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In this article we investigate the profile of the scalar field of a scalar-tensor theory subject to the
chameleon mechanism in the context of gravity space missions like the MICROSCOPE experiment. We
analyze the experimental situations for models with an inverse power-law potential that can in principle
induce a fifth force inside the satellite, and hence either be detected or constrained. As the mass of the scalar
field depends on the local matter density, the screening of the scalar field depends crucially on both the
parameters of the theory (potential and nonminimal coupling to matter) and the geometry of the satellite.
We calculate the profile of the scalar field in one-, two- and three-dimensional satellite configurations
without relying on the thick- or thin-shell approximations for the scalar field. In particular, we consider
the typical geometry with nested cylinders which is close to the MICROSCOPE design. In this case we
evaluate the corresponding fifth force on a test body inside the satellite. This analysis clarifies previous
claims on the detectability of the chameleon force by space-borne experiments.

DOI: 10.1103/PhysRevD.100.084006

I. INTRODUCTION

General relativity (GR) has successfully passed all
experimental tests from the Solar System scale [1] to
cosmology [2], including the recent confirmation of the
existence and properties of gravitational waves [3,4].
However, GR has to be endowed with a dark sector
(including dark matter and a cosmological constant) to
provide a cosmological model consistent with observations
[5,6]. The absence of convincing models for the dark sector
has revived the interest for gravity theories beyond GR
[1,7]. These theories introduce new degrees of freedom, the
effects of which need to be suppressed on small scales,
although they may play an important role on cosmological
scales.
The simplest extension of GR posits the existence of a

nonminimally coupled scalar field. Such a theory, with only
one extra degree of freedom, involves at least two free
functions (a potential and a universal coupling function
when enforcing the weak equivalence principle). These
scalar-tensor theories are currently well constrained from
local scales observations [1,8] to cosmology [9,10]. When
the potential and the coupling function enjoy the same
minimum these theories can exhibit a cosmological attrac-
tion mechanism toward GR in such a way that they are
in agreement with local experimental constraints [11].

The new degree of freedom can then be considered as a
valid dark-energy candidate [12].
On small scales, the scalar field is responsible for a fifth

force that has to be shielded in order to pass existing
experimental tests. Several screening mechanisms have
been proposed in the case of scalar-tensor theories, includ-
ing the least coupling principle [13], the symmetron [14],
and the chameleon mechanism [15,16]. The latter model
assumes that the coupling and potential functions do not
have the same minimum. It follows that the minimum of the
effective potential depends on the local density of matter.
Hence, in high-density environments, the field is heavier
and the fifth force may have a range that is too small to be
detected, while in low-density environments the fifth force
can be long ranged.
Local gravity experiments on the existence of a fifth

force already provide strong constraints on the existence
of the chameleon field [17,18] (see Sec. VI D). The main
bounds typically come from atom interferometry [19,20],
Casimir effect measurements [21], or torsion balance
experiments to detect short-scale forces [22]. Other efforts
could lead to new advances by improving sensitivity or by
imagining more original signatures [23]. It was originally
expected [15,16] that space-based experiments could be
highly competitive, as they would be performed in a lower-
density environment.
However, all of these experiments suffer from the

problem that their setups can screen the fifth force. The*martin.pernot_borras@onera.fr
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recent results on the test of the weak equivalence principle by
the MICROSCOPE mission [24] orbiting the Earth have
long been expected to provide new constraints on chameleon
theories (as argued in Refs. [15,16]). In this experiment,
even with a universal coupling, the proof masses can show
different screenings of the field, leading to different accel-
erations. As a consequence, one would expect the equiv-
alence principle to be violated for macroscopic extended
objects, while it still holds at the fundamental level. The
question is thus to determine how screened the chameleon
field is at the level of a proof mass under the influence of the
geometry of a given experiment, a study that has not been
performed so far and for which this article is a first step. This
is an intricate problem as the distribution of matter is often
complex and the chameleon’s dynamics is highly nonlinear.
Most of the experiments cited above typically consist of a
vacuum cavity enclosed in a shield that can contain
experimental devices, such as electrodes or test masses.
As these test masses are extended bodies, they must be taken
into account in the profile of the field when computing the
force they experience.
Two kinds of effects are expected depending on whether

a cavity can be considered isolated or not. On the one hand,
in the so-called “thin-shell” regime, the field inside the
cavity is decoupled from the exterior since the cavity walls
exponentially damp the field on a scale smaller than their
thickness; in this case, the force applied to a test mass inside
the cavity is local and is mostly determined by the structure
and geometry of the cavity. On the other hand, in the so-
called “thick-shell” regime, the exterior field can penetrate
the cavity as it is marginally influenced by the matter
constituting the cavity. The limit between these two
regimes depends on the model parameters and the geometry
of the experiments. In this article, we shall investigate these
two dependences and compute the force exerted on a test
mass in different settings.
To this end, we must determine the chameleon profile

inside the experiment. This is a complex problem mostly
because of the structure of the boundary conditions and the
attraction of the profile toward a fixed point. It has been
addressed in various ways in the literature. Analytic models
suffer from the nonlinearities of the chameleon equation;
to overcome them, the Klein-Gordon equation is often
approximated by neglecting some terms or by linearizing
the chameleon potential [16,21,25–32]. Numerical models
[22,33–36] suffer from the limited resources they have,
leading to solving the equation in a bounded region, setting
the boundary conditions at a finite distance, or neglecting
some short-scale variations of the field. Besides the fact that
this last point may lead to an incorrect field even where the
field varies slowly, this is very problematic for experiments
using extended test masses. Short-scale variations are
indeed more likely to happen in matter, impacting the very
gradient responsible for the force that is being measured.
This caveat is also encountered in analytic approaches.

