
HAL Id: hal-02283429
https://hal.science/hal-02283429v1

Submitted on 10 Sep 2019 (v1), last revised 1 Oct 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Monitoring of Decentralized Specifications:
Semantics, Properties, Analysis, and Simulation

Antoine El-Hokayem, Yliès Falcone

To cite this version:
Antoine El-Hokayem, Yliès Falcone. On the Monitoring of Decentralized Specifications: Semantics,
Properties, Analysis, and Simulation. ACM Transactions on Software Engineering and Methodology,
2019, pp.1-57. �hal-02283429v1�

https://hal.science/hal-02283429v1
https://hal.archives-ouvertes.fr

On the Monitoring of Decentralized Specifications:
Semantics, Properties, Analysis, and Simulation

ANTOINE EL-HOKAYEM, Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, France

YLIÈS FALCONE, Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, France

We introduce two complementary approaches to monitor decentralized systems. The first approach relies on

systems with a centralized specification, i.e., when the specification is written for the behavior of the entire

system. To do so, our approach introduces a data structure that (i) keeps track of the execution of an automaton

(ii) has predictable parameters and size and (iii) guarantees strong eventual consistency. The second approach

defines decentralized specifications wherein multiple specifications are provided for separate parts of the

system. We study two properties of decentralized specifications pertaining to monitorability and compatibility

between specification and architecture. We also present a general algorithm for monitoring decentralized

specifications. We map three existing algorithms to our approaches and provide a framework for analyzing

their behavior. Furthermore, we present THEMIS, a framework for designing such decentralized algorithms and

simulating their behavior. We demonstrate the usage of THEMIS to compare multiple algorithms and validate

the trends predicted by the analysis in two scenarios: a synthetic benchmark and the Chiron user interface.

CCS Concepts: • Software and its engineering→ Software verification; • Theory of computation→

Formal languages and automata theory; Data structures design and analysis; • Computing methodologies
→ Simulation tools;

Additional Key Words and Phrases: Runtime Verification, Monitoring, Simulation, Decentralized Monitoring,

Automata, Eventual Consistency

1 INTRODUCTION
Runtime Verification (RV) [6, 30, 31, 38] is a lightweight formal method which consists in verifying

that a run of a system is correct with respect to a specification. The specification formalizes the

behavior of the system typically in logics (such as variants of Linear-Time Temporal Logic, LTL)

or finite-state machines. Typically the system is considered as a black box that feeds events to

a monitor. An event usually consists of a set of atomic propositions that describe some abstract

operations or states in the system. The sequence of events transmitted to the monitor is referred

to as the trace. Based on the received events, the monitor emits verdicts in a truth domain that

indicate whether or not the run complies with the specification. A typical truth domain is the set

{⊤,⊥, ?} where verdicts ⊤ and ⊥ indicate respectively that a program complies or violates the

specification, and verdict ? indicates that no final verdict could be reached yet. Truth domains

can also include additional verdicts such as currently true and currently false, to indicate a finer

grained truth value. RV techniques have been used for instance in the context of decentralized

automotive [16] and medical [39] systems. In both cases, RV is used to verify correct communication

Authors’ addresses: Antoine El-Hokayem, Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, CS 40700, 38000 Grenoble,

France, antoine.el-hokayem@univ-grenoble-alpes.fr; Yliès Falcone, Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG,

CS 40700, 38000 Grenoble, France, ylies.falcone@univ-grenoble-alpes.fr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1049-331X/2019/8-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

:2 Antoine El-Hokayem and Yliès Falcone

q0 q1 q2
¬s

s

¬s

s ∧ ℓ

s ∧ ¬ℓ ⊤

Fig. 1. LTL3 monitor for the light switch and bulb specification. The verdicts associated with the states are ⊥:
dotted/red, and ?: solid/yellow.

patterns between the various components and their adherence to the architecture and their formal

specifications. While RV comprehensively deals with monolithic systems, multiple challenges

are presented when scaling existing approaches to decentralized systems, that is, systems with

multiple components with no central observation point. These challenges are inherent to the

nature of decentralization; the monitors have a partial view of the system and need to account

for communication and consensus. Our assumptions on the system are as follows: No monitors

are malicious, i.e., messages do not contain wrong information; No messages are lost, they are

eventually delivered in their entirety but possibly out-of-order; All components share one logical

discrete time marked by round numbers indicating relevant transitions in the system specification.

Example 1.1 (Switch triggers bulb). Consider a system that contains two components: a light

switch and a light bulb. The possible states of the switch and bulb can be on or off. Let us as-
sociate the states of the switch and bulb with the atomic propositions s and ℓ, respectively. Us-
ing the atomic propositions, we can encode the observations about the system. For example,

the observation ⟨s,⊥⟩ indicates that the switch is in the state off. An event is simply a set of

observations. The event {⟨s,⊤⟩, ⟨ℓ,⊥⟩} indicates that the switch is on, and the light is off. We

next define (informally) a property of the system: “The light bulb must be on one timestamp af-
ter the switch is on, until the switch is turned off”. The property is used to synthesize a monitor

that checks it (for example, the monitor in Figure 1, introduced in Example 2.1). Now let us

consider two traces: tr0

def

= {⟨s,⊥⟩, ⟨ℓ,⊥⟩} · {⟨s,⊤⟩, ⟨ℓ,⊥⟩} · {⟨s,⊤⟩, ⟨ℓ,⊤⟩} · {⟨s,⊥⟩, ⟨ℓ,⊥⟩} and

tr1

def

= {⟨s,⊥⟩, ⟨ℓ,⊥⟩} · {⟨s,⊤⟩, ⟨ℓ,⊥⟩} · {⟨s,⊤⟩, ⟨ℓ,⊥⟩}. We see that tr0 complies with the specifica-

tion, while tr1 violates it as the light is not turned on after the switch is turned on. When monitoring

such a system, we can construct a decentralized monitor of the property. For this, we need to decide

on where to deploy the monitors, and what will each monitor check. By being able to vary monitor

placement, we are able to control the resources needed to monitor on a given component of the

system. Furthermore, due to the nature of decentralization, each monitor will have a partial view

of the system. While the monitor on the switch can see the value of atomic proposition s, it cannot

determine that of ℓ, and as such, it must communicate with other monitors to establish it.

Challenges. Several algorithms have been designed [8, 10, 11, 14, 15, 28] and used [4] to monitor

decentralized systems. Algorithms are primarily designed to address one issue at a time and are

typically experimentally evaluated by considering runtime and memory overheads. However, such

algorithms are difficult to compare as they may combine multiple approaches at once. For example,

algorithms that use LTL rewriting [10, 15, 45] not only exhibit variable runtime behavior due to the

rewriting, but also incorporate different monitor synthesis approaches that separate the specification

into multiple smaller specifications. Such techniques start from a global specification and then

synthesize local monitors with either a copy of the global specification [8, 11] or a completely

different specification to monitor (typically a subformula of the original formula) [14, 28]. In this

paper, we refer to the former as a centralized specification and to the latter as a decentralized

specification. These different approaches of synthesis are separate from monitoring and their

evaluation is of interest. In this case, we would like to split the problem of generating equivalent

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

On the Monitoring of Decentralized Specifications :3

decentralized specifications from a centralized one (synthesis) from the problem of monitoring.

In addition, works on characterizing what one can monitor (i.e., monitorability [29, 37, 44]) for

centralized specifications exist [9, 19, 29], but do not extend to decentralized specifications. For

example, by splitting an LTL formula ad hoc, it is possible to obtain a non-monitorable subformula
1

which interferes with the completeness of a monitoring algorithm.

Contributions. We tackle the presented challenges using two complementary approaches. The first

approach consists in using the data structure Execution History Encoding (EHE) that encodes automata

executions. Since by using EHE one only needs to rewrite Boolean expressions, we are able to

determine the parameters and their respective effect on the size of expressions, and fix upper bounds.

In addition, EHE is designed to be particularly flexible in processing, storing and communicating

the information in the system. EHE operates on an encoding of atomic propositions and guarantees

strong-eventual consistency [48]. The second approach introduces decentralized specifications.

We introduce decentralized specifications, define their semantics, interdependencies and study

some of their properties. We aim at abstracting the high-level steps of decentralized monitoring.

By identifying these steps, we elaborate a general decentralized monitoring algorithm. We view a

decentralized system as a set of componentsC. A decentralized specification is thus as a set ofn finite-
state automata with specific properties, which we call monitors. We associate n monitors to these

components with the possibility of multiple monitors being associated to a component. Therefore,

we generalize monitoring algorithms to multiple monitors. Monitoring a centralized system can be

seen as a special case with one component, one specification, and one monitor. As such, we present

a general decentralized monitoring algorithm that uses two high level steps: setup and monitor.

The setup phase creates the monitors, defines their dependencies and attaches them to components.

As such, the setup phase defines a topology of monitors and their dependencies. The monitor

phase allows the monitors to begin monitoring and propagating information to reach a verdict

when possible. Therefore, the two high-level operations help decompose monitoring into different

subproblems and define them independently. For example, the problem of generating a decentralized

specification from a centralized specification is separated from checking the monitorability of a

specification, and also separated from the computation and communication performed by the

monitor. We formulate and solve the problems of deciding compatibility and monitorability for

decentralized specifications. Compatibility ensures that a monitor topology can be deployed on

a given system, monitorability ensures that given a specification, monitors are able to eventually

emit a verdict, for all possible traces. We present THEMIS, a JAVA tool that implements the concepts

in this paper; and show how it can be used to design and analyze new algorithms. We use THEMIS
to create new metrics related to load-balancing and our data structures. We use two scenarios to

compare four existing algorithms. The first scenario is a synthetic benchmark, using random traces

and specifications, while the second scenario is a real example that uses the publish-subscribe

pattern in the Chiron graphical user interface system. The synthetic scenario examines the trends

of the analysis, and the Chiron scenario examines more specific differences in behavior.

This paper extends the work presented at the ACM SIGSOFT International Symposium on

Software Testing and Analysis 2017 [23], as follows:

• introducing a high-level informal overview of the approach (Section 2);

• improving on the clarity by providing a running example that tackles all introduced concepts;

• adding the property that the EHE construction guarantees its determinism (Proposition 4.8);

• elaborating and adding properties of decentralized specifications (monitorability, compatibil-

ity) as well as the algorithms for checking them (Section 6);

1
We use the example from [15]: GF(a) ∧ ¬(GF(a)) (where GF(a) means that a should hold infinitely often) is monitorable,

but its subformulas are both non-monitorable.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

:4 Antoine El-Hokayem and Yliès Falcone

• improving THEMIS by optimizing the EHE performance, and adding distributed and multi-

threaded support (Section 8);

• elaborating on the results and providing a discussion of the synthetic benchmarks (Section 9.1);

• including additional insight on the effect of network delay on the EHE size (Section 9.1.7);

• evaluating the algorithms on a new use case based on the Chiron example that relies on

publish subscribe and has a formalized specification (Section 9.2);

• extending related work (Section 10); and

• formulating additional problems for the future (Section 11).

Overview. We begin by introducing an informal view of the approaches in Section 2, by first

distinguishing between centralized and decentralized for two aspects of RV: the specification

and the monitoring itself. Then, we introduce a high-level view of decentralized specifications

semantics, advantages, and the need to manage partial observations. We lay out the basic blocks, by

introducing our basic data structure (dict), and the basic notions of monitoring with expressions

in Section 3. We present our first approach, a middle ground between rewriting and automata

evaluation by introducing the Execution History Encoding (EHE) data structure in Section 4. The EHE
is designed to be particularly useful for handling partial observations. We shift the focus on studying

decentralized specifications by defining their semantics (Section 5), and their properties (Section 6).

In Section 7, we use our analysis of EHE to study the behavior of three existing algorithms and

discuss the situations that advantage certain algorithms over others. In Section 8, we present the

THEMIS tool, which we use in Section 9 to compare the algorithms presented in Section 7 under two

different scenarios: a synthetic random benchmark, and an example of a publish-subscribe system.

In Section 10, we present related work that covers decentralized monitoring using rewriting, global

predicate detection, and streams. In Section 11, we present future work and formulate additional

interesting properties for decentralized specifications. Finally, we conclude in Section 12.

2 METHODOLOGICAL OVERVIEW
In this section, we discuss the basic terminology referenced in the paper. We distinguish between

centralized and decentralized for two aspects of RV: the specification and the monitoring itself.

The distinction allows us to introduce and overview our approach to monitoring decentralized

specifications.

2.1 Centralized Monitoring of a Centralized Specification
An LTL3 monitor is a typical automaton used in RV (c.f. [9, 28]). An LTL3 monitor is a complete,

minimal, and deterministic Moore automaton where states are labeled with the verdicts in the set

B3 = {⊤,⊥, ?}, and transitions are labeled with atomic propositions, which are used to represent

abstract states of the system. Verdicts ⊤ and ⊥ respectively indicate that the current execution

complies and does not comply with the specification, while verdict ? indicates that the verdict has

not been determined yet. Verdicts ⊤ and ⊥ are called “final”, as once the monitor outputs ⊤ or ⊥

for a given trace, it cannot output a different verdict for any extension of that trace.

Example 2.1 (LTL3 monitor). We introduced in Example 1.1 the system composed of a lightbulb

and a switch. The LTL3 monitor that checks for its specification is presented in Figure 1. The

automaton consists of three states: q0, q1, and q2 associated respectively with the verdicts ?, ?, and

⊥. Upon reaching q2, the verdict is final as it can no longer change. The final verdict indicates that,

at some point in the execution, the light was off while the switch was on.

In the case of Example 2.1, it is possible to imagine one monitor running (with or alongside)

the program, and having access to the global state of the program. We refer to such a scenario

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

On the Monitoring of Decentralized Specifications :5

as centralized monitoring of a centralized specification. There is one global specification of the

system, being checked by a given monitor that has access to all the information about the atomic

propositions.

2.2 Decentralized Monitoring of Centralized Specifications
Section 2.1 introduces a monitor capable of observing all of the atomic propositions. Such monitor

is able to immediately take transitions upon receiving observations. However, it is not always the

case that we have a central point of observation. That is, it is possible that atomic propositions are

not all observable by one monitor. Such a scenario is typically called decentralized monitoring, and
is the topic of many research efforts (see Section 10). The monitoring is done by various monitors

communicating to determine the global state efficiently, and be able to check the property.

Example 2.2 (Decentralized monitoring). Consider the monitor presented in Example 2.1. We can

see that the switch and lightbulb are two separate components, a monitor placed on the switch

cannot observe any atomic proposition related to the lightbulb. In this case, the associated RV

technique considers the global specification of the system, and then proceeds to create monitors

and determine their communication patterns.

We note that the monitors are all monitoring one global specification. The main challenge is

that monitors must deal with partial observations. We refer to such a scenario as decentralized
monitoring of a centralized specification, as all monitors are verifying the same specification. Details

on centralized and decentralized monitoring of a centralized specification are provided in Section 4.

2.3 Decentralized Monitoring of Decentralized Specifications
We noticed that so far, decentralized monitoring allows for several monitors that monitor the

same specification. Typically, a decentralized monitoring algorithm will consider one (global)

specification, and either generate necessary monitors that are tasked with monitoring a part of

the specification, or allow for consensus among multiple monitors to find the global verdict
2
. In

this paper, we focus on multiple monitors each having their own independent specification, of

which others are normally unaware. We thus focus on decentralized monitoring of decentralized
specifications3.

2.3.1 Informal Semantics. Informally, a decentralized specification considers the system as a set

of components, defines a set of LTL3 monitors (see Section 2.1), additional atomic propositions that

represent references to monitors, and attaches each monitor to a component. Attaching monitors

to components allows a monitor specification to explicitly reference atomic propositions that are

associated with the component. However, the transition labels in a monitor are restricted to only

atomic propositions related to the component on which the monitor is attached, and references to

other monitors.

A monitor reference is evaluated as if it were an oracle as shown in Figure 2. That is, to evaluate

a monitor reference mj , in a monitorAi , at a timestamp n, the monitor referenced (Aj) is executed

starting from the initial state by looking at observations in the trace starting at n. The atomic

proposition mj at n takes the value of the final verdict reached by the monitor Aj starting its

evaluation from n. Details of the semantics are provided in Section 5. Furthermore, to evaluate

reference we need the resulting oracle execution to be able to reach a final verdict, which is not

always guaranteed. As such, it is important to define some of the properties of decentralized

2
See Section 10 for details.

3
We note that centralized monitoring of decentralized specifications makes little sense as there does not exist more than

one monitor.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

:6 Antoine El-Hokayem and Yliès Falcone

qi0 qi q′i
[1, n − 1] ¬mj

mj

⊤

Ai

qj0 qj
[n, m − 1]

⊤

Aj

0 n n + 1 m

n : mj 7→ ⊥

Fig. 2. Evaluating monitor references.

specifications such as monitorability, which indicates that a final verdict is co-reachable from any

state in a given monitor (Section 6.1). We elaborate on characterizing and computing properties of

decentralized specifications in Section 6.

2.3.2 Managing Partial Observations. We notice that monitor references are evaluated as if we

were evaluating partial observations that we receive in the future. In fact, managing partial obser-

vations is important for decentralized monitoring in general, including decentralized monitoring of

centralized specifications (Section 2.2). To that end, we introduce the Execution History Encoding
(EHE) data structure in Section 4.2 that allows us to monitor in the presence of partial observations.

The EHE is useful for two main reasons.

First, since we deal with partial observations, it is important to keep track of potential states an

automaton could be in, and manage the guesses as information is eventually known, in a uniform

way, this applies for decentralized monitoring in general. This helps us compare algorithms that

rely on partial observations (Sections 7, 8 and 9).

Second, since we do not deal with loss of messages in the system, monitors are always guaranteed

to receive observations eventually. Therefore, we are interested in designing the EHE so that it

can replicate its state under strong eventual consistency (SEC) [48]; any two monitors eventually

exchanging EHEs should have the same view of the system. This is only useful if monitors are

monitoring the same automaton, thus it is mainly useful for decentralized monitoring of centralized
specifications. Section 4.3 elaborates on the usage of EHE where multiple monitors are monitoring

the same specification.

