
HAL Id: hal-02283479
https://hal.science/hal-02283479v1

Submitted on 10 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Clarification of municipal sewage with ferric chloride:
the nature of coagulant species

A. G. El Samrani, B. Lartiges, E. Montarges-pelletier, V. Kazpard, O. Barres,
J. Ghanbaja

To cite this version:
A. G. El Samrani, B. Lartiges, E. Montarges-pelletier, V. Kazpard, O. Barres, et al.. Clarification of
municipal sewage with ferric chloride: the nature of coagulant species. Water Research, 2003, 38 (3),
pp.756-768. �10.1016/j.watres.2003.10.002�. �hal-02283479�

https://hal.science/hal-02283479v1
https://hal.archives-ouvertes.fr


 

 

CLARIFICATION OF MUNICIPAL SEWAGE WITH FERRIC 

CHLORIDE: THE NATURE OF COAGULANT SPECIES  

 

A.G. El Samrani *
(a)

, B.S. Lartiges *
(a)

, E. Montargès-Pelletier *, 

V. Kazpard*, O. Barrès * and J. Ghanbaja 
‡
. 

 

*Laboratoire Environnement et Minéralurgie (LEM-ENSG) Pôle de l’Eau 

15, Avenue du Charmois –BP 40 – 54 501 Vandœuvre Cedex, FRANCE 

 

‡ Service Commun de Microscopie Electronique à Transmission. Faculté des Sciences. 

Université Henri Poincaré. BP 239. 54 500 Vandœuvre Cedex, FRANCE. 

 

  (a) To whom correspondence should be addressed 

 

  E-mail: bruno.lartiges@get.omp.eu 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:bruno.lartiges@get.omp.eu


 

 

 

ABSTRACT 

 

The nature of coagulant species formed in the system ferric chloride/municipal 

sewage was explored with Transmission Electron Microscopy coupled with Energy 

Dispersive X-ray Spectroscopy (TEM-EDS) and Fe K-edge X-ray Absorption spectroscopy. 

Jar-test data combined with chemical analysis of supernatant (dissolved organic carbon, iron, 

and phosphorus) and Fourier-Transform-Infrared spectroscopy (FTIR) of freeze-dried 

sediment, provided a detailed description of sewage clarification. The results showed that the 

nature of coagulant species evolves with Fe concentration. Up to the optimum turbidity 

removal, mainly iron dimers linked with one phosphate anion are detected. At higher dosages, 

polymers of hydrolyzed Fe appear even though PO4 still participates in the formation of 

coagulant species. TEM observation of freeze-dried sediments corroborates such an evolution 

of Fe speciation. EDS analyses reveal that minute amounts of sulfur, silicon, aluminum, and 

calcium, are associated with the coagulant species. Even though the coagulant species change 

with Fe concentration, the destabilization mechanism, inferred from electrophoretic mobility 

of aggregates and the evolution of floc size under cyclic changes of stirring conditions, could 

be identified to a charge neutralization of sewage colloids in the whole range of coagulant 

concentration. 
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INTRODUCTION 

 

When added to water, aluminum and iron salts dissociate and react to yield hydrolysis 

products. As first evidenced by Mattson in 1928, these hydrolysis products form the 

coagulant species that remove turbidity and color during water treatment [1]. Recent 27Al 

Nuclear Magnetic Resonance (NMR), Fe K-edge Extended X-ray absorption fine structure 

spectroscopy (EXAFS), and Small Angle X-ray Scattering (SAXS) investigations, have partly 

unravelled the complex aqueous chemistry of aluminum-based and iron-based coagulants [2], 

[3], [4], [5]. Thus, in the presence of chloride or nitrate ions, addition of sodium hydroxide to 

an aluminum solution produces monomers, dimers, dissolved polynuclear species such as 

Al13 polycations, and inorganic metal aggregates that correspond to clusters of Al13 units [2], 

[3]. Trimeric and tetrameric species of hydrolyzed aluminum are also likely to be present in 

the speciation scheme according to the parallel hydrolytic behavior of aluminum and gallium 

[6]. Likewise, the hydrolysis of FeCl3 solutions proceeds with monomers, dimers, double 

corner trimers, and polycations that consist in the arrangement of 24 Fe atoms in a -FeOOH 

local structure [5]. Further neutralization of the Fe solution induces the association of Fe24 

polycations within fractal clusters [7]. 

