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In recent years, many γ-ray sources have been identified, yet the unresolved component hosts valuable
information on the faintest emission. In order to extract it, a cross-correlation with gravitational tracers of
matter in the Universe has been shown to be a promising tool. We report here the first identification of a
cross-correlation signal between γ rays and the distribution of mass in the Universe probed by weak
gravitational lensing. We use data from the Dark Energy Survey Y1 weak lensing data and the Fermi Large
Area Telescope 9-yr γ-ray data, obtaining a signal-to-noise ratio of 5.3. The signal is mostly localized at
small angular scales and high γ-ray energies, with a hint of correlation at extended separation. Blazar
emission is likely the origin of the small-scale effect. We investigate implications of the large-scale
component in terms of astrophysical sources and particle dark matter emission.

DOI: 10.1103/PhysRevLett.124.101102

Introduction.—Astronomy at γ-ray frequencies repre-
sents a promising avenue for both astrophysics and particle
physics. On one hand, the most violent phenomena in
the Universe produce high-energy photons that travel all the
way to Earth. Thus, they bring us information about the
physics of rare events such as supernovae and the behavior
of matter under extreme conditions, as in pulsars and active
galactic nuclei (AGNs). On the other hand, the most elusive
form of matter in the cosmos—dark matter, which repre-
sents about 25% of all the Universe’s energy content—is
believed to consist of an exotic fundamental particle, which
may annihilate or decay into Standard Model particles and
thus produce cosmic messengers including γ-ray photons.
In the weakly interacting massive particle (WIMP) sce-
nario, or for any hypothetical dark matter particle with mass
in the GeV range or higher, dark matter particle annihilation

or decay almost necessarily results in photons at γ-ray
energies. Therefore, γ-ray astronomy represents a promis-
ing means to investigate the fundamental nature of dark
matter. However, the faintness of the expected emission
makes it very difficult to identify such a signal.
Since 2008, the large area telescope (LAT) mounted on

the Fermi satellite has been performing the most detailed
observations of the extragalactic γ-ray sky and resolved
5065 γ-ray sources in the energy range of 50 MeV–1 TeV
[1]. Once the point sources and Galactic emission are
removed, the remaining γ-ray photons form the so-called
unresolved γ-ray background (UGRB).
A method to discriminate between nonthermal γ-ray

emission due to astrophysical sources and possible dark
matter annihilation or decay in the UGRB has been proposed
in Ref. [2]. This method relies on cross-correlations of UGRB
maps with maps of other tracers of the underlying structure
on cosmological scales, such as the weak gravitational
lensing effect, or the clustering of galaxies and galaxy
clusters (see also Refs. [3,4]) and cosmic microwave back-
ground (CMB) lensing [5,6]. These are direct gravitational
probes of matter, most of which are thought to be dark
matter. The energy, redshift, and scale dependence of the
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aforementioned cross-correlations have the potential to dis-
entangle signatures due to astrophysics from dark matter
(see also Ref. [7]). More generally, the method can provide
valuable information on the redshift distribution and on the
clustering properties of the unresolved γ-ray source popula-
tions, including blazars, AGNs, and star-forming galaxies.
Since cross-correlations of the UGRB with gravitational

lensing have been proposed as a probe, several observa-
tional attempts have followed [8–11], but none so far have
detected the signal. Here, we report the first detection of
such a cross-correlation. We used 108-month γ-ray data
from Fermi-LAT and first year (Y1) shear measurements
from the Dark Energy Survey (DES). In the following, we
describe details of the analysis and discuss the results.
Analysis and results.—The observable we probe is the

cross-correlation between the unresolved component of
the γ-ray emission and gravitational shear. To this aim, the
Fermi-LAT data have been preprocessed to produce the
relevant energy-dependent response functions of the detec-
tor and full-sky maps of photon intensities in several energy
bins. Resolved γ-ray sources and the bright Galactic plane
emission have been masked with energy- and flux-depen-
dent masks, in order to minimize the sky fraction removal.
Furthermore, we have subtracted a model of the Galactic
plane emission. Galactic foreground emission does not lead
to false detection of a cross-correlation, since it does
not correlate with the large-scale structure measured by
gravitational shear, but it increases the variance of the
measurements (see Supplemental Material [12] and, e.g.,
Refs. [8,9,11,50,51]). The weak lensing information is
extracted by measuring the mean tangential ellipticity of
source galaxies in the DES footprint around pixels
weighted by their UGRB flux. The shear catalog is divided

in redshift bins in order to perform a tomographic analysis.
As an illustration of the overlapping area between DES and
Fermi-LAT, Fig. 1 shows the DES footprint and the Fermi-
LAT map for photon energies in the 1–10 GeV interval.
We measure the cross-correlation between the UGRB

and gravitational shear through its two-point angular
correlation function. Specifically, we adopt the following
estimator (see also Ref. [52]):