2.3.3 Monitor Placement. Being able to decide the specification and monitor placement is

particularly useful for applications such as internet of things. Applications can be tailored to the

computational resources and also to the proximity of various devices and the network itself. Recall

Example 2.2, if more computing resources are given to the switch component than the lightbulb,

then it is possible for the monitor on the switch to perform the monitoring computations, while

the one on the lightbulb merely forwards observations. Alternatively, they can both forward the

observations to another component which can then perform the monitoring computations. The

decentralized specification determines what each monitor will check as well as the dependencies

between the various monitors in the system.

2.3.4 Advantages of Using References. We mentioned in Section 2.3.1 that references are not

always guaranteed to return a final verdict, and we need specific properties to ensure so. However,

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

On the Monitoring of Decentralized Specifications :7

references are particularly useful when synthesizingmonitors from LTL as in [9], since the algorithm

is doubly exponential in the number of atomic propositions. Offsetting parts of the subformula to

other monitors allows us to have a lower number of atomic propositions in a given specification.

Additionally, since references are treated as oracles, this allows specifications to be constructed in

a modular way, allowing monitors to not even be aware of the subspecification.

Example 2.3 (Synthesizing check light). Recall the property in Example 2.1 responsible for verifying

that a light switch does indeed turn a light bulb on until the switch is turned off. Suppose we

have multiple rooms with multiple such lightbulbs and switches, the LTL formula parametrized by

each pair can be expressed in LTL as follows: sc_light(i)
def

= G(si =⇒ X(ℓi U¬si)). To verify the

property across all n pairs, we formulate a property sc_ok
def

=
∧

i ∈[0..n] sc_light(i). In the case of a

decentralized specification the formula will reference each monitor leading to a conjunction of n
atomic propositions. However, in the case of a centralized specification, the specification needs to

be written as: sc_okcent
def

=
∧

i ∈[0...n]G(si =⇒ X(ℓi U¬si)), which is significantly more complex

as a formula consisting of 4n operators (to cover the subspecification), along n conjunctions, and

defined over each sensor and light bulb atomic propositions (2n). Given that monitor synthesis is

doubly exponential, ltl2mon [9] requires significant resources and time to generate the minimal

Moore automaton (in our case
4
, it was unable to generate the monitor for n = 3 after a timeout of

one hour).

3 COMMON NOTIONS
We introduce the dict data structure (Section 3.1.) used to build more complex data structures, and

define the basic concepts for decentralized monitoring (Section 3.2).

3.1 The dict Data Structure
In monitoring decentralized systems, monitors typically have a state, and attempt to merge other

monitor states with theirs to maintain a consistent view of the running system, that is, at no point in

the execution, should two monitors receive updates that conflict with one another. In addition, we

would like that any two monitors receiving the same information be in equivalent states. Therefore,

we are interested in designing data structures that can replicate their state under strong eventual

consistency (SEC) [48], they are known as state-based convergent replicated data-types (CvRDTs).

We use a dictionary data structure (noted dict) as our basic building block that assigns a value to a

given key. Data structure dict will be used to define the memory of a monitor (Section 3.2), and

data structure EHE which encodes the execution of an automaton (Section 4.2).

We model dict as a partial function f. The domain of f (denoted by dom(f)) is the set of

keys, while the codomain of f (denoted by codom(f)) is the set of values. dict supports two

operations: query and merge. The query operation checks if a key k ∈ dom(f) and returns f(k). If
k < dom(f), then it is undefined. The merge operation of a dict f with another dict g, is modeled

as function composition. Two partial functions f and g are composed using operator †op where

op : (dom(f) × dom(g)) → (codom(f) ∪ codom(g)) is a binary function.

f †op g : dom(f) ∪ dom(g) → codom(f) ∪ codom(g)

f †op g(x) =


op(f(x), g(x)) if x ∈ dom(f) ∩ dom(g)
g(x) if x ∈ dom(g) \ dom(f)
f(x) if x ∈ dom(f) \ dom(g)
undef otherwise

4
On an Intel(R) Core(TM) i7-6700HQ CPU, using 16GB RAM, and running openjdk 1.8.0_172, with ltl2mon 0.0.7.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

:8 Antoine El-Hokayem and Yliès Falcone

On sets of functions, †op applies pairwise:
⊎op{f1, . . . fn} = ((f1 †op f2) . . . fn). The following two

operators are used in the rest of the paper: †2 and †∨. We define both of these operators to be

commutative, idempotent, and associative to ensure SEC.

†2(x, x
′) =

{
x ′ if x ≺ x ′

x otherwise

†∨ (x, x
′) = x ∨ x ′

Operator †2 acts as a replace function based on a total order (≺) between the elements, so that it

always chooses the highest element to guarantee idempotence, while †∨ uses the logical or operator
to combine elements. Respectively, we denote the associated pairwise set operators by

⊎
2

and

⊎∨
.

Data structure dict can be composed by only using operation merge. The modifications never

remove entries, the state of dict is then monotonically increasing using the order provided by

merge. By ensuring that merge is idempotent, commutative, and associative we fulfill the necessary

conditions [48] for our data structure to be a CvRDT (Proposition 3.1).

Proposition 3.1. Data structure dict with operations query and merge is a CvRDT.

3.2 Basic Monitoring Concepts
We recall the basic building blocks of monitoring. We consider the set of verdicts B3 = {⊤,⊥, ?} to
denote the verdicts true, false, not reached (or inconclusive) respectively. A verdict in B2 = {⊤,⊥} is
a final verdict. It indicates that the monitor has concluded its monitoring, and any further input will

not change affect it. Abstract states of a system are represented as a set of atomic propositions (AP).
A monitoring algorithm typically includes additional information such as a timestamp associated

with the atomic propositions. We capture this information as an encoding of the atomic propositions

(Atoms), this encoding is left to the monitoring algorithm to specify.

Definition 3.2 (Event). An observation is a pair in AP×B2 indicating whether or not a proposition
has been observed. An event is a set of observations in 2

AP×B2
.

Example 3.3 (Event). We recall the example of a light switch and bulb from Example 1.1. We

have AP = {s, ℓ}. The event {⟨s,⊤⟩, ⟨ℓ,⊥⟩} indicates that the switch is observed to be on (i.e., the

atomic proposition s is observed to be true), while the light bulb is observed to be off (i.e., the

atomic proposition ℓ is observed to be false).

A decentralized monitoring algorithm requires retaining, retrieving and communicating obser-

vations. Monitoring algorithms are versatile, and may require additional information associated

with atomic propositions. This information can include timestamps indicating when the atomic

proposition was observed, or a component ID, to determine where the atomic proposition was

observed. As such, when stored, atomic propositions are typically encoded to add this additional

information by the monitoring algorithm. To abstract the additional information, and remain gen-

eral, the monitors store the encoded atomic proposition (instead of the atomic proposition itself),

the encoded atomic proposition is referred to as atom. ExprAtoms (resp. ExprAP) denotes the set of
Boolean expressions over Atoms (resp. AP). An encoder is a function enc : ExprAP → ExprAtoms
that encodes the atomic propositions into atoms. In this paper, we use two encoders: idt which is

the identity function (it does not modify the atomic proposition), and tst which adds a timestamp t
to each atomic proposition. The identity encoder is mainly used with automata as its transitions

are labelled by AP , and the timestamp encoder is used when manipulating the execution history

encoding introduced in Section 4.2, as it encodes information about rounds in the expressions.

Definition 3.4 (Memory). A memory is a dict, and is modeled as a partial functionM : Atoms→
B3 that associates an atom to a verdict. The set of all memories is defined as Mem.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

On the Monitoring of Decentralized Specifications :9

An event can be converted to a memory by encoding the atomic propositions to atoms, and

associating their truth value: memc : 2
AP×B2 × (ExprAP → ExprAtoms) → Mem.

Example 3.5 (Memory). We recall from Example 3.3 the event: evt = {⟨s,⊤⟩, ⟨ℓ,⊥⟩}. At t = 1, the

resultingmemories using encoders idt and ts1 are:memc(evt, idt) = [s 7→ ⊤, ℓ 7→ ⊥],memc(evt, ts1) =
[⟨1, s⟩ 7→ ⊤, ⟨1, ℓ⟩ 7→ ⊥], respectively.

If we impose that Atoms be a totally ordered set, then two memoriesM1 andM2 can be merged

by applying operator †2. The total ordering is needed for operator †2. This ensures that the operation

is idempotent, associative and commutative. Monitors that exchange their memories and merge

them have a consistent snapshot of the memory, regardless of the ordering. Since a memory is a

dict and †2 is idempotent, associative, and commutative, it follows from Proposition 3.1 that a

memory is a CvRDT (Corollary 3.6).

Corollary 3.6. A memory with operation †2 is a CvRDT.

In this paper, we perform monitoring by manipulating expressions in ExprAtoms . The first opera-

tion we provide is rw, which rewrites the expression to attempt to eliminate Atoms.

Definition 3.7 (Rewriting an expression). An expression e is rewritten with a memoryM using

function rw : ExprAtoms ×Mem→ ExprAtoms defined as follows:

rw(e,M) = match e with

| a ∈ Atoms →
{
M(a) if a ∈ dom(M)
a otherwise

| ¬e ′ → ¬rw(e ′,M)
| e1 ∧ e2 → rw(e1,M) ∧ rw(e2,M)
| e1 ∨ e2 → rw(e1,M) ∨ rw(e2,M)

Using information from a memoryM, the expression is rewritten by replacing atoms with a

final verdict (a truth value in B2) inM when possible. Atoms that are not associated with a final

verdict are kept in the expression. Operation rw yields a smaller formula to work with.

Example 3.8 (Rewriting). We extend the set of atomic propositions from Example 3.3 to include a

motion sensor. We associate the motion sensor state with the atomic proposition pres, where if pres

is observed to be ⊤, then the sensor is detecting motion. We have AP = {s, ℓ, pres}. We consider

the memory from Example 3.5:M = [s 7→ ⊤, ℓ 7→ ⊥]; and an expression e = (s ∨ ℓ) ∧ pres. In this

case, we want to check if the light or switch are on only when the motion detects presence. We

haveM(s) = ⊤,M(ℓ) = ⊥,M(pres) = ?. Since pres is associated with ? < B2 then it will not be

replaced when the expression is evaluated. The resulting expression is rw(e,M) = (⊤ ∨ ⊥) ∧ pres.

We eliminate additional atoms using Boolean logic. We denote by simplify(expr) the simplifica-

tion of expression expr 5
.

Example 3.9 (Simplification). Using the same setting as Example 3.8, we consider memoryM =

[s 7→ ⊤] and expression e = (s ∧ ℓ) ∨ (s ∧ ¬ℓ). We have e ′ = rw(e,M) = (ℓ ∨ ¬ℓ). We notice that

rewriting e ′ does not yield a final verdict. However, atoms can be eliminated with simplify(e ′). We

finally get ⊤.

We combine both rewriting and simplification in the eval function which determines a verdict

from an expression e.

5
This is also known as The Minimum Equivalent Expression problem [12].

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

:10 Antoine El-Hokayem and Yliès Falcone

Definition 3.10 (Evaluating an expression). The evaluation of a Boolean expression e ∈ ExprAtoms
using a memoryM yields a verdict. Function eval : ExprAtoms ×Mem→ B3 is defined as:

eval(e,M) =

⊤ if simplify(rw(e,M) ⇔ ⊤,
⊥ if simplify(rw(e,M) ⇔ ⊥,
? otherwise.

Function eval returns the verdict ⊤ (resp. ⊥) if the simplification after rewriting is (Boolean)

equivalent to ⊤ (resp. ⊥), otherwise it returns verdict ?.

Example 3.11 (Evaluating expressions). We recall from Example 3.8 memoryM = [s 7→ ⊤, ℓ 7→
⊥]; and expression e = (s∨ℓ)∧pres. We have simplify(rw(e,M)) = simplify((⊤∨⊥)∧pres) = pres,

and eval(e,M) = ? which depends on pres. We cannot emit a final verdict before observing pres.

A decentralized system is a set of components C. We assign a sequence of events to each

component using a decentralized trace function.

Definition 3.12 (Decentralized trace). A decentralized trace of length n is a total function tr :

[1,n] × C → 2
AP×B2

(where [1,n] denotes the interval of the n first non-zero natural numbers).

Function tr assigns an event to a component for a given timestamp. We denote by T the set of

all possible decentralized traces. We additionally define function lu : AP → C to assigns an atomic

proposition to a component. We assume that (1) no two components can observe the same atomic

propositions
6
, and (2) at least one atomic proposition is associated with a component (a component

with no atomic propositions to monitor, can be simply considered excluded from the system under

monitoring). Function lu is defined as lu(ap) = c s.t. ∃t ∈ N, ∃v ∈ B2 : ⟨ap,v⟩ ∈ tr(t, c).
We consider timestamp 0 to be associated with the initial state, therefore our traces start at 1. The

length of a trace tr is denoted by |tr|. An empty trace has length 0 and is denoted by ϵ . Monitoring

using LTL or finite-state automata relies on sequencing the trace. Events must be totally ordered. A

timestamp indicates simply the order of the sequence of events. As such, a timestamp represents a

logical time, it can be seen as a round number. Every round consists in a transition taken on the

automaton after reading a part of the word. While tr gives us a view of what components can

locally see, we reconstruct the global trace to reason about all observations. A global trace of the

system is therefore a sequence of events. A global trace encompasses all observations observed

locally by components. While a global trace will never be used in practice, we use it for the purpose

of reasoning about the global state (Section 4.1), and ensuring the correctness of our approach

(Proposition 4.10).

Definition 3.13 (Reconstructing a global trace). Given a decentralized trace tr of length n, we
reconstruct the global trace using function ρ :

(
[1,n] × C → 2

AP×B2
)
→

(
[1,n] → 2

AP×B2
)
defined

as ρ(tr) = evt1 · . . . · evtn s.t. ∀i ∈ [1,n] : evti =
⋃

c ∈C tr(i, c).

For each timestamp i ∈ [1,n], we take all observations of all components and union them to get

a global event. Consequently, an empty trace yields an empty global trace, ρ(ϵ) = ϵ .

Example 3.14 (Traces). Using the switch and light bulb from Example 1.1, we define multiple

components. We consider a system of two components lswitch and bulb, that are associated with

atomic propositions s and ℓ respectively. An example decentralized trace of the system is given

by tr = [1 7→ lswitch 7→ {⟨s,⊤⟩}, 1 7→ bulb 7→ {⟨ℓ,⊤⟩}, 2 7→ lswitch 7→ {⟨s,⊤⟩}, 2 7→ bulb 7→

{⟨ℓ,⊥⟩}]. That is, component lswitch observes proposition s to be ⊤ at both timestamps 1 and 2,

while bulb observes ℓ to be ⊤ at timestamp 1 and ⊥ at timestamp 2. The associated global trace is:

ρ(tr) = {⟨s,⊤⟩, ⟨ℓ,⊤⟩} · {⟨s,⊤⟩, ⟨ℓ,⊥⟩}.
6
This is not necessary, it makes the presentation clearer. For components sharing observations, we can encode their own ID

in the atom to make it unique.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

On the Monitoring of Decentralized Specifications :11

4 CENTRALIZED SPECIFICATIONS
We now focus on a decentralized system specified by one global automaton. We consider automata

that emit 3-valued verdicts in the domain B3, similar to those in [9, 15] for centralized systems.

Using automata with 3-valued verdicts has been the topic of a lot of the Runtime Verification

literature [7, 9, 10, 15, 28], we focus on extending the approach for decentralized systems in [15] to

use a new data structure called Execution History Encoding (EHE). Typically, monitoring is done by

labeling an automaton with events, then playing the trace on the automaton and determining the

verdict based on the reached state. We present the EHE, a data structure that encodes the necessary
information from an execution of the automaton. Monitoring using EHEs ensures strong eventual

consistency. We begin by defining the specification automaton used for monitoring in Section 4.1,

then we present the EHE data structure, illustrate its usage for monitoring in Section 4.2, and

describe its use to reconcile partial observations in Section 4.3.

4.1 Preliminaries
Specifications are similar to the Moore automata generated by [9]. We modify labels to be Boolean

expressions over atomic propositions (in ExprAP). We choose to label the transitions with Boolean

expressions as opposed to events, to keep a homogeneous representation (with EHE)7.

Definition 4.1 (Specification). The specification is a deterministic Moore automaton ⟨Q,q0, δ , ver⟩
where q0 ∈ Q is the initial state, δ : Q × ExprAP → Q is the transition function and ver : Q → B3 is
the labeling function.

The labeling function associates a verdict with each state. We assume that by construction the

state with final verdicts are sink states (as synthesized in [9]).

When using multiple automata we use labels to separate them,Aℓ = ⟨Qℓ,qℓ0, δℓ, verℓ⟩. We fixA

to be a specification automaton for the remainder of this section. For monitoring, we are interested

in events (Definition 3.2), we extend δ to events, and denote it by ∆8
.

Definition 4.2 (Transition over events). Given an event evt, we build thememoryM = memc(evt, idt).
Then, function ∆ : Q × 2AP×B2 → Q is defined as follows:

∆(q, evt) =
{
q′ if evt , ∅ ∧ ∃q′ ∈ Q, ∃e ∈ ExprAP : δ (q, e) = q′ ∧ eval(e,M) = ⊤,
q otherwise.

A transition is taken only when an event contains observations (i.e., evt , ∅). This allows the
automaton to wait on observations before evaluating, as such it remains in the same state (i.e.,

∆(q, ∅) = q). Upon receiving observations, we useM to evaluate each label of an outgoing transition,

and determine if a transition can be taken (i.e., ∃q′ ∈ Q, ∃e ∈ ExprAP : δ (q, e) = q′∧eval(e,M) = ⊤).
To handle a trace, we extend ∆ to its reflexive and transitive closure in the usual way, and note it

∆∗. For the empty trace, the automaton makes no moves, i.e., ∆∗(q0, ϵ) = q0.

Example 4.3 (Monitoring using expressions). Recall the monitor from Example 2.1 monitoring the

light switch and bulb interaction. Let us consider the global trace from Example 3.14: evt0 · evt1,
with evt0 = {⟨s,⊤⟩, ⟨ℓ,⊤⟩} and evt1 = {⟨s,⊤⟩, ⟨ℓ,⊥⟩}. The resulting memory at t = 1 isM =

memc(evt0, idt) = [s 7→ ⊤, ℓ 7→ ⊤] (see Example 3.5). The transition from q0 to q1 is taken since

eval(s,M) = ⊤. Thus we have ∆(q0, evt0) = q1 with verdict ver(q1) = ?. We continue by repeating

the process for t = 2. The memory isM ′ = memc(evt1, idt) = [s 7→ ⊤, ℓ 7→ ⊥]. The transition from

7
Indeed, an event can be converted to an expression by the conjunction of all observations, negating the terms that are

associated with the verdict ⊥.
8
We note that in this case, we are not using any encoding (Atoms = AP).

