (plus higher-order PN effects) can simply
be defined by δT ¼ T − dlum=c, provided that the magni-
fication from gravitational lensing is negligible.7 This could
be the case in the Solar System, for instance, if one was in a
situation where one can approximate the gravitational field
in the Solar System by the stationary gravitational field
of the Sun, since the leading contribution to the magnifi-
cation for small impact parameter gravitational lensing is6In contrast, Solar System observations of the Shapiro delay

(discussed in, e.g., [50]) are based on differential measurements
of the delay as the path changes, and not on the comparison of the
observed delay with a fiducial value.

7Note that this definition gives the Shapiro delay in terms of
the observers proper time.
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quadratic in the mass of the lens (see, e.g., Eqs. (3) and
(9) in [57]), while the Shapiro delay is linear in the
mass. One could measure the luminosity distance by
observing a spacecraft with a known intrinsic transmitter
power. However, as mentioned above, this is not how
current Shapiro delay constraints are obtained in the Solar
System.
Given the strong simplifying assumptions that were

necessary to properly define the Shapiro delay, one can
expect the analysis to be much more involved in situations
in which those simplifying assumptions no longer hold. In
particular, if one wants to consider cosmological situa-
tions, then it is no longer a good approximation to
consider a stationary spacetime: The departures from
stationarity are sufficiently large that they cannot be
neglected in these calculations, even for the relatively
short propagation times appropriate for GW170817/GRB
170817A—they correspond to about 10% of the naïve
Shapiro delay, as shown in the next section. While it may
be possible to relate the two-way propagation delay to the
one-way propagation delay in the cases of interest, this
relation would be rather complicated, so we will not
pursue this avenue here.

B. Bounds on equivalence principle violations

Another thing that is usually assumed in the literature
is that the propagation time of waves of different nature
would simply be related to Eq. (1) but with a different
parameter γ—which by definition would be a violation of
the equivalence principle. This should be seen as a con-
venient way to infer quantitatively how close the Shapiro
time delays must be for waves of different nature, rather
than being a parametrization that takes its root from a
fundamental theory.
Indeed, as far as we are aware, the method of defining the

Shapiro delay to use in equivalence principle tests dis-
cussed in the previous subsection is not derived from, or
even inspired by, any alternative theories.8 The same seems
to be true of the expression used by Nusser [10] in the
cosmological case, where the Shapiro delay is defined with
respect to the background Friedmann-Lemaître-Robertson-
Walker (FLRW) cosmology. However, since the standard
Shapiro delay expression is used in many studies, for the
purposes of this study we will assume that it gives a useful
measure of equivalence principle violations in at least some
alternative theories (e.g., ones in which there is a preferred
coordinate system).
Again, the goal of the present study is to show that, even

with the strong assumptions listed in this section, it is not

possible to obtain a conservative bound on violations of the
equivalence principle in cosmological situations—at least
not with the standard method.

III. PRELIMINARIES

In this section, in order to match with the notation in the
literature, we set G ¼ c ¼ 1.
In what follows, we show that one can treat the

cosmological spacetime as Minkowski plus a linear
perturbation for sufficiently nearby sources (including
GW170817), and also give some simple arguments for
why the standard Shapiro delay calculations are not trust-
worthy on cosmological scales.
Since the Shapiro delay is usually considered in the

post-Newtonian framework, where one is perturbing
around a Minkowski background, we first want to write
the FLRW background as Minkowski plus a linear pertur-
bation, which one can do for a sufficiently small patch of
spacetime around any observer. In order for the approxi-
mation of a linear perturbation to be good, the patch has to
have dimensions much less than the Hubble radius LH ≔
H−1

0 ≃ 4.4 Gpc, here taking the current value of the Hubble
parameter HðtÞ to be H0 ¼ 68 km s−1Mpc−1; cf. [60].
Specifically, we are interested in a patch containing an
observer on the Earth and the source of the radiation under
investigation and expand the metric in powers of Hjjx⃗jj,
where x⃗ is the displacement vector from the Earth.9 This
combination is the natural dimensionless expansion para-
meter for this situation. In fact, we write the FLRW metric
in Fermi normal coordinates, where we have (e.g., Eq. (4)
of [61])

ds2FLRW ¼ −f1 − ½ _HðtÞ þH2ðtÞ�jjx⃗jj2gdt2
þ ½1 −H2ðtÞjjx⃗jj2=2�jjdx⃗jj2 þOðH4jjx⃗jj4Þ: ð3Þ

(See [62] for related discussion.) Here overdots denote
derivatives with respect to cosmic time, so the Friedmann
equations for a spatially flat cosmology give H2 ¼ ð8πρþ
ΛÞ=3 and _H þH2 ¼ ð−4πρþ ΛÞ=3, where ρ is the aver-
age energy density and Λ is the cosmological constant.
We see that the neglected term is of order 10−8 for

the distance of ∼40 Mpc appropriate for GW170817 (see,
e.g., [63]) and is thus completely negligible compared to
the first-order perturbation, which is of the order of 104

larger. However, this term is of order unity for distances
around LH ≃ 4.4 Gpc or greater, i.e., z≳ 1, so one cannot
treat the metric as Minkowski plus a first-order pertur-
bation in those cases. We shall not consider such cases
further here.
We now want to consider the case in which we have a

perturbation to FLRW from, e.g., a galaxy or galaxy cluster.
8There is some motivation for this sort of expression in Coley

and Tremaine [58], considering propagation governed by differ-
ent connections, though it seems tailored to produce the standard
Shapiro delay expression. There are also suggestions that this
expression can be used to test dark matter emulators [59].