ΞarðθÞ ¼ Ξsignal
Δθh;ΔEa;Δzr − Ξrandom

Δθh;ΔEa;Δzr

¼
P

i;je
r
ij;tI

a
j

R
P

i;jI
a
j

−
P

i;je
r
ij;tI

a
j;random

R
P

i;jI
a
j;random

; ð1Þ

where Ξsignal
Δθh;ΔEa;Δzr is the correlation function in the configu-

ration space of the two observables measured in different
angular (Δθh), γ-ray energy (ΔEa), and lensing source-
galaxy redshift (Δzr) bins. The correlation is obtained by
summing the products of tangential ellipticity of source
galaxies i relative to a pixel j, erij;t, multiplied by the Fermi-
LATphoton intensity flux in theath energy bin and in pixel j,
Iaj . The sum runs over all unmasked pixels j and all sources i
in the redshift bin of the shear catalog, and it is performed in
each of the different photon energy bins (labeled by a) and
source-galaxy redshift bins (labeled by r). Lastly, R is the
mean response of ellipticity to shear for sources in the
redshift bin, determined by the METACALIBRATION algorithm
[53,54] to be between 0.54 and 0.73 for the source-galaxy
redshift bins used here.
From the correlation function, we removeΞrandom

Δθh;ΔEa;Δzr , the
measurement of tangential shear around random lines of
sight. This is done by setting Iaj;random ¼ 1 anywhere within

FIG. 1. DES Y1 (solid, used in this Letter) and final (dashed) sky coverage superimposed on the Fermi-LAT γ-ray map for photons in
the 1–10 GeVenergy range. The Galactic plane and point-source emissions are clearly visible. The plot is in McBryde-Thomas flat polar
quartic projection.
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the sky region used for γ-raymeasurements in that energy bin
and zero elsewhere. This reduces additive shear systematic
effects, random very-large-scale structures, or chance shear
alignments relative to the mask. The random subtraction,
while not affecting the expected signal, lowers thevariance at
large angular separations (see also Refs. [52,55]).
We analyze the data in 12 logarithmically spaced angular

bins with radii between 5 and 600 arc min, 9 photon energy
bins between 0.631 and 103 GeV, and 4 redshift bins
defined by 0.20 < hzi < 0.43, 0.43 < hzi < 0.63, 0.63 <
hzi < 0.90, and 0.90 < hzi < 1.30, where hzi is the esti-
mated expectation value of galaxy redshift from DES. The
energy bins used in the analysis and the corresponding 68%
and 95% containment angles of the Fermi-LAT point-
spread function (PSF) are shown in Table I. These sum up
to a total of 432 bins for the cross-correlation measurement.
The analysis is performed blindly, i.e., on multiple variants
of the measurements including artificial versions, in order to
avoid experimental bias in measurement and interpretation
of the signal. See the Supplemental Material for details [12].

The result of the measured cross-correlations, averaged
over all energy and redshift bins, is shown inFig. 2 in terms of
the estimatorΞðθÞdefined inEq. (1).Note that thedata points
reported on both panels are the same, although confronted
with different models. A clear positive cross-correlation is
observed, especially at small angular separations.
In order to determine the statistical significance of the

signal, we test the deviation of the measurement from a null
signal (null hypothesis of pure noise) by means of a
phenomenological model, which aims at capturing the
general expected features of the cross-correlation signal
without resorting to any specific, detailed modeling of its
physical origin (in the next section, we will instead adopt a
physical model to provide insights on the origin of the
cross-correlation). In the halo-model approach, all mass in
the large-scale structure of the Universe is associated with
virialized dark matter halos, and the correlation function
can thus be decomposed into the so-called one- and two-
halo terms (1h and 2h in formulas hereafter). The former
refers to the correlation between two points in the same

TABLE I. Energy bins over which the analysis is performed, 68% and 95% containment angles θcont of the Fermi-LAT PSF, and
photon counts in the unmasked Fermi area in each energy bin.