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

:12 Antoine El-Hokayem and Yliès Falcone

q1 to q2 is taken since eval(s∧¬ℓ,M) = ⊤. Thus we have ∆(q1, evt1) = q2 with verdict ver(q2) = ⊥.
We can see that for this trace, the property is violated.

Remark 1 (Properties and normalization). We recall that the specification is a deterministic
and complete automaton. Hence, there are properties on the expressions that label the transition
function. For any q ∈ Q , we have:
1) ∀M ∈ Mem : (∃⟨q, e⟩ ∈ dom(δ) : eval(e,M) = ⊤) =⇒ (∄⟨q, e ′⟩ ∈ dom(δ) \ {⟨q, e⟩} :

eval(e ′,M) = ⊤); and
2) the disjunction of the labels of all outgoing transitions results in an expression that is a tautology.
The first property states that for all possible memories encoded with idt no two (or more) labels can
evaluate to ⊤ at once. It results from determinism: no two (or more) transitions can be taken at once.
The second property results from completeness: given any input, the automaton must be able to take a
move. Furthermore, we note that for each pair of states ⟨q,q′⟩ ∈ Q ×Q , we can rewrite δ such that
there exists at most one expression e ∈ ExprAP , such that δ (q, e) = q′, without loss of generality. This
is because for a pair of states, we can always disjoin the expressions to form only one expression, as it
suffices that only one expression needs to evaluate to ⊤ to reach q′. By having at most one transition
between any pair of states, we simplify the topology of the automaton.

4.2 The Execution History Encoding (EHE) Data Structure
The execution of the specification automaton, is in fact, the process of monitoring, upon running

the trace, the reached state determines the verdict. An execution of the specification automaton

can be seen as a sequence of states q0 · q1 · . . .qt It indicates that, for each timestamp t ∈ N∗,
the automaton is in the state qt

9
. In a decentralized system, a component receives only local

observations and does not necessarily have enough information to determine the state at a given

timestamp. Typically, when sufficient information is shared between various components, it is

possible to know the state qt that is reached in the automaton at t (we say that the state qt has been
found, in such a case). The aim of the EHE is to construct a data structure which follows the current

state of an automaton, and in case of partial information, tracks the possible states the automaton

can be in. For that purpose, we need to ensure strong eventual consistency in determining the state

qt of the execution of an automaton. That is, after two different monitors share their EHE, they
should both be able to find qt for t (if there exists enough information to infer the global state), or

if not enough information is available, they both find no state at all.

Execution History Encoding (EHE) is a data structure designed to encode an execution of an

automaton using boolean expressions while accounting for partial observations.

Definition 4.4 (Execution History Encoding - EHE). An Execution History Encoding (EHE) of the
execution of an automaton A is a partial function I : N ×Q → ExprAtoms .

Intuitively, for a given execution, an EHE encodes the conditions to be in a state at a given

timestamp as an expression in ExprAtoms . I(t,q) is an expression used to track whether the data

structure automaton is in state q at t , i.e., I(t,q) holds iff the automaton is in state q at timestamp t .
We begin by defining the EHE at timestamp t = 0 which indicates the initial state of the execution.

For a given automaton with an initial state q0, we know that we are indeed in the initial state at

t = 0. As such, the initial EHE for the beginning of the execution is the function [0 7→ q0 7→ ⊤]. For
future timestamps, the EHE is extended inductively based on reachable states.

9
We note that in the case of RV, traces are typically finite.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

On the Monitoring of Decentralized Specifications :13

Table 1. A tabular representation of I2.

t q e

0 q0 ⊤

1

q0 ¬⟨1, s⟩

q1 ⟨1, s⟩

2

q0 (¬⟨1, s⟩ ∧ ¬⟨2, s⟩) ∨ (⟨1, s⟩ ∧ ¬⟨2, s⟩)

q1 (⟨1, s⟩ ∧ ⟨2, s⟩ ∧ ⟨2, ℓ⟩) ∨ (¬⟨1, s⟩ ∧ ⟨2, s⟩)

q2 ⟨1, s⟩ ∧ ⟨2, s⟩ ∧ ¬⟨2, ℓ⟩

Definition 4.5 (Constructing an EHE). An EHE encoding the execution till timestamp t , noted It is
constructed inductively using function mov : (N ×Q → ExprAtoms) × N × N→ (N ×Q → Expr)

It
def

= mov([0 7→ q0 7→ ⊤], 0, t)

mov(I, ts , te)
def

=

{
mov(I ′, ts + 1, te) if ts < te ,
I otherwise,

with I ′ = I †∨

∨⊎
q′∈next(I,ts)

{ts + 1 7→ q′ 7→ to(I, ts ,q
′, tsts+1)}, and

to(I, t,q′, enc)
def

=
∨

{ ⟨q,e ′⟩ | δ (q,e ′)=q′ }

(I(t,q) ∧ enc(e ′))

next(I, t)
def

= {q′ ∈ Q | ∃⟨t,q⟩ ∈ dom(I), ∃e ∈ ExprAP : δ (q, e) = q′}.

The automaton is in the initial state at t = 0. We start building up I with the initial state and

associating it with expression ⊤: [0 7→ q0 7→ ⊤]. Then, for a given timestamp t , we use function
next to check the next set of reachable states in the automaton (at t + 1) by looking at the outgoing

transitions for all states in I at t (i.e., we find a state q′ such that ∃⟨t,q⟩ ∈ dom(I), ∃e ∈ ExprAP :

δ (q, e) = q′).
We now build the necessary expression to reach a state q′ from multiple states by disjoining the

transition labels using to(I, t,q′, enc), as it suffices to take only one such path to reach q′. Since the
label consists of expressions in ExprAP we use an encoder (enc) to get an expression in ExprAtoms .

If an expression I(t,q) encodes the condition to reach q at t , and q′ is reachable from q at t + 1
using the condition e ′, then it suffices to compute the conjunction.

Finally, I ′ is obtained by considering the next states and merging all their expressions with

I: I ′ = I †∨

∨⊎
q′∈next(I,ts)

{ts + 1 7→ q′ 7→ to(I, ts ,q
′, tsts+1)}. We recall from Section 3.1 that operator †∨

performs the disjunction between entries, while operator

∨⊎
on EHE adds expressions for given

timestamps and states that are not present, and merges multiple EHEs row by row using disjunction

when the entry exists. As such, an EHE is assembled for t + 1 by combining all expressions for

reachable states at t + 1 using
∨⊎
. The assembled EHE for t + 1 is then combined with the EHE for t

(I) using †∨, to form the EHE that contains both (I ′). We use the notation rounds(I), to denote

all the timestamps that the EHE encodes, i.e., rounds(I) = {t ∈ N | ⟨t,q⟩ ∈ dom(I)}. Similarly to

automata notation, if multiple EHEs are present, we use a label in the subscript to identify them and

their respective operations (Iℓ denotes the EHE of Aℓ).

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

:14 Antoine El-Hokayem and Yliès Falcone

Example 4.6 (Constructing an EHE). We encode the execution of the automaton presented in

Example 4.3. For this example, we use the encoder tsn which appends timestamp n to an atomic

proposition. We have I0 = [0 7→ q0 7→ ⊤]. From q0, it is possible to go to q0 or q1, therefore
next(I0, 0) = {q0,q1}. To stay at q0 at t = 1, we must be at q0 at t = 0, and have : to(I0, 0,q0, ts1) =
I0(0,q0) ∧ ¬⟨1, s⟩. To move to q1 at t = 1, we must be at q0 at t = 0. The following condition must

hold: to(I0, 0,q1, ts1) = I
0(0,q0) ∧ ⟨1, s⟩ = ⟨1, s⟩. The encoding up to timestamp t = 2 is obtained

with I2 = mov(I0, 0, 2) and is shown in Table 1. We notice that when a state can be reached from

multiple states, their expressions are disjoined. For instance, to reach q0 at t = 2, we can either have

stayed at q0 at t = 1 and taken the loop transition or have moved to q1, then taken the transition

back to q0 (¬⟨2, s⟩).

Constructing an EHE with function mov is done only through merges using operator †∨. By

creating an arbitrary order on the states (noted ≺Q) in the specification automaton, we can then

compare any two entries of the EHE. We can enumerate the states of the EHE I as a set of tuples:

{⟨t,q, e⟩ | I(t,q) = e}. We are then able to compare any such two tuples: ⟨t,q, e⟩ ≺ ⟨t ′,q′, e ′⟩. To
do so, we first check the order of timestamps (i.e. if t ≺ t ′ then ⟨t,q, e⟩ ≺ ⟨t ′,q′, e ′⟩). When the

timestamps are the same (t = t ′) then we use the order ≺Q to determine the order of the tuples.

When both the timestamp and the state are the same, then merging occurs. By merging with †∨
(Section 3.1) the entries not found in both are added using set union, and entries with the same

timestamp and state (t,q) are disjoined (∨), which is idempotent, associative, and commutative. As

such, the EHE is a CvRDT.

Corollary 4.7. An EHE constructed with mov and merged with †∨ is a CvRDT.

By constructing the EHE, we have for each timestamp t and each state q in the EHE an expression.

Using information from the execution stored in a memoryM, if eval(I(t,q),M) is ⊤, then we

know that the automaton is indeed in state q at timestamp t . Given a memoryM which stores

atoms, function sel determines if a state is reached at a timestamp t . If the memory does not contain

enough information to evaluate the expressions, then the state is undef. The state q at timestamp t
with a memoryM is determined by:

sel(I,M, t) =

{
q if ∃q ∈ Q : eval(I(t,q),M) = ⊤,

undef otherwise.

We note that q such that eval(I(t,q),M) = ⊤ is unique. Since we are encoding deterministic

automata, we recall from Remark 1 that when a state q is reached at a timestamp t resulting from an

execution, no other state can be reached at t for the same execution. Moreover, the EHE construction
using operation mov and encoder ts preserves determinism.

Proposition 4.8 (Deterministic EHE). Given an EHE I constructed with operation mov using
encoder ts, we have:

∀t ∈ rounds(I),∀M ∈ Mem, ∃q ∈ Q :

eval(I(t,q),M) = ⊤ =⇒ ∀q′ ∈ Q \ {q} : eval(I(t,q′),M) , ⊤.

Determinism is preserved since, by using encoder ts, we only change an expression to add the

timestamp. By construction, when there exists a state q s.t. eval(I(t,q),M) = ⊤, such a state is

unique, since the EHE is built using a deterministic automaton. The full proof is in Appendix A.

Function verAt is a short-hand to retrieve the verdict at a given timestamp t :

verAt(I,M, t) =

{
ver(q) if ∃q ∈ Q : q = sel(I,M, t),

? otherwise.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

On the Monitoring of Decentralized Specifications :15

Example 4.9 (Monitoring with EHE). Consider the constructed EHE from Example 4.6 shown in

Table 1. Let us consider the global trace from Example 3.14: evt0 · evt1, with evt0 = {⟨s,⊤⟩, ⟨ℓ,⊤⟩}
and evt1 = {⟨s,⊤⟩, ⟨ℓ,⊥⟩}. We create a memory with the events of the two timestamps. Let

M = memc(evt0, ts1) †2 memc(evt1, ts2) = [⟨1, s⟩ 7→ ⊤, ⟨1, ℓ⟩ 7→ ⊤, ⟨2, s⟩ 7→ ⊤, ⟨2, ℓ⟩ 7→ ⊥,]. It is
possible to infer the state of the automaton at t = 2 using I2 = mov([0 7→ q0 7→ ⊤], 0, 2) by using

sel(I2,M, 2), we evaluate:

eval(I2(2,q0),M) = (¬⟨1, s⟩ ∧ ¬⟨2, s⟩) ∨ (⟨1, s⟩ ∧ ¬⟨2, s⟩) = ⊥

eval(I2(2,q1),M) = (⟨1, s⟩ ∧ ⟨2, s⟩ ∧ ⟨2, ℓ⟩) ∨ (¬⟨1, s⟩ ∧ ⟨2, s⟩)) = ⊥

eval(I2(2,q2),M) = ⟨1, s⟩ ∧ ⟨2, s⟩ ∧ ¬⟨2, ℓ⟩ = ⊤

We find that q2 is the selected state, with verdict ver(q2) = ⊥.

While the construction of an EHE preserves the determinism found in the automaton, an important

property is in ensuring that the EHE encodes correctly the execution of the automaton.

Proposition 4.10 (Soundness). Given a decentralized trace tr of length n, we reconstruct the
global trace ρ(tr) = evt1 · . . . · evtn , we have: ∆∗(q0, ρ(tr)) = sel(In,Mn,n), with:
In = mov([0 7→ q0 7→ ⊤], 0,n), and
Mn =

⊎
2

t ∈[1,n]{memc(evtt , tst)}.

EHE is sound with respect to the specification automaton; both the automaton and EHE will

indicate the same state reached with a given trace. Thus, the verdict is the same as it would be in

the automaton. The proof is by induction on the reconstructed global trace (|ρ(tr)|).

Proof sketch. We first establish that both the EHE and the automaton memories evaluate two

similar expressions modulo encoding to the same result. That is, for the given length i , the generated
memories at i + 1 with encodings idt and tsi+1 yield similar evaluations for the same expression

e. Then, starting from the same state qi reached at length i , we assume ∆∗(q0, evt1 · . . . · evti) =
sel(Ii ,Mi , i) = qi holds. We prove that it holds at i + 1, by building the expression (for each

encoding) to reach state qi+1 at i + 1, and showing that the generated expression is the only

expression that evaluates to ⊤. As such, we determine that both evaluations point to qi+1 being the
next state. The full proof is in Appendix A.

4.3 Decentralized Monitoring with EHE

EHE provides interesting properties for decentralized monitoring. Two (or more) components

sharing EHEs and merging them will be able to infer the same execution history of the automaton.

That is, components will be able to aggregate the information of various EHEs, and are able to

determine the reached state, if possible, or that no state was reached. Merging two EHEs of the
same automaton with †∨ allows us to aggregate information from two partial histories.

However, two EHEs for the same automaton contain the same expression if constructed with

mov. To incorporate the memory in an EHE, we generate a new EHE that contains the rewritten and

simplified expressions for each entry. To do so we define function inc to apply to a whole EHE and a
memory to generate a new EHE: inc(I,M) =

⊎
2

⟨t ,q ⟩∈dom(I){[⟨t,q⟩ 7→ simplify(rw(I(t,q),M))]}.

We note, that for a given I andM, inc(I,M) maintains the invariant of Proposition 4.8. We are

simplifying expressions or rewriting atoms with their values in the memory which is what eval

already does for each entry in the EHE. That is, inc(I,M) is a valid representation of the same

deterministic and complete automaton as I. However, inc(I,M) incorporates information from

memoryM in addition.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

:16 Antoine El-Hokayem and Yliès Falcone

Proposition 4.11 (Memory obsolescence).

∀⟨t,q⟩ ∈ dom(inc(I,M)) : eval(I(t,q),M) ⇔ eval(inc(I,M)(t,q), []).

Proof. Follows directly by construction of inc and the definition of eval (which uses functions

simplify and rw). □

Proposition 4.11 ensures that it is possible to directly incorporate a memory in an EHE, making

the memory no longer necessary. This is useful for algorithms that communicate the EHE, as they
do not need to also communicate the memory.

By rewriting the expressions, the EHEs of two different monitors receiving different observa-

tions contain different expressions. However, since they still encode the same automaton, and

observations do not conflict, merging with †∨ shares useful information.

Corollary 4.12. Given an EHE I constructed using function mov, and two memoriesM1 andM2

that do not observe conflicting observations10, the two EHEs I1 = inc(I,M1) and I2 = inc(I,M2)

have the following properties ∀⟨t,q⟩ ∈ dom(I ′):
1) I ′ = I1 †∨ I2 is deterministic (Proposition 4.8);
2) eval(I ′(t,q), []) =⇒ eval(I(t,q),M1 †2M2);
3) eval(I ′(t,q), []) = ⊤ =⇒ eval(I ′(t,q),M1) = ⊤ ∧ eval(I

′(t,q),M2) = ⊤;
4) eval(I ′(t,q), []) = ⊤ =⇒ eval(I1(t,q),M1) , ⊥ ∧ eval(I2(t,q),M2) , ⊥.

The first property ensures that merging two EHEs that incorporate memories are still indeed

representing a deterministic and complete automaton, this follows from Proposition 4.8 and Propo-

sition 4.11. Since operation †∨ disjoins the two expressions, and since the two expressions come

from EHEs that each maintain the property, the additional disjunction will not affect the outcome

of eval. The second property extends Proposition 4.11 to the merging of EHE with incorporated

memories. It follows directly from Proposition 4.11, and the assumptions that the memories have

no conflicts. The third property adds a stronger condition. It states that merging two EHEs with
incorporated memories results in an EHE that evaluates to true, cannot evaluate to anything else

with the two different memories. This follows from the second property and the fact that the

memories do not have conflicting observations. Finally, the fourth property ensures that merging

an EHE with an entry that evaluates to ⊥ does not result in an entry that evaluates to ⊤. That is, if

an EHE has already determined that a state is not reachable, merging it with another EHE does not

result in the state being reachable. This ensures the consistency when sharing information. This

property follows from the merging operator †∨ which uses ∨ to merge entries in two EHEs. We

recall that an entry in ⟨t,q⟩ ∈ dom(I ′) is constructed as: eval(I1(t,q),M1) ∨ eval(I2(t,q),M2). For

eval(I ′(t,q), []) to be ⊤, either eval(I1(t,q),M1) or eval(I2(t,q),M2) has to be ⊤, if one is already

⊥, then the other has to be ⊤. This leads to a contradiction, since both I1 and I2 encode the same

deterministic automaton, as such, the automaton cannot be in two states at once.

Example 4.13 (Reconciling information). We consider the specification presented in Example 2.1,

and the decentralized trace and two components: lswitch and bulb presented in Example 3.14.