 

However, the hydrolysis products formed upon base-neutralization of lab-prepared Al 

or Fe solutions may be significantly different from the coagulant species that promote colloid 

aggregation during water treatment. Indeed, simple inorganic anions present in natural waters 

such as PO4 or SO4, are known to alter the pathway of Al/Fe hydrolysis [8], [9], [10]. For 

instance, an excess of sulfate ions in solution prevents the formation of Al13 polycations [10], 

whereas a sufficient amount of phosphate ions limits the hydrolysis of Fe3+ cations to the 

edge-sharing iron dimer stage [9], [11]. Preformed coagulant species may also be strongly 

modified during their attachment to the colloidal particles to be removed. In presence of silica 

nanospheres, Al13 polycations have been shown to depolymerize upon contact with the silica 

surface to yield tetrahedrally coordinated aluminosilicate sites [12]. Depolymerization of Al13 

into monomers has also been observed when small organic ligands such as lactate, oxalate, or 

salicylate are present in solution [13], [14]. 

 

Until now, only a few studies have been devoted to the identification of true coagulant 

species formed during the treatment of natural waters. Thus, a combined 27Al NMR and 



 

 

SAXS investigation of a lake water coagulated with pre-hydrolyzed aluminum, revealed that 

the natural organic matter had depolymerized most polynuclear Al species into uncondensed 

Al monomers [15]. Similarly, the Fe species found in flocs from two surface waters treated 

with ferric chloride, were reported to be poorly polymerized, Fe K-edge EXAFS indicating a 

predominance of single-corner-sharing trimers [16]. Unlike river or lake waters, municipal 

sewage provides a system with abundant organic matter and complexing anions that should 

extend the concentration range in which hydrolyzing coagulant species interact with the raw 

water content. In this work, we investigate the nature of coagulant species formed during the 

clarification of municipal sewage with a commercial ferric chloride. Sewage coagulation is 

assessed by jar-test, whereas the removal of dissolved organic matter and inorganic species is 

determined using carbon analysis and ICP-MS, respectively. Freeze-dried coagulated 

sediments are also examined by FTIR. The speciation of Fe within the aggregates is 

examined with Fe K-edge EXAFS and Transmission Electron Microscopy coupled with 

Energy Dispersive X-ray Spectrometry. The electrophoretic mobility of aggregates and the 

evolution of floc size under cycled-shear conditions, are also measured to provide some 

insight into the coagulation mechanism of municipal sewage with ferric chloride. 

 

EXPERIMENTAL SECTION 

 

Sample collection 

 

Municipal sewage was taken from the inlet of Maxéville wastewater treatment plant 

(France). This plant deals with sewage from Nancy Urban Community and has a capacity of 

300 000 population equivalent. Grab samples were collected in 2 L polyethylene containers, 

and were used for experiments within 3 hours of sampling. A rough determination of Total 

Suspended Solid (TSS) content was obtained by drying duplicates of well-mixed 10 mL 

sewage samples at 105 °C for at least 1 hour. Volatile Solid (VS) content was assessed by 

further heating the same samples at 550 °C for 3 hours. During the period of the study, TSS 

and VS averaged 750 ± 32 mg/L and 450 ± 27 mg/L, respectively. The pH of municipal 

sewage was about 7.8 ± 0.2. 

 

Coagulation procedure 

 



 

 

A commercial ferric chloride coagulant, CLARFER (Elf-Atochem, France), was used as 

a coagulating agent. It is an unhydrolyzed iron salt solution, 38 %wt in FeCl3 with a density of 

1.4. Coagulation tests were conducted in 1L baffled reactors of known power dissipation 

characteristics [12]. The stirring rate was fixed at 100 rpm which corresponds to a mean 

velocity gradient G = 135 s
-1

. The coagulant was added under agitation as pure solution using 

a micro-pipette (Eppendorf), and mixing was continued for 20 minutes. Coagulated 

suspensions were then allowed to settle in graduated Imhoff cones for 30 minutes. 

 

Supernatant characterization 

 

After the designated settling period, 50 mL of supernatant were withdrawn with a 

syringe from about 25 mm below the free surface. Residual turbidity (Ratio XR Turbidimeter 

Hach Chemical Comp.) and pH (Meter Lab PHM 210 Tacussel) were measured, while the 

remaining supernatant was filtered with 0.2 µm pore size cellulose acetate filters (Macherey-

Nagel) for ICP-MS analysis (Jobin-Yvon 70 type B model) of dissolved Fe and P 

concentrations. Dissolved Organic Carbon (DOC) was also assessed with a Dorhmann 190 

analyzer. 

 

The Electrophoretic Mobility of unsettled colloids was determined with a 

Zetaphoremeter III (Sephy, France) equipped with a CCD camera. The top 400mL of 

supernatant were first collected by siphoning and centrifuged at 2880 g for 5 minutes 

(Eppendorf Centrifuge 5804). The centrifugate was then re-suspended in 50mL of supernatant 

before being pumped to the measurement cell. 