Bin number

1 2 3 4 5 6 7 8 9

Emin (GeV) 0.631 1.202 2.290 4.786 9.120 17.38 36.31 69.18 131.8
Emax (GeV) 1.202 2.290 4.786 9.120 17.38 36.31 69.18 131.8 1000.0
θcont 68% (deg) 0.50 0.58 0.36 0.22 0.15 0.12 0.11 0.10 0.10
θcont 95% (deg) 1.03 1.06 0.62 0.39 0.28 0.22 0.20 0.18 0.16

Photon counts 345 230 444 559 286 209 102 821 41 148 16 932 5250 1728 722

FIG. 2. Measurement and model of the cross-correlation between γ-ray photons and gravitational shear. The points in both figure parts
show the measured cross-correlation, averaged over all redshift and energy bins, while the fits are done across all dimensions. The lines
refer the best-fit results for the phenomenological model (left) and for the physical model (right), averaged the same way.
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physical halo, the latter to the case in which the two points
belong to two different halos. Pointlike sources contribute
at small angular scales with a one-halo term, while at large
scales they produce a two-halo term resembling the large-
scale structure matter distribution. In our case, we use the
fact that the spatial extent of the one-halo term is smaller
than the beam window function of the Fermi-LAT. Then a
phenomenological model can be constructed as

Ξar
pheðθÞhIai ¼ A1 × E−α1

a × ð1þ zrÞβ1 × Ξ̂a
PSF−likeðθÞ

þ A2 × E−α2þ2.2
a × ð1þ zrÞβ2 × Ξ̂ar

2h-likeðθÞ;
ð2Þ

where Ea and zr are the central values of the energy
(measured in GeV) and redshift bins, and hIai is the
measured photon flux. Ξ̂a

PSF−likeðθÞ is the Legendre trans-
form of the beamwindow function (or PSF) integrated in the
ath energy bin (in arbitrary units, beingmerely a template for
the one-halo term due to pointlike γ-ray sources) and
Ξ̂ar
2h-likeðθÞ is the Legendre transform of a generic two-halo

(i.e., large-scale) contribution, also convolved with the
Fermi-LAT beam window function. Correlation functions
with a hat have flux units, while those without a hat are
normalized to the γ-ray flux as in Eq. (1), and are therefore
dimensionless. The two normalizations A1 and A2, spectral
indices α1 and α2, and redshift evolution indices β1 and β2
are free parameters of themodel [56]. γ-ray sources typically
have energy spectra that can be well approximated by a
power law, and so it is assumed in Eq. (2). For simplicity, we
also assume a power-law scaling in redshift. Best fits and
confidence intervals of the parameters are found in aMarkov
chain Monte Carlo likelihood analysis.
The first statistical method adopted to quantify the

presence of a signal, and its significance, against the null
hypothesis relies on the Δχ2 test statistics, with the χ2

defined in the usual way, i.e.,

χ2ðPmodÞ ¼ ½Ξdata − ΞthðPmodÞ�TΓ−1½Ξdata − ΞthðPmodÞ�;
ð3Þ

where Ξdata is the data vector, Ξth is the theoretical cross-
correlation for the models outlined above, described by
the parameter set Pmod, and Γ is the data covariance
matrix, detailed in the Supplemental Material [12].
(All angular, energy, and redshift bin indexes have been
omitted for simplicity of notation.) The Δχ2 is defined as
Δχ2mod ¼ χ2null − χ2ðP⋆

modÞ, with χ2ðP⋆
modÞ computed at the

model parameter values P⋆
mod that best fit the data and χ2null

referring to no signal, i.e., Ξth ¼ 0. The second estimator is
the matched filter signal-to-noise ratio (see, e.g., Ref. [57]),