9Here we use “the Earth” as a shorthand for a geodesic of the
FLRW metric close to the actual position of the Earth.
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As a simple model, we will use the McVittie spacetime
[64], given in modern notation in, e.g., Eq. (20) of [65],
which describes a spherically symmetric mass embedded in
an expanding universe. We will only consider this space-
time well away from the singularity at the horizon, so that
pathology is not a concern. For the case that gives a
spatially flat FLRWmetric in the limit where the embedded
mass is zero, the McVittie metric in isotropic coordinates
takes the form

ds2McV ¼ −
�
1 − μðτ; ρÞ
1þ μðτ; ρÞ

�
2

dτ2 þ a2ðτÞ½1þ μðτ; ρÞ�4jjdy⃗jj2;

ð4aÞ

μðτ; ρÞ ≔ m
2ρaðτÞ ; ð4bÞ

where τ and y⃗ are cosmic time and the comoving spatial
coordinates, respectively (using the same notation as in
[61]), ρ ≔ jjy⃗jj, aðτÞ is the scale factor, and m is the mass
parameter of the embedded mass, which is equal to the
Schwarzschild mass when aðτÞ ¼ 1. We now want to
express this metric in coordinates similar to the Fermi
normal coordinates used for the FLRW metric in Eq. (3). If
we apply the coordinate transformation given in Eq. (3) of
[61], we obtain

ds2McV ¼ −
�
1 − ½ _HðtÞ þH2ðtÞ�jjx⃗jj2 − 2m

jjx⃗jj
�
dt2

−
8mHðtÞ
jjx⃗jj x⃗ · dx⃗dt

þ
�
1 −

H2ðtÞjjx⃗jj2
2

þ 2m
jjx⃗jj

�
jjdx⃗jj2

þO
�
H4jjx⃗jj4; m2

jjx⃗jj2 ; mH2jjx⃗jj
�
: ð5Þ

Except for the mixed spatiotemporal terms, this is the same
metric one would obtain if one naïvely superposed the
Fermi normal coordinate linearized FLRW metric [Eq. (3)]
and the standard Newtonian order post-Newtonian metric
of a point mass usually used to compute the Shapiro delay.
Note, however, that the metric in Eq. (5) no longer is in
Fermi coordinates, compared to the metric in Eq. (3),
because of the perturbing mass terms.
In fact, the spatiotemporal terms are much smaller than

the perturbations in the diagonal terms for the example
case we consider. Specifically, we consider the same
setup used in the equivalence principle constraint from
the GW170817/GRB 170817A signals in [46], using the
Milky Way’s Keplerian potential contribution with a mass
m ¼ 2.5 × 1011 M⊙ and minimum and maximum distan-
ces of r0 ¼ 100 kpc and r1 ¼ 26 Mpc (the 90% credible
level lower bound on the distance obtained solely from

gravitational waves from the analyses performed at the
time of that paper [66]). We consider a radial path, for
simplicity, and also use the cosmological parameters
H0 ¼ 68 km s−1Mpc−1, Ωm ¼ 0.31, and ΩΛ ¼ 1 −Ωm
(cf. the TT;TE;EEþ lowEþ lensingþ BAO parameters
in Table 2 of [60]). The naïve Shapiro delay including
the spatiotemporal terms is given (suppressing the remain-
der) by

Z
r1

r0

�
2m
r

þH2ðtðrÞÞ þ 2 _HðtðrÞÞ
4

r2 − 4mHðtðrÞÞ
�
dr

¼ 2m ln

�
r1
r0

�
þ
�ð1 − 3ΩmÞH2

0

12
ðr31 − r30Þ

þ 3ΩmH3
0

8
ðr41 − r40Þ

�
− 4mH0ðr1 − r0Þ; ð6Þ

where we have used H2ðtÞ þ 2 _HðtÞ ¼ H2
0 þ 2 _H0 þ

2ðH0
_H0 þ Ḧ0Þt þ OðH2

0t
2Þ ¼ ½1 − 3ð1 − 2H0tÞΩm�H2

0 þ
OðH2

0t
2Þ, noted that tðrÞ ¼ −r, and neglected the contri-

bution from the time dependence to the spatiotemporal
terms, since these already give a small contribution. The
contributions of the three terms in the sum (taking the terms
in brackets as a single term here) to the naïve Shapiro delay
are∼160 days,∼19 years (from individual contributions of
∼15 and ∼2 years), and ∼ − 8 hours, respectively, corre-
sponding to the contribution from the Keplerian potential,
the cosmological curvature, and the spatiotemporal terms.
We thus see that the spatiotemporal terms are indeed
negligible, although note that they contribute negatively
to the effect. The small factor of 1 − 3Ωm ≃ 0.07 is part of
why the time dependence (second term in brackets) is a
relatively large correction to the time-independent contri-
bution (first term in brackets).
Additionally, the contribution from the Keplerian poten-

tial is much smaller than that from the cosmological
curvature. Thus, it might seem that one can compute this
naïve Shapiro delay using only the cosmological curvature
to a good approximation, since it should take into account
the contributions from the many distant galaxies that
yield the diverging contribution to the Shapiro delay (see
Sec. IV B) in the naïve calculation using Eq. (2). This may
in fact be the case, but the Shapiro delay obtained in this
manner would not necessarily give a conservative bound,
since there will be negative contributions to the metric
perturbation, and thus the Shapiro delay, from nearby
underdensities. Thus, a more careful calculation is neces-
sary to assess the size of these contributions to the Shapiro
delay. This could in principle be substantial, given the
maximum size of the Newtonian potential of ∼10−4
mentioned in [67], which is an order of magnitude larger
than the maximum of the cosmological curvature term in
the Fermi coordinate FLRW metric [Eq. (3)] at the 26 Mpc
distance. It is possible that a statistical argument like in
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Nusser [10] could be used to give constraints on deviations
from the cosmological curvature, even in the absence of
direct measurements of the gravitational field along the line
of sight.