We recall the trace tr = [1 7→ lswitch 7→ {⟨s,⊤⟩}, 1 7→ bulb 7→ {⟨ℓ,⊤⟩}, 2 7→ lswitch 7→

{⟨s,⊤⟩}, 2 7→ bulb 7→ {⟨ℓ,⊥⟩}]. Furthermore, we associate respectively two monitors m0 and m1

with components lswitch and bulb. We focus on the timestamp at t = 2. The monitors can observe

the propositions s and ℓ respectively and use one EHE each: I2
0
and I2

1
respectively. Their memories

are respectivelyM2

0
= [⟨1, s⟩ 7→ ⊤, ⟨1, s⟩ 7→ ⊤] andM2

1
= [⟨1, ℓ⟩ 7→ ⊤, ⟨2, ℓ⟩ 7→ ⊥]. Table 2 shows

10
That is, they do not associate with the same atom different truth values. This is ensured by our assumption that the system

and monitors do not send wrong information.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

On the Monitoring of Decentralized Specifications :17

Table 2. Reconciling information by combining EHEs.I2 indicates the non-rewritten EHE. The columns [M2

0
]

and [M2

1
], the result of performing eval on the EHE †2∨ using memoriesM2

0
andM2

1
respectively. A dash (-)

indicates the expression is the same as I2.

t q I2 I20 I21 †2∨ [M2

0
] [M2

1
]

0 q0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤

1

q0 ¬⟨1, s⟩ ⊥ - - ⊥ ?

q1 ⟨1, s⟩ ⊤ - ⊤ ⊤ ⊤

2

q0 ¬⟨1, s⟩ ∧ ¬⟨2, s⟩ ∨

⟨1, s⟩ ∧ ¬⟨2, s⟩

⊥ - - ⊥ ?

q1 ⟨1, s⟩∧ ⟨2, s⟩∧ ⟨2, ℓ⟩∨

¬⟨1, s⟩ ∧ ⟨2, s⟩

⟨2, ℓ⟩ ¬⟨1, s⟩ ∧ ⟨2, s⟩ ⟨2, ℓ⟩ ∨ (¬⟨1, s⟩ ∧ ⟨2, s⟩) ? ?

q2 ⟨1, s⟩∧ ⟨2, s⟩∧¬⟨2, ℓ⟩ ¬⟨2, ℓ⟩ ⟨1, s⟩ ∧ ⟨2, s⟩ ¬⟨2, ℓ⟩ ∨ (⟨1, s⟩ ∧ ⟨2, s⟩) ⊤ ⊤

the EHEs (where I2 denotes the non-rewritten EHE). The columns [M2

0
] and [M2

1
] show the result

of performing eval on the EHE †2∨ using memoriesM2

0
andM2

1
respectively.

Constructing the EHE I2 follows similarly from Example 4.6. We show the rewriting for both I2
0

and I2
1
respectively in the next two columns. Then, we show the result of combining the rewrites

using †∨. We notice initially that since s is ⊥, m0 could evaluate ⟨1, s⟩ = ⊤ and know that the

automaton is in state q1. However, form1, this is not possible until the expressions are combined.

By evaluating the combination,m1 determines that the automaton is in state q0 at t = 1. We see at

t = 2 for both q1 and q2 the expression resulting from combining the EHE is much weaker than the

one present in each of the individual EHEs. After evaluating with the local memory, both monitors

determine that the automaton is in state q2.
In this case, we are only looking for expressions that evaluate to ⊤. We notice that monitorm0

can determine that q0 is not reachable (since ¬⟨1, s⟩ = ⊥) whilem1 cannot, as the expression ¬⟨1, s⟩
cannot yet be evaluated to a final verdict, and thus the combination evaluates to ?. This does not

affect the outcome, as we are only looking for one expression that evaluates to ⊤, since both I2
0
and

I2
1
are encoding the same execution. In the future, we would like to also propagate the information

about the non-reachable states by tweaking the combination of EHEs.

5 DECENTRALIZED SPECIFICATIONS
In this section, we shift the focus to a specification that is decentralized. A set of automata represent

various requirements (and dependencies) for different components of a system. In this section, we

define the notion of a decentralized specification and its semantics, and in Section 6, we define

various properties on such specifications.

5.1 Decentralizing a Specification
We recall that a decentralized system consists of a set of components C. To decentralize the specifi-

cation, instead of having one automaton, we have a set of specification automata (Definition 4.1)

Mons = {Aℓ | ℓ ∈ APmons}, where APmons ⊆ AP is a set of monitor labels. We refer to these

automata as monitors. To each monitor, we associate a component using a function L : Mons→ C.

However, the transition labels of a monitor mon ∈ Mons are expressions restricted to either ob-

servations local to the component the monitor is attached to (i.e., L(mon)), or references to other

monitors. Transitions are labeled over APmons \ {mon} ∪ {ap ∈ AP \ APmons | lu(ap) = L(mon)}.

This ensures that the monitor is labeled with observations it can locally observe or depend on other

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

:18 Antoine El-Hokayem and Yliès Falcone

q0start

q1

q2

s ¬s

¬s

s ∧ ℓ

⊤

s ∧ ¬ℓ

(a) Centralized.

q0start

q1

q2

s ¬s

¬s

s ∧m1

⊤

s ∧ ¬m1

q′
0

start

q′
1

q′
2

ℓ

¬ℓ

⊤

⊤

Am0
Am1

(b) Decentralized.

Fig. 3. Monitor(s) for the centralized and decentralized light switch and bulb specification presented in
Example 2.1. The verdicts associated with the states are ⊥: dotted red , ⊤: double green, and ?: single yellow.

monitors. To evaluate a trace as one would on a centralized specification, we require one of the

monitors to be a starting point, we refer to that monitor as the root monitor (rt ∈ Mons).

Definition 5.1 (Decentralized specification). A decentralized specification is a tuple ⟨APmons, Mons,

C, L, rt⟩.

We note that a centralized specification is a special case of a decentralized specification, with

one component (global system, sys), and one monitor (g) attached to the sole component, i.e.

⟨{g}, {Ag}, {sys}, [Ag 7→ sys],Ag⟩.

As automata expressions now include references to monitors, we first define function dep :

ExprAP → Mons, which determines monitor dependencies. Then, we define the semantics of

evaluating (decentralized) specifications with references.

Definition 5.2 (Monitor dependency). The set of monitor dependencies in an expression e is

obtained by function dep : ExprAP → Mons, defined as
11
: dep(e) = match e with:

| id ∈ APmons →{Aid} | e1 ∧ e2 → dep(e1) ∪ dep(e2) | id ∈ AP \ APmons →∅

| ¬e → dep(e) | e1 ∨ e2 → dep(e1) ∪ dep(e2)

Function dep finds all monitors referenced by expression e, by syntactically traversing it.

Example 5.3 (Decentralized specification). Figure 3b shows a decentralized light switch and bulb

specification corresponding to the centralized specification in Example 2.1 (shown in Figure 3a for

side-by-side comparison). We recall from Example 3.14 that the system consists of two components

the light switch and bulb, labeled lswitch and bulb, respectively. We associated the components

lswitch and bulb with the monitors Am0
and Am1

, respectively. We use Am0
as the root monitor

for the decentralized specification. We consider the two atomic propositions s and ℓ can only be

observed by component lswitch and bulb respectively. Am0
depends on the verdict from m1 and

only observations local to lswitch, whileAm1
is only labeled with observations local to bulb. Given

the expression s ∧m1, we have dep(s ∧m1) = {Am1
}.

5.2 Semantics of a Decentralized Specification
The transition function of the decentralized specification is similar to the centralized automaton

with the exception of monitor ids.

Definition 5.4 (Semantics of a decentralized specification). Consider the root monitor Art and a

decentralized trace tr with index i ∈ [1, |tr|] representing the timestamps. Monitoring tr starting

11
We note that this definition can be trivially extended to any encoding of such expressions that contains the monitor id.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

On the Monitoring of Decentralized Specifications :19

from Art emits the verdict verrt(∆
′∗
rt
(qrt0, tr, 1)) where for a given monitor label ℓ:

∆′∗ℓ (q, tr, i) =

{
∆′∗
ℓ
(∆′

ℓ
(q, tr, i), tr, i + 1) if i < |tr|

∆′
ℓ
(q, tr, i) otherwise

∆′ℓ(q, tr, i) =

{
q′ if tr(i,L(Aℓ)) , ∅ ∧ ∃e ∈ ExprAP : δℓ(q, e) = q

′ ∧ eval(idt(e),M) = ⊤

q otherwise

where M = memc(tr(i,L(Aℓ)), idt) †2

2⊎
Aℓ′ ∈dep(e)

{[ℓ′ 7→ verℓ′(qℓ′f)]}

and qℓ′f = ∆′∗ℓ′(qℓ′0, tr, i)

For a monitor Aℓ , we determine the new state of the automaton starting at q ∈ Qℓ , and running

the trace tr from timestamp i to timestamp t by applying ∆′∗
ℓ
(q, tr, i). To do so, we evaluate one

transition at a time using ∆′
ℓ
as would ∆∗

ℓ
with ∆ℓ (see Definition 4.2). To evaluate ∆′

ℓ
at any state

q′ ∈ Qℓ , we need to evaluate the expressions so as to determine the next state q′′. The expressions
contain atomic propositions and monitor ids. For atomic propositions, the memory is constructed

using memc(tr(i,L(Aℓ)), idt)which is based on the event with observations local to the component

the monitor is attached to (i.e., L(Aℓ)). However, for monitor ids, the memory represents the

verdicts of the monitors. To evaluate each reference ℓ′ in the expression, the remainder of the trace

starting from the current event timestamp i is evaluated recursively on the automaton Aℓ′ from

the initial state qℓ′
0

∈ Aℓ′ . Then, the verdict of the monitor is associated with ℓ′ in the memory.

Example 5.5 (Monitoring of a decentralized specification). We consider the decentralized specifica-

tion from Example 5.3. We have the monitorsAm0
(root) andAm1

associated to components lswitch

and bulb respectively. Furthermore, we consider the decentralized trace from Example 3.14: tr =

[1 7→ lswitch 7→ {⟨s,⊤⟩}, 1 7→ bulb 7→ {⟨ℓ,⊤⟩}, 2 7→ lswitch 7→ {⟨s,⊤⟩}, 2 7→ bulb 7→ {⟨ℓ,⊥⟩}].
To evaluate tr on Am0

(from Figure 3b), we use ∆′∗
m0

(q0, tr, 1). To do so, we first evaluate

∆′
m0

(q0, tr, 1). In this case, the expressions only depend on the atomic proposition s, which does not

depend on any other monitor. We haveM1

m0

= memc(⟨s,⊤⟩, idt) = [s 7→ ⊤], and eval(s,M1

m0

) = ⊤.

Thus, we obtain ∆′
m0

(q0, tr, 1) = q1.
Inq1 at t = 2, we now evaluate ∆′

m0

(q1, tr, 2). Transitions fromq1 are labeled with expressions that
depend on m1. Therefore, we evaluate the decentralized trace onAm1

starting at t = 2 by evaluating

∆′∗
m1

(q′
0
, tr, 2). We start by evaluating ∆′

m1

(q′
0
, tr, 2). We haveM2

m1

= memc(⟨ℓ,⊥⟩, idt) = [ℓ 7→ ⊥],

and eval(¬ℓ,M2

m1

) = ⊤. Thus, we obtain ∆′
m1

(q′
0
, tr, 2) = q′

2
labeled by the verdict⊥. Having reached

a final verdict for m1, we can construct the memory for m0. We haveM2

m0

= memc(⟨s,⊤⟩, idt) †2
[m1 7→ ⊥] = [s 7→ ⊤,m1 7→ ⊥]. Knowing that eval(s ∧ ¬m1,M

2

m0

) = ⊤, we conclude that the next

state is ∆′
m0

(q1, tr, 2) = q2. Since q2 is labeled by verdict ⊥, the monitoring concludes and we detect

a violation of the specification.

6 PROPERTIES FOR DECENTRALIZED SPECIFICATIONS
A key advantage of using decentralized specifications is to make the association of monitors

with components explicit. Since monitors have been explicitly modeled as a set of automata with

dependencies between each other, we can now determine properties on decentralized specifications.

In this section, we revisit the concept of monitorability, characterize it for automata, define it for

decentralized specifications, and describe an algorithm for deciding monitorability. Furthermore,

we explore compatibility, that is the ability of a decentralized specification to be deployed on a

given architecture.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

:20 Antoine El-Hokayem and Yliès Falcone

q0⊤

Fig. 4. A trivial non-monitorable specification.

6.1 Decentralized Monitorability
An important notion to consider when dealing with runtime verification is that of monitorability [27,

44]. In brief, monitorability of a specification determines whether or not an RV technique is

applicable to a specification. That is, a monitor synthesized for a non-monitorable specification

is unable to check if the execution complies or violates the specification for all possible traces.

Consider the automaton shown in Figure 4, one could see that there is no state labeled with a

final verdict. In this case, we can trivially see that no trace allows us to reach a final verdict. We

also notice similar behavior when monitoring LTL expressions with the pattern GF(p) with p
is an atomic proposition. The LTL expression requires that at all times F(p) holds ⊤, while F(p)
requires that p eventually holds ⊤. As such, at any given point of time, we are unable to determine

a verdict, since if p is ⊥ at the current timestamp, it can still be ⊤ at a future timestamp, and thus

F(p) will be ⊤ for the current timestamp. And if F(p) is ⊤ at the current timestamp, the G requires

that it be ⊤ for all timestamps, so in the future there could exist a timestamp which falsifies it.

Consequently, when monitoring such an expression, a monitor will always output ?, as it cannot

determine a verdict for any given timestamp. In this section, we first characterize monitorability in

terms of automata and EHE for both centralized and decentralized specifications. Then, we provide

an effective algorithm to determine monitorability.

6.1.1 Characterizing Monitorability.

Centralized monitorability of properties. Monitorability in the sense of [44] is defined on traces.

A property is monitorable if for all finite traces t (a sequence of events) in the set of all (possibly

infinite) traces, there exists a continuation t ′ such that monitoring t · t ′ results in a true or false

verdict. Informally, it can be seen as whether or not continuing to monitor the property after

reading t can still yield a final verdict. We note that this definition deals with all possible traces, it

establishes monitorability to be oblivious of the input trace.

Centralized monitorability in automata. We express monitorability to reach “true” or “false”

verdict to the notion of reaching a final verdict, and associate it with automata. For automata,

monitorability can be analyzed in terms of reachability and states.

Definition 6.1 (Monitorability of an automaton). Given a automaton A = ⟨Q,q0 ∈ Q, δ , ver⟩, a
state q ∈ Q is monitorable (noted monitorable(q)) iff ver(q′) ∈ B2 or ∃q

′ ∈ Q such that ver(q′) ∈ B2
and q′ is reachable from q. Automaton A is said to be monitorable (noted monitorable(A)) iff

∀q ∈ Q : monitorable(q).

Defining monitorability using reachability is consistent with [44]. After reading a finite trace

t and reaching q (q = ∆∗(q0, t)), there exists a continuation t ′ that leads the automaton to a state

q′ (q′ = ∆∗(q, t ′)), such that ver(q′) ∈ B2. We note that an automaton is monitorable according to

this definition iff, in the automaton, all paths from the initial state q0 lead to a state with a final

verdict. As such, it is sufficient to analyze the automaton to determine monitorability irrespective

of possible traces (see Section 6.1.2)
12
. We illustrate monitorability of automata in Example 6.2.

Example 6.2 (Centralized monitorability of automata.). Figure 3a illustrates the automaton that

expresses the light switch and bulb specification. It is monitorable, as the states q0, q1, and q2 are

12
The expressions leading to q′ must all be also satisfiable. However, satisfiability is guaranteed as our automaton is

normalized, see Remark 1.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

On the Monitoring of Decentralized Specifications :21

monitorable. For both q0 and q1, it is possible to reach q2 labeled with the final verdict ⊥. We note

that monitorability is a necessary but not sufficient condition for termination (with a final verdict).

An infinite trace consisting of repetitions of the event {¬⟨s,⊥⟩, ⟨ℓ,⊥⟩} never lets the automaton

reach q2. However, monitorability guarantees the possibility of reaching a final verdict. If a state q
is not monitorable, we know that it is impossible to reach a final verdict from q, and can abandon

monitoring.

Centralized monitorability with EHE. Reachability in automata can be expressed as well using the

EHE data structure. A path from a state q to a state q′ is expressed as an expression over atoms. We

define paths(q,q′) to return all possible paths from q to q′.

paths(q,q′) = {e ∈ ExprAtoms | ∃t ∈ N : It (t,q′) = e ∧ It = mov([0 7→ q 7→ ⊤], 0, t)}

Each expression is derived similarly as would an execution in the EHE (Definition 4.4). We start from

state q and use a logical timestamp starting at 0 incrementing it by 1 for the next reachable state. A

state q is monitorable iff ∃ef ∈ paths(q,qf), such that (1) ef is satisfiable; (2) ver(simplify(ef)) ∈ B2.
The first condition ensures that the path is able to lead to the state qf , as an unsatisfiable path will

never evaluate to true. The second condition ensures that the state is labeled by a final verdict. An

automaton is thus monitorable iff all its states are monitorable. We note that paths(q,q′) can be

infinite if the automaton contains cycles, however path expressions could be “compacted" using

the pumping lemma. Using EHE we can frame monitorability as a satisfiability problem which can

benefit from additional knowledge on the truth values of atomic propositions. For the scope of this

paper, we focus on computing monitorability on automata in Section 6.1.2.

Decentralized monitorability. In the decentralized setting, we have a set of monitors Mons. The

labels of automata include monitor ids (APmons). We recall that the evaluation of a reference

ℓ ∈ APmons consists in running the remainder of the trace on Aℓ starting from the initial state

qℓ0 . As such, for any dependency on a monitor Aℓ , we know that ℓ evaluates to a final verdict iff

monitorable(Aℓ). We notice that monitorability of decentralized specification is recursive, and relies

on the inter-dependencies between the various decentralized specifications. This is straightforward

for EHE, since a path is an expression. For a path ef , the dependent monitors are captured in the set

dep(ef). The additional condition on the path is thus: ∀Aℓ ∈ dep(ef) : monitorable(Aℓ).

6.1.2 Computing Monitorability.

Centralized specification. We compute the monitorability of a centralized specification A, with

respect to a set of final verdicts B2
13
. We denote monitorability by monitorable(A,B2). In the

remainder of the thesis we always useB2, thus, wewritemonitorable(A). Computingmonitorability

consists in checking that all states of the automaton are co-reachable from states with final verdicts.