 

Sediment characterization 

 

Following volume measurement, the sediments were collected and freeze-dried 

(Benchtop 3.3 EL105 Sentry). For infrared analysis, 1mg of freeze dried sediment was mixed 

with 250 mg KBr (FTIR grade, Merck), and a pellet was prepared using a press connected to 

a vacuum pump. Transmission Fourier-Transform InfraRed (FTIR) spectroscopy was 

conducted with a Bruker IFS 55 spectrophotometer. The spectra were recorded in the 4000-

400 cm
-1 

range with 200 scans collected at 2 cm
-1

 resolution. 

 



 

 

Elemental microanalyses of freeze-dried coagulated sewage were carried out with a 

Philips CM20 Transmission Electron Microscope equipped with an Energy Dispersive X-ray 

Spectrometer (EDAX). A sample of freeze-dried sediment was first re-suspended in ethanol 

under ultrasonication, and a drop of suspension was then evaporated on a carbon-coated 

copper grid. For each coagulant concentration, about 50 TEM-EDS spectra were recorded 

with a 70 nm probe size at different locations within the organic matrix of aggregates. K X-

ray emission lines of Na, Al, Si, Mg, Ca, S, P, Cl and Fe were integrated and quantified after 

a 30 s counting time. In order to improve the accuracy of Fe/P molar ratio determinations, 

EDS calibration standards were prepared from freeze-dried precipitates obtained by 

hydrolyzing ferric chloride in the presence of various amounts of Na2HPO4, 2H2O (Labosi). 

 

Fe K-edge EXAFS measurements were carried out at LURE (Orsay, France) on the 

D44 station of the DCI storage ring (1.85 GeV and 300 mA). Freeze-dried sediment was 

studied as solid pellets mixed with cellulose. X-ray absorption spectra were recorded at room 

temperature in the transmission mode around the Fe K edge (7133 eV) from 7000 to 8100 eV 

with 2 eV steps and 2 s collecting time. EXAFS data reduction was carried out according to 

standard procedures [17] with software written by Michalowicz [18]. A Kaiser window (3.5-

14.7 Å-1) was used for deriving Fourier transforms from EXAFS spectra. The Radial 

Functions (RDF) thus obtained are not corrected for phase shifts, which leads to peaks shifted 

down by about 0.3 Å compared with crystallographic distances. For modeling experimental 

spectra, theoretical phase shifts and amplitude backscattering functions were determined from 

-FeOOH. The structural and chemical parameters Rj (distances from the central atom), Nj 

(number of atoms), and nature of atomic neighbors in the jth shell around Fe, were 

determined by least-squares fitting of partial EXAFS spectra. The uncertainties on R and N 

are 0.06 Å and 10%, respectively. 

 

Aggregate size measurements 

 

The dynamics of aggregation was investigated by following the floc size distribution 

under various conditions of agitation. Floc size distributions were measured on-line in the 

range 1.2-600 µm with a Malvern MasterSizer (Malvern Instruments) based on Fraunhoffer 

diffraction. To avoid multiple scattering in the measurement cell, the sewage colloids were 

first diluted with the supernatant of centrifuged sewage (7120g for 35 min-Beckman-L8-55M 

Ultracentrifuge) to yield a suspended solid concentration of 150 mg/L. This suspension was 



 

 

agitated in the baffled reactor, passed through the analyzer beam with a peristaltic pump 

located downstream the measurement cell, and then recycled to the reactor. Previous 

investigations have revealed that shearing in the transport tubing alters the size distribution of 

flocs in the reactor [19]. However, the same studies also showed that the relative variations in 

floc size measured with the particle sizer remain correlated with the changes in agitation 

conditions within the reactor [19]. As a consequence, on-line floc size measurements are 

appropriate to follow the evolution of floc size as a function of time and agitation conditions. 

A pumping flow rate of 55mL/min, and a transport tubing (Masterflex) of 4.6 mm in internal 

diameter and 16 cm in length were selected for the experiments. Size measurements were 

averaged over 1 s and taken every 2 s. The results obtained are volume based and they are 

represented as particle volume versus sphere diameter of equivalent volume. 

 

RESULTS AND DISCUSSION 

 

Sewage clarification 

 

Figure 1 shows typical results obtained during jar test studies of Nancy municipal 

sewage. As illustrated in figure 1a, destabilization occurs from low coagulant dosages since 

residual turbidity decreases continuously to reach an almost constant value over the range 7.7 

10
-4

-1.8 10
-3

 M. The ferric chloride concentration of 7.7 10
-4 

M can then be set as the 

optimum coagulant concentration (OCC). Above 2.2 10
-3

 M, further coagulant addition 

induces the restabilization of the suspension: the residual turbidity increases strongly and 

exceeds the value measured for untreated settled sewage. The inverse pattern is observed for 

sediment volume: it builds up rapidly at low coagulant dosages, then more slowly above the 

occ, and finally diminishes gradually as the suspension is restabilized. pH measurements 

reveal three domains . For concentrations ≤ 4.5 10
-4

M, the pH decreases linearly from 7.9 to 

7, for 4.5 10
-4

 ≤ [Fe] ≤ 1.7 10
-3

 M, the pH decreases with a lesser slope down to a pH value of 

5.5; it then exhibits a drop from pH 5 to pH 3 around the restabilization concentration (fig. 