IV. THE INFINITE HOMOGENEOUS LATTICE

In order to show the unrealistic divergence of the metric
perturbation with the number of sources, it is convenient
to use a model where the perturbation can be computed
arithmetically. An infinite homogeneous lattice model
allows such computations. Additionally, it has been shown
to produce the results of the usual standard model of
cosmology with “small” backreaction effects that are due to
the discreteness of the perturbations considered [49]. In
such a model, the universe is filled with an infinite lattice
of cells. All cells possess the same mass at the same relative
location, and the metric is given in terms of a post-
Newtonian expansion in each cell.10 The evolution of the
universe then follows from junction conditions between
cells, known as the Israel junction conditions. Therefore,
such a model allows us to compute the Shapiro delay from
an infinite set of masses uniformly distributed, in an
otherwise realistically evolving universe.

A. Metric within each cell

Given a cell with a sufficiently small size LðtÞ [49,68],
the metric can be expanded around Minkowski spacetime
and reads:

ds2 ¼ ð−1þ h00Þc2dt2 þ ðδij þ hijÞdxidxj þOðc−3Þ;
ð7Þ

where h00 and hij are the c−2 perturbations of the metric
(Latin letters denote spatial indices), such that [49]

h00 ≡ 2Φ ¼ 2ðΦM þΦΛÞ; ð8Þ

hij ≡ 2Ψδij ¼ 2

�
ΦM −

ΦΛ

2

�
δij: ð9Þ

This metric is expressed in standard post-Newtonian
coordinates, so it takes this simple diagonal form to leading
order [68]. At leading order in the post-Newtonian approxi-
mation, the Einstein equation with a cosmological constant
then reduces to

△ΦM ¼ −
4πG
c2

X
β⃗∈Z3

Mδð3Þðx⃗ − LðtÞβ⃗Þ; ð10Þ

and

△ΦΛ ¼ Λ; ð11Þ

where △ is the flat-space Laplacian and M is the mass in
each cell. Let us stress that in the lattice model [49,68], one
is solving the equations in a single cell, so the appropriate
boundary conditions are those at the cell boundary, not at
infinity. The solution can be decomposed such that

ΦΛ ¼ Λ
6
r2; ð12Þ

with r2 ≔ x2 þ y2 þ z2, and

ΦM ¼ GM
rc2

þΦtðtÞ þ δΦlðtÞxl; ð13Þ

with the tidal potential [49,68]

Φt ≔
GM
c2

X
β⃗∈Z3�

1

jjx⃗ − LðtÞβ⃗jj
þΦ0ðtÞ; ð14Þ

where Z3� ≔ Z3nf0⃗g and Φ0ðtÞ and δΦlðtÞ are gauge-
dependent terms. In what follows, we set the mass at the
origin of the lattice equal to 0, in order to consider an
observer located at the origin, which simplifies the expres-
sions. We thus have

ΦM ¼ ΦtðtÞ þ δΦlðtÞxl; ð15Þ

B. An unsuitable choice of coordinate time

When considering a problem with a finite number of
bodies, the gauge is often restricted to the case that satisfies

lim
r→∞

ΦM ¼ Φ0ðtÞ ¼ 0; ð16Þ

lim
r→∞

∂lΦM ¼ δΦlðtÞ ¼ 0; ð17Þ

such that the coordinate time corresponds to the proper time
of an ideal observer situated at infinity. Then, if one
considers, for instance, Solar System observables, one
simply converts this coordinate time to the proper time
of an actual observer. However, when there are (non-
negligible) sources located all the way up to infinity, the
metric perturbation cannot be taken to be null at infinity, so
the previous gauge restrictions simply do not make sense
when there are sources located all the way up to infinity.
The infinite lattice model allows us to illustrate this from a
simple arithmetic point of view: Φt is not finite when
Φ0 ¼ 0, which is a consequence to the fact that the Epstein
zeta function

10Recall that the post-Newtonian expansion assumes weak
fields and slow motions, as well as a Minkowski background at
the scale of the phenomenon considered—here, within a cell.
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X
k⃗∈Z3�

1

jjk⃗jjn
ð18Þ

is only finite for n > 3. (While this Epstein zeta function
can be analytically continued to all of C with a simple pole
at n ¼ 3—see, e.g., [69]—we will not consider this here, as
we are only concerned with cases for which the sums we
are considering converge.) Indeed, using the homogeneous
property of the lattice model, and defining ξ⃗ ≔ x⃗=LðtÞ,
one has

ΦtðtÞ −Φ0ðtÞ ¼
GM
LðtÞc2

X
β⃗∈Z3�

1

jjξ⃗ − β⃗jj
: ð19Þ

One can verify that this series is divergent for all locations
x⃗. As a consequence, the metric perturbation at any
given location would not be finite if one naively imposes
Φ0ðtÞ ¼ 0 by hand. As far as we are aware, Φ0ðtÞ ¼ 0 is
always assumed in the literature.