As such, it relies on a traversal of the graph starting from the states that are labeled with final

verdicts. To do so, we use a variation of the work-list algorithm. We begin by adding all states

labeled by a final verdict to the work list. These states are trivially monitorable. Conversely, any

state that leads to a monitorable state is monitorable. As such, for each element in the work list,

we add its predecessors to the work list. We maintain a set of marked states (Mark), that is, states

that have already been processed, so as to avoid adding them again. This ensures that cycles are

properly handled. The algorithm stabilizes when no further states can be processed (i.e., the work

list is empty). All marked states (Mark) are therefore monitorable. To check if an automaton is

monitorable, we need all of its states to be monitorable. As such we verify that |Mark| = |Q |.
The number of edges between any pair of states can be rewritten to be at most 1 (as explained

13
While we use B2, this can be extended without loss of generality to an arbitrary set B

f
.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

:22 Antoine El-Hokayem and Yliès Falcone

in Section 4.1). As such, one has to traverse the graph once, the complexity being linear in the

states and edges (i.e., O(|Q | + |δ |)). Hence in the worst case, an automaton forms a complete graph,

and we have

(
|Q |
2

)
edges. The worst case complexity is quadratic in the number of states (i.e.,

O(|Q | + 1

2
|Q |(|Q | − 1))).

Decentralized specifications. In the case of decentralized specifications, the evaluation of paths

(using eval) in an automaton depends on other monitors (and thus other automata). To compute

monitorability, we first build the monitor dependency set for a given monitorAℓ (noted MDS(Aℓ))

associated with a monitor label ℓ.

MDS(Aℓ) =
⊎

{e ∈ExprAP | ∃q,q′∈Qℓ : δℓ (q,e)=q′ }

dep(e)

The monitor dependency list for a monitor contains all the references to other monitors across all

paths in the given automaton (Aℓ), by examining all the transitions. It can be obtained by a simple

traversal of the automaton.

Second, we construct the monitor dependency graph (MDG), which describes the dependen-

cies between monitors. The monitor dependency graph for a set of monitors Mons is noted

MDG(Mons) = ⟨Mons,DE⟩ where DE is the set of edges which denotes the dependency edges

between the monitors, defined as: DE = {⟨Aℓ,Aℓ′⟩ ∈ Mons×Mons | Aℓ′ ∈ MDS(Aℓ)}. A monitor

Ami depends on another monitor Amj iff mj appears in the expressions on the transitions of Ami .

Proposition 6.3 (Sufficient conditions for monitorability of decentralized specifi-

cations.). A decentralized specification is monitorable if the two following conditions are met: (i)
MDG(Mons) has no cycles; and (ii) ∀ℓ ∈ Mons : monitorable(Aℓ).

The first condition ensures that no cyclical dependency exists between monitors. The second

condition ensures that all monitors are individually monitorable. We note, that both conditions are

decidable. Furthermore, detecting cycles in a graph can be done in linear time with respect to the

sum of nodes and edges, by doing a depth-first traversal with back-edge detection, or by finding

strongly connected components [49]. Thus, in worst case, it is quadratic in |Mons|. Monitorability

is therefore quadratic in the number of monitors and states in the largest automaton.

Example 6.4 (Decentralized monitorability of decentralized specifications.). We consider the de-

centralized counterpart of the light switch and bulb presented in Example 6.2. The decentralized

specification is shown in Figure 3b, it introduces two monitors Am0
and Am1

. The set of monitors

is Mons

def

= {Am0
,Am1

}.

We compute the monitor dependency sets for each monitor. We have MDS(Am0
) = dep(⊤) ∪

dep(s) ∪ dep(¬s) ∪ dep(s ∧ m1) ∪ dep(s ∧ ¬m1) = {Am1
}, and MDS(Am1

) = dep(⊤) ∪ dep(ℓ) ∪
dep(¬ℓ) = ∅. Using the monitor dependency sets, we construct the monitor dependency graph:

MDG(Mons) = ⟨Mons, {⟨Am0
,Am1

⟩}⟩. The monitor dependency graph has no cycles, as it contains

only one edge indicating the dependency of Am0
on Am1

.

We now verify the monitorability of each monitor separately using centralized monitorability.

Both Am0
and Am1

are monitorable as the states q2 and q
′
1
or q′

2
are reachable from all states.

The requirement for no cycles is sufficient but not necessary, it is possible for certain cycles to

exist while the decentralized specification is still able to reach a final verdict. This stems from the

fact that boolean expressions may cancel out the dependency, or dependencies can be on different

timestamps (i.e., future transitions in the automaton). We illustrate a monitorable decentralized

specification in Fiдure 5 with two monitors that depend on each other. Regardless of the choice

of the root monitor, it is possible to still avoid the dependency if one operands of the disjunction

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

On the Monitoring of Decentralized Specifications :23

q0start q1 q′
0

start q′
1

m1 ∨ b

¬(m1 ∨ b) ⊤

a ∨m0

¬(a ∨m0) ⊤
Am0

Am1

Fig. 5. A monitorable decentralized specification with cyclically dependent monitors. When observing ⟨a,⊤⟩,
and ⟨b,⊤⟩, the disjunction cancels out the dependency.

holds true. That is, if we observe ⟨a,⊤⟩ then it is no longer necessary to evaluate m0, and no real

dependency exists.

6.2 Compatibility
A key advantage of decentralized specifications is the ability to associate monitors to components.

This allows us to associate the monitor network with the actual system architecture constraints.

The monitor network is a graph N = ⟨Mons, E⟩, where Mons is the set of monitors, and E repre-

senting the communication edges between monitors. The monitor network is typically generated

by a monitoring algorithm during its setup phase (See Section 7.2). For example, N could be obtained

using the construction MDG(Mons) presented in Section 6.1.2. The system is represented as another

graph S = ⟨C, E ′⟩, where C is the set of components, and E ′ is the set of communication channels

between components.

Defining compatibility. We now consider checking for compatibility. Compatibility denotes

whether a monitoring network can be actually deployed on the system. That is, it ensures that

communication between monitors is possible when those are deployed on the components. We first

consider the reachability in both the system and monitor graphs as the relations reachS : C → 2
C
,

and reachM : Mons→ 2
Mons

, respectively. Second, we recall that a monitor may depend on other

monitors and also on observations local to a component. If a monitor depends on local observations,

then it provides us with constraints on where it should be placed.We identify those constraints using

the partial function cdep : Mons→ C. We can now formally define compatibility. Compatibility is

the problem of deciding whether or not there exists a compatible assignment.

Definition 6.5 (Compatible assignment). A compatible assignment is a function compat : Mons→

C that assigns monitors to components while preserving the following properties:

1) ∀m1,m2 ∈ Mons :m2 ∈ reachM(m1) =⇒ compat(m2) ∈ reachS(compat(m1));

2) ∀m ∈ dom(cdep) : cdep(m) = compat(m).

The first proposition ensures that reachability is preserved. That is, it ensures that if a monitor

m1 communicates with another monitorm2 (i.e.m2 ∈ reachM(m1)), thenm2 must be placed on a

component reachable from wherem1 is placed (i.e. compat(m2) ∈ reachS(compat(m1))). The second

proposition ensures that dependencies on local observations are preserved. That is, if a monitorm
depends on local observations from a component c ∈ C (i.e. cdep(m) = c), thenm must be placed

on c (i.e. cdep(m) = compat(m)).

Computing compatibility. We next consider the problem of finding a compatible assignment of
monitors to components. Algorithm 1 finds a compatible assignment for a given monitor network

(⟨Mons, E⟩), system (⟨C, E ′⟩), and an initial assignment of monitors to components (cdep). The

algorithm can be broken into three procedures: procedure verifyCompatible verifies that a (partial)

assignment of monitors to components is compatible, procedure compatibleProc takes as input a

set ofmonitors that need to be assigned and explores the search space (by iterating over components),

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

:24 Antoine El-Hokayem and Yliès Falcone

and finally, procedure compatible performs necessary pre-computation of reachability, verifies

that the constraint is first compatible, and starts the search.

We verify that an assignment of monitors to components (s : Mons → C) is compatible

using algorithm verifyCompatible (Lines 1-8). We consider each assigned monitor (m ∈ dom(s)).
Then, we constrain the set of reachable monitors fromm to those which have been assigned a

component (M ′ = reachM(m) ∩ dom(s)). Using M ′, we construct a new set of components using

s (i.e., C ′ = {s(m′) ∈ C | m′ ∈ M ′}). Set C ′ represents the components on which reachable

monitors have been placed. Finally, we verify that the components in the set C ′ are reachable

from where we placedm (i.e., C ′ ⊆ reachS(s(m))). If that is not the case, then the assignment is

not compatible (Line 4). To iterate over all the search space, that is, all possible assignments of

monitors to components, procedure compatibleProc (Lines 9-24) considers a set of monitors to

assign (M), selects a monitorm ∈ M (Line 13), and iterates over all possible components, verifying

that the assignment is compatible (Lines 14-22). If the assignment is compatible, it iterates over

the remainder of the monitors (i.e., M \ {m}), until it is empty (Line 16). If the assignment is not

compatible, it discards it and proceeds with another component. For each monitor we seek to find

at least one compatible assignment. One can see that the procedure eventually halts (as we exhaust

all the monitors to assign), and is affected exponentially based on the number of monitors to assign

|Mons \ dom(cdep)| (Line 31) with a branching factor determined by the possible values to assign

(|C|, Line 14). It is important to note that the number of monitors to assign is in practice particularly

small. The number of monitors to assign includes monitors that depend only on other monitors

and not local observations from components, as the dependency on local observations requires

that a monitor be placed on a given component (that is, it will be in dom(cdep)).

Example 6.6 (Compatibility). Figure 6 presents a simple network of 3 monitors, and a system

graph of 4 components. We consider the following constraint: cdep = [m0 7→ c0,m2 7→ c2]. For
compatibility, we must first verify that cdep is indeed a compatible (partial) assignment, then

consider placingm1 on any of the components (i.e., both properties of Definition 6.5). Procedure

compatible computes the set of reachable nodes for both the monitor network and the system.

They are presented in Figure 6c and Figure 6d, respectively. We then proceed with line 28 to verify

the constraint (cdep) using procedure verifyCompatible. We consider bothm0 andm2. Form0

(resp. m2) we generate the set (Line 3) {c0} (resp. {c2}), and verify that it is indeed a subset of

reachS(c0) (resp. reachS(c2)). This ensures that the constraint is compatible. We then proceed to

placem1 by calling compatibleProc(cdep, {m1}, {c0, c1, c2, c3}, reachM, reachS). While procedure

compatibleProc will attempt all components, we will consider for the example placingm1 on c1.
On line 15, the partial function s ′ will be cdep †2 [m1 7→ c1]. We now call verifyCompatible to

verify s ′. We consider bothm0,m1, andm2. Form0 (resp.m1,m2) we generate the set {c0, c1} (resp.
{c1}, {c2, c1}). We notice that form0, {c0, c1} is indeed a subset of reachS(c0). This means thatm0 is

able to communicate withm1. However, it is not the case form2, the set {c2, c1} is not a subset of
reachS(c2) = {c2, c3}. The monitorm2 will not be able to communicate withm1 ifm1 is placed on

c1. Therefore, assigningm1 to c1 is incompatible. Example of compatible assignments form1 are c2
and c3 as both of those components are reachable from c2. Procedure compatibleProc continues
by checking other components, and upon reaching c2 or c3 stops and returns that there is at least

one compatible assignment. Therefore, the monitor network (Figure 6a) is compatible with the

system (Figure 6b).

7 ANALYSIS
We aim to compare decentralized monitoring algorithms in terms of computation, communication,

and memory overhead. Since the EHE and memory datastructures are used to abstract the behavior

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

On the Monitoring of Decentralized Specifications :25

m1m0 m2

(a) Monitor network.

c0 c1 c2 c3

(b) System.

m0 {m0,m1}

m1 {m1}

m2 {m2,m1}

(c) reachM.

c0 {c0, c1, c2, c3}

c1 {c1, c2, c3}

c2 {c2, c3}

c3 {c3}

(d) reachS.

Fig. 6. Example Compatibility

Algorithm 1 Computing Compatibility

1: procedure verifyCompatible(s, reachM, reachS) ▷ Verify assignment s

2: for eachm ∈ dom(s) do ▷ Consider only assigned monitors

3: if {s(m′) | m′ ∈ (reachM(m) ∩ dom(s))} ⊈ reachS(s(m)) then ▷ Check reachability

4: return false
5: end if
6: end for
7: return true
8: end procedure
9: procedure compatibleProc(s, M, C , reachM, reachS) ▷ Explore assignments

10: if M = ∅ then ▷ No monitors left to assign

11: return ⟨true, s⟩ ▷ Successfully assigned all monitors

12: end if
13: m ← pick(M) ▷ Pick a monitor from those left to assign

14: for each c ∈ C do ▷ Explore assigning monitor to all possible components

15: s′ ← s †2 [m 7→ c] ▷ Add assignment to the existing solution

16: if verifyCompatible(s′, reachM, reachS) then ▷ Is it compatible?

17: ⟨r es , sol ⟩ ← compatibleProc(s′,M\{m }, C, reachM, reachS) ▷ Recurse on the rest

18: if r es then ▷ Found a compatible assignment for all the rest of M

19: return ⟨r es , sol ⟩
20: end if
21: end if
22: end for
23: return ⟨false, []⟩ ▷ No compatible assignment found

24: end procedure
25: procedure compatible(⟨Mons, E ⟩, ⟨C, E′⟩, cdep)
26: reachM ← computeReach(⟨Mons, E ⟩) ▷ Precompute reachability

27: reachS ← computeReach(⟨C, E′⟩)
28: if ¬verifyCompatible(cdep, reachM, reachS) then ▷ Check constraint first

29: return ⟨false, []⟩ ▷ Constraint not satisfied

30: end if
31: return compatibleProc(cdep,Mons \ dom(cdep), C, reachM, reachS) ▷ Begin exploring

32: end procedure

of a monitoring algorithm. We first consider the parameters and the cost for the basic functions

of the EHE and memory data structures in Section 7.1. We use sE to denote the size necessary to

encode an element of the set E. For example, sAP is the size needed to encode an element of set AP .
Then, in Section 7.2, we elaborate on the general phases of decentralized monitoring algorithms

and illustrate the approach to analyze them by adapting algorithms from [15] as examples.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

:26 Antoine El-Hokayem and Yliès Falcone

7.1 Data Structure Costs
We consider the cost of using a memory or an EHE. To do so, we first address the cost to store partial
functions and merge them.

7.1.1 Storing Partial Functions. Since memory and EHE are partial functions, to assess their

required memory storage and iterations, we consider only the elements defined in the function.

The size of a partial function f , denoted | f |, is the size to encode all x = f (x) mappings. We recall

that | dom(f)| the number of entries in f . The size of each mapping x = f (x) is the sum of the

sizes |x | + | f (x)|. Therefore | f | =
∑

x ∈dom(f) |x | + | f (x)|.

7.1.2 Merging. Merging two memories or two EHEs is linear in the size of both structures in

both time and space. In fact, to construct f †op д, we first iterate over each x ∈ dom(f), check
whether x ∈ dom(д), and if so assign op(f (x),д(x)), otherwise assign f (x). Finally we assign д(x)

to any x ∈ dom(д) ∩ dom(f). This results in | dom(f †op д)| = | dom(f) ∪ dom(д)| which is at most

| dom(f)| + | dom(д)|.

7.1.3 Information delay. The main goal of the EHE data structure is to keep track of partial

states of an automaton execution. Keeping track of partial states becomes unnecessary once

enough information is gathered to determine which state was reached during an execution. An EHE
associates an expression with a state for any given timestamp.When an expression e associated with
a state qkn for some timestamp tkn is evaluated to⊤, we know that the automaton is in qkn at tkn. We

call qkn a ‘known’ state. The information delay δt is the number of timestamps needed to reach a new

known state from an existing known state. That is, it is the number of timestamps in the EHE storing
partial information without determining a known state. Information delay is a runtime measure,

as it depends on the updates done to the EHE as it evolves with time. Given an EHE at timestamp

tkn such that qkn is a known state for a given memoryMt
kn
i.e. sel(Itkn,Mt

kn, tkn) = qkn. The next
known timestamp is the least timestamp tnewkn > tkn, such that sel(Itnewkn,Mt

newkn, tnewkn) , undef,

where It andMt
at some timestamp t are used to denote respectively the changes to the EHE and

memory through time in the execution
14
. The information delay for this evaluation of a state is

δt = tnewkn−tkn. While information delay needs to be computed each time a known state is reached,

it is often the case that it is measured for a whole execution of an algorithm, in which case we can

consider an average information delay and a maximum information delay, where we aggregate

the various information delays (for reaching each known state) by computing their average and

maximum. Since we know the automaton is in qnewkn, prior information is no longer necessary,

therefore it is possible to discard all entries in I with t < tnewkn. Thus, it reduces the number of

expressions in the EHE. This can be seen as a garbage collection strategy [48, 53] for the memory

and EHE. We next show how the information delay parameter affects the size of the EHE.

7.1.4 EHE Encoding. For the EHE data structure, we consider the three functions: mov, eval, and

sel
15
(see Section 4.2). Function mov depends on the topology of the automaton. We quantify it

using the maximum size of the expression that labels a transition in a normalized automaton L (see

Remark 1), and the number of states in the automaton (|Q |). From a known state, each application

of mov considers all possible transitions and states that can be respectively taken and reached,

for each outbound transition, the label itself is added. Therefore, the rule is expanded by L per

14
We note that t

newkn
is not necessarily equal to t

kn
+ 1, as the EHE can determine a known state by simplification, and

therefore skip intermediate states. We allow skipping states as it is reasonable for LTL3 semantics, since final verdicts do

not change for all suffixes.

15
verAt is simply a sel followed by a O(1) lookup.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

On the Monitoring of Decentralized Specifications :27

t 7→ q 7→ ⊤

δt



t + 1 7→

q0 7→ e10
q1 7→ e11

...

q |Q |−1 7→ e1(|Q |−1)


|Q |

t + 2 7→

q0 7→ e20
...

q |Q |−1 7→ e2(|Q |−1)

 |Q |

...

t + δt 7→

q0 7→ eδt 0
q1 7→ eδt 1

...

q |Q |−1 7→ eδt (|Q |−1)


|Q |

Fig. 7. Size of the EHE (worst-case) with respect to information delay.

outbound state for each move beyond tkn. We illustrate the expansion in Figure 7, where for each

timestamp, we associated an expression with each state.