1b). On the other hand, residual Fe is negligible with values close to the detection limit in the 

destabilization domain, whereas it increases rapidly above a 2.2 10
-3

M coagulant 

concentration (fig. 1b). 

 

Such results are in agreement with the coagulation behavior classically described with 

metal hydrolyzing coagulants [20]. Indeed, for aluminum or iron salts, efficient particle 



 

 

destabilization occurs when hydrolysis products acting as coagulant species can be formed. In 

our case, the initial pH of the suspension (7.8 ± 0.2) and the high iron concentration of the 

commercial coagulant, facilitate hydrolysis upon ferric chloride addition to municipal 

sewage. Capture of OH- ions during hydrolysis lowers the pH and enables the formation of 

iron polymeric species that promote turbidity removal [21]. As coagulant dosage increases, 

the buffer capacity of the solution is eventually exceeded. The pH then drops drastically 

provoking the formation of less or non-hydrolyzed metal ions much less effective for 

aggregation and hence, the restabilization of the suspension. Interestingly, the pH of optimum 

coagulation is about 6.5, which falls in the 5-7 pH range of adequate turbidity removal 

usually reported for iron(III)-based coagulants [16], [22], [23]. 

 

 

Figure 1. Evolution as a function of ferric chloride concentration of (a) Residual turbidity and 

settled volume, (b) pH and residual iron, (c) residual phosphorus, and (d) residual dissolved 

organic matter. 

 

Figure 1c shows the evolution of residual P as a function of ferric chloride 

concentration. The sharp decrease in phosphorus concentration observed at low coagulant 

dosages is expected as iron salts are known to interact strongly with phosphate compounds 

[9]. The removal of dissolved P is completely achieved at about neutral pH for [Fe] = 6 10
-4

 



 

 

M, which can be related to the linear decrease in pH with coagulant concentration in the [0-6 

10
-4

 M] range (fig. 1b). Given the pKa values of the phosphate anions (pKa (H2PO4
-) = 2.2; 

pKa (HPO4
2-) = 7.2), the predominant species above pH 7.2 is HPO4

2-. Although the exact 

mechanism of phosphate removal with hydrolyzed Fe is not known, it is possible that the 

binding of HPO4
2- to Fe oligomeric species implies the release of a proton, thus reinforcing 

the decrease in pH due to ferric chloride hydrolysis. 

 

DOC removal occurs in three main stages (fig. 1d). At low coagulant concentrations, 

DOC increases slightly until [Fe] = 3.8 10-4 M. In that same range, residual turbidity was 

noted to decrease strongly. It can then be inferred that organic particulates are more 

effectively removed than dissolved organic matter in municipal sewage, which agrees with 

similar results established with natural organic matter (NOM) from various surface waters 

[24], [25], [26], [16]. Increasing the coagulant dosage induces the destabilization of DOC: a 

reduction of about 20 % of initial DOC is first achieved just before the OCC; then, DOC 

diminishes again gradually at higher ferric chloride concentrations to reach 40 % removal at 

[Fe] = 2 10-3 M. This latter decrease in DOC yields settleable aggregates which accounts for 

the supplementary increase in settled volume beyond the OCC (fig. 1a). Finally, DOC is 

again released in the clarified water at a coagulant dosage slightly higher than the 

restabilization concentration determined from the evolution of turbidity removal. 

It should first be noted that DOC removal starts occurring once almost all phosphorus 

is eliminated from the solution by Fe hydrolysis products, which agrees with the numerous 

examples of competitive interaction between phosphate compounds and natural organic 

matter for metal oxides reported in the literature [27], [28], [29], [30]. In particular, the 

presence in solution of phosphate species is known to substantially inhibit NOM adsorption 

on iron oxyhydroxides especially above pH 7 [31]. 

Therefore, it is likely that, at low coagulant concentrations and basic pH, phosphorus 

uptake by Fe polymeric species significantly hinders the removal of dissolved organic matter. 

On the other hand, the two steps of DOM elimination could be explained by the presence of 

two kinds of organic matter. Indeed, NOM is known to be a very complex mixture of organic 

components the relative amounts of which can influence destabilization performance. For 

instance, the hydrophobic fraction is more easily destabilized than hydrophilic compounds 

[24], [26], polyhydroxyaromatics are more amenable to removal by ferric chloride than 

polysaccharides [16], and high content of carboxylic functional groups within organic 

molecules requires a higher coagulant demand [23], [22], [32]. 



 

 

 

The FTIR spectra of freeze-dried sediments provide further evidence for a sequential 

elimination of dissolved organic matter. All peaks observed and the corresponding 

assignments are listed in Table 1.  