This article overcomes these approximations. We tackle
the problem numerically and consider all of the terms in the
chameleon equation. To comply with the necessity to set
boundary conditions at infinity, we consider a low-density
background environment in which we embed a high-
density system whose complexity increases throughout
the paper. Our final goal is to approach the concentric-
cylinder geometry of the MICROSCOPE instrument [24].
Although we restrict ourselves to static configurations with
symmetries that are simpler than those in realistic cases,
this paper will pave the way to further studies that include
asymmetries and dynamics. We should note that most
configurations studied in this article have already been
partly explored in the literature, whether in specific regimes
or with assumed boundary conditions. Here we investigate
general profiles to clarify the boundary condition problem
and to infer robust criteria to legitimize the approximations
encountered in the literature.
This article is organized as follows. The first part of the

paper focuses on one-dimensional (1D) geometries. In
Sec. II, we discuss the dynamics of the chameleon field,
paying particular attention to the role of boundary con-
ditions. In Sec. III we analyze the case of an infinite wall,
and in Sec. IV we consider the case of a one-dimensional
cavity. Following these 1D configurations, we explore two-
dimensional (2D) and three-dimensional (3D) symmetrical
configurations in Sec. V. Finally, in Sec. VI we notice that
the exact numerical integration of the field profile in a
cavity leads to discrepancies with the analytic approxima-
tions used to evaluate the Casimir pressure induced by
the chameleon field. We also consider the effect of the
chameleon force on the motion of atoms in a cavity
and the corresponding drift time, which could serve as a
testing ground for such models. Finally, we present the
field profile in nested cylindrical configurations close
to the MICROSCOPE setting as a first step toward a
more thorough investigation of the constraints from
MICROSCOPE on chameleons, which is left for future
work. We conclude in Sec. VII.

II. THE CHAMELEON’S PROFILE
AND INITIAL CONDITIONS

A. Theoretical model

The chameleon mechanism is given in the Einstein
frame by

S ¼
Z

dx4
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
∂μ∂μϕ − VðϕÞ

�

−
Z

d4xLmðg̃μν;ψmatter;…Þ; ð1Þ

where ϕ is the chameleon field, V is its potential, MPl is
the reduced Planck mass, R is the Ricci scalar, gμν is
the Einstein frame metric, g is its determinant, andLm is the
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matter Lagrangian with ψmatter the matter fields. The field
couples nonminimally to matter through the Jordan frame
g̃μν ¼ A2ðϕÞgμν,whereA is a universal coupling function.We
define the dimensionless coupling constant β ¼ MPl

dlnA
dϕ . The

field could have different coupling functions for each com-
ponent of matter, but here we restrict to a universal coupling.
For static configurations of nonrelativistic matter, the

field follows the Klein-Gordon equation

∇2ϕ ¼ Veff;ϕ ≡ V;ϕ þ
β

MPl
ρmat; ð2Þ

where ρmat is the mass density function. For nonstatic
configurations, the Laplacian would be a d’Alembertian.
We use the Ratra-Peebles inverse power-law potential of
energy scale Λ and exponent n [17,37] as a typical example
of a chameleon model,

VðϕÞ ¼ Λ4

�
1þ Λn

ϕn

�
: ð3Þ

The effective potential Veff has a minimum given by

ϕminðρmatÞ ¼
�
MPl

nΛnþ4

βρmat

� 1
nþ1

: ð4Þ

It plays a central role in the chameleon dynamics.
We recall that in a medium with constant density, the

field is expected to relax exponentially to the minimum of
its potential. It varies on a typical scale of the order of its
local Compton wavelength,

λcðρmatÞ≡m−1ðρmatÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V 00
effðϕminÞ

p ; ð5Þ

which is explicitly given, in the models considered in this
article, by

λcðρmatÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nðnþ 1ÞΛnþ4

�
nMPlΛnþ4

βρmat

�nþ2
nþ1

s
: ð6Þ

The fifth force induced by the coupling to the chameleon
field on a test point mass is proportional to the gradient of
the scalar field and given by

F⃗ ¼ −
β

MPl
mtest∇⃗ϕ: ð7Þ

Nevertheless an extended body cannot a priori be consid-
ered as a test body since its own matter density impacts
the field profile inside and outside its volume. Hence, to
properly evaluate the force one needs to solve consistently
for the field profile including the extended body and
integrate this force over the whole volume of the body.
In what follows, it is convenient to rewrite the chame-

leon’s Klein-Gordon equation (2) in terms of ϕmin as

∇2ϕ ¼ nΛnþ4

�
1

ϕnþ1
min ðρmatÞ

−
1

ϕnþ1

�
; ð8Þ

where the dependence on the local mass density is now
contained in ϕmin.
If we consider a region of space with local density ρvac

that is large compared to the corresponding chameleon’s
Compton wavelength and far from any perturbing body,
we can assume that the field is uniform with a value
ϕvac ¼ ϕminðρvacÞ. We shall now study the way a one-
dimensional material structure affects this uniform profile
as experiencing the different ϕmin associated to the different
environments the field should depart from ϕvac.