We use S(n) to denote the size of an expression at n timestamps after a known state. As such to

reach a given state, we require a previous expression (i.e., S(n − 1)), and add the label of a given

transition (i.e., L). In the worst-case, the automaton is a fully connected graph, a state can be reached

by all other states (including itself). Hence, we require the disjunction of |Q | such expressions.

The recurrence relation is given by: S(n) = |Q | × (S(n − 1) + L). The size of any expression at a

known timestamp is 1, as the corresponding expression is ⊤. By summing all timestamps, we have∑n
i=0 |Q |

i × L = L ×
∑n

i=0 |Q |
i
, where

∑n
i=0 |Q |

i
is a geometric series of ratio equal to a > 1. We

can then deduce that the size of the expression is exponential in the number of timestamps, i.e.

S(n) = Θ(|Q |n × L).
An EHE contains δt × |Q | expressions. In the worst case, its size is then:

|Iδt | = Θ(δt × |Q | × |Q |
δt × L) = Θ(|Q |δt+1 × δt × L).

For a given expression e, we use |e| to denote the size of e, i.e., the number of atoms in e. Given
a memoryM, the complexity of function eval(e,M) is the cost of simplify(rw(e,M)). Function
rw(e,M) looks up each atom in e inM and attempts to replace it by its truth value. The cost of a

memory lookup isΘ(1), and the replacement is linear in the number of atoms in e. It effectively takes
one pass to syntactically replace all atoms by their values, therefore the cost of rw isΘ(|e|). However,
applying function simplify() requires solving the Minimum Equivalent Expression problem which is

Σ
p
2
-complete [12], it is exponential in the size of the expression, making it the most costly function.

|e| is bounded by δt × L. Function sel() requires evaluating every expression in the EHE. For each
timestamp we need at most |Q | expressions, and the number of timestamps is bounded by δt .

7.1.5 Memory. The memory required to storeM depends on the trace, namely the amount of

observations per component. Recall that once a state is known, observations can be removed, the

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

:28 Antoine El-Hokayem and Yliès Falcone

number of timestamps is bounded by δt . The size of the memory is then:

i+δt∑
t=i

|tr(c, t)| × (sN + sAP + sB2).

The size of the memory depends for each timestamp on the number of observations associated

with the component (|tr(c, t)|), and the size of each observation. The size of an observation is the

size needed to encode the timestamp (sN), the atomic proposition (sAP) and the verdict (sB2).

7.2 Analyzing Existing Algorithms
We now shift the focus to the algorithms and their usage of the data structures. We first present

an overview of the abstract phases performed by decentralized monitoring algorithms. We then

elaborate on our approach tomodel their behavior. Finally, as an example, we present the analysis for

each of the algorithms adapted from [15]: Orchestration (Orch), Migration (Migr), and Choreography

(Chor). The algorithms contain both multiple monitors monitoring the same specification (Orch,

and Migr), and a decentralization algorithm which splits one global specification to multiple

subspecifications distributed on monitors (Chor). We later explore the trends provided by the

analysis by benchmarking in Section 9.

7.2.1 Overview. A decentralized monitoring algorithm consists of two steps: setting up the

monitoring network, and monitoring. In the first step, an algorithm initializes the monitors, de-

fines their connections, and attaches them to the components. We represent the connections

between the various monitors using a directed graph ⟨Mons, E⟩ where E = 2
Mons×Mons

defines the

edges describing the sender-receiver relationship between monitors. For example, the network

⟨{m0,m1}, {⟨m1,m0⟩}⟩ describes a network consisting of two monitors m0 and m1 where m1 sends

information to m0. In the second step, an algorithm proceeds with monitoring, wherein each

monitor processes observations and communicates with other monitors.

We consider the existing three algorithms: Orchestration, Migration and Choreography [15]

adapted to use EHE. We note that these algorithms operate over a global clock, therefore the sequence

of steps can be directly mapped to the timestamp. We choose an appropriate encoding of Atoms
to consist of a timestamp and the atomic proposition (Atoms = N × AP). These algorithms are

originally presented using an LTL specification instead of automata, however, it is possible to obtain

an equivalent Moore automaton as described in [9].

7.2.2 Approach. A decentralized monitoring algorithm consists of one or more monitors that

use the EHE and memory data structures to encode, store, and share information. By studying δt ,
we derive the size of the EHE and the memory a monitor would use (see Section 7.1) . Knowing

the sizes, we determine the computation overhead of a monitor, since we know the bound on the

number of simplifications a monitor needs to make (δt |Q |), and we know the bounds on the size

of the expression to simplify (δtL). Once the cost per monitor is established, the total cost for the

algorithm can be determined by aggregating the costs per monitors. This can be done by summing

to compute total cost or by taking the maximum cost in the case of concurrency following the Bulk

Synchronous Parallel (BSP) [52] approach.

7.2.3 Orchestration. The orchestration algorithm (Orch) consists in setting up a main monitor

which will be in charge of monitoring the entire specification. However since that monitor cannot

access all observations on all components, orchestration introduces one monitor per component to

forward the observations to the main monitor. Therefore, for our setup, we consider the case of a

main monitor m0 placed on component c0 which monitors the specification and |C| − 1 forwarding

monitors that only send observations to m0 (labeled mk with k ∈ [1, |C|]). We consider that the

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

On the Monitoring of Decentralized Specifications :29

reception of a message takes at most d rounds. The information delay δt is then constant, δt = d. The
number of messages sent at each round is |C| − 1, i.e., the number of forwarding monitors sending

their observations. The size of a message is linear in the number of observations for the component,

for a forwarding monitor labeled with mk , the size of the message is |tr(t, ck)| × (sN × sAP × sB2).

7.2.4 Migration. The migration algorithm (Migr) initially consists in rewriting a formula and

migrating from one or more component to other components to fill in missing observations. We

call the monitor rewriting the formula the active monitor. Our EHE encoding guarantees that

two monitors receiving the same information are in the same state. Therefore, monitoring with

Migration amounts to rewriting the EHE and migrating it across components. Since all monitors

can send the EHE to any other monitor, the monitor network is a strongly-connected graph. In

Migr, the delay depends on the choice of function choose, which determines which component

to migrate to next upon evaluation. By using a simple function choose, which causes a migration

to the component with the atom with the smallest timestamp, it is possible to view the worst

case as an expression where for each timestamp we depend on information from all components,

therefore |C| − 1 rounds are necessary to get all the information for a timestamp (δt = |C| − 1).
We parametrize Migr by the number of active monitors at a timestampm. The presented function

choose in [15], selects at most one other component to migrate to. Therefore, after the initial choice

ofm, subsequent rounds can have at mostm active monitors.

We illustrate Migr in Algorithm 2. The state of a migration monitor consists of a variable isActive

that determines whether or not the monitor is active, and I that is an EHE encoding the same

automaton shared by all monitors. At each round the monitor receives a timestamp t and a set of

observations o. Line 2 displays the memory update with observations for that round. Lines 3 to 9

describe the reception of EHEs from other monitors. Upon receiving an EHE, the monitor state is set

to active (Line 7). An active monitor will then update its EHE by first ensuring that it is expanded to

the current timestamp using mov (Line 11), then rewriting and evaluating each entry (Lines 12-17).

The number of entries in the EHE depends on δt . If any of the entries is evaluated to a final verdict

(Line 14), then the verdict is found and we terminate. While the verdict is not found, the migration

algorithm first removes all unnecessary entries in the EHE (Line 18). Unnecessary entries are entries
for which the state is known, the last known state is only kept, all previous timestamps are removed.

After removing unnecessary entries, we determine a new monitor to continue monitoring using

the function choose (Lines 19-22). The initial choice of active monitors is bounded bym ≤ |C|.
Since at mostm − 1 other monitors can be running, there can be (m − 1) merges. The size of the

resulting EHE ism × |Iδt | =m(|C| − 1)
2 |Q |L. In the worst case, the upper bound on the size of EHE

is (|C| − 1)3 |Q |L. The number of messages is bounded by the number of active monitorsm. The

size of each message is however the size of the EHE, since Migr requires the entire EHE to be sent.

7.2.5 Choreography. Choreography (Chor) presented in [14, 15] splits the initial LTL formula

into subformulas and delegates each subformula to a component. Thus Chor can illustrate how it is

possible to monitor decentralized specifications. Once the subformulas are determined by splitting

the main formula
16
, we adapt the algorithm to generate an automaton per subformula to monitor it.

To account for the verdicts from other monitors, the set of possible atoms is extended to include the

verdict of a monitor identified by its id. Therefore, Atoms = (N × AP) ∪ (Mons × N). Monitoring is

done by replacing the subformula by the id of the monitor associated with it. Therefore, monitors are

organized in a tree, the leaves consisting of monitors without any dependencies, and dependencies

building up throughout the tree to reach the main monitor that outputs the verdict. Since each

monitor is in charge of evaluating a subformula, the monitors communicate the evaluation of the

16
Details of the generation is provided in Appendix E.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

:30 Antoine El-Hokayem and Yliès Falcone

Algorithm 2Migration

1: procedureMigration(t , o)
2: M ← M †2 memc(o, tst) ▷ Add observations to memory

3: while Received I′ do ▷ Received an EHE from another monitor

4: if isActive then ▷ If the monitor is active, the monitor EHE has information

5: I ← I †∨ I
′ ▷ Merge information with existing information

6: else
7: I ← I′; isActive← ⊤ ▷ Monitor becomes active after it receives an EHE
8: end if
9: end while
10: if isActive then
11: t ′ ← getEnd(I); I ← mov(I, t ′, t) ▷ Build EHE up to current timestamp

12: for each tv ∈ dom(I) do ▷ Go through all EHE timestamps

13: v ← verAt(I,M, tv) ▷ Evaluate the entries associated with timestamp tv
14: if v ∈ B2 then ▷ Found a final verdict

15: Report v and terminate

16: end if
17: end for
18: I ← dropResolved(I) ▷ Purge EHE of non-needed entries

19: ck ← choose(I) ▷ Determine the next component

20: if ck , c then ▷ Is the next component not local

21: isActive← ⊥; Send I to mk ▷ Send to relevant monitor, stop monitoring

22: end if
23: end if
24: end procedure

formula as a verdict B2 when it is resolved. Furthermore, monitors may instruct other monitors to

stop monitoring as they are no longer necessary. The two messages are referred to as msg
ver

and

msg
kill
, respectively. For each monitor labeled ℓ ∈ APmons we determine the set coref ℓ ∈ 2

APmons

which contains the labels of monitors that send their verdicts to monitor Aℓ . The information

delay for a monitor is thus dependent on its depth in the network tree. The depth of a monitor

labeled ℓ that depends on the set of monitors coref ℓ , is computed recursively as follows:

depth(ℓ) =


1 if monitorable(Aℓ) ∧ coref ℓ = ∅,
1 +max({depth(ℓ′) | ℓ′ ∈ coref ℓ}) if monitorable(Aℓ) ∧ coref ℓ , ∅,
∞ otherwise,

A monitor synthesized from a non-monitorable specification will never emit a verdict, therefore

its depth is ∞. A leaf monitor has no dependencies, its depth is 1. Since the depth controls the

information delay (δt), it is possible in the case of choreography to obtain a large EHE depending
on the specification. In effect, the worst case the size of the EHE can be linear in the size of the trace

δt = |tr|, as it will be required to store the EHE until the end of the trace. As such properties of the

specification such as monitorability (see Section 6.1) impact greatly the delay, and thus performance.

In terms of communication, the number of monitors generated determines the number of messages

that are exchanged. By using the naive splitting function (presented in [15]), the number of monitors

depends on the size of the LTL formula. Therefore, we expect the number of messages to grow with

the number of atomic propositions in the formula. By denoting |E | the number of edges between

monitors, we can say that the number of messages is linear in |E |. The size of the messages is

constant, it is the size needed to encode a timestamp, id and a verdict in the case of msg
ver

, or only

the size needed to encode an id in the case of msg
kill

.

7.2.6 Discussion. We summarize the main parameters that affect the algorithms in Table 3. This

comparison could serve as a guide to choose which algorithm to run based on the environment

(architectures, networks etc). For example, on the one hand, if the network only tolerates short

message sizes but can support a large number of messages, then Orch or Chor is preferred over Migr.

On the other hand, if we have heterogeneous nodes, as is the case in the client-server model, we

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

On the Monitoring of Decentralized Specifications :31

Table 3. Scalability of existing algorithms.

Algorithm δt # Msg |Msg|

Orchestration Θ(1) Θ(|C|) O(APc)
Migration O(|C|) O(m) O(m |C|2)

Choreography O(depth(rt) + |tr|) Θ(|E |) Θ(1)

might want to offload the computation to one major node, in this scenario Orch would be preferable

as the forwarding monitor require no computation. This choice can be further impacted by the

network topology. In a ring topology for instance, one might want to consider using Migration

(withm = 1), as using Orch might impose further delay in practice to relay all information, while

in a star topology, using Orch might be preferable. In a more hierarchical network, Chor can

adapt its monitor tree to the hierarchy of the network. Since we perform a worst-case analysis,

we investigate the trends shown in Section 9 by simulating the behavior of the algorithms on a

benchmark consisting of randomly generated specifications and traces. Furthermore, we use a real

example in Section 9.2 to refine the comparison by looking at six different specifications.

8 THE THEMIS FRAMEWORK
THEMIS is a framework to facilitate the design, development, and analysis of decentralized moni-

toring algorithms; developed using Java and AspectJ [36] (∼5700 LOC).17 It consists of a library

and command-line tools. The library provides all necessary building blocks to develop, simulate,

instrument, and execute decentralized monitoring algorithms. The command-line tools provide

basic functionality to generate traces, execute a monitoring run and execute a full experiment

(multiple parametrized runs).

The purpose of THEMIS is to minimize the effort required to design and assess decentralized

monitoring algorithms. THEMIS provides an API for monitoring and necessary data structures to

load, encode, store, exchange, and process observations, as well as manipulate specifications and

traces. These basic building blocks can be reused or extended to modify existing algorithms or

design new more intricate algorithms. To assess the behavior of an algorithm, THEMIS provides a
base set of metrics (such as messages exchanged and their size, along with computations performed),

but also allows for the definition of new metrics by using the API or by writing custom AspectJ

instrumentation. These metrics can be used to assess existing algorithms as well as newly developed

ones. Once algorithms and metrics are developed, it is possible to use existing tools to perform

monitoring runs or full experiments. Experiments are used to define sets of parameters, traces and

specifications. An experiment is effectively a folder containing all other necessary files. By bundling

everything in one folder, it is possible to share and reproduce the experiment
18
. After running a

single run or an experiment, the metrics are stored in a database for postmortem analysis. These

can be queried, merged or plotted easily using third-party tools. After completing the analysis,

algorithms and metrics can be tuned so as to refine the design as necessary.

The THEMIS framework has been improved since [23, 24] to support fully distributed and multi-

threaded support for monitoring by adding the tool Node that acts as a runtime. One or more

nodes can be deployed on a given platform. A node receives information (via commands) to

deploy components, and monitors on the current platform. Each component contains one or

multiple peripheries. A periphery is an input stream to the component, that generates observations.

17
The THEMIS framework is further described and demonstrated in the tool-demonstration paper [24] and on its Website [25].

18
Experiments provided in this paper are provided at [26], earlier experiments are provided at [25]

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

:32 Antoine El-Hokayem and Yliès Falcone

Peripheries follow a stream interface, and waits on a next() call to generate the next observations.

Monitors are attached to components, and receive the observations that components receive. Thus,

a node follows a publish-subscribe model. Components can be seen as topics, where a monitor

registers to a topic. Peripheries produce a stream of observations for components. Peripheries can

include reading traces from files, over network sockets, or be generated in a stream. Nodes can

communicate with other nodes in a distributed manner, through sockets. The implementation of a

node defines the high level assumptions of monitoring, for example, our round-based monitoring

approach is implemented as a node. For our implementation of a node, reading peripheries to

generate component observations is done in parallel. Once all peripheries have executed their

next() call to read the next events on the stream, the observations are aggregated in an event

that is sent to monitors associated with the component. Monitors execute in parallel, once all

monitors have completed for a given round, the next round begins. This behavior could be altered

to ignore rounds, and simply monitor as soon as information is available by using a different node

implementation. Measures have been updated to be thread-safe and work at the node-level.

Furthermore, the simplification logic (operation eval) for the data structure EHE has been greatly

improved to call the simplifier less and be more aggressive with the simplifications. This yields on

average, a much smaller EHE, more details are provided in Appendix C.

9 COMPARING ALGORITHMSWITH THEMIS

We use THEMIS to compare the adapted versions of existing algorithms (Orch, Migr, and Chor),

introduced as examples to validate the trends presented in the analysis in Section 7. Furthermore,

since the analysis presented worst-case scenarios, we look at the usefulness of simulations to

determine the advantages or disadvantages of certain algorithms in specific scenarios. The THEMIS
tool, the data for both scenarios used in this paper, the scripts used to process the data, and the full

documentation for reproducing the experiments is found at [26].

Overview of scenarios. We additionally consider a round-robin variant of Migr, Migrr, and use

that for analyzing the behavior of the migration family of algorithms as it has a predictable heuristic

(function choose). We compare the algorithms under two scenarios. The first scenario explores

synthetic benchmarks, that is, we consider random traces and specifications. This allows us to

account for different types of behavior. The second scenario explores a specific example associated

with a common pattern in programming. For that, we consider a publish-subscribe system, where

multiple publishers subscribe to a channel (or topic), the channel publishes events to the subscribers.

We use the Chiron user interface example [3, 50], along with the specifications formalized for

it [22].

Monitoring metrics. The first considered metric is that of information delay (δt) (Section 7.1).