 

Table 1. Transmission Fourier –Transformed Infrared bands of freeze-dried sediments of 

treated sewage water with ferric chloride. Assignments band as they given in literature. 

Band (cm
-1

)  Assignment proposed Reference 

3400  
Water OH, Phenolic, aliphatic and with a partial 

contribution of N-H 

Niemeyer et al., 1992 

[33] 

2920 

2955 

2850 

C-H asymmetric stretching in CH2 

C-H asymmetric stretching in CH3 

C-H symmetric stretching in CH2 

Gu et al., 1994 [30] 

Dignac et al., 2000 [34] 

1725 

1650 

C=O in COOH groups 

Strong asymmetrical stretch of COOH and C=O 

vibration in secondary amides 

Lobartini and Tan, 1988 

[35] 

1544 

 

1410 

Asymmetrical stretching of –C=O in the 

complexed carboxylate groups 

Symmetrical stretching of –C=O in the 

complexed carboxylate groups 

Ricca and Severini, 

1993 [36] 

Gu et al., 1995 [37] 

1462 OH deformation in phenolic groups 

Yost et al., 1990 [38] 

Gu et al., 1995 [37] 

Zhou et al., 2000 [39] 

875 P-OH in H2PO4
-
 and H3PO4 Tjedor-Tjedor and 

Anderson, 1990 [40] 

475, 615, 

670 
-FeOOH (goethite) and -FeOOH (akaganeite) 

Dousma and de Bruyn, 

1976 [41] 

Zhang et al., 1993 [42] 

 

As shown in figure 2, the spectra exhibit similar features although the relative 

intensities of individual bands vary noticeably as a function of ferric chloride concentration. 

Thus, absorption at 2920 cm
-1

 and 2850 cm
-1

 (C-H asymmetric and symmetric stretching in 

CH2, respectively) decrease at low coagulant dosages, while the intensity of the peak at 2955 

cm
-1

 (C-H asymmetric stretching in CH3) remains nearly constant. In other terms, the 

CH2/CH3 relative abundance within the coagulated sediment decreases as a function of ferric 



 

 

chloride concentration, indicating that molecules with long aliphatic chains are removed prior 

to organic structures presenting a higher branching level. This can be further illustrated by the 

evolution of peak intensity ratios I2920/I2955 and I2850/I2955 (fig. 3a). Both ratios exhibit similar 

trends and reach a stable value above [Fe]=1.2 10
-3

 M. 

Absorbance peaks related to carboxylic functional groups also evolve distinctly with 

coagulant concentration: the band at 1725 cm
-1

 (C=O stretching vibration in COOH groups), 

initially present as a well defined shoulder, becomes gradually weaker around OCC, and is 

then replaced by a better resolved peak at high dosages. In parallel, the band at 1570 cm
-1

 

(asymmetrical stretching of C=O in COOH groups) disappears progressively with increasing 

ferric chloride concentration and is virtually absent beyond [Fe] = 2 10
-3

 M. The peak at 1544 

cm
-1

, assigned to asymmetrical stretching of C=O in complexed carboxylate groups, remains 

well defined up to OCC, and then broadens and diminishes in intensity at higher coagulant 

concentration. Similarly, the peak at 1410 cm
-1

 (symmetrical stretching of C=O in complexed 

carboxylate groups) increases sharply to reach a maximum at [Fe] = 1.2 10
-3

 M, before 

decreasing at higher ferric chloride concentrations. Such modifications can be readily 

explained by the effect of pH on the binding capacity of carboxylic groups. 

At the pH of untreated municipal sewage, carboxylic moieties are deprotonated and 

available for association with Fe hydrolysis products [43], [37]. As a result, absorbance bands 

assigned to complexed carboxylate groups become increasingly dominant with coagulant 

concentration. As iron hydrolysis takes place, the pH is lowered and COO- convert to COOH 

functional groups. Carboxyl groups are then less involved in complexation reactions with iron 

(III) hydrolyzed species, which leads to an enhanced absorption of COOH groups and weaker 

bands for complexed carboxylates. Such an evolution can also be visualized by plotting the 

ratios of peak heights of complexed carboxylates and carboxyl groups. 

Thus, figure 3b shows that I1410/I1725 and I1544/I1725 increase with coagulant dosage to a 

maximum around OCC, and decrease upon further increase in Fe concentration. Finally, the 

minor peak at 1310 cm
-1

, previously assigned to asymmetric COO- stretch affected by Ca
2+

, 

Mg
2+ 

cations [33], gradually disappears with ferric chloride concentration, suggesting that 

substitutions between Fe hydrolyzed products and bivalent cations complexed with 

carboxylic moieties, may also occur. 