B. Initial conditions in one dimension

The chameleon profile is a solution to a boundary value
problem. Given the previous discussion, the field shall relax
to its minimum value in the external space, such that8<

:
ϕ⟶

x→þ=−∞
ϕminðρvacÞ;

ϕ0⟶
x→þ=−∞

0:
ð9Þ

Such a boundaryvalue problemcanbe solved using finite-
difference methods. However, due to the finite extent of
computational memory we cannot set boundary conditions
at infinity. We then need to set the boundary conditions at
a finite distance from the considered object, and make a
compromise between computational memory limits and the
distance at which we can consider that the gap between the
value that the field takes and ϕvac becomes negligible.
The Compton wavelength in vacuum λc;vac is an estimate
of this distance [16,17]. This is an approximate criterion; a
more accurate onewill be determined in the following by the
direct integration of an initial value problem.
Initial conditions cannot be chosen to be at ϕvac with a

null derivative. To understand this we must note the key
role played by ϕmin as a fixed point of the theory. One can
check that for n > 0 we have

d2ϕ
dx2

8>><
>>:

> 0 if ϕ > ϕmin;

¼ 0 if ϕ ¼ ϕmin;

< 0 if ϕ < ϕmin;

ð10Þ

so that the field derivative increases (decreases) for ϕ >
ϕmin (ϕ < ϕmin). For ϕ ¼ ϕmin, the field’s derivative will
not vary.
Hence, if we choose the initial conditions ϕ0

i ¼ 0, as in
Fig. 1, the field will diverge monotonically toward þ∞ or
−∞ at large x, for an initial value ϕi > ϕmin or ϕi < ϕmin,
respectively. For an initial value ϕi ¼ ϕmin, since ϕmin is a
fixed point the field remains constant.
If we choose ϕ0

i ≠ 0, the considerations in Eq. (10) do not
change and theϕ0 evolution remains the same. Nevertheless,
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the field evolution will no longer be monotonic and will
eventually show maxima and minima. In the case where
ϕi > ϕmin, if ϕ0

i > 0, the field will diverge more rapidly than
if ϕ0

i ¼ 0, if ϕi < 0, new behaviors will occur. The different
possible evolutions for ϕ0

i ≠ 0 are sketched in Fig. 2. For
small values of jϕ0

ij, the field does not have enough “speed”
to reach ϕmin, and thus it will reach a minimum and then
diverge. For high values of jϕ0

ij, the field can reach ϕmin.
When crossing ϕmin, ϕ0 will still be negative, but as we now
have ϕ < ϕmin it will decrease and make the field diverge
negatively. For a given ϕi, there is only one value of ϕ0

i (in
between these two behaviors) that will cause ϕ0 to vanish
precisely when the field reachesϕmin. In this case,ϕi is fixed
by the considered matter distribution.
Note that the case where ϕi < ϕmin is completely

symmetric with the case where ϕi > ϕmin, as shown by
the light grey curves in Fig. 2.
In 1D, the problem can be treated relatively easily. The

chameleon equation can indeed be integrated once, from

infinity—where boundary conditions are verified—to the
place we want to set the initial conditions. This gives a
condition on ϕ0

i in terms of ϕi,

1

2
ϕ02
i ¼ n

ϕnþ1
vac

ðϕi − ϕvacÞ þ
�

1

ϕn
i
−

1

ϕn
vac

�
: ð11Þ

This leaves us with only one initial parameter to deal
with. We can use shooting methods, varying ϕi to obtain
the proper solution for the considered configuration.

III. EFFECT OF AN INFINITE WALL ON THE
CHAMELEON’S DYNAMICS

A. An interface between two infinite domains

As a first step, we consider the simple case of an
interface between two infinitely extended domains of
different densities, for instance, a high-density wall and
a low-density vacuum of density ρwall and ρvac, respectively.
Far from the interface, the field will tend toward the

value that minimizes the potential in each environment:
ϕwall and ϕvac, respectively. Note that Eq. (4) implies
ϕvac > ϕwall. In between, the field will evolve smoothly
and cross the interface with a value ϕI and a continuous
derivative, with ϕwall < ϕI < ϕvac. To solve for the profile
numerically, we set the initial conditions at this interface. In
the wall since ϕI > ϕwall, the profile is analogous to the
case shown by the black line that asymptotically tends
toward ϕmin in Fig. 2. In the other domain, the symmetric
dotted line is more relevant, as now ϕI < ϕvac.
In this configuration, no shooting methods are required.

This is because the asymptotic conditions on both sides of
the interface give two different conditions [equivalent to
Eq. (11)] on ϕI and ϕ0

I, given by

1

2
ϕ02
I ¼ n

ϕnþ1
vac

ðϕI − ϕvacÞ þ
�

1

ϕn
I
−

1

ϕn
vac

�
; ð12Þ

1

2
ϕ02
I ¼ n

ϕnþ1
wall

ðϕI − ϕwallÞ þ
�

1

ϕn
I
−

1

ϕn
wall

�
: ð13Þ

Combining these two equations givesϕI andϕ0
I in terms of

ϕwall and ϕvac. We can then integrate numerically in both
domains.Figure3depicts sucha solutionwith the interfaceat
x ¼ 0. Note that for this profile and for every other profile
computed in the following, if not stated otherwise, we
consider the case where n ¼ 2, β ¼ 1, Λ ¼ 1 eV, ρwall ¼
8.125 g cm−3, and ρvac ¼ 10−3ρwall (ϕvac ¼ 10ϕwall for
n ¼ 2). In each domain, the field reaches the corresponding
minimumof its potentialwithin scales given by theCompton
wavelength λcðρmatÞ. For the set of parameters and densities
considered throughout the article, we have λc;vac ≃ 2 m
and λc;wall ≃ 0.02 m. Note that for the sake of clarity,
we chose ρvac and ρwall values that are not vastly different.
Formore realistic vacuumcavities,ρvac ¼ 10−15ρwall, imply-
ing a more significant difference between λc;vac and λc;wall.

FIG. 1. Sketch of the field profiles for null initial derivatives:
ϕ0
i ¼ 0. Different behaviors are obtained depending on the

magnitude of ϕi compared to ϕmin.