The information delay impacts the size of the EHE and therefore the computation, communication

costs to send an EHE structure, and also the memory required to store it. To compute the average

information delay (average delay), we first consider the timestamp difference when an EHE is

resolved (i.e., it indicates a state). We sum these differences across the entire run and count the

number of resolutions. As such, we acquire the average number of timestamps stored in an EHE. We

notice that it is possible for delay to fall below 1, as some traces can cause some monitors to emit a

verdict at the very first timestamp. By considering our analysis in Section 7, we split our metrics into

two main categories: computation and communication. The EHE structure requires the evaluation

and simplification of a Boolean expression which is costly (see Section 4.2). To measure computation,

we can count the number of expressions evaluated (using memory lookup), and the number of

calls to the simplifier. For this experiment we consider the calls to the simplifier. Since algorithms

may have more than one monitor active, we consider for a given round the monitor with the most

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

On the Monitoring of Decentralized Specifications :33

simplifications. We sum the maximum number of simplifications per round across all the rounds,

and then normalize by the number of rounds. This allows us to determine the slowest monitor per

round, as other monitors are executing in parallel. Therefore, we determine the bottleneck. We

refer to this metric as critical simplifications. This can be similarly done by considering the number

of expressions evaluated. Since monitors can execute in parallel, we introduce convergence as a
metric to capture load balancing across a run of length n, where:

conv(n) =
1

n

n∑
t=1

(∑
c ∈C

(
stc
st
−

1

|C|

)
2

)
, with st =

∑
c ∈C

stc .

At a round t , we consider all simplifications performed on all components st and for a given

component stc . Then, we consider the ideal scenario where computations have been spread evenly

across all components. Thus, the ideal ratio is
1

|C |
. We compute the ratio for each component (

s tc
s t),

then its distance to the ideal ratio. Distances are added for all components across all rounds then

normalized by the number of rounds. The higher the convergence the further away we are from

having all computations spread evenly across components. Convergence can also be measured

similarly on evaluated expressions. We consider communication using three metrics: number of

messages, total data transferred, and the data transferred in a given message. The number of

messages is the total messages sent by all monitors throughout the entire run. The data transferred

consists of the total size of messages sent by all monitors throughout the entire run. Both the

number of messages and the data transferred are normalized using the run length. Finally, we

consider the data transferred in a given message to verify the message sizes. To do so, we normalize

the total data transferred using the number of messages.

9.1 Synthetic Scenario
9.1.1 Experimental Setup. Wegenerate the specifications as randomLTL formulas using randltl

from Spot [21] then converting the LTL formulae to automata using ltl2mon [9].We generate traces

by using the Generator tool in THEMIS which generates synthetic traces using various probability

distributions (provided by COLT
19
). For all algorithms we considered the communication delay to

be 1 timestamp. That is, messages sent at t are available to be received at most at t + 1. In the case

of migration, we set the active monitors to 1 (m = 1). For our experiment, we vary the number of

components between 3 and 5, and ensure that for each number we have 100 formulae that reference

all components. We were not able to effectively use a larger number of components since most

formulae become sufficiently large that generating an automaton from them using ltl2mon fail. The
generated formulae were fully constructed of atomic propositions, there were no terms containing

⊤ or ⊥20. We use 200 traces of 60 events per component, we associate with each component 2

observations. Traces are generated using 4 probability distributions (50 traces for each probability

distribution). The used distributions include normal (µ = 0.5,σ 2 = 1), binomial (n = 100,p = 0.3),
and two beta distributions: beta-1 (α = 2, β = 5), and beta-2 (α = 5, β = 1). The varied distributions

provide different probability to assign ⊤ and ⊥ to observations in the traces, as such we achieve

varied coverage
21
. Figure 8a shows the outcome of runs for different probability distributions. We

notice that by varying the distributions we obtain different distributions of verdicts across all

runs for all given specifications. The trace length is chosen to be 60, based on the consideration

19
COLT provides a set of Open Source Libraries for High Performance Scientific and Technical Computing in Java.[13]

20
To generate formulae with basic operators, string “true=0,false=0,xor=0,M=0,W=0,equiv=0,implies=0,ap=6,X=2,R=0” is

passed to randltl.
21
An observation is assigned ⊤ if the generated number is strictly greater than 0.5, and is otherwise ⊥. For the binomial

distribution, we consider p = 0.3 the probability of obtaining ⊤.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

:34 Antoine El-Hokayem and Yliès Falcone

normal binomial beta−1 beta−2

0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60

0

10000

20000

Run Length

C
ou

nt

Verdict FALSE TRUE NA

(a) Verdicts for traces based on the different probability
distributions.

0

20000

40000

60000

0 20 40 60

Run Length

C
ou

nt

Verdict FALSE TRUE NA

(b) Verdicts for all runs, across all traces of all proba-
bility distributions, using all random generated for-
mulae.

Fig. 8. Verdicts emitted by different run lengths.

that random formulae usually cause monitor verdicts to either be returned very early or timeout

(Figure 8b). The percentage of runs that lasted more than 60 timestamps and returned a final verdict

is less than 0.1% of total runs. When computing sizes, we use a normalized unit to separate the

encoding from actual implementation strategies. Our assumptions on the sizes follow from the

bytes needed to encode data (for example: 1 byte for a character, 4 for an integer). We normalized

our metrics using the length of the run, that is, the number of rounds taken to reach the final

verdict (if applicable) or timeout, as different algorithms take different numbers of rounds to reach

a verdict. In the case of timeout, the length of the run is 65 (length of the trace, and 5 additional

timestamps to timeout).

9.1.2 Comparing Algorithms. Figures 9 and 10 present the outcome of the proposed metrics

for the algorithms. We inspect the behavior of information delay in Figure 9a by computing the

average information delay. As expected, orchestration never exceeds a delay of 1. For migration,

the delay depends on the heuristic used, as mentioned in Section 7.2, its worst case is the number of

components. Migration can still have a lower delay than orchestration in some cases (as observed

for |C | ≥ 4). This observation is due to the initial monitor placement, as in our case we chose

the first component always to be where we place the main orchestration monitor (component A),
while for migration, the heuristic function (choose) decides which monitor starts. As such, in a

specification where the verdict can be resolved at the first timestamp, migration has an advantage.

For Chor, the delay is at least 1, as the network depth affects the delay. Furthermore, we notice

that the delay for Chor is not particularly affected with the number of components. We know

that its worst-case will depend on traces in cases of non-monitorability, we inspect that further in

Section 9.2. Figure 9b shows the average maximum computation done by a monitor for a given

round. By looking at computation, we notice that Orch performs no simplifications. This is the

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

On the Monitoring of Decentralized Specifications :35

3 4 5 6

0

1

2

3

4

5

Components

A
ve

ra
ge

 D
el

ay

Algorithm Orch Migr Migrr Chor

(a) Average delay.

3 4 5 6

0

10

20

30

Components

C
rit

ic
al

 S
im

pl
ifi

ca
tio

ns
 (

N
or

m
al

iz
ed

)

(b) Critical simplifications.

3 4 5 6

0.0

0.2

0.4

0.6

0.8

Components

C
on

ve
rg

en
ce

(c) Convergence.

3 4 5 6

0

2

4

6

8

Components

#M
sg

s
 (

N
or

m
al

iz
ed

)

(d) Number of messages.

Fig. 9. Comparison of delay, computation and number of messages. Algorithms are presented in the following
order: Orch, Migr, Migrr, Chor.

case as expressions in the EHE do not become sufficiently complex to require simplification. We

recall that for orchestration, the memories of all local observations are sent to the main monitor

within one timestamp. And as such, by memory lookup, the expression is immediately evaluated

without the need to simplify. We notice that for the average case, Migr performs a small number of

simplifications, and Chor still executes a reasonable number of simplifications. Figure 9c shows the

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

:36 Antoine El-Hokayem and Yliès Falcone

3 4 5 6

0

100

200

300

400

Components

D
at

a
 (

N
or

m
al

iz
ed

)

Algorithm Orch Migr Migrr Chor

(a) Total data transferred.

3 4 5 6

0

100

200

300

400

Components

D
at

a
pe

r
M

es
sa

ge

(b) Data per message.

Fig. 10. Data Transfer

convergence for the algorithms. Since Chor is the only algorithm that performs computations at

different components in a given round, we notice that the convergence is much lower.

For communication, we first consider the number of messages transferred normalized by the

length of the run. We notice that for algorithms Orch and Chor the number of messages increases

with the number of components. Since Chor depends on the edges that connect monitors, it scales

better with the number of components than Orch (the depth of the network is usually smaller

than the number of components). In contrast, we notice that for Migr and Migrr, the number of

messages is independent from the number of components, as it depends on the number of active

monitors. Figure 10a presents the total data transferred normalized by the run length. We notice

by examining algorithm Orch that sending all observations can be costly. Algorithms Migr and

Migrr are capable of sending much less data on average, but have variable behavior, and scale

poorly, we notice an increase as |C| increases. Algorithm Chor performs better than Orch, and

scales much better with component size. We notice that while Migr and Migrr send fewer messages

than the other algorithms, and have better scaling in the number of messages transferred, they

can still, in total, send more data depending on the traces and specification. We notice that the

75% quartile for Migrr still exceeds that of Orch. Since total data transferred includes both the

number of messages and their sizes, we present the size of the message in Figure 10b by dividing

the total data transferred by the number of messages. We observe that for Orch and Chor the size

of a message is constant, not very variable and does not depend on |C|, while for Migr and Migrr

we observe a significant increase as |C| increase. We recall from Section 7.2 that the migration

algorithms send the EHE which expressions grow exponentialy in the size of the information delay.

9.1.3 Comparing Variants. Using the same dataset, we look at another use case of THEMIS; that
of comparing variants of the same algorithm. In this case, we focus on differences between Migr and

Migrr. The heuristic of Migr improves on the round-robin heuristic of Migrr by choosing to transfer

the EHE to the component that can observe the atomic proposition with the earliest timestamp

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

On the Monitoring of Decentralized Specifications :37

in the EHE (referred to as earliest obligation [15]). Using the simple heuristic, we notice a drop in

the delay starting from |C| > 4 (Figure 9a). The simple heuristic of earliest obligation seems to

reduce on average the delay of the algorithm, interestingly, it maintains a mean of 1. Furthermore,

we observe a drop in both messages transferred (Figure 10a) and size of messages (Figure 10b).

Consequently, this constitutes a drop in the total data transferred (Figure 10a). We note that the

message size is also the size of the EHE. The drop in the number of messages sent is explained by

the decision not to migrate when the soonest observation can be observed by the same component,

while for Migrr, the round-robin heuristic causes the EHE to always migrate. However, this does not

lead to a much lower number of simplifications (Figure 9b). Using THEMIS to compare the variants

shows us that the earliest obligation heuristic reduces the size of the EHE, and thus, the size of the

message, but also the number of messages sent. However, it does not seem to impact computation

as the number of simplifications remains similar.

9.1.4 Discussion. The observed behavior of the simulation aligns with the initial analysis de-

scribed in Section 7. We observe that the EHE presents predictable behavior in terms of size and

computation. The delay presented for each algorithm indeed depends on the listed parameters in

the analysis. With the presented bounds on EHE, we can determine and compare the algorithms

that use it. Therefore, we can theoretically estimate the situations where algorithms might be

(dis)advantaged. However, both Figures 9 and 10 show that for most metrics, we observe a large

variance (as evidenced by the interquartile difference). As such, we caution that while the analysis

presents trends where algorithms have the advantage, it is still necessary to address the specifics,

hence the need for simulation.

9.1.5 Explaining earlier results. In [15], the authors conducted experiments to compare the

various algorithms. In particular, they broke down the metrics by delay, message count, message

size and number of progressions (rewrites to the formula). We focus on the first three ignoring the

last, since we do not monitor by rewriting. First, the authors rank the algorithms from lowest to

highest as follows: Orch, Chor, and Migr. This is consistent with our analysis and our synthetic

benchmark, since Orch has a constant delay, Chor a delay depending on the depth of the network,

and Migr a delay depending on the number of components. However, we note that there are

(small) cases where Chor will have a worst-case delay of the size of the trace, this is not reflected

in [15]. Second, the authors discuss the number of messages sent by each algorithm (assuming

a round-based scheme). The lowest algorithm is Migr (withm = 1), followed by Chor, which is

followed by Orch. We note that in our analysis (Section 7), the number of messages in migration

depends on the number of active monitors, in choreography on the number of edges in the network,

and in orchestration on the number of components. Considering that the monitors are organized

in a DAG, there will be generally less edges than components (using the splitting strategy), this

contributes to choreography outperforming orchestration. This can be seen as the authors state

that exceptions allow Orch to perform better than Orch. In particular "for [..] randomly generated

formulae of size 5, or when the depth of the network is greater than or equal to 3.". A larger formula

and a deeper network require a more complex network organization, which could result in more

edges. We recall that the experiment ranged on a number of components between 3 and 5, where

not all components were referenced at all times. Third, the authors discuss the size of the messages,

ranking the algorithms from short to long messages as follows: Orch, Chor, and Migr. We recall

that for Chor the message size is constant, while for Orch the message size depends on the number

of observations per component. Either way both are significantly smaller than Migr which sends

the full monitoring information. While the analysis shows that in theory, Chor should perform

better than Orch with respect to size of the message, we are unsure how the size was captured.

Since in the experiments in [15], the size for Chor grows linearly with the size of the formula,

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

:38 Antoine El-Hokayem and Yliès Falcone

Table 4. Variation of average delay, number of messages, data transfer, critical simplifications and convergence
with traces generated using different probability distributions for each algorithm. Number of components is
|C | = 6. Table cells include the mean and the standard deviation (in parentheses).

Alg. Trace δt #Msgs Data Scrit ConvE

Orch

normal 0.69 (0.46) 7.13 (1.38) 94.87 (18.46) 0.00 (0.00) 0.83 (0.01)

binomial 0.69 (0.46) 7.15 (1.39) 93.10 (18.13) 0.00 (0.00) 0.83 (0.01)

beta-1 0.70 (0.46) 6.98 (1.47) 96.11 (20.17) 0.00 (0.00) 0.83 (0.02)

beta-2 0.69 (0.46) 6.91 (1.71) 83.37 (20.66) 0.00 (0.00) 0.82 (0.02)

Migr

normal 1.72 (1.42) 0.50 (0.32) 110.13 (276.43) 7.01 (5.01) 0.82 (0.03)

binomial 1.67 (1.40) 0.49 (0.32) 95.44 (221.65) 6.86 (4.91) 0.82 (0.04)

beta-1 1.82 (1.44) 0.53 (0.32) 133.15 (313.44) 7.14 (5.16) 0.82 (0.04)

beta-2 1.53 (1.36) 0.47 (0.38) 56.48 (114.54) 5.95 (4.24) 0.82 (0.03)

Migrr

normal 2.64 (1.93) 0.70 (0.35) 177.48 (358.61) 7.50 (5.18) 0.83 (0.03)

binomial 2.59 (1.95) 0.69 (0.36) 171.64 (318.94) 7.49 (5.21) 0.83 (0.03)

beta-1 2.82 (1.94) 0.74 (0.34) 210.02 (452.83) 7.49 (5.23) 0.82 (0.03)

beta-2 2.55 (2.08) 0.66 (0.41) 162.28 (287.28) 6.93 (4.90) 0.82 (0.02)

Chor

normal 2.02 (1.97) 5.92 (1.60) 52.54 (14.23) 12.68 (3.63) 0.13 (0.10)

binomial 1.93 (1.86) 5.95 (1.61) 52.76 (14.33) 12.55 (3.70) 0.13 (0.10)

beta-1 2.59 (4.58) 5.80 (1.64) 51.54 (14.48) 13.29 (4.33) 0.14 (0.12)

beta-2 2.95 (7.26) 5.81 (1.79) 51.52 (15.93) 13.50 (9.91) 0.14 (0.14)

while by definition the message is defined with a fixed size (ids + verdict). We believe the encoding

scheme impacts the size of the message.

9.1.6 Trace Variance. In Table 4, we examine the variance by observing metrics with respect to

probability distributions used to generate the traces. To exclude the variance due to the number

of components, we fix |C| = 6, as it provides the highest variance. For each metric, we present

the mean and the standard deviation (between parentheses). All metrics are normalized by the

length of the run. The metrics in order of columns are: average information delay (δt), average
number of messages (#Msgs), total data transferred (Data), average maximum simplifications per

monitor (S), and convergence based on expressions evaluated (ConvE). We observe that by changing

the probability distribution, the metrics vary significantly. This is particularly prominent for the

information delay (especially in the case of Chor), and data transferred. We explore the differences

in the algorithms in Section 9.2 by considering real examples with existing formalized specifications.

9.1.7 Impact of Network Delay. In order to assess the impact of the network delay, we fixed the

number of components to three, used traces obtained using the normal distribution, and varied

network delay by either delaying all messages by a constant delay, or randomizing the delay (up

to a certain bound) on a per-message basis. We experiment with two values of delays: 2 and 5

rounds, and show the impact of the network delay on the information delay in Figure 11 for each

monitoring algorithm. First, we verify that all verdicts for all delay values match the initial verdicts.

This ensures that all runs returned sound verdicts. We note the exceptions of very few runs (2

runs) where the verdict was delayed past the timeout point and therefore could not be reached.

We observe that the higher the network delay the higher the information delay. This would cause

the algorithms to manipulate larger EHEs but otherwise would not affect correctness. Furthermore,

when the delay is variable, we observe overall smaller resulting EHEs, as partial observations often

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

On the Monitoring of Decentralized Specifications :39

Orch Migr Migrr Chor

0.0

2.5

5.0

7.5

10.0

Algorithm

A
ve

ra
ge

 In
fo

rm
at

io
n

D
el

ay
Network Delay (Rounds) 1 1−2 2 1−5 5

Fig. 11. Effect of network delay on information delay. Variable delay is denoted by min-max and is measured
in rounds, stating that each message is randomly delayed for a value between min and max.

allow monitors to reach verdicts before all information is received, that is for an expression a ∨ b,

if a is sent with a smaller delay than b and is observed to be ⊤, then the expression is resolved

without waiting on b.

9.2 The Chiron User Interface
9.2.1 Overview. Moving away from synthetic benchmarks, we consider properties that apply to

patterns of programs and specifications. In this section, we compare the algorithms by looking at a

real example that uses the publish-subscribe pattern. To that extent, we consider the Chiron user

interface example [3]. Chiron consists of artists responsible of rendering parts of a user interface,

that register for various events via a dispatcher. A dispatcher receives events from an abstract

data type (ADT) and forwards them to the registered artists. We chose Chiron for two practical

reasons. Firstly its example source code (in ADA), and its specifications are available online [50].

The specification is completely formalized and utilizes various LTL patterns described in [1, 22].

Thus, it covers a multitude of patterns for writing specifications. Secondly, the Chiron system

can be easily decomposed into various components, we consider four components, the dispatcher

(A), the two artists (B,C) and the main thread (D). The main thread is concerned with observing

termination of the program.