 

 

Figure 2. FTIR spectra of freeze dried sediments obtained with increased iron concentration. 
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Figure 3. (a) Variation of peak intensity ratio for symmetric and asymmetric CH2 (2850 and 

2920 cm
-1

) and CH3 groups in the sediments as a function of ferric chloride. (b) Variation of 

peak intensity ratio of symmetric and asymmetric carboxylate (1400 and 1544 cm
-1

) and 

COOH (1725 cm
-1

) groups in the sediments as a function of ferric chloride. 

 

Identification of coagulant species 

Examination of infrared spectra also provides some information about the nature of 

coagulant species. Peaks at 475, 615, and 670 cm
-1

, which are more pronounced above OCC, 

can be compared with those reported for iron oxyhydroxides such as -FeOOH (goethite) and 

-FeOOH (akaganeite) [41], [42]. Interestingly, EXAFS studies of ferric chloride hydrolysis 

have shown that the local structure of Fe-polymeric species resembles that of akaganeite 

and/or goethite [44], [45], [5]. On the other hand, the absorption band at 875 cm
-1

, tentatively 

assigned to P-OH stretching vibrations [40], [46], can be distinguished in the Fe-

concentration range of phosphorus removal. Other contributions which would unambiguously 

identify phosphate species in the sediment, can not be isolated from the spectra, particularly 

within the broad bands of the 1000-1150 cm
-1

 region. 

 

Further insight into the formation of coagulant species can be obtained from TEM-

EDS observation of freeze-dried sediments. In comparison with recent advanced protocols 

developed for studying aquatic colloidal material (e.g. [47]), freeze-drying is not the least 

pertubing preparatory technique for TEM examination of hydrated samples. Still, electron 

micrographs shown in figure 4 reveal obvious changes in the morphology of coagulated 

sewage as a function of ferric chloride concentration. At low coagulant dosages (fig. 4a), the 

sediment appears as an organic matrix with dispersed electron-dense granules of about 80 nm 

in diameter. In the [3 10
-4

 - 8 10
-4

 M] concentration range, these colloids grow slightly in size 



 

 

and form aggregates of 140 nm subunits bridging organic particulates (fig. 4b and 4c). At still 

higher dosages, the organic material of coagulated sewage seems to be enveloped in a diffuse 

film of nanocolloids (5-10 nm) (fig. 4d). 

 

EDS analyses indicate that these colloids contain essentially iron and phosphorus with 

lesser amounts of silicon, calcium, sulfur, and aluminum. Such morphology and composition 

of Fe-granules are in accordance with previous observations of hydrous iron oxides formed in 

aquatic environments [48], [49] and engineered systems [50]. Thus, in the concentration 

range of phosphorus removal, the iron-rich colloids resemble both in size and composition 

those found in lakes [49] and in biological sludge treated with iron salts [50], whereas 

overdosages in ferric chloride yield nanocolloids similar to that observed in freshly 

precipitated iron hydroxide gel [4], [50]. The relative proportions of Si, Al, S, and Ca 

incorporated in iron-rich colloids were found to vary from analysis to analysis without 

showing any definite trend with coagulant dosage. In contrast, the distributions of EDS peak 

intensity ratios of iron and phosphorus are clearly related to the amount of ferric chloride 

applied as coagulant (figure 5). For coagulant concentrations lower than 2 10
-4

 M, the average 

Fe/P molar ratio in Fe-colloids is about 1. Iron (III) salts have long been used as phosphate 

removing agents, and systematic studies of phosphate precipitation have shown that, in 

presence of excess PO4 ions and at moderate acidity, one mole of phosphate is removed per 

mole of iron (III) [8], [51]. Slightly higher Fe-concentrations, 3 10
-4 

≤ [Fe] ≤ 8 10
-4

 M, reveal 

monomodal distributions of Fe/P ratios comprised between 2 and 4.5, with the mode of the 

distribution unexpectedly shifting toward lower values of Fe/P with coagulant dosage. In that 

concentration range, phosphate is almost completely eliminated from solution and pH is close 

to 6.5. The elemental compositions found for Fe-colloids can then be compared with various 

results from the literature. Indeed, effective phosphate precipitation is known to occur for a 

Fe/P molar ratio equal to 2 in the 5-7 pH range [51]. Likewise, Lienemann et al. (1999) 

reported that PO4 ions are stoichiometrically incorporated into hydrous iron oxide colloids 

such that P/Fe = 0.48±0.11 at the oxic-anoxic interface of an eutrophic lake [48]. 

Furthermore, Fe K-edge and P K-edge EXAFS spectroscopy revealed that PO4 ions hinder 

the hydrolysis of Fe(III) at the edge-sharing iron dimer stage [9], [11]. The same studies 

suggested that the basic unit of the precipitate formed during hydrolysis of Fe(III) in presence 

of phosphate, corresponds to one PO4 tetrahedron bridging two Fe-dimers. Such observation 

is consistent with our Fe/P molar ratios close to 4 determined from EDS analyses.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Electron micrographs and corresponding EDS spectra of aggregates obtained at various ferric chloride concentrations. 
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Figure 5. Frequency distributions of EDS peak intensity ratios of Fe/P determined inside aggregates obtained at various ferric chloride 

concentration. 