FIG. 2. Sketch of the field profiles for nonzero initial deriv-
atives: ϕ0

i ≠ 0. Different behaviors (each line) are obtained
depending on the magnitude and sign of ϕ0

i. Grey lines corre-
spond to ϕi < ϕmin.

PERNOT-BORRÀS, BERGÉ, BRAX, and UZAN PHYS. REV. D 100, 084006 (2019)

084006-4



B. A single wall

We then consider a single wall of uniform density
embedded in the low-density background environment.
we denote its thickness by e. On both sides of the wall, the
field will evolve similarly as in the previous section. We set
the initial conditions on one of the borders of the wall, say,
on the right side. We denote them by ϕe and ϕ0

e. By
symmetry, the field value will be the same on the other
border of the wall, with a derivative of opposite sign. As in
the previous section, we know that ϕwall < ϕe < ϕvac with
ϕe

0 > 0, and by direct integration the boundary conditions
give a condition on ϕ0

e in terms of ϕe,

ϕ0
e ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
n

ϕnþ1
vac

ðϕe − ϕvacÞ þ
�
1

ϕn
e
−

1

ϕn
vac

��s
; ð14Þ

where we choose the positive sign in this case.
If we look toward the wall, the initial field derivative ϕe

0
will look negative. As ϕe > ϕwall, the field will be similar to
the black line that shows a minimum in Fig. 2. The field
will then evolve from ϕe to a minimum value reached at the
center of the wall. The scale of this evolution will depend
on the magnitude of ϕe. Consequently, there is a one-to-one
mapping between e and ϕe: the larger the value of ϕe, the
smaller the value of e.
Figure 4 depicts the numerical integration of a series of

profiles for different values of e. Dotted lines delimit the
frontiers of the considered wall. As expected, the thicker
the wall gets, the more space the field has to evolve inside
the wall, so the closer it gets to ϕwall.

1. ϕeðeÞ relation
To compute the profile associated with any wall thick-

ness we need to determine the relation ϕeðeÞ, which can be

obtained by a shooting method. Figure 5 shows an example
of such a relation for our fiducial parameters (n, β, Λ), and
ϕwall, ϕvac.
This figure shows that a limited range for ϕe ∈ ½ϕI;ϕvac�

realizes all possible value of e ∈ Rþ. The bounds of this
range are given by two limiting regimes:

(i) ϕvac corresponds to the limiting case where the wall
becomes infinitely thin and represents a very tiny
perturbation to the background field.

(ii) ϕI corresponds to the other limiting case where the
field tends to reach ϕwall at the center of the wall: we
say that the field is completely screened inside the
wall. The profile can be seen as two concatenated
profiles of the case in Sec. III A, which explains the
value ϕI as the lower boundary. This behavior is
consistent with the fact that the field is exponentially

FIG. 3. Example of field profiles with an interface at x ¼ 0.
ϕmin values are shown with the two dashed lines. The grey zone is
the higher density domain.

FIG. 4. Field profiles for different wall thicknesses e. The two
values of ϕmin are shown by the two dashed lines. Dotted lines
show the extent of the walls.

FIG. 5. Example of the relation ϕeðeÞ. The black lines denote ϕI
and ϕvac.
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suppressed in the wall on scales of the Compton
wavelength λc;wall in the wall.

2. ϕeðeÞ’s dependence on Λ and β

ϕI and ϕvac depend on Λ and β in such a way that the
interval ½ϕI;ϕvac� spreads or shrinks. It spreads logarithmi-
cally with Λ and shrinks logarithmically with β. Figure 6
shows how the ϕeðeÞ relation depends on Λ. Here the
interval ½ϕI;ϕvac� is normalized to the interval [0, 1].
This figure shows that when varying Λ, the ϕeðeÞ

relations have the same slope, but are just shifted on the
e axis. The dependence on β is similar, albeit in the
opposite direction. To understand this variation, we can
choose a specific value in the ½ϕI;ϕvac� interval, say,
ϕe−ϕI
ϕvac−ϕI

¼ 0.5, and see how e varies with Λ and β. We
can fit this variation as

eðΛ; βÞ ¼ A × Λ × β−
2
3; ð15Þ

where A is a coefficient that depends in a nontrivial way
on ρwall and ρvac. In the cases considered in this figure,
A ¼ 2.15 × 10−3 meV−1.

3. Screening of the wall

As mentioned before, when the wall gets thicker, it gets
screened so that the field tends to the value that minimizes
the potential inside the wall ϕwall at the center of the wall. In
this case, we can consider that the field’s dynamics on both
sides of the wall decouple, such that if the matter distri-
bution were to change on one side of the wall it would not
influence the field on the other side. This will be important
for the case of a cavity.
This was expected to happen for walls thicker than λc;wall

[17]. Nevertheless, we can deduce from our simulations a
more accurate criterion. We can indeed measure the

difference between ϕwall and the effective minimum value
the field reaches at the center of the wall. Figure 7 shows its
evolution with the wall thickness.
As expected, we observe that this difference slowly

decreases as the wall gets thicker. It then suddenly
decreases when the wall thickness exceeds λc;wall. We
can consider that this gap becomes negligible when it
reaches a thickness of roughly 100λc;wall, as it gets smaller
than typical numerical precisions. This criterion is useful
for other numerical methods such as finite-difference
methods, in which one can only solve the field in a
bounded region. For instance, when considering a system
totally surrounded by walls, one can safely set initial
conditions for the field to be at its minimum deeply inside
these walls, as long as these walls have thicknesses greater
than 100λc;wall.