9.2.2 Experimental Setup. Table 5 lists the subset of the Chiron specification we considered.

For each property, column ID references the original property name in [50], column B3 references
the expected verdict at the end of the trace

22
, and column pattern identifies the LTL pattern

corresponding to the formula. We modify the Chiron example program [50] to output a trace

22
In the case where the expected verdict is ?, the specification is designed to falsify the property, as such if no falsification is

found, we will terminate with verdict ?.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

:40 Antoine El-Hokayem and Yliès Falcone

Listing 1. Example Chiron Specification

!(notify_client_event_a1_e1 || notify_client_event_a2_e1)
U (notify_artists_e1 ||

[]!(notify_client_event_a1_e1 || notify_client_event_a2_e1))

Table 5. Monitored Chiron specifications. CRC stands for Constrained Response Chain.

ID B3 Pattern Description

1 ? Absence An artist never registers for an event if she is already registered for that

event, and an artist never unregisters for an event unless she is already

registered for that event.

2 ? CRC (2-1) If an artist is registered for an event and dispatcher receives this event,

it will not receive another event before passing this one to the artist.

3 ⊤ Precedence Dispatcher does not notify any artists of an event until it receives this

event from the ADT.

5 ? Absence Dispatcher does not block ADT if no one is registered (this means that

if no artists are registered for events of kind 1, dispatcher does nothing

upon receiving an event of this kind from the ADT).

7* ? CRC (3-1) The order in which artists register for events of kind 1 is the order in

which they are notified of an event of this kind by the dispatcher. In

other words, if artist1 registers for event2 before artist2 does, then once

dispatcher receives event2 from the ADT, it will first send it to artist1

and then to artist2.

15a ? Universal The program never terminates with an artist registered.

15b ⊤ Response An artist always unregisters before the program terminates. Given that

you can’t register for the same event twice, we need only check that

unregisters respond to registers

of the program, and consider the specifications listed in Table 5
23
. For example, we consider the

specification shown in Listing 1. It states that artists are only notified when the dispatcher receives

an event. That is, the dispatcher does not send events to the artists without receiving them properly

from the ADT. Since we monitor offline, we generate the trace by inserting a global monitor that

contains information about all relevant atomic propositions. The program is then instrumented

to notify the monitor of events. Specifications and traces are then provided as input to THEMIS to
process with the existing algorithms. The details on the atomic propositions and their assignment

to components can be found in Appendix B. We randomized the events dispatched in the Chiron

example, and generated 100 traces of length 279. We targeted generating traces under 300 events.

This corresponds to the ADT dispatching 91 events, with the addition of events to register, and

unregister artists.

23
We exclude specification 7 as we were unable to generate an automaton using ltl2mon for it. This is due to the formula

either being too complex, or non-monitorable.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

On the Monitoring of Decentralized Specifications :41

9.2.3 Comparing algorithms. Figure 12 presents the means for the metrics of average delay,

convergence, and both critical and maximum simplifications
24
. We immediately notice for Chor

the high average delay for specifications 2 and 15b (133.86, and 116.52, respectively). In these

two cases, the heuristic to generate the monitor network for choreography has split the network

inefficiently, and introduced a large delay due to dependencies. We recall that the heuristic used

for choreography consider LTL formulae. For a given formula it counts the number of references

to atomic propositions of a given component. The monitor tasked with monitoring the formula

will then be associated with the highest component. To generate a decentralized specification, the

heuristic starts with an LTL formula and splits it into two subformulas for each binary operator,

then one of the subformulas is chosen to remain on the current component while the other is

delegated to the component with the most references to atomic propositions. We see in this case

that simply counting references and breaking ties using the lexicographical order of the component

name can yield inefficient decompositions. Furthermore, we notice that while Orch maintains the

lowest delay, other algorithms can still yield comparable delays. In the case of specification 15a

we observe that Orch, Migr, and Chor have similar delay (1.0). While Migr may outperform Chor

for specifications 2 and 15b, it is the opposite for specifications 1, 3 and 5. This highlights that

the network decomposition of monitors (i.e., the setup phase) is an important consideration when

designing decentralized monitoring algorithms.

Figure 12b presents the convergence (computed using the number of expressions evaluated). We

see that the poor decomposition also yields imbalanced workloads on the monitors. In the case

of specifications 2 and 15b, we observe a convergence of 0.67 to 0.71 for Chor, respectively. The

observed convergence is comparable with that of Orch and Migr. Furthermore, it is still possible to

improve on the load balance for specifications 3 and 15a, as the convergence is high (0.33 and 0.47).

Figure 12c illustrates critical simplifications, we see that Chor has a higher cost compared to Migr

in terms of computation. We also notice that Migr performs better than Migrr for all specifications.

The heuristic of migrating the formula based on the atomic proposition with the earliest timestamp

(earliest obligation) does indeed improve computation costs. More importantly, we notice that the

highest delay for Chor is for specifications 2 and 15b. To inspect that, we look at the maximum

delay induced in a given monitor for an entire run, and consider the mean across all traces to obtain

the worst-case maximum simplifications in Figure 12d. Indeed, we notice a peak in the maximum

number of simplification in a given round for specifications 2 and 15b. Particularly, we notice that

while comparable in other specifications (e.g., for specification 15a, we have 10 max simplifications

for Chor as opposed to 8.64 and 10.00 for Migr and Migrr, respectively), the maximum number of

simplifications for Chor increases to 2,798 (compared to 12 for Migrr), and 3,387 (compared to 16.86

for Migrr) for specifications 2 and 15b, respectively. In this particular case, we see how delay can

impact the maximum number of simplifications.

We now consider communication costs by observing the number of messages transferred in

Figure 13a. We see that Migr and Migrr perform well compared to the other two algorithms, with

Migr performing consistently better than Migrr. We note that the analysis of Migr indicates that

the number of messages per round will be in the worst case the number of active monitors (in our

case that is 1). One can see in specification 5 that Migr sends only 0.02 messages on average per

round, compared to Migrr with 1.01, followed by Orch with 2.95, and finally Chor with 4.89. We see

that Orch outperforms Chor in the case of specifications 1, 2, 3 and 5, where generally Orch sends

1-2 messages less. We note that this pattern is in line with the trends shown in Figure 9d. We see

for |C| = 4 that Orch and Chor overlap, with Migrr outperforming both, and Migr outperforming

24
We note that since we broke down the metrics per specification, we have little variation in the data, for details and

standard deviations refer to Appendix D.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

:42 Antoine El-Hokayem and Yliès Falcone

1.01

1.98
1.66

0.77

133.86

1.81

1.001.00
1.22

2.37

1.86

0.99 1.01

1.98
1.67

0.94 1.00

1.99

1.001.00

116.52

2.50

1.001.00

1 2 3 5 15a 15b

0

40

80

120

160

Specification

A
ve

ra
ge

 D
el

ay
 (

lo
g

sc
al

e)

Algorithm Orch Migr Migrr Chor

(a) Average delay.

0.20

0.740.740.74

0.67

0.740.740.74

0.33

0.750.750.75

0.20

0.740.740.74

0.47

0.740.740.74

0.71

0.750.750.75

1 2 3 5 15a 15b

0.0

0.2

0.4

0.6

Specification

C
on

ve
rg

en
ce

(b) Convergence.

15.88

5.29

2.03

21.41

5.82

3.10

18.18

10.65

9.76

15.85

5.28

2.03

9.25

4.91

3.90

28.01

11.41

7.00

1 2 3 5 15a 15b

0

10

20

Specification

C
rit

ic
al

 S
im

pl
ifi

ca
tio

ns
 (

N
or

m
al

iz
ed

)

(c) Critical simplifications.

20.00

9.80

8.00

2798.38

12.00

4.00

23.65

15.97

13.00

20.00

9.80

8.00

10.00
8.64

4.00

3387.04

16.86

9.02

1 2 3 5 15a 15b

10

1000

Specification

M
ax

im
um

 S
im

pl
ifi

ca
tio

ns
 p

er
 M

on
ito

r
(W

or
st

−
C

as
e,

 lo
g

sc
al

e)

(d) Maximum simplifications (worst case).

Fig. 12. Comparison of delay, convergence and number of simplifications. Algorithms are presented in the
following order: Orch, Migr, Migrr, Chor. Orch is omitted in the simplifications count as it is zero.

all other algorithms. Interestingly, we find that in the case of specification 15a in Figure 13a, we

see for Chor a number of messages (0.98) slightly higher than Migr (0.97) and lower than Migrr

(1.01), consistent with the lower whiskers in Figure 9d. Similarly, when considering the total data

transferred in Figure 13b, we see as a trend across specifications Migr being particularly good,

while still being slightly outperformed by Chor in specifications 15a and 15b. Furthermore, we

notice that Migrr performs poorly and indeed sends more data than Orch in most cases, indicating

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

On the Monitoring of Decentralized Specifications :43

4.89

1.01

0.02

2.95 2.95

1.01

0.57

2.95

4.40

0.890.88

3.42

4.89

1.01

0.02

2.95

0.981.010.97

2.95

2.00

1.001.00

3.00

1 2 3 5 15a 15b

0

1

2

3

4

5

Specification

#M
sg

s
(N

or
m

al
iz

ed
)

Algorithm Orch Migr Migrr Chor

(a) Number of messages (normalized).

44

50

1

87

27

213

13

87

40

147

70

102

44

50

1

87

9

84

11

87

18

136

19

89

1 2 3 5 15a 15b

0

50

100

150

200

Specification

D
at

a
(N

or
m

al
iz

ed
)

(b) Total data transferred (normalized).

Fig. 13. Data Transfer

that a heuristic can indeed be instrumental in the success of designing the family of migration

algorithms. We notice also that the trends from Figure 10a seem to apply in most cases, Orch sends

a lot more data than Migr and Chor, with Migrr possibly surpassing Orch.

10 RELATEDWORK
Runtime verification/monitoring is a verification technique aiming at checking the correctness of a

system using runtime information. We refer to [38] for a comparison between runtime verification

and other verification techniques.

In this section, we classify and compare with approaches to decentralized monitoring: monitoring

by formula rewriting (Section 10.1), monitoring distributed systems (Section 10.2), fault-tolerant

monitoring (Section 10.3), and stream-based monitoring (Section 10.4). We also refer to [33] for a

recent overview.

10.1 Monitoring by Formula Rewriting
The first class of approaches consists in monitoring by LTL formula rewriting [10, 15, 45]. Given

an LTL formula specifying the system, a monitor will rewrite the formula based on information

it has observed or received from other monitors, to generate a formula that has to hold on the

next timestamp. Typically a formula is rewritten and simplified until it is equivalent to ⊤ (true)

or ⊥ (false) at which point the algorithm terminates. Another approach [51] extends rewriting

to focus on real-time systems. They use Metric Temporal Logic (MTL), which is an extension to

LTL with temporal operators. This approach also covers lower bound analysis on monitoring MTL

formulae. While these techniques are simple and elegant, rewriting varies significantly during

runtime based on observations, thus analyzing the runtime behavior could prove difficult if not

unpredictable. For example, when excluding specific syntactic simplification rules, G(⊤) could be

rewritten ⊤ ∧ G(⊤) and will keep growing in function of the number of timestamps. To tackle the

unpredictability of rewriting LTL formulae, another approach [28] uses automata for monitoring

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

:44 Antoine El-Hokayem and Yliès Falcone

regular languages, and therefore (i) can express richer specifications, and (ii) has predictable runtime

behavior. These approaches use a centralized specification to describe the system behavior, they

perform decentralized monitoring of a centralized specification (Section 2.2), in a system relying on a

global clock.

10.2 Monitoring Distributed Systems
Monitoring approaches to monitoring distributed systems typically consider the problem of de-

tecting global predicates. Global predicate detection [42, 43] consists in evaluating predicates on

the global state of a distributed system. Approaches performing predicate detection are capable

of distributing the evaluation across a distributed system, and evaluate regular predicates which

include some temporal logic predicates (such as globally□ and eventually ⋄). The evaluation is done

online, and as such can be seen as runtime verification. In [41] the authors extend the approach

beyond safety properties to monitor temporal properties in distributed systems. These techniques

perform effectively decentralized monitoring of a centralized specification (Section 2.2), without

assumptions of a global clock.

10.3 Fault-tolerant Monitoring
Another class of research focuses on handling a different problem that arises in distributed sys-

tems. In [11], monitors are subject to many faults such as failing to receive correct observations

or communicate state with other monitors. Therefore, the problem handled is that of reaching

consensus with fault-tolerance and is solved by determining the necessary verdict domain needed to

be able to reach a consensus. To remain general, we do not impose the restriction that all monitors

must reach the verdict when it is known, as we allow different specifications per monitor. Since

we have heterogeneous monitors, we are not particularly interested in consensus. However, for

multiple monitors tasked to monitor the same specification, we are interested in strong eventual

consistency. We maintain the 3-valued verdict domain and tackle the problem from a different angle

by considering the eventual delivery of messages. Similar work [7] extends the MTL approach

to deal with failures by modeling knowledge gaps and working on resolving these gaps. We also

highlight that the mentioned approaches [7, 10, 15], and other works [20, 46, 47] do in effect

define separate monitors with different specifications, typically consisting in splitting the formula

into subformulas. Then, they describe the collaboration between such monitors. However, when

performing decentralized monitoring of a centralized specification, approaches primarily focus on

presenting one global formula of the system from which they derive multiple specifications. In

our approach, we generalize the notions from a centralized to a decentralized specification and

separate the problem of generating multiple specifications equivalent to a centralized specification

from the monitoring of a decentralized specification (Section 11).

10.4 Stream-based Monitoring
Specification languages have been developed that monitor synchronous systems as streams [17, 18].

In this setting, events are grouped as a stream, and streams are then aggregated by various operators.

The output domain extends beyond the Boolean domain and encompasses types. The stream

approach tomonitoring has the advantage of aggregating types, as such operations such as summing,

averaging or pulling statistics across multiple streams is also possible. Stream combination is thus

provided by general-purpose functions, which are more complex to analyze than automata. This is

similar to complex event processing where RV is a special case [34]. Specification languages such

as LOLA [17] even define dependency graphs between various stream information, and have some

properties like well formed, and efficiently monitorable LOLA specifications. The former ensures

that dependencies in the trace can be resolved before they are needed, and the latter ensures that

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

On the Monitoring of Decentralized Specifications :45

the memory requirement is no more than constant with respect to the length of the trace. While

streams are general enough to express monitoring, they do not address decentralized monitoring

explicitly. As such, there is no explicit assignment of monitors to components and parts of the

system, nor consideration of architecture. Furthermore, there is no algorithmic consideration

addressing monitoring in a decentralized fashion, even-though some works such as [35] do provide

multi-threaded implementations.

11 FUTURE DIRECTIONS
By introducing decentralized specifications, we separate the monitor topology from the monitoring

algorithm. As such, we address future directions that result from analyzing the topology of monitors,

and thus, define properties on such topologies, studying the monitoring by improving metrics, and

applying decentralized specifications to the problem of runtime enforcement [27, 32].

Optimized compatibility. The first direction is to extend the notion of compatibility (Section 6.2) to

not only decide whether or not a specification is applicable to the architecture of the system, but also

use the architecture to optimize the placement. That is, one can generate a decentralized specification

that balances computation to suit the system architecture, or optimize specific algorithms for specific

layouts of decentralized systems (as discussed in Section 7).

Verdict equivalence. We can also compare decentralized specifications to ensure that two spec-

ifications emit the same verdict for all possible traces, we elaborate on this property as verdict
equivalence. We consider two decentralized specifications D and D ′, constructed with two sets

of monitors Mons and Mons
′
(as per Section 5). Let the root monitors be rt, and rt

′
, respectively.

We recall the notation from Section 4.1, for a given monitor label ℓ, qℓ0 , ∆ℓ and verℓ indicate the

initial state, transition relation and the verdict function for a given monitor (automaton). One way

to assess equivalence is to verify, that for all traces, both specifications yield similar verdicts. It

suffices to evaluate the trace on the transition function starting from the root monitor, and check

the verdict of the reached state. That is, two decentralized specifications D and D ′ are verdict
equivalent iff ∀t ∈ T : verrt(∆

′∗
rt
(qrt0, t, 1)) = verrt′(∆

′∗
rt
′(qrt′0, t, 1)). The verdict equivalence property

establishes the basis for comparing two specifications that eventually output the same verdicts for

the same traces. For all possible traces (∀t ∈ T), we first evaluate the trace on the root monitor

of D (i.e., ∆′∗
rt
(qrt0, t)), and similarly we evaluate the same trace on the root monitor of D ′ (i.e.,

∆′∗
rt
′(qrt′0, t)). The states reached for both of the automata executions need to be labeled by the same

verdict. While both specifications yield the same verdict for a given trace, one could also extend

this formulation to add bounds on delay.

Specification synthesis. Another interesting problem to explore is that of specification synthesis.
Specification synthesis considers the problem of generating a decentralized specification, using

various inputs. Typically, we would expect another specification as reference and possibly the

system architecture. For example, given a centralized specification, we generate a decentralized

specification, by splitting the specification into subspecifications and assigning the subspecifications

to monitors. Generating a decentralized specification using a centralized one as reference is used

in some algorithms such as choreography [15]
25
. Starting from an LTL formula, the formula is

split into subformulas hosted on the various components of the system (this is detailed further

in Section 7.2). Given a decentralized specification D, and a system graph ⟨C, E ′⟩, the problem
consists in generating a specification D ′. The variants of the synthesis problem depend on the

properties that D ′ must have, we list (non-exhaustively) example properties:

25
For more details see Appendix E.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

:46 Antoine El-Hokayem and Yliès Falcone

(1) D ′ is monitorable (Section 6.1);

(2) D ′ is compatible with ⟨C, E ′⟩ (Section 6.2);

(3) D ′ and D are verdict equivalent.

Synthesis problems could also be expanded to handle optimization techniques, with regards to

specifications. The specification determines the computation and communication needed by the

monitors. As such, it is possible to optimize, the size of automata, and references so as to fine-tune

load and overhead for a given system architecture.

Extending THEMIS metrics. Moreover, one could consider creating new metrics for THEMIS to

analyze more aspects of decentralized monitoring algorithms. We see that this is important, as

in two specifications out of the five when using Chiron traces (Section 9.2), the choreography

algorithm using a simple heuristic generated an