 

 



 

 

More recently, a stopped-flow investigation of the kinetics of iron(III)-phosphate 

reaction evidenced the existence of the tetranuclear complex Fe4(PO4)(OH)2(H2O)16
7+

 in 

aqueous solution [52]. The formation of such a species is pH dependent and is favored at 

neutral pH. This may then account for the decrease in average Fe/P molar ratio in the [3 10
-4

 - 

8 10
-4

 M] concentration range as hydrolysis of added coagulant lowers the pH. Above OCC, 

the peak intensity ratios become more uniformly spread out from Fe/P = 2 to a Fe/P maximum 

value which is roughly proportional to coagulant dosage. In addition, the average Fe/P molar 

ratio resumes its increase with ferric chloride concentration. A smoother distribution of EDS 

peak intensity ratios may originate in part from the formation of much smaller Fe-colloids in 

comparison with the EDS probe size. Actually, at overdosages, the formation of coagulant 

species should be essentially controlled by iron hydrolysis, complexing ions such as PO4 

being simply trapped within Fe-polymeric chains. 

 

EXAFS data at Fe K-edge provide complementary information about the status of iron 

at the local scale within coagulant species. The EXAFS spectra obtained from samples of 

sewage coagulated at underdosage ([Fe] = 2.5 10-4 mol/l), OCC, and overdosage ([Fe] = 1.8 

10-3 mol/l), are shown in figure 6a.  

 

 
 

 

Figure 6. (a) EXAFS spectra of freeze dried sediments : a- underdosage (2.5 10
-4

M), b- OCC 

(7.7 10
-4

M), c- overdosage (1.8 10
-3

M) and (b) corresponding radial distribution functions. 

 

2 4 6 8 10 12 14 16 18

k
3
*k

h
i(

k
)

 k (Å-1) 

a

b

c

0 1 2 3 4 5

|
(F

(R
))

|
 

 R (Å)   

a

b

c

a b 



 

 

A slight modification of the EXAFS curves can be observed around k = 7.4 Å-1, a new 

resonance appearing in this range at high coagulant concentration. The corresponding radial 

distribution functions (RDF) exhibit two main peaks (fig. 6b): the first peak centered at 1.5 Å 

(uncorrected from phase shift) corresponds to the first coordination shell of Fe atoms, i.e. 6 

oxygen neighbors, and changes very little with Fe concentration. The second peak, which 

extends from 2.2 to 3.7 Å, corresponds to second coordination bondings with single- and 

double sharing of one hydroxyl group. Our analysis was focused on this second peak as it can 

reveal the nature, number, and distance of second neighbors of iron. 

 

Figure 7a-c show the experimental and calculated curves for the second coordination 

shell of iron. The general shape of the three sine waves appears nearly constant as in this 

distance range, the oscillations mainly result from the presence of iron atoms whose 

backscattering amplitude is much higher than that of the other atoms supposed to be present, 

such as C and P. 

 

However, at low coagulant dosage, the fit of the second coordination shell implies that 

iron coagulant species are mainly dimers with edge-sharing and corner-sharing bondings at 

3.08 and 3.60 Å, respectively. There was no evidence of trimeric units, characterized by the 

presence of a double corner-sharing distance at 3.45-3.5 Å [44]. Furthermore, a Fe-P 

contribution at 3.29 Å could be evidenced (NFe-P ~0.7). Therefore, for this sample, the 

addition of ferric chloride to sewage could have induced the formation of iron dimers linked 

with one PO4
3- tetrahedron with monodentate or bidentate structure. At OCC, EXAFS 

analysis revealed an increase in the number of Fe-Fe pairs at 3.1 Å such that N ~ 1.9. 

Moreover, the fit was improved by using P and C as backscatterers in the second coordination 

sphere, suggesting that Fe-O-C and Fe-O-P bonds are also present in coagulant species. 

 

Such Fe-C and Fe-P contributions can be related to the decrease of DOC and complete 

removal of phosphorus at OCC, and are consistent with TEM-EDS results. At [Fe] = 1.8 10-3 

mol/l, a new Fe-Fe contribution at 3.42 Å appears that corresponds to trimeric units with 

double corner sharing. The presence of such a contribution indicates that the degree of 

polymerization of iron is higher at this concentration in accordance with FTIR spectra. 

Indeed, the double corner sharing trimer is a known precursor of akaganeite that forms upon 

hydrolysis of iron chloride [4]. 