4. Range of influence of a wall

We can also deduce the scale of influence of a wall.
Outside the wall, the field slowly relaxes to its asymptotic
value ϕvac.
The typical relaxation scale Lϵ at which the gap between

the field and ϕvac becomes negligible is given by

ϕðe=2þ LϵÞ − ϕvac

ϕvac
¼ ϵ; ð16Þ

where we take ϵ to be small. We can then consider that for
distances to the wall larger than Lϵ, the dynamics of the
field is no longer influenced by the wall.
Figure 8 shows how this scale of influence varies with

the wall thickness, for ϵ ¼ 1%. We observe that it increases
when the wall gets thicker, and finally reaches a plateau
when the wall is totally screened, i.e., its thickness
exceeds λc;wall.

FIG. 6. Variation of ϕeðeÞ with Λ, for Λ ¼ 0.1; 1; 10 eV. The
interval on which ϕeðeÞ is defined is normalized to [0,1].

FIG. 7. Variation with the wall thickness e of the difference
between the value of the field at the center of the wall and ϕwall.
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We can infer a useful criterion from such a figure. We can
safely assume that the influence of the wall cannot be felt
farther than 10λc;vac from it.

IV. ONE-DIMENSIONAL CAVITY

A. Profile and ϕdðdÞ relation
The experimental case of a cavity in one dimension is

modeled as two walls of equal thickness e, separated by an
empty space of size d, as illustrated in Fig. 9. For simplicity
we assume that the cavity has the same density as the
background environment ρvac.
We follow the same approach as in the previous section.

We impose initial conditions at the external border of a
wall, say, the right one. When fixing the thickness of the
wall, the initial conditions will be determined by the size of
the cavity d, so we denote them by ϕd and ϕ0

d. The same
first integration in the external vacuum region gives a
condition on ϕ0

d in terms ϕd to satisfy the boundary
condition at infinity. The magnitude of ϕd determines

the dynamics of the field inside the walls/cavity system.
The overall profile will still be symmetric around the
cavity center.
Inside the walls, the field is no longer symmetric. It must

indeed reach a value smaller than ϕd on the inside border of
the wall, as otherwise it would have the same asymptotic
behavior as in the external vacuum region or diverge. Thus,
if ϕeðeÞ is the initial value of the field given in the previous
section for a wall of thickness e, we should now choose
ϕd < ϕeðeÞ. In this way, the field will not have enough
“speed” to reach ϕd again at the border of the cavity, but it
will instead reach a value ϕðd=2Þ < ϕd < ϕvac, with a
positive derivative. Then, in the cavity the field will have
the same kind of dynamics with a maximum as for the
bottom grey line in Fig. 2, and reach ϕðd=2Þ again at the
other side of the cavity.
For a fixed wall thickness e, ϕd will determine the

value of ϕðd=2Þ, which will determine the maximum field

FIG. 8. Scale of influence Lϵ of a wall as a function of e, for
ϵ ¼ 1%.

FIG. 9. 1D cavity.

FIG. 10. Field profiles for different cavity sizes with
unscreened (upper panel) and screened (lower panel) walls of
thickness e ¼ 0.01 m and e ¼ 0.2 m, respectively. The values of
ϕmin are shown as dashed lines. The walls are represented by
vertical colored strips.
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value ϕ0 at the cavity center. Thus, we will obtain the
corresponding cavity size d. We use the same shooting
method as in the previous section to numerically determine
how ϕd varies with d, and hence the ϕdðdÞ relation. Note
that the larger the value of d, the larger the value of ϕ0.
Figure 10 shows profiles corresponding to different

cavity sizes, with a thin wall of size e ¼ 1 cm (upper
panel) and a thick screened wall of size e ¼ 20 cm (lower
panel). We find bubble profiles inside the cavity similar to
Refs. [25,26].
Figure 11 shows an example of the ϕdðdÞ relation with

thin unscreened walls of size e ¼ 1 cm. As for the case of a
single wall, the whole interval for d ∈ R is spanned by a
restrained interval for ϕd, ½ϕeð2eÞ;ϕeðeÞ�, where ϕeð2eÞ
corresponds to the initial condition associated with a single
wall of size 2e.
The curve for ϕdðdÞ is similar to ϕeðeÞ in the previous

section, with two regimes. For d ≫ λc;vac, the field has
enough space in the cavity to reach a value ϕ0 at its center
close to the potential minimum ϕvac. In this regime, and as
the cavity grows larger the two walls can be considered to
be isolated, so the dynamics of the field is very similar to
the one seen in Sec. III B. This explains why ϕd varies very
slowly with d, with ϕd ≃ ϕeðeÞ.
On the other hand, as the size of cavity decreases the

field has less and less space to evolve, such that ϕ0 gets
smaller. In this regime, as the two walls get closer, the
dynamics of the field tends to the dynamics of a single wall
of thickness 2e. This explains why small values of d are
obtained for ϕd tending towards ϕeð2eÞ.

B. Chameleonic force in a cavity

Using the field profiles in a cavity, we can deduce
the fifth force that a test point mass would feel
using Eq. (7).

Figure 12 shows the magnitude of the fifth force
experienced by a test mass inside cavities of different sizes
for a constant wall thickness as expressed by Eq. (7).
This force is directed outward. Thewall is chosen here to be
screened with e ¼ 0.2 m. It shows that the force profile
does not vary much, but just stretches with the cavity. The
maximum force value reached at the border of the cavity
varies slightly.
Conversely, Fig. 13 shows how the force profile changes

as a function of the wall thickness, at constant cavity size.
One can see that the magnitude of the force increases as the
walls get thicker. In agreement with previous consider-
ations, it stops varying when the wall thickness exceeds
λc;wall ¼ 2.2 cm, as the screened walls isolate the inner
dynamics from the outside. Thus, larger forces are expected
in cavities separated by thick walls. Nevertheless, in the
case of thin walls, we expect it to be overtaken by effects
sourced by external objects.