C. Fixing the coordinate time issue

Interestingly enough, this divergence can be renormal-
ized if one chooses instead to restrict the gauge freedom to
Fermi coordinates11 (i.e., by demanding that the tidal
potential Φt and its gradient cancel out at the location
associated with an observer). It would mean that one uses a
coordinate system that follows the geodesic motion of an
observer. Note that this is the usual procedure in the
framework of reference frame theory in order to define a
proper reference frame (see for instance [70]). In this
situation, the tidal potential would read

ΦtðtÞ ¼
GM
LðtÞc2 Iðξ⃗Þ; ð20Þ

with

Iðξ⃗Þ ≔
X
β⃗∈Z3�

�
1

jjξ⃗ − β⃗jj
−

1

jjβ⃗jj

�
: ð21Þ

One can verify that Iðξ⃗Þ is indeed finite (with the appro-
priate prescription for the lattice summation, since it is a
conditionally convergent series—see Appendix B) for all
ξ⃗ ∉ Z3�, while the two members of the sum lead to divergent
series when taken separately. Let us also note that, by
construction, Ið0⃗Þ ¼ 0.
With the previous gauge restriction, the potential

reduces to

ΦM ¼ GM
c2

�
1

r
þ Iðξ⃗Þ
LðtÞ

�
þ δΦlðtÞxl; ð22Þ

where Iðξ⃗Þ is defined in Eq. (21).
The gradient of the potential on the other hand reads

∂iΦM ¼ −
GM

L2ðtÞc2 J
iðξ⃗Þ þ δΦi; ð23Þ

with

Jiðξ⃗Þ ≔
X
β⃗∈Z3�

ξi − βi

jjξ⃗ − β⃗jj3
: ð24Þ

One can verify that Jiðξ⃗Þ is also finite. Additionally,
Jið0⃗Þ is obviously equal to zero thanks to the symmetry
of the sum (if the sum is performed in a way that res-
pects this symmetry—see Appendix B). The last touch in
order to select Fermi coordinates is to demand that
∂iΦMðx⃗OÞ ¼ 0, where x⃗O is the position of the observer,
thus fixing δΦi. For an observer at the origin, we thus
have δΦi ¼ 0.

V. THE INFINITE INHOMOGENEOUS FLAT
KEPLERIAN UNIVERSE

Now that we have seen arithmetically with the lattice
model why one needs to carefully chose a nonambiguous
coordinate time in order to have “meaningful” potentials
in the metric, we can derive the Shapiro delay more
properly. In most of the literature, the universe is taken to
be flat and perturbed by either some Keplerian potentials,
or by some other types of potentials that are meant to
depict dark matter in halos. We are not interested in a
detailed study here because our goal is to show that a
conservative estimate of the Shapiro delay cannot be
obtained with these kind of calculations anyway. Hence,
we will limit our study and assume Keplerian potentials.
Also, we now consider a parametrized post-Newtonian
metric in order to be able to quantify the difference of
the Shapiro delays for different messengers the way it is
done in the literature—see Sec. II B. Let us note that
a parametrized post-Newtonian metric is compatible with
the lattice model, see [71]. The metric we consider
therefore reads

ds2 ¼ ð−1þ 2ΦÞc2dt2 þ ð1þ 2γΦÞδijdxidxj þOðc−3Þ;
ð25Þ

where

Φ ¼ G
c2

X
P

MP

jjx⃗ − x⃗Pjj
þΦ0ðtÞ þ δΦlðtÞxl: ð26Þ

11There is of course an infinite set of coordinate systems that
would allow one to make the calculations without being con-
fronted with infinities.
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We choose our coordinate system such that they are
Fermi coordinates associated to the observer: Φðx⃗ ¼
x⃗O ¼ 0⃗Þ ¼ 0 and ∂iΦðx⃗ ¼ x⃗O ¼ 0⃗Þ ¼ 0. Therefore, the
potential reduces to12

Φ ¼
X
P

GMP

c2

�
1

jjx⃗ − x⃗Pjj
−

1

jjx⃗Pjj
−

x⃗ · x⃗P
jjx⃗Pjj3

�
: ð27Þ

Note that, while the observer is at rest in the Fermi
coordinate system, the source of gravitational and electro-
magnetic waves is not. However, we assume that the
source is at a cosmological distance and emits the
messengers being considered over a short time period,
such that any motion of the source has a negligible effect
on the path the messengers take. Of course, this expres-
sion is only valid when Φ ≪ 1, as was assumed in the
derivation. In particular, the final term can be large for
large jjx⃗jj. This term is associated with the forces acting
on the observer in the Newtonian picture, and its
contribution to the sum vanishes if the source mass
density is isotropic. We have checked that one indeed
has Φ ≪ 1 in the application to galaxy clusters that we
consider.
Assuming that a given wave travels on the null geodesics

of the metric (25), one has cdt ¼ ½1þ ð1þ γÞΦ�dlþ
Oðc−3Þ. Using the fact that a null geodesic is a straight
line at leading order when one is far from the “lensing
regime”—defined in [73,74] as the regime for which
multiple images can appear—this equation can be analyti-
cally solved, such that the propagation time between an
emission point x⃗E and the observer is

Tðx⃗E; x⃗OÞ ¼
REO

c
þ ð1þ γÞ

X
P

GMP

c3

×

�
ln

�
rP þ RPE þ REO

rP þ RPE − REO

�
−
REO

rP

−
1

2

�
REO

rP

�
2

cos θP

�
þOðc−4Þ; ð28Þ

where rP ≔ jjx⃗Pjj, RXY ≔ jjx⃗Y − x⃗Xjj, and with cos θP ≔
ðx⃗O − x⃗EÞ · x̂P=jjx⃗O − x⃗Ejj. Note that, since one uses Fermi
coordinates associated with the observer, the propagation
time is expressed in terms of the observer proper time—as
it should be.