 

 



 

 

 

 

 

 

Figure 7. Experimental and calculated curves for the second coordination shell of iron. 
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Destabilization mechanism 

 

The identification of iron-rich colloids as the effective coagulant species for municipal 

sewage material seems relatively straightforward. It should nevertheless be emphasized that 

their size and chemistry change drastically with ferric chloride concentration as the formation 

of Fe-hydrolyzed species strongly depends on the amount of incorporated complexing ions 

and pH. Such a variability of coagulant species suggests that the destabilization mechanism 

might also evolve with Fe-concentration. In general, two majors mechanisms are invoked to 

explain coagulation with hydrolyzing metal salts: at low pHs, charge neutralization of anionic 

colloidal material with positively charged metal hydrolyzed species is thought to occur, 

whereas at higher coagulant dosages and pH, precipitation of amorphous metal hydroxide is 

assumed to enmesh colloidal particles [53]. In our case, Fe-PO4 hydrolyzed species involved 

in the coagulation process are likely to be positively charged. Indeed, the polycation formed 

from one phosphate and two iron dimers is charged 7+ [52]. More generally, anions such as 

sulfate are known to improve the precipitation of iron(III)-phosphate in acidic conditions [8]. 

The coagulation of municipal sewage with ferric chloride should then be accomplished by a 

charge neutralization phenomenon. Experimental evidence for such a destabilization 

mechanism is usually obtained from electrophoretic studies [54]. Figure 8 shows the effect of 

ferric chloride concentration on the electrophoretic mobility (EM) of municipal sewage. The 

mobility of aggregates is negative and increases slightly at low coagulant dosages. It then 

remains fairly constant in the [3.8 10
-4

 - 7.8 10
-4

 M] concentration range, becomes gradually 

less negative above OCC, and is reversed in the restabilization domain. This pattern indicates 

that charge neutralization participates in the destabilization of sewage colloids. However, 

even though maximum DOC elimination is observed near neutral electrophoretic mobility, the 

optimum turbidity removal is achieved with negative EM. 

 

Recent work with humic-like compounds bearing a known acidity and coagulated with 

Al13 polycations [55], revealed that settleable aggregates with an overall charge balance but 

negative electrophoretic mobility were obtained at OCC. Such a behavior was explained by a 

reconformation of organic macromolecules in contact with coagulant species as supported by 

pyrene fluorescence data. In view of the amount of organic matter contained in municipal 

sewage, it is likely that a similar charge neutralization mechanism with reconformation of 

organic polymers, is operating during the treatment of municipal sewage with ferric chloride. 

 



 

 

 

 

Figure 8. Aggregate electrophoretic mobility as a function of ferric chloride concentration. 

 

The destabilization mechanism may also be inferred from the behavior of coagulated 

sewage under agitation. Indeed, the evolution of floc size under cyclic changes of stirring 

allows to distinguish between charge neutralization and bridging of colloid particles with the 

coagulant species [56], [57], [58], [59] : a definite and reversible stable average floc size is 

reached for a given shear rate in the case of charge neutralization, whereas bridging within 

aggregates is associated with an irreversible floc dynamics and a partial re-formation of flocs 

after shearing. 

 

Figure 9 shows the effect of consecutive cyclic step changes in stirrer speeds from 100 

to 200 rpm and vice versa during 15 min periods, for samples of sewage coagulated around 

OCC and under excess coagulant. In both cases, it is clear that a stable floc size is reached for 

a given stirring rate, which substantiates a charge neutralization mechanism for coagulation of 

municipal sewage with ferric chloride. 

 

 

 

 



 

 

 

 

Figure 9. Variation of average floc size as a function of time during consecutive cyclic step 

changes in agitation intensity.  4.1 10
-4

 M (FeCl3)  1.9 10
-3

 M (FeCl3). 

 

CONCLUDING REMARKS 

 

 The results reported in this study show unambiguously that the nature of coagulant 

species formed during the treatment of municipal sewage with ferric chloride, drastically 

varies with Fe concentration. At low and moderate coagulant dosages, the formation of 

coagulant species is strongly influenced by the reactions between the hydrolyzing metal 

species and the anions contained in raw water, and to a lesser extent by organic colloids. In 

contrast, at higher dosages, the hydrolyzed species become similar to that obtained during 

base-neutralization of pure salts of the metal coagulant. Nevertheless, the destabilization 

mechanism remains the same in the whole range of investigated concentrations, and can be 

compared with an overall charge neutralization of colloids by positive coagulant species. 

 

 Identification of various coagulant species clearly represents an important step that 

may help to explain the low efficiency removal of dissolved organic matter usually observed 

in water treatment. Obviously, a similar work should be undertaken with river or lake waters 

to extend this approach to drinking water treatment. It would also be interesting to investigate 
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aggregation kinetics associated with the various interacting coagulant species, as it may open 

new perspectives in the formulation of commercial coagulants. 
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