FIG. 11. Relation ϕeðdÞ, for e ¼ 1 cm. ϕmin values are shown
with the two black lines.

FIG. 12. Force experienced by a test mass for different cavity
sizes, for screened walls with e ¼ 1 m.

FIG. 13. Force experienced by a test mass for different wall
sizes, for a fixed cavity size d ¼ 1.5 m.
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V. CYLINDRICAL AND SPHERICAL SYSTEMS

In 2D and 3D, the method previously used is no longer
applicable. The chameleon’s Klein-Gordon equation (8)
indeed becomes in cylindrical or spherical symmetries

d2ϕ
dr2

þ ðD − 1Þ
r

dϕ
dr

¼ nΛnþ4

�
1

ϕnþ1
min ðρmatÞ

−
1

ϕnþ1

�
; ð17Þ

where D is the dimension of the symmetry. For D ≥ 2, the
first field’s derivative term prevents us from obtaining a
condition on the initial field derivative by integrating the
chameleon equation once. Thus, we cannot follow the same
scheme as before, and we need to adjust the two initials
conditions ϕi and ϕ0

i.
Nevertheless, it is convenient to set the initial conditions

at the symmetry center, as by symmetry the derivative of
the field cancels. We thus have to determine a single
parameter—the value of the field ϕ0—to obtain the correct
profile. A dichotomy algorithm can be used to determine
the correct ϕ0 that satisfies the correct asymptotic boundary
conditions (9). A more complex analysis of the chame-
leon’s dynamics than the one in Sec. II B shows that if the
value of ϕ0 is greater (weaker) than its correct value, the
field will asymptotically diverge positively (negatively).
Then, by solving the field for some ϕ0, we can evaluate
whether the field is greater or lesser than ϕvac at some large
distance far greater than λc;vac from the considered system,
and then adjust ϕ0 as a dichotomy and reproduce the same
procedure.
This converges rapidly toward the correct profile. It is

important to note that, because the symmetry center is the
origin of the coordinate system (r ¼ 0), we cannot impose
initial conditions at this point as the second term in Eq. (17)
diverges numerically due to its dependence on r. We instead
impose them very close to r ¼ 0, with ϕi ¼ ϕ0 and ϕ0

i ¼ 0.
This should lead to an error on the obtained field. The fields
obtained in a 1D cavity with this method agreewith the fields
obtained with the previous method to less than 0.1%.

A. Cylindrical and spherical cavity

Analogously to Sec. IV, the cases of a cavity in 2D and
3D are, respectively, an infinitely extended cylinder and
an empty sphere. Here we still denote the diameter of the
cavity by d and the wall thickness by e.
The radial profiles in such cases are very similar to the

1D case. For equal cavity size, the effect of cylindrical and
spherical symmetry decreases the values reached in the
cavity. Figure 14 shows examples of radial profiles for 1D,
2D, and 3D cavities in the cases of screened walls and
unscreened walls.
When the wall is screened the nature of the cavity does

not affect the field outside. The field tends to reach lower
values in the cavity for larger cavity sizes, leading to a
weaker force. When the wall is not screened, the behavior

becomes inverted and the size of the cavity has an impact
on the exterior field.

B. ϕ0 variation

As for the 1D cavity, the larger the cavity, the larger the
value of ϕ0 reached by the field at the center of the cavity.
In the literature (e.g., Ref. [16] for a sphere or Refs. [18,38]
for a cylinder), this value was expected to be that of the
field whose mass matches the radius of the cavity, i.e., that
is given by

d
2
¼ m−1ðϕ0Þ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 00ðϕ0Þ

p : ð18Þ

In Fig. 15 the value of ϕ0 obtained with this approximate
criterion is compared to the actual value given by these
simulations for 1D, 2D, and 3D cavities. All curves
have the same global monotony. Nevertheless, whereas
simulations show that ϕ0 ∈ ½ϕwall;ϕvac�, the approx-
imated criterion does not give a bounded range for ϕ0.

FIG. 14. Field profiles for 1D, 2D, and 3D cavities in the case
of screened walls of thickness e ¼ 30 cm and unscreened walls
of thickness e ¼ 7 cm. Values of ϕmin are shown as dashed lines.
The wall is shown by the grey region.
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The comparison of the curves shows that they mainly
diverge by 100%, such that the approximated criterion turns
out to be very weak.

VI. APPLICATIONS AND DISCUSSION

A. Chameleonic Casimir-like force

The one-dimensional configuration in Sec. IV is similar
to the typical experimental setup in Casimir effect mea-
surements in which two nearby plates experience a force
of quantum origin [39,40]. In the case of the chameleon
field, one expects an extra effect that would add up to the
conventional Casimir force. In both cases, the force
between the walls is attractive. The walls play the role
of the plates, and the effect originates from the fact that the
field in the walls is not symmetrical and thus its gradient
does not cancel. The global behavior of the force as a
function of the distance between the walls was computed
with an approximate analytic model in Ref. [21].
The force a wall feels can be computed by integrating

the gradient of the field over the whole wall. Knowing the
profile associated with a two-wall configuration, a 1D
integration gives the pressure,

Fs ¼ −c2
β

MPl

Z d
2
þe

d
2

∇xϕρwalldx

¼ −c2
β

MPl
ρwall½ϕd − ϕðd=2Þ�: ð19Þ

Figure 16 shows the evolution of this pressure in the case
of our simulations and in the case of Ref. [21], as a function
of the separation of the walls. Both curves have the same

global behavior, with a plateau for small separations and an
exponential suppression for separations greater than λc;vac.
This latter behavior is consistent with Sec. V B, as we saw
that for large separations the walls can be considered as
isolated, so the field tends to the symmetrical case of
Sec. III B.
Despite their similar behavior, the two curves do not

match perfectly. For small separations they agree within a
few percent. In the intermediate regime λc;wall < d

2
< λc;vac,

they diverge by a few tenths of a percent, and for larger
separations they diverge more severely. The force we find is
weaker, and this might slightly relax current Casimir
measurement constraints on the chameleon [21].