A. Constraints on the equivalence principle

Now, let us assume that one is able to measure the
difference of propagation time between an event and
the observer of the two types of waves X and Y. Then,

according to Eq. (28), and with the assumptions about the
nature of the equivalence principle violation mentioned in
Sec. II B, the fractional difference between the two propa-
gation times would read

ΔTXY ¼ ðγY − γXÞ
X
P

GMP

c3

�
ln

�
rP þ RPE þ REO

rP þ RPE − REO

�

−
REO

rP
−
1

2

�
REO

rP

�
2

cos θP

�
þOðc−4Þ: ð29Þ

Because the terms inside the brackets do not all have the
same sign, one cannot simply use a subset of the sources in
order to get a conservative constraint on the difference
γY − γX, unlike what is usually assumed in the literature.
As a consequence, unless one has an absolute knowledge
of the location and the mass of all the sources, or the
propagation occurs only in a region in which one has
measurements of the gravitational field, one cannot give a
conservative constraint on the difference γY − γX from this
type of calculation.

VI. ILLUSTRATION WITH GW-GRB 170817
AND TWO CATALOGS OF CLUSTERS

As an illustration, we apply the analytical equation (28)
to the case of the (quasi-)coincident detection of the gra-
vitational wave GW170817 and the short duration gamma
ray burst GRB 170817A. We use two recent catalogs of
galaxy clusters in order to model the distribution of the
gravitational sources.
The first catalog we will consider is based on a

friends-of-friends finding algorithm [75]. We will refer
to it as Tempel2016. The second catalog, on the other
hand, calibrates the group finder from a halo occupation
model [76]. We will refer to it as Tully2015. The former
catalog is built on the 2MRS, CF2, and 2M++ survey
data comprising nearly 80,000 galaxies within the local
volume of 430 Mpc radius; while the latter is built from
a sample of the 2MASS Redshift Survey almost com-
plete to Ks ¼ 11.75 over 91% of the sky, which has
about 43,000 entries, giving a maximum distance of
240 Mpc. In Tully2015, the clusters’ mass is either
obtained from adjusted intrinsic luminosity and mass to
light prescription, or obtained from the virial theorem.
In Tempel2016, the masses are solely obtained from the
virial theorem.
The code that derives the following results is freely

accessible [77].
In Table I we give the results for the Shapiro delay for

GW170817/GRB 170817A using the same parameters as
in [46] (a distance of 26 Mpc and the sky location from
[78]). For comparison, the value obtained with just the
Milky Way’s Keplerian potential outside of 100 kpc (as
in [46]) is 79 days. We find that the values obtained with
the standard, incorrect expression [Eq. (2)] are more than

12See also Eq. (28) in [70], or the leading order of Eq. (4.31)
in [72].
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two or three orders of magnitude larger than the values
obtained with the new expression [Eq. (28)], and even
have opposite sign in the Tully2015 virial mass case.

A. Comparison with cosmology

It is interesting to compare the estimate of the Shapiro
delay when using either the catalogs or the FLRW
metric in Fermi coordinates. Indeed, since the FLRW
metric assumes a homogeneous mean density, one can
expect that an average of the Shapiro delay over the
whole sky in the catalogs gives a value with the same
order of magnitude with respect to an estimate from the
matter contribution alone in an FLRW universe. Note,
however, that this comparison cannot be rigorous, as
one compares calculations in gauges that use different
prescriptions. Assuming the Friedmann equations given
in Sec. III, and the line element [Eq. (3)], the total
Shapiro delay reads

Tðx⃗E; x⃗OÞ ¼
ðΩΛ − 2ΩmÞH2

0

12
ðr3E − r3OÞ: ð30Þ

The contribution from matter alone therefore reads

Tmatterðx⃗E; x⃗OÞ ¼ −
ΩmH2

0

6
ðr3E − r3OÞ: ð31Þ

The contribution from matter alone in an FLRW uni-
verse would therefore be about −152 years for a source
located at 26 Mpc.
In Fig. 1, we plot the evolution of the Shapiro delay with

the distance of the source of gravitational waves in an
FLRWuniverse, as well as an average over the whole sky of
the Shapiro delay from each catalog. We find that the
estimate with the FLRWmetric lies in between the estimate
with the catalog that determines masses from the luminos-
ity, and the estimates with the catalogs that determine the
masses from the virial theorem. This is consistent, given
that catalogs that infer masses from the virial theorem
cannot estimate all the masses due to a lack of (good
enough) data, and therefore they necessarily tend to have
an underestimated density of sources. For instance, of the
12,106 sources in Tempel2016, only 5,166 have their mass
estimated via the virial theorem.
We therefore conclude that this provides additional

evidence that the Shapiro delay in Eq. (28) is more
appropriate than the one usually found in the literature
[Eq. (2)], in the sense that it gives consistent results with the
estimation based on a FLRW universe.