SNRðPmodÞ ¼
ΞT
dataΓ−1ΞthðPmodÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΞT
thðPmodÞΓ−1ΞthðPmodÞ

q ; ð4Þ

in analogy to Δχ2mod, we shall later refer to
SNRmod ≡ SNRðP⋆

modÞ.
In Table II we present the results on detection signifi-

cance. The phenomenological model results for the full
dataset show clear evidence for the presence of a cross-
correlation signal, at the level of SNRmod ¼ 5.3. Since the
matched filter based on the phenomenological model
captures the generic features of the cross-correlation signal,
without committing to any specific physical description,
this best assesses that indeed a cross-correlation between
gravitational shear and unresolved γ-rays emission has been
observed. In order to investigate the features of the signal in
more detail, we repeat the tests by subdividing the dataset
according to redshift, energy, and angular separation.
Specifically, low (high) z refers to the first two (second
two) redshift bins; low (high) E bins are defined by being
below (above) 5 GeV. and small (large) θ separates angular
scales below (above) 3 times the Fermi-LAT PSF.
From Table II we infer that the signal is mostly

concentrated at high energies and small angles. These
results point toward an interpretation in terms of pointlike
sources with hard energy spectrum, broadly compatible
with these sources being blazars. In fact, the best fit for the
spectral index of the PSF-like one-halo component α1 ¼
1.81þ0.20

−0.24 is quite hard with respect to the spectral index of
the average intensity of the UGRB [58], but compatible
with BL Lacertae (BL Lac) emission, which is the source
population expected to be the most relevant in the range of
fluxes probed by this analysis, just below the Fermi-LAT
flux sensitivity threshold. Notice that this hard spectral
index is in agreement with recent findings from γ-ray
autocorrelation analysis [59], possibly suggesting that BL
Lac objects below the threshold have slightly harder spectra
than those detected individually. The energy scaling of
the two-halo component is also compatible with a blazar

TABLE II. Δχ2mod and SNRmod computed for the phenomeno-
logical and physical models, using either the full dataset or the
various subsamples discussed in the text. For dark matter in the
physical model, we consider the annihilation channel τþτ−. For
the low-z case we selected the two first redshift bins, while for the
high-z case the last two bins, where the bins are defined as
0.20 < hzi < 0.43, 0.43 < hzi < 0.63, 0.63 < hzi < 0.90, and
0.90 < hzi < 1.30; the low-E subset is defined for energies
below 5 GeV, while the high-E is for energies above this value.
Finally, the small (large) θ cases correspond to data points below
(above) 3 times the Fermi-LAT PSF.

Dataset

Full Low z High z Low E High E Small θ Large θ

Δχ2phe 27.5 17.5 10.4 1.7 21.7 17.0 6.0

SNRphe 5.3 4.2 3.2 1.3 5.1 4.2 2.5

Δχ2phys 27.0 4.8 12.5 1.5 16.2 12.5 4.8

SNRphys 5.2 2.2 3.5 1.2 4.2 3.5 2.1
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origin, though this term shows lower statistical significance
than the one-halo component. Concerning the redshift
dependence of the signal, the statistical significance is
almost equally distributed among the lower and higher
redshift bins. The allowed regions for the parameters of the
phenomenological model are shown in Fig. 3, while the
cross-correlation function for the best fit of the phenom-
enological model are shown in the left panel of Fig. 2: the
PSF-like term due to pointlike sources well reproduces the
behavior of the measured cross-correlation up to about
1 deg scale. We note here that for the subset of high E and
small θ, comprising 88 data points, we do obtain a
distinctive signal without application of the matched filter.
The χ2null ¼ 137 for these points corresponds to a p value of
0.0006, meaning that the null hypothesis is excluded at
3.5σ in this subset.
Discussion.—In the following, we attempt a physical

interpretation of the signal detected in the previous section.
Star-forming galaxies and misaligned AGNs are not
expected to be able to produce a sufficiently hard energy
spectrum, which thus points to a dominant blazar compo-
nent. Particle dark matter in terms of WIMPs can also
provide a hard spectrum, especially if the annihilation
channel is predominantly leptonic or, in the case of a
hadronic final state, if the dark matter mass is large (above a
few hundred GeV).
Blazars are compact sources and, for our purposes, they

can be considered as pointlike; i.e., their size is, on average,
much smaller than the Fermi-LAT PSF. Also the size of the
halo hosting blazars rarely exceeds the Fermi-LAT PSF.