B. Thin- and thick-shell approximations of a ball

Another important case is a spherical uniform ball. In the
chameleon’s original article [16], the profile around a ball
was approximated in two extremal regimes: the thick-shell
regime in which the ball is too small for the field to reach
the minimum of the potential in the ball; and the thin-shell
regime in which the ball is large enough for the field to
remain mainly at the minimum of the potential throughout
most of the ball. Our simulations can provide the field
around a ball in any regime.
Figure 17 compares our simulations with the thin-shell

and thick-shell approximations, with different contrasts
between the vacuum and the ball density (then different
values of ϕvac). In the thick-shell regime, our simulation
and the thick-shell model are in very good agreement (to
less than a percent) when the density contrast is low. When
the density contrast is larger, the agreement is even better
(to less than 0.01%). In the thin-shell regime, the two
profiles agree to within a few percent, except inside a zone

FIG. 15. Central value of the field in the cavity as a function of
the cavity size d for screened walls of thickness e ¼ 0.1 m. The
colored lines correspond to 1D, 2D, and 3D cavities. The black
line is an approximated estimation from Ref. [16]. ϕmin values are
shown by the two dotted lines. The lower panel shows the relative
difference between the two curves.

FIG. 16. Upper panel: chameleon-originated Casimir force as a
function of the separation d of the walls for screened walls with
e ¼ 0.2 m. The blue curve is the result of this simulation. The
green lines come from the analytical model of Ref. [21]. Lower
panel: Relative difference. Dotted lines show λc;vac and λc;wall.
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around the interface between the ball and the vacuum,
where they agree to within a few tenths of a percent. This
comes mainly from the difference in the skin depth of the
wall on which the field varies. For higher density contrasts,
the agreement is globally better, but there is still a slight
difference where the field starts to vary inside the ball.
We can therefore assume that, except for inside the ball,

the models are globally accurate in the thin-shell regime. In
between the two regimes, when the ball has an intermediate
radius, these two models are less accurate, particularly for
low density contrasts.

C. Radial drift of test masses in a cylinder

As shown above, the chameleon inside a cavity creates a
radial outward force that affects test masses (like atoms).

For instance, the profile of the force created in the
cylindrical case of Fig. 14 is shown in the upper panel
of Fig. 18. This force may affect any experiment based on
monitoring the trajectory of atoms inside a cylindrical
cavity [41], even if measuring it is not the primary objective
of the experiment (in which case it should be considered as
a source of systematic uncertainty).
Let us consider an experiment where atoms (test masses)

are dropped at a distance R0 from the main symmetry axis
of the cylinder (either alongside the axis, or radially): the
atoms will experience an outward radial drift, with a drift
rate depending on the parameters (β,Λ, n) of the model. For
instance, in the screened cylindrical case of Fig. 14, if they
are dropped with a null velocity at Rvac=10, the atoms will
reach the border of the cavity in 2498 s. The middle panel
of Fig. 18 shows the total drift time for the atoms to reach

FIG. 17. Radial field profiles of a ball embedded in vacuum. The shaded zone corresponds to the inside of the ball. These simulations
are compared to the models of Ref. [16] in the thin-shell regime (upper panels) and thick-shell regime (lower panels). The left and right
panels correspond to different matter contrasts between the ball and the vacuum. ϕmin values are shown as dashed lines.
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Rcav as a function of R0. In the unscreened case, as the
profile is flatter, the force is weaker than in the screened
case, so that the drift time is typically longer. Trivially, the
smaller R0, the longer the drift time. The lower panel shows
the evolution with time t of the radial position R of atoms in
the cavity for different initial positions R0.
In more realistic setups, the drift should be estimated in

view of typical integration times as it may become non-
negligible, even in experiments not specifically looking for
a chameleon inside the cavity. For instance, we could
conceive of an experiment where the motion of atoms under
the influence of the Earth’s gravitational field is measured.
If the chameleon force inside the cavity is strong enough
to impart a detectable drift on the atoms, it should be
considered as a source of systematic error (though its
detection would be a significant breakthrough). Another
typical case is where we drop two types of atoms, e.g., to
test the equivalence principle in the Earth’s gravitational
field; if the chameleon coupling β is not universal, then the
chameleon inside the cavity will make the atoms drift
differentially, thereby mimicking a violation of the equiv-
alence principle, though it would be considered as a
systematic uncertainty on the main measurement.

D. Nested cylinders: Toward the MICROSCOPE
configuration

Our computation generalizes to more complex configu-
rations, such as the case of nested infinite cylinders.
Figure 19 compares different profiles for two nested
cylinders of either same or different matter densities.

FIG. 18. Upper panel: Fifth force associated with the
cylindrical cavity in Fig. 14. Middle panel: Total drift time
from some initial position R0 to the border of the cavity Rcav.
Lower panel: Radial position of atoms R as they drift with time t
for different initial positions. Solid lines correspond to screened
walls (e ¼ 0.3 m) and dotted lines to unscreened walls
(e ¼ 0.07 m).