B. Discussion on the estimates

It is important to keep in mind that we give those results
as an illustration only, and there are not meant to be taken
either as rigorous or as conservative estimates of the
Shapiro time delay. They are not rigorous because the
space-time model that has been used does not depict our
universe accurately—in particular, it neglects cosmology
(see Secs. II and III).
But even if one is in a regime and in a theoretical

framework that are such that the assumptions that led to
Eq. (29) hold, it would not be possible to give conservative
constraints on the violation of the equivalence principle
with this method from an incomplete set of the gravitational
sources anyway (see the previous section). Indeed, adding
new sources may result in a decrease of the Shapiro delay,
and not necessarily to an increase—unlike what is usually
found in the literature. This can be seen with the two
catalogs considered here in Fig. 2, where we plotted the
behavior of the total Shapiro delay (when γ ¼ 1) as one
includes more and more remote objects from the catalog.
Indeed, one can see that the behavior of the Shapiro delay is
not monotonic with the number of sources. This behavior

FIG. 1. Matter contribution to the Shapiro delay in an FLRW
universe, as well as an average over the whole sky at a given
distance of the Shapiro delay from each catalog, plotted versus
the distance to the source.

TABLE I. The Shapiro delays (with γ ¼ 1) for GW170817/GRB 170817A using the position and sky location given in the text and
computed using the different catalogs considered and either Eq. (28) or Eq. (2), i.e., either the new expression or the usual, incorrect
expression (which is equivalent to taking Φ0 ¼ 0 and δΦl ¼ 0). We also give the number of sources used in each calculation.

catalog # of sources Shapiro delay with new Eq. (28) [yr] Shapiro delay with old Eq. (2) [yr]

Tempel2016 5,166 þ77 þ22, 985
Tully2015 (luminosities) 25,472 þ65 þ190, 502
Tully2015 (virial) 1,119 −20 þ37, 282
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arises because the terms in the bracket of Eq. (28) can either
be positive or negative depending on the geometrical
configuration.
Also, one can see in Fig. 3 that the Shapiro delay

can be close, or even equal, to zero for several locations

of the source of the gravitational and electromag-
netic waves.
Although the results from the two catalogs are different

in magnitude, one can see in Figs. 2 and 3 that their
behaviors are roughly consistent. However, from the differ-
ent mass estimate used in Tully2015, one can see that
there are also significant variations that are caused by

(a)

(b)

(c)

FIG. 3. Sky maps of the Shapiro delay for sources all over the
sky at a given distance (26 Mpc) estimated using the different
catalogs we consider.

(a)

(b)

(c)

FIG. 2. Plots of the time delay as one includes more and more
remote objects from a catalog. Note that the size of the portion of
the universe represented in each catalog is different, with
maximum radii of ∼400, 240, and 220 Mpc for cases (a), (b),
and (c), respectively.
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different mass estimate, in addition to different catalog
completeness.

VII. CONCLUSION

The standard constraints on the equivalence principle
using the arrival times of astronomical messengers with
different properties emitted in close succession from the
same source suffer from a variety of issues. The most
basic of these is that the Shapiro delay considered is not
an observable in general relativity, and it is not clear how
to relate the standard gauge-dependent way it is calculated
to equivalence principle violating alternative theories.
However, even assuming that the standard calculation is
a useful way of constraining some class of alternative
theories, there are further problems encountered when one
applies these calculations on cosmological scales, as is
commonly done. In this paper, we describe these issues.
We first use a toy model in order to show arithmetically

the appearance of a divergence in the metric perturbation
used to compute the Shapiro delay when one is using the set
of gauge restrictions [Eqs. (16)–(17)] that is commonly
implicitly used in the literature. We show that the diver-
gence appears because of an unsuitable choice of coor-
dinate time in order to describe the metric, and is therefore
simply cured by using an appropriate (nonambiguous)
coordinate time—for instance, a coordinate time that
corresponds to the proper time of any given observer.
However, the resulting expression for the Shapiro delay

after fixing the coordinate time issue is no longer mono-
tonic with the number of the gravitational sources. This
thus prevents one from estimating a conservative minimum
amplitude of the Shapiro delay from a subset of the sources
of the gravitational field. As a consequence, analyses based
on Eq. (1) are not conservative on cosmological scales.13

While it might be possible to constrain the gravitational
field along the line of sight using cosmological observa-
tions (e.g., of galaxy velocities, as in [79]), and thus avoid
the need to use Eq. (1), we do not consider this here. We
feel that any further developments of this test should be
informed by a fundamental theory, to avoid the gauge
dependence of the current formulation of the test, and hope
that this paper encourages such work.
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APPENDIX A: COMPUTING THE AFFINE
DISTANCE IN THE POST-NEWTONIAN METRIC

The affine distance (see, e.g., Sec. 2.4 of [52]) is defined
for a given null geodesic and observer by the affine
parameter λ of the past-oriented geodesic in the specific
parameterization where λ ¼ 0 corresponds to the spacetime
event of the observation and gμν _xμð0Þuν0 ¼ 1, where Greek
letters denote spacetime indices, xμðλÞ is the geodesic, uν0 is
the observer’s 4-velocity at the observation, and overdots
denote derivatives with respect to the affine parameter.
To calculate this distance for the post-Newtonian metric,

we start from the post-Newtonian line element given in
Eqs. (7.104) of [82], which we take through Oðc−3Þ and
omit the remainders:

ds2 ¼ gμνdxμdxν

¼ −½1 − 2ϵUðx⃗Þ�dt2 − 8ϵ3=2Ukðx⃗Þdtdxk
þ ½1þ 2ϵUðx⃗Þ�jjdx⃗jj2; ðA1Þ

where we have set G ¼ c ¼ 1 (except for order counting in
powers of c−1), and introduce ϵ ¼ Oðc−2Þ as our order
counting parameter. Here U is the Newtonian potential and
Uk is the vector potential, both defined explicitly in Box 7.5
of [82]. We use Roman letters to denote spatial indices and
raise and lower indices with the Minkowski metric.
Additionally, we have taken the time dependence of all
these potentials to be negligible, since we want to consider
a situation that is stationary to a good approximation.
We take the observation to occur at the origin, with λ ¼ 0,
and the source to be at a spatial location of d⃗source,
with λ ¼ λsource.
Null geodesics in this metric have to satisfy