This has a consequence that the angular correlation
function for the one-halo term essentially follows from
the detector PSF. Conversely, the relevant dark matter halos
have a larger angular extent, and the corresponding one-
halo correlation function thus drops more slowly with
angular scale. On very large scales, the correlation func-
tions of the two components have a similar angular
behavior, since the two-halo power spectra differ only
by the bias terms. The fact that our signal is detected with
high significance only on small scales therefore points
toward blazars as the dominant source. In order to inves-
tigate this interpretation, we perform the statistical tests
discussed in the previous section with a physical model,
based on a detailed characterization of the components
expected to produce the cross-correlation signal: blazars
(BLZs), misaligned active galactic nuclei (mAGN), star-
forming galaxies (SFGs) and possibly dark matter (DM).
The physical cross-correlation function model reads

Ξar
physðθÞhIai ¼ A1h

BLZ × Ξ̂ar
BLZ;1hðθÞ þ A2h

BLZ × Ξ̂ar
BLZ;2hðθÞ

þ AmAGN × Ξ̂ar
mAGNðθÞ þ ASFG × Ξ̂ar

SFGðθÞ
þ ADM × Ξ̂ar

DMðθ;mDMÞ: ð5Þ

The model parameters are free normalizations for the
astrophysical sources, A1h

BLZ, A
2h
BLZ, AmAGN, and ASFG, the

mass of the dark matter particle mDM, and its velocity-
averaged annihilation rate hσannvi, expressed in terms of the
“thermal” cross section hσannvith ¼ 3 × 10−26 cm3 s−1
through the normalization ADM ≡ hσannvi=hσannvith. Note

FIG. 3. (Left) Constraints on the normalization and spectral index parameters of the phenomenological model (the redshift dependence
parameters are unconstrained and not shown in the plot). (Right) Constraints on the parameters of the dark matter and blazar models
described in Eq. (5). The blazar model assumes a single population matching the properties of Fermi resolved sources. The dark matter
model assumes annihilation in the τþτ− channel. In both panels, 2D contours refer to the 68% and 95% C.L. regions. The dashed and
solid vertical lines in the 1D subplots denote the 68% and 95% C.L. constraints of the 1D profile likelihood distributions.
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that, for blazars, which represent the astrophysical compo-
nent expected to dominate the correlation signal at the
current level of unresolved γ-ray emission, we allow the
one- and two-halo terms to be separately adjusted in the fit
against the data. As for the phenomenological model, all
terms depend on both energy and redshift, labeled by
indices a and r, respectively.
The results are shown in Table II, where the overall

significance of the presence of a signal, the preference for
an origin at high energies, and small angular scales are all
confirmed. However, since in this case we have specific
behaviors for the correlation functions as dictated by a
physical model (different for each component, contrary to
the average generic case of the phenomenological model), we
notice that a mild hint of large-scale correlation is present,
namely, in the large-θ case.We note that both the physical and
phenomenological models provide a good fit to the data
according to their χ2 (see the Supplemental Material [12]).
More details of the analysis are shown in Fig. 3, where

the triangular plot of the profile likelihood distributions of
the model parameters is reported. The likelihood exhibits a
preference for a large one-halo term of blazars with
normalization A1h

BLZ ¼ 102þ56
−57 , while the normalizations

of the blazar two-halo term shows only a (weak) upper
bound. The latter picture is shared also by the other
astrophysical sources (SFG and mAGN), which are shown
only in the Supplemental Material [12] for brevity.
The blazar-shear cross-correlation on small scales

depends on the relation between the blazar γ-ray luminosity
and the host-halo mass, a quantity which is rather uncertain.
For our reference model this relation has been taken from
[7], where it was derived by associating the γ-ray luminosity
of blazars to the mass of the supermassive black hole
powering the AGN and then relating the mass of the black

hole to the mass of the dark matter halo. This procedure
gives MðLÞ¼2×1013M⊙½L=ð1047 ergs−1Þ�0.23ð1þzÞ−0.9,
whereL is the rest-frame luminosity of blazars in the energy
range 0.1–100 GeV. We can therefore translate a value of
A1h
BLZ different from unity to a deviation from the reference

MðLÞ relation. The value we found implies that the average
mass of a halo hosting an unresolved blazar is larger than the
one adopted in Ref. [7] andmost likely above 1014 M⊙. The
cross-correlation signal with weak lensing seems therefore
to be dominated by blazars residing in cluster-size halos.
The right panel of Fig. 2 shows that the cross-correlation

at small angular scales requires a sizeable blazar one-halo
term. It also illustrates that the best-fit analysis exhibits a
mild preference for some power at large scales. This can be
accounted for either by the two-halo term of blazars or by a
DM contribution. The interplay of the angular, energy, and
redshift behaviors of the observed signal leads to a small
preference for a DM component over a pure blazar
contribution in the assumed model. Misaligned AGNs
and star-forming galaxies are disfavored since they do
not meet the requirement of a hard energy spectrum.
To have a visual impression on the physical behaviors, we

plot the energy and redshift dependence of the cross-
correlation signal in Fig. 4. The average along the angular
and redshift (energy) directions of each point of the energy
(redshift) spectrum is performed by computing a matched
filter amplitude A ¼ ΞTΓ−1Ξ̄M=ðΞ̄T

MΓ−1Ξ̄MÞ, where Ξ̄M is
given by a sample model that we choose to be flat in energy
and redshift, while scaling as 1=θ in angle, to approximately
reproduce the expected signal, and Ξ is either the measured
data or the best-fit models introduced in the main text.
The error on A is given by σ2A ¼ ðΓ−1Ξ̄MÞTΓðΓ−1Ξ̄MÞ=
ðΞ̄T

MΓ−1Ξ̄MÞ2. From Fig. 4 one can appreciate the small but
noticeable differences in the energy and redshift scalings of

FIG. 4. (Left) Energy scaling of the measured signal and best-fit models, in terms of the matched filter amplitude A of the cross-
correlation between gravitational shear and γ rays (see text for its definition). The amplitude is divided by the size of the corresponding
energy bin ΔEa and multiplied by the measured photon intensity hIai in the same bin, to show the physical differential scaling in energy.
(Right) Redshift scaling of the measured signal and models, again in terms of the matched filter amplitude A introduced in the text.
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the models of different physical components that have been
just discussed.
Notice that the blazar model we are adopting, and which

is outlined in the Supplemental Material [12], is based on
the current understanding of blazars as derived from the
Fermi-LAT resolved sources: the small preference in the fit
for a contribution with features compatible with DM might
be interpreted as an indication that unresolved blazars have
different properties than the resolved ones.
We find that, for a dark matter particle dominantly

annihilating into the leptonic channel τþτ−, the best fit
improves by 2.8σ, as compared to a model where DM is
not included. The lack of a degeneracy between dark matter
and blazar amplitudes (see Fig. 3) indicates that the two
components are supported by independent features of our
cross-correlation data, in particular, the small- and large-scale
behavior. The best fit occurs for a dark matter particle of
mass mDM¼ð65� 27

23ÞGeV and annihilation rate hσannvi ¼
ð26� 17

15Þ × hσannvith. In the caseof a softer energy spectrum,
as the one provided by a b̄b annihilation channel, the fit
improvement is slightly lower, at 2.7σ level, with best-fit
massmDM¼ð302� 188

120ÞGeV and annihilation rate hσannvi ¼
ð78� 67

43Þ × hσannvith.
Let us remark that the main source of uncertainty

concerning the dark matter signal described in this Letter
is our ignorance on the impact of substructures. Specifically,
the minimal halo mass and the amount and distribution of
subhalos can significantly change the size of the signal. This,
however, is common to all cosmological searches for a
particle dark matter signature. Comparing our nominal
model [60] to a recent development [61] based on both
N-body simulations and analytical modeling, we found that
the constraint on the annihilation cross-section gets shifted
to higher annihilation rates by about one order ofmagnitude.
This is due to a different amplitude of the expected signal,
whereas the energy, redshift, and angular dependencies are
only slightly modified, and the predicted cross-correlation
function therefore just needs a larger normalization, which,
in turn, is directly provided by the annihilation rate.
We conclude by summarizing the major results of this

analysis. We present the first detection of the cross-
correlation between the γ-ray sky and the mass distribution
in the Universe observed through gravitational lensing
shear, with a significance of SNR ¼ 5.3. The bulk of this
signal comes from the one-halo term of pointlike sources
with a hard spectrum, most likely dominated by blazars. In
addition, we find a hint for a cross-correlation on large
scales with spectral and redshift behaviors that might imply
that the population of blazars that are currently unresolved
by Fermi-LAT has different characteristics than those
obtained by extrapolation from observations of resolved
blazars, or that an additional contributor to the γ-ray
emission is present. The analysis of the cross-correlation
of Fermi-LAT data with the forthcoming year 3 and year 5
DES dataset and improvements in modeling of the blazar

population will likely clarify the source of the signal
detected in this Letter and characterize it more deeply.
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