FIG. 19. Radial profiles for two nested cylinders of thickness
e and different matter densities, to which correspond different
values of ϕmin. These ϕmin values are represented by the
horizontal segments. Cylinders are delimited by the shaded
regions and separated by a distance gap.

PERNOT-BORRÀS, BERGÉ, BRAX, and UZAN PHYS. REV. D 100, 084006 (2019)

084006-12



Consistently with our 1D study, the nature of the outer
cylinder has no influence on the profile inside the inner
cylinder when the cylinders are screened. Besides, in the
empty inter-cylinder space, atoms experience a drift similar
to the one discussed previously. But whereas in the
cylindrical cavity a change in the direction in the force
occurs at the center of the cavity, here it no longer occurs
at the middle of the empty space but rather at some other
location (at the maxima of the field) that depends on the
densities of the cylinders and on the parameters of the
model. This change of direction can even disappear, as it
does for the green line. Then, different signatures are
expected for different cylinders’ features and chameleon
parameters.
Figure 20 shows the radial profile obtained for three

nested cylinders. This configuration is similar to the
MICROSCOPE experiment’s design in which cylindrical
test masses are nested in cylindrical sensors. The middle
cylinder experiences a chameleonic fifth force from the
cylinders; nevertheless, when integrated over the whole
cylinder it vanishes due to the cylindrical symmetry. We
expect a force to appear when the symmetry is broken, e.g.,
when one of the cylinders is not perfectly centered. While
this would require more intricate computations, (which will
be described in a follow-up article), we can estimate the
magnitude of such a force. To that purpose, we consider the
force exerted on a cylindrical element (of opening angle dθ
and height dl) of a cylinder. In the case shown in Fig. 20,
this force is dF

dθdl ¼ 6.3 × 10−6 Nm−1 rad−1, and is directed
towards the center. We expect the total force in a decentered
configuration to be of the same order of magnitude up to a
geometry factor.
In Ref. [16] it was claimed that MICROSCOPE could

detect a clear violation of the weak equivalence principle

from the chameleon field sourced by the Earth. However,
the screening due to the experimental setup itself was
neglected. The MICROSCOPE setup is actually enclosed
in a shield of thickness eshield ≃ 1 cm. Using the screening
criterion of Sec. III B 3, we show in Fig. 21 that the
chameleon parameter space (for n ¼ 1) is divided into
two regions: above the black line (which shows where
100λc;shield ¼ eshield=2, where λc;shield stands for the
Compton wavelength associated with the shield’s density)
MICROSCOPE is not screened, but it is screened below the
line. Thus, no violation of the weak equivalence principle
can be expected below the line, while it could still be
expected above it. The colored regions in Fig. 21 corre-
spond to regions that have already been experimentally
excluded [17]. It is then clear that the constraining potential
of MICROSCOPE is much less than anticipated. It could
only improve our current knowledge about the chameleon
in a small region. This will be the subject of future work
where the effect of the Earth on the chameleon profile will
be included.

VII. CONCLUSION

In this article, we treated the problem of solving the
chameleon scalar field’s profile by paying special attention

FIG. 20. Radial profile for three nested cylinders of thickness e
with the same matter density. Cylinders are delimited by the
shaded regions and separated by a distance gap. The ϕmin values
are represented by the horizontal segments.

FIG. 21. The chameleon’s parameter space adapted from
Refs. [17,18]. The black line corresponds to parameters for
which 100λc;shield ¼ eshield=2 and delimits two regimes, i.e.,
whether the MICROSCOPE setup is screened or not. The colored
regions correspond to current constraints from other experiments:
atomic interferometry (purple [42]), Eöt-Wash (green [22,43]),
Casimir effect measurements (yellow [21,44]), astrophysics tests
(blue [45–47]), lensing (pink [48]), and precision atomic tests
(orange [49,50]).
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to the boundary conditions. We found that it is possible to
deal with this problem numerically without using any
approximations. Our approach considers a matter system
embedded in a background environment. We first consid-
ered 1D symmetrical systems. We treated the cases of a
single wall and a cavity modeled as two separated walls.
We determined a refined criterion which guarantees that
screening occurs within a cavity. For instance, we checked
that we can safely consider that the field reaches its
minimum inside a matter wall, as long as the wall thickness
exceeds 100 times the Compton wavelength associated with
the wall matter. In this case we can consider that such a wall
would screen the field. In the case of a cavity, we computed
the profiles of forces that test masses would experience
inside the cavity. We also computed the Casimir-like force
and found discrepancies with analytic approximations in
the literature. We then explored 2D and 3D symmetrical
geometries. The case of a ball was compared to the thin-shell
and thick-shell models from Ref. [16]. We found it to be in
very good agreement, except in the region close to the ball’s
boundary. In a cylindrical cavity, we studied how point
masses like atoms could experience a drift between the
cylinders which may either lead to an experimental method
of detecting chameleons or create a new source of systematic
uncertainty in future experiments.
Finally, we treated the case of nested cylinders of

different matter densities suited to the setup of the
MICROSCOPE mission. Despite the symmetry considered
here, which leads to a null force experienced by the
cylinders, we provided an estimate of the magnitude of

the force when the symmetry is broken. This effect will be
explored by simulating nonsymmetric configurations in a
follow-up article. Moreover, our analysis challenges the
previous claim on the ability of space experiments to detect
chameleon-sourced violations of the weak equivalence
principle sourced by the Earth [15,16]. Using the refined
screening criterion for cavities, we deduced that for a large
region of the parameter space such an effect would be
screened by the experimental setup. The Earth should be
included in simulations of the remaining region. This will
be the subject of a forthcoming article.
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