− ½1 − 2ϵUðx⃗ðλÞÞ�_t2ðλÞ − 8ϵ3=2Ukðx⃗ðλÞÞ_tðλÞ_xkðλÞ
þ ½1þ 2ϵUðx⃗ðλÞÞ�jj_x⃗ðλÞjj2 ¼ 0; ðA2aÞ

2½1þ 2ϵUðx⃗ðλÞÞ�ẍkðλÞ − 2ϵ∂kUðx⃗ðλÞÞ½_t2ðλÞ þ jj_x⃗ðλÞjj2�
þ 4ϵ∂lUðx⃗ðλÞÞ_xlðλÞ_xkðλÞ þ 16ϵ3=2∂ ½kUl�ðx⃗ðλÞÞ_tðλÞ_xlðλÞ
− 8ϵ3=2Ukðx⃗ðλÞÞ̈tðλÞ ¼ 0 ðA2bÞ

13However, from Eq. (28), one can verify that the issue, of
course, does not appear for Solar System calculations because
rP ≫ REO for all the significant gravitational sources that are
located outside the Solar System. In other words, what makes the
two cases (cosmological versus Solar System) different is the
distance traveled by light.
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(the null geodesic condition and the spatial part of the
geodesic equation), where we have written the geodesic as
xμðλÞ ¼ ðtðλÞ; x⃗ðλÞÞ. We write the geodesic of the metric
(A1) as

xμðλÞ ¼ ðt0ðλÞ þ ϵt1ðλÞ þ ϵ3=2t1.5ðλÞ; x⃗0ðλÞ þ ϵx⃗1ðλÞ
þ ϵ3=2x⃗1.5ðλÞÞ: ðA3Þ

We then expand Eq. (A2) to ϵ3=2, starting with the null
geodesic condition, which gives (recalling that the geodesic
is past-oriented)

_t0ðλÞ ¼ −jj_x⃗0ðλÞjj; ðA4aÞ

_t1ðλÞ ¼ −2Uðx⃗0ðλÞÞjj_x⃗0ðλÞjj − ˆn⃗0ðλÞ · _x⃗1ðλÞ; ðA4bÞ

_t1.5ðλÞ ¼ −4_xk0ðλÞUkðx⃗0ðλÞÞ − ˆn⃗0ðλÞ · _x⃗1.5ðλÞ; ðA4cÞ

where ˆn⃗0 ≔ _x⃗0=jj_x⃗0jj and we have used the lower-order
equations freely in simplifying the higher-order equations.
Similarly, Eq. (A2b) gives

̈x⃗0ðλÞ ¼ 0; ðA5aÞ

̈x⃗1ðλÞ ¼ 2jj _⃗x0ðλÞjj2∇⃗Uðx⃗0ðλÞÞ− 2½ _⃗x0ðλÞ · ∇⃗Uðx⃗0ðλÞÞ� _⃗x0ðλÞ;
ðA5bÞ

ẍk1.5ðλÞ ¼ 8∂ ½kUl�ðx⃗0ðλÞÞ_xl0ðλÞjj_x⃗0ðλÞjj: ðA5cÞ

From these expressions, we see that _x⃗0 is constant, and
_x⃗0 · ̈x⃗1 ¼ _x⃗0 · ̈x⃗1.5 ¼ 0. We take x⃗0ð0Þ ¼ 0⃗ and x⃗0ðλsourceÞ ¼
d⃗source. Thus, we have _x⃗0 · _x⃗A ¼ const, for A ∈ f1; 1.5g,
where the constant has to be zero, because the perturbation
to the path should not change its endpoints, so x⃗Að0Þ ¼
x⃗AðλsourceÞ ¼ 0. Thus, _x⃗0 · _x⃗1 ¼ _x⃗0 · _x⃗1.5 ¼ 0.
Thus, for uμ0 ¼ ð∂=∂tÞμ (i.e., an observer at rest with

respect to the background Minkowski metric)

gμν _xμð0Þuν0 ¼ jj_x⃗0ð0Þjj þOðϵ2Þ; ðA6Þ

where we have included the remainder term explicitly, to
emphasize the order to which this holds.
This means that we want to scale λ by k_x⃗0k (recalling

that _x⃗0 is constant). Thus, with the scaled λ, _x⃗0 ¼
d⃗source=jjd⃗sourcejj and we have daff ¼ λsource ¼ jjd⃗sourcejj.
The affine distance is thus the distance one would
naïvely compute using the background metric.

