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Abstract

Gauge theory correlators are potentially more singular in the infrared than those in non-gauge theories. We
determine the implications that these singularities have on the spectrum of the theory, proving that the
appearance of generalised poles implies the existence of on-shell states with fixed mass, but zero norm. For
quantum chromodynamics these poles have direct relevance for the confinement of coloured states. Using
lattice data for the Landau gauge gluon propagator we subsequently test for the presence of these poles,
establishing that the data is indeed consistent with such a component.

1. Introduction

As with any quantum field theory (QFT), the fundamental field correlators in quantum chromodynamics
(QCD) completely encode both the mathematical and physical properties of the theory. Analysing the struc-
ture of these objects is therefore essential for understanding these characteristics. Although the confinement
of coloured states is a well-established feature of QCD, the precise mechanism which governs this phenomenon
remains a deep open problem. Since the non-observability of colour occurs irrespective of whether the theory
contains quarks or not, the structure of the gluon field correlators must therefore play a significant role in
determining why confinement occurs in QCD, as opposed to other QFTs. Besides their purely theoretical
relevance, gluon correlators are also of importance phenomenologically, entering into the calculation of many
non-perturbative observables, including bound-state properties of hadrons such as decay widths and mass
spectra [1, 2, 3, 4, 5].

For many years it has been understood that the gluon propagator, and in particular its low-momentum
infrared behaviour, is important for unravelling the non-perturbative structure of QCD [6]. Motivated by
the idea that gluons could directly give rise to a linearly rising confinement potential, in the late 1970’s
Mandlestam [7] hypothesised that the non-perturbative gluon propagator may have a double massless pole
as p2 → 0. This idea was supported by phenomenological models at the time [8, 9], as well as initial
calculations of the Dyson-Schwinger equations [10]. Nevertheless, the earliest lattice data suggested that
the infrared propagator was in fact describable by an ordinary massive pole, corresponding to some sort of
effective excitation [11, 12]. From a different perspective, motivated by the issues surrounding gauge copies,
Gribov suggested that the gluon propagator could instead have a pair of complex conjugate poles [13]. Based
on these ideas it was further argued by Zwanziger [14, 15] that the propagator must also strictly vanish in
the limit p2 → 0, and up until a decade ago lattice evidence seemed to support this hypothesis. However,
once it became feasible to perform calculations using large lattice volumes, results started to suggest that the
propagator was actually non-vanishing at zero momentum [16, 17]. Despite further ideas being put forward
to account for this behaviour [18, 19], including several recent studies that propose the existence of complex
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mass poles [20, 21, 22], it still remains an open question as to how the propagator should behave in the
infrared regime, and ultimately what theoretical implications this has for QCD.

Although the precise non-perturbative structure of correlators in QCD remains largely unknown, progress
can be made by first establishing the general properties of these objects. In local formulations of QFT
quantum fields are defined to be operator-valued distributions, which among other things implies that any
field correlator must be a distribution [23, 24, 25]. It turns out that by combining this characteristic with the
Poincaré transformation properties of the fields, and the physical assumption that the states in the theory
have positive energy, this imposes significant analytic constraints on the structure of correlators, including
the existence of a spectral representation [25]. Despite the complications that can arise in gauge theories [26],
analogous results also hold for the correlators in QCD, and in particular the gluon propagator [27, 28]. The
major goal of this work will be to fully elaborate the connection between the infrared structure of this
representation, and the spectrum of the theory. Focussing on the specific case of Landau gauge, we will then
use the Euclidean generalisation of this representation in order to test the feasibility of different infrared
ansätze using the high precision pure Yang-Mills lattice data from [29], and ultimately help to shed new
light on the non-perturbative gluon spectrum.

2. The spectral structure of the gluon propagator

Irrespective of the matter content of the theory, it turns out that the gluon propagator has the following
spectral representation [27, 28]:

D̂ab F
µν (p) = i

∫ ∞
0

ds

2π

[
gµνρ

ab
1 (s) + pµpνρ

ab
2 (s)

]
p2 − s+ iε

+

N∑
n=0

[
cabn gµν(∂2)n + dabn ∂µ∂ν(∂2)n−1

]
δ4(p), (1)

where cabn and dabn are complex coefficients, and ∂µ = ∂
∂pµ . Defining: D(p) = gµνD̂aaF

µν (p) and ρi = ρaai , it

follows from Eq. (1) that the trace component of the Landau gauge gluon propagator D(p) can be written

D(p) = 3i

∫ ∞
0

ds

2π

ρ1(s)

p2 − s+ iε
+

N+1∑
n=0

gn(∂2)nδ4(p), (2)

with gn = 4caan + daan . As detailed in [27] and references within, the representation in Eq. (2) follows from
very broad assumptions, including the Poincaré covariance of the fields and the positivity of the energy-
momentum spectrum. In particular, this implies that Eq. (2) holds independently of the non-perturbative
subtleties associated with local quantisations such as Landau gauge. One can immediately recognise the
first term in Eq. (2) as having the familiar-looking Källén-Lehmann spectral form, whereas the second term
is purely singular. The potential appearance of non-vanishing singular terms involving derivatives of δ4(p)
arises because in gauge theories such as QCD the gauge symmetry provides an obstacle to the locality of the
theory [26]. In order to consistently quantise the theory one therefore has two options: either allow non-local
fields, or explicitly preserve locality. A general feature of local quantisations such as Landau gauge is that
additional degrees of freedom are introduced into the theory, resulting in a space of states which includes
unphysical negative-norm states such as ghosts [30]. It is precisely this loss of state-space positivity which
prevents one from ruling out the existence of δ4(p)-derivative components [25].

2.1. Generalised pole terms

Just as the loss of state-space positivity allows for the possibility of purely singular terms, this feature also
implies that the gluon spectral density ρ1(s) can potentially have more singular types of components. An
important example are generalised pole terms [31, 32]:

δ(n)(s−m2
n) =

(
d
ds

)n
δ(s−m2

n), n ≥ 1. (3)
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Due to the appearance of derivatives in this expression these terms give rise to contributions in the propa-
gator of the form (p2 −m2

n + iε)−n−1, which are more singular than ordinary massive poles. One can also
demonstrate that each such term is associated with the existence of a finite-norm state |Ψn〉, satisfying the
following conditions [31]:

(P 2 −m2
n)n|Ψn〉 6= 0, (4)

(P 2 −m2
n)n+1|Ψn〉 = 0. (5)

where P 2 is the squared energy-momentum operator. Eq. (4) clearly emphasises that these states are off
shell, and therefore represent unphysical degrees of freedom. The appearance of these types of states was
first mentioned in [31], although it was never established whether their presence is significant for the on-shell
spectrum of the theory. In the remainder of this section we will address this question.

Given |Ψn〉 satisfying Eqs. (4) and (5), consider the state |Ψ̃n〉 defined by the repeated action (n times) of
the mass-shell operator (P 2 −m2

n):

|Ψ̃n〉 ≡ (P 2 −m2
n)n|Ψn〉. (6)

Due to Eq. (5) and the definition of |Ψ̃n〉 it follows that:

(P 2 −m2
n)|Ψ̃n〉 = (P 2 −m2

n)n+1|Ψn〉 = 0, (7)

and therefore |Ψ̃n〉 defines an on-shell state with mass mn. Moreover, taking the inner product of |Ψ̃n〉 with
itself one finds

〈Ψ̃n|Ψ̃n〉 =
(
〈Ψn|(P 2 −m2

n)n, (P 2 −m2
n)n|Ψn〉

)
= 〈Ψn|(P 2 −m2

n)n−1(P 2 −m2
n)n+1|Ψn〉 = 0, (8)

where the last equality is implied by Eq. (5). From this one can conclude that the appearance of an unphysical

off-shell state |Ψn〉 necessarily implies the existence of an on-shell zero-norm state |Ψ̃n〉, with mass mn. Since
|Ψn〉 are intrinsically connected to the appearance of generalised pole terms as in Eq. (3), this proves that
despite the unconventional structure of these components, they nevertheless have a definite impact on the
spectrum of the theory. For many years it has been understood that δ(s−m2

0) components in the spectral
density with weights of differing signs correspond to on-shell states with either positive or negative norm,
depending on the normalisation. Since δ(n)(s − m2

n) with n ≥ 0 are the only discrete mass terms that
can appear in any spectral density, this analysis completes the classification of all possible on-shell states.
Although the main focus of this work is the gluon propagator, these results apply generally to any QFT that
has a space of states with an indefinite inner product.

2.2. Asymptotic behaviour

The relevance of the generalised pole terms in Eq. (3) to the asymptotic behaviour of correlators was first
recognised in [33, 34]. In particular, it was proven that these terms can potentially cause the correlation
strength between clusters of states to grow with distance, a feature which does not occur in ordinary non-
gauge theories [23]. This characteristic is often referred to as a violation of the cluster decomposition property
(CDP). For clusters of coloured states this characteristic provides a mechanism which can guarantee their
absence from the asymptotic spectrum, since a growth in correlation strength between coloured states would
prevent the independent measurement of either of these states at large distances [30]. Establishing the
spectral structure of the gluon propagator, or in fact the correlators involving any coloured fields, is therefore
of particular importance for understanding confinement. In order to violate the CDP the spectral density
must not only contain a component as in Eq. (3), but this component also needs to influence the behaviour
of the correlator at p2 = 0 [32, 33, 34], which requires that mn = 0. The purely singular terms in Eq. (1)
involving derivatives of δ4(p) can also cause the CDP to be violated. However, in this case this occurs not
because of the spectral characteristics, but due to the singular properties of the correlator itself.
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3. Lattice data fits

Although many different parametrisations of the gluon propagator have been considered over the years, the
potential appearance of generalised poles has not yet been fully investigated. In the remainder of this section
we will outline infrared fits to the lattice data of [29] testing for the existence of these terms. Since lattice
calculations are inherently Euclidean, one must first consider the Euclidean generalisation of Eq. (2). Under
the assumption of the validity of the Euclidean analytic continuation, the Landau gauge gluon propagator
has the form

D(p) = 3

∫ ∞
0

ds

2π

ρ1(s)

p2 + s
+

N+1∑
n=0

gn(−∇2)nδ4(p). (9)

Although the pole structure of the Euclidean and Minkowski propagators differ to one another, the spectral
density itself remains unchanged. Nevertheless, since lattice simulations inherently possess a finite momen-
tum resolution, the singular terms at p = 0, if they exist, are presumably not detectable. We therefore
disregarded these terms for the purpose of this analysis.

In this analysis we used the β = 6.0 data of [29] with both 644 and 804 lattices, corresponding to a lattice
spacing of a = 0.1016(25) fm and physical volumes of (6.57 fm)4 and (8.21 fm)4, respectively. Specific details
of the sampling, gauge fixing and other definitions regarding the data can be found in [29] and references
within. The first goal of our analysis was to test whether the following single-pole infrared propagator ansätze
could fit the lattice data up to some scale pmax

Di(p) =
Zi

(p2 +m2
i )
i+1

, i = 0, 1, 2. (10)

The motivation for performing these specific fits is that it provides a way of testing whether the data is
consistent with the appearance of different types of simple isolated poles in the gluon spectral density ρ1(s).
If there does indeed exist such a pole at s = m2

i , together with a gap (m2
i , sc) in the spectrum up to some

continuum threshold sc, the infrared structure of the propagator will be dominated by these poles1. In
particular, Di(p,mi) would provide a good fit to the data up to some pmax <

√
sc. For these fits to make

physical sense one requires that pmax > mi. It is important to emphasise here that the ansätze in Eq. (10)
correspond to real mass poles of differing orders, in contrast to the complex mass pole ansätze often consid-
ered in the literature [20, 21, 22].

Due to the difficulty in precisely accessing the systematic uncertainties of the lattice data we decided to
perform the fits using three different choices of uncertainties, with increasing levels of conservatism. For the
first case we considered the statistical errors only, which are O(10−3). For the second case, we took into
account both the statistical errors as well as an energy-dependent systematic error. This shape uncertainy
was derived using gluon propagator data with different lattice spacings in [35], and used an empirical function
that can describe the differences between these results and hence capture the general shape changes which
occur due to systematic effects. This approach is particularly well-suited to cases where the data is heavily
influenced by spectrum shape effects, such as in the assignment of nuclear reactor flux errors for neutrino
experiments [36]. Lastly, we adopted a data-independent choice for the systematic errors: we assumed that
the propagator data could be modified by a fourth-order polynomial in p2, with deviations at the 2.5% level.
This was the most conservative choice for the systematic error since it allows for significant shape changes.
In all of these fitting scenarios the goodness of fit was assessed using a Chi-squared minimisation procedure.
The Chi-squared statistic definitions together with the fit results for the 644 and 804 lattice data are pro-
vided in the appendix. Since the p = 0 data points in both the 644 and 804 data sets have a considerable

1A simple argument for this characteristic can be made by performing a small momentum expansion of the spectral repre-
sentation, and observing that the continuum contributions are increasingly suppressed as the gap (m2

i , sc) becomes larger.
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Figure 1: Chi-squared map for the 804 data D1(p) fit with statistical and polynomial shape uncertainty. The inner and outer
black lines indicate the 1σ and 2σ uncertainty contours, respectively, and pmax = 1 GeV.

systematic uncertainty relative to the other points, due to their calculation, we decided to omit p = 0 from
each of the final fits. Nevertheless, the omission of this point did not result in a significant modification to
the parameter values in the fits.

Comparing all of the fits in the different systematic error scenarios we found that D1(p) was the only ansatz
which could provide a consistent fit to the data. In order to assess the robustness of these fits we performed
a two-dimensional Chi-squared minimisation of the ansätze parameters, and also tested the sensitivity of
these fits to the momentum cutoff pmax. We found that neither D0(p) nor D2(p) provided a reliably stable
fit for both data sets as pmax varied, and that the fitted parameter values were highly sensitive to the choice
of systematic errors. The D1(p) fits on the other hand resulted in a good fit to the data for both choices of
(non-vanishing) systematic errors. Although the overall quality of the fits improved when using the larger
volume data, the parameter values remained stable across the 644 and 804 fits. The Chi-squared values in
(Z1,m1) parameter space for the 804 data with the polynomial shape choice of systematics are plotted in
Fig. 1. The parameter values at the global minimum of this fit are

Z1 = 48+12
−8 GeV2, m1 = 0.93+0.07

−0.06 GeV, (11)

where the uncertainties indicate a 1σ variation. We found that this fit remained convergent and physically
consistent (pmax > m1) up to pmax = 1.5 GeV.

In principle it is also possible that the gluon spectral density could contain multiple types of poles. To
investigate this possibility we therefore considered the simplest case of the two-term linear combinations of
single pole components

Dij(p) =
Zi

(p2 +m2
i )
i+1

+
Zj

(p2 +m2
j )
j+1

, (12)

where i, j = 0, 1, 2 and i 6= j. Overall we found that D01(p) provided a very good description of the lattice
data, even when only statistical errors were included. The best fit was obtained with the 804 data, yielding
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Figure 2: Best fit plots of the D1(p) and D01(p) ansätze together with the 804 lattice data points. The statistical errors on the
lattice data are very small and therefore not observable in the plot. The p = 0 data point is plotted for reference, although it
was not included in either of the fits due to its significant systematic uncertainty relative to the other data points.

the corresponding generalised pole parameter values

Z1 = 51+8
−6 GeV2, m1 = 0.88+0.09

−0.06 GeV, (13)

and: Z0 = −3.4+0.5
−0.5 GeV2, m0 = 0.36+0.04

−0.04 GeV. We found that this fit remained convergent and physically
consistent (pmax > {m0,m1}) up to pmax = 1.4 GeV. Although the D02(p) and D12(p) ansätze appeared to
give a reasonable fit to the data based on the χ2/d.o.f. values alone, the fitted mass parameters were found
to be degenerate, possessing a sensitivity to the momentum cutoff pmax. An important conclusion from this
analysis is that the best fit Z1 and m1 parameter values from the D01(p) fit coincide (within errors) with
those obtained in the D1(p) only fit. Moreover, adding a D1(p) component to either D0(p) or D2(p) ended
up leading to a significant improvement in the quality of these fits. Taken together, these results support the
hypothesis that the gluon propagator data is consistent with the existence of an infrared D1(p) contribution.
The D1(p) and D01(p) ansätze with the best fit parameter values in Eqs. (11) and (13), respectively, are
plotted together with the 804 lattice data points in Fig. 2.

Due to the spectral structure in Eq. (9), a D1(p) contribution means that ρ1(s) contains a generalised
component Z1δ

′(s − m2
1), where Z1 = 2

3πZ1. With the parameters given in Eq. (13) it follows from the
previous theoretical analysis that the appearance of such a component implies the existence of an on-shell
zero-norm state in the spectrum, with mass m1 = 0.88 GeV and weight Z1. An important characteristic
of this component is that it directly satisfies the Landau gauge superconvergence constraint [28, 37, 38]:∫
ds ρ1(s) = 0, not due to any continuous oscillatory-type behaviour [39], but because of the generalised

singular properties of the δ′ distribution. Since m1 > 0 this also suggests that the gluon spectral density
does not induce a singular enough behaviour near p2 = 0 to result in a violation of the CDP. It could well
be the case that a violation is indeed caused by the non-vanishing of one of the coefficients gn in Eq. (9),
but this remains to be seen. A non-violation of the CDP would imply that clusters of states created from
single gluonic fields should decorrelate as they are separated further apart. Whilst this might initially appear
surprising, one should note that the gluon correlator itself is not gauge-invariant, and so a non-violation of
the CDP in this specific case does not contradict the physical expectation that asymptotic coloured states
are prohibited.
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4. Conclusions

In locally quantised gauge theories the field correlators can potentially contain more singular generalised-
pole contributions in their spectral densities. In this work we establish for the first time the connection
between these types of components and the spectrum of the theory. In particular, we prove that the
presence of generalised poles implies the existence of on-shell states in the spectrum with fixed mass, but
zero norm. Despite their non-physicality, it turns out that these states can fundamentally alter the large-
distance behaviour of correlators, which is important in the context of confinement. With these theoretical
motivations in mind we analysed the high-precision Landau gauge gluon propagator lattice data from [29] in
order to assess whether the data can accommodate generalised-pole contributions. Overall, we found that
the data was consistent with the appearance of a massive single-derivative of delta component in the spectral
density, and hence the existence of a corresponding zero-norm state in the spectrum. The non-vanishing
mass of this state suggests that the spectral structure of the propagator alone is not sufficiently singular to
guarantee the confinement of states involving single gluonic fields. Since generalised spectral components
are also potentially present in other correlators, this work opens up a new direction for understanding the
infrared structure of QCD.
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Appendix A. Goodness of fit results

The goodness of fit results for the Di(p) and Dij(p) ansätze with the 644 and 804 lattice data of [29] are
found in the following tables. In each fit a value of pmax = 1 GeV was initially chosen to determine whether a
convergent and physically consistent (pmax > mi) fit could be achieved. If not, the value of pmax was lowered
or raised until these conditions were satisfied. The values of pmax in the tables reflect this final choice of
cutoff. The D02(p) fits to both data sets were found to not be consistent when only statistical errors were
included, regardless of the value of pmax.

Appendix B. Chi-squared definitions

For each propagator ansatz tested we used three different choices for the systematic error, each of which
requires a separate Chi-squared statistic definition in order to determine the goodness of fit. In the least
conservative scenario for which we only consider the statistical errors, we used the following Chi-squared
definition:

χ2
1 = (G−D)TC−1(G−D), (B.1)
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Stat. only Stat. + Shape Stat. + Poly.
χ2
1/d.o.f. (pmax) χ2

2/d.o.f. (pmax) χ2
3/d.o.f. (pmax)

D0(p) > 150 (0.7) > 30 (0.6) 3.5 (0.7)

D1(p) > 90 (1.0) 3.5 (0.9) 2.7 (1.0)

D2(p) > 45 (1.3) > 45 (1.3) 3.1 (1.3)

D01(p) 1.9 (1.0) 2.2 (1.0) 2.1 (1.0)

D02(p) — 2.7 (1.2) 2.8 (1.3)

D12(p) > 15 (1.0) 3.4 (1.0) 2.5 (1.0)

Table A.1: Chi-squared fit results for Di(p) and Dij(p) under the three different systematic error scenarios with the 644 lattice
data.

Stat. only Stat. + Shape Stat. + Poly.
χ2
1/d.o.f. (pmax) χ2

2/d.o.f. (pmax) χ2
3/d.o.f. (pmax)

D0(p) > 80 (0.7) 7.3 (0.6) 2.4 (0.7)

D1(p) > 25 (1.0) 1.8 (0.9) 1.7 (1.0)

D2(p) > 15 (1.3) > 15 (1.3) 1.8 (1.3)

D01(p) 1.1 (1.0) 1.2 (1.0) 1.2 (1.0)

D02(p) — 1.6 (1.2) 1.6 (1.3)

D12(p) 6.3 (1.2) 1.7 (1.2) 1.5 (1.2)

Table A.2: Chi-squared fit results for Di(p) and Dij(p) under the three different systematic error scenarios with the 804 lattice
data.

where G is the n-dimensional vector of lattice data at the discrete momenta {p1, ..., pn}, and D is the vector
of the fitted propagator functional form evaluated at these same momenta. The covariance matrix C quan-
tifies the statistical correlations between different field configurations in the data, and is highly diagonal. In
the limit of zero cross-correlations C becomes the matrix of statistical variances at each lattice point, and
Eq. (B.1) reduces to the standard Chi-squared form. The minimum χ2

1 follows a χ2-distribution with n−m
degrees of freedom, where m is the number of free parameters in the propagator ansatz.

In the second scenario we took into account both the statistical error and an energy-dependent systematic
error. The corresponding Chi-squared statistic is defined by

χ2
2 = (G · f −D)TC−1(G · f −D) +

(a− α)2

σ2
a

+
(b− β)2

σ2
b

, (B.2)

where now the lattice data is modified by an effective shape function f = f({pi}, a, b). This fitting approach
is particuraly well-suited to cases where the data is heavily influenced by energy-dependent effects, for
example in assigning a shape error to a nuclear reactor flux for neutrino experiments [36]. Since the purpose
of f is to simulate the sort of shape changes that can occur due to systematic effects, such as the appearance
of Gribov copies [29], we used the propagator data from [35] in order to establish a reasonable functional
form. In particular, f was established such that the shape of the data sets for the different lattice spacings
in [35] could be transformed into one another after multiplication by this function. With this procedure the
components of f were determined to have the functional form

fi(pi, a, b) =
a+ p2i
ab+ p2i

, (B.3)

and the priors: (α = 0.21, σa = 0.016) and: (β = 1.0, σb = 0.1) were found to cover the full range of shape
differences observed in [35]. Due to the definition in Eq. (B.2), the minimum χ2

2 has n− (m+ 2) degrees of
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freedom. In the most conservative systematic error scenario we used the following Chi-squared statistic

χ2
3 = (G · g −D)TC−1(G · g −D) +

|g − γ|2

σ2
g

, (B.4)

where the systematic shape function g was chosen to be a forth-order polynomial in p2 (with 4 free coef-
ficients), with priors γ = 1 and σg = 0.025 simulating a 2.5% variation from the data. The corresponding
minimum χ2

3 has n− (m+ 4) degrees of freedom.
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