APPENDIX B: CONVERGENCE OF
LATTICE SUMS

Here we show that the lattice sums in Eqs. (21) and (24)
converge when summed on expanding cubes or spheres
(centered at the origin). We first note that these series are
not absolutely convergent, since the magnitudes of their
terms do not fall off faster than jjβ⃗jj−3 as jjβ⃗jj → ∞. Thus,
their convergence (and value) depends on the order in
which they are summed (see, e.g., [83] for a discussion of
this for the Madelung constant that gives the binding
energy of an ion of NaCl). An obvious way to sum is
using expanding cubes, since this method retains many of
the symmetries of the underlying lattice. However, this is
not the only method of computing the lattice sum for which
it converges; unlike for the Madelung constant (which is
more subtle, due to the alternating nature of the function
being summed), a sum using expanding spheres would also
converge, though a sum using regions with less symmetry,
such as expanding rectangular boxes, would generically not
converge.
To demonstrate convergence of the sum in Eq. (21), we

apply Taylor’s theorem with Lagrange remainder to

fðαÞ ≔ 1

jjαξ⃗ − β⃗jj
−

1

jjβ⃗jj
; ðB1Þ

yielding

1

jjξ⃗ − β⃗jj
−

1

jjβ⃗jj
¼ fð1Þ ¼ ξ⃗ · β⃗

jjβ⃗jj3
þ 3ðξ⃗ · β⃗Þ2 − jjξ⃗jj2jjβ⃗jj2

jjβ⃗jj5
þ ðᾱjjξ⃗jj2 − ξ⃗ · β⃗Þ½3jjξ⃗jj2jjᾱ ξ⃗−β⃗jj2 − 5ðξ⃗ · β⃗ − ᾱjjξ⃗jj2Þ2�

2jjᾱ ξ⃗−β⃗jj7
ðB2Þ

for some ᾱ ∈ ð0; 1Þ (depending on ξ⃗ and β⃗). The first two
terms vanish when summed over a cube (or sphere)
centered at the origin. The first term vanishes because
the set of points in the cube (sphere) centered at the origin is
symmetric under β⃗ → −β⃗. The second term vanishes
because the set of points in the cube (or sphere) centered
at the origin is symmetric under β1;2;3 → −β1;2;3 (i.e.,

switching the sign of the individual components of β⃗)

and is also symmetric under cyclic permutations of the
indices. The first of these symmetries implies that the βkβl
(k ≠ l) terms vanish upon summation, giving a summand of
½3ðξ21β21 þ ξ22β

2
2 þ ξ23β

2
3Þ − jjξ⃗jj2jjβ⃗jj2�=jjβ⃗jj5. This vanishes

when summed over all cyclic permutations of indices.
We now want to bound the remainder term. Since we are

only interested in its behavior for large jjβ⃗jj, we can assume
that jjβ⃗jj ≥ 2jjξ⃗jj. We then apply the Cauchy-Schwarz
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inequality and triangle inequality (a number of times) to the
numerator to bound its magnitude by ðjjξ⃗jj2þjjξ⃗jjjjβ⃗jjÞ×
½3jjξ⃗jj2ðjjξ⃗jjþ jjβ⃗jjÞ2þ5ðjjξ⃗jjjjβ⃗jjþ jjξ⃗jj2Þ2�≤ 27jjξ⃗jj3jjβ⃗jj3.
We use the assumption that jjξ⃗jj ≤ jjβ⃗jj=2 to obtain the final
bound. We also apply the reverse triangle inequality to give
a lower bound on the magnitude of the denominator of
jjβ⃗jj7=64, and thus an upper bound of 1728jjξ⃗jj3=jjβ⃗jj4 on

the magnitude of the remainder.14 The sum of this bound
over β⃗ ∈ Z3� converges, thus demonstrating that the sum
on expanding cubes or spheres of Eq. (21) indeed
converges.
We now apply the same technique to demonstrate

that the sum in Eq. (24) converges, i.e., we note that
Taylor’s theorem with Lagrange remainder gives

ξi − βi

jjξ⃗ − β⃗jj3
¼ −

βi

jjβ⃗jj3
þ jjβ⃗jj2ξi − 3ðξ⃗ · β⃗Þβi

jjβ⃗jj5
þ 2jjᾱ ξ⃗−β⃗k2ðξ⃗ · β⃗ − ᾱjjξ⃗jj2Þξi − ½jjξ⃗jj2jjᾱ ξ⃗−β⃗jj2 − 5ðξ⃗ · β⃗ − ᾱjjξ⃗jj2Þ2�ðᾱξi − βiÞ

2jjᾱ ξ⃗−β⃗jj7
ðB3Þ

for some ᾱ ∈ ð0; 1Þ (depending on ξ⃗ and β⃗). As before,
we find that the first two terms vanish when summed
over a cube or sphere centered at the origin. This is
obvious for the first term. For the second term, we
first note that the sums of the βkβl (k ≠ l) terms (over a
cube or sphere centered at the origin) vanish, giving
½jjβ⃗jj2 − 3ðβiÞ2�ξi=jjβ⃗jj5 (no sum), which vanishes when
summed over all cyclic permutations of indices.
We can bound the remainder using the same techniques

as before, along with noting that jζij ≤ jjζ⃗jj for any
vector ζ⃗, giving an upper bound for the numerator of
2ðjjξ⃗jjþjjβ⃗jjÞ2ðjjξ⃗jjjjβ⃗jjþjjξ⃗jj2Þjjξ⃗jjþ½jjξ⃗jj2ðjjξ⃗jjþjjβ⃗jjÞ2þ
5ðjjξ⃗jjjjβ⃗jjþjjξ⃗jj2Þ2�ðjjξ⃗jjþjjβ⃗jjÞ≤27jjξ⃗jj2jjβ⃗jj3, for jjξ⃗jj ≤
jjβ⃗jj=2, as before. The lower bound on the denominator
is the same as before, giving an overall upper bound on
the magnitude of the remainder of 1728jjξ⃗jj2=jjβ⃗jj4,
which converges when summed over β⃗ ∈ Z3�, thus
demonstrating that the sum on expanding cubes or
spheres of Eq. (24) indeed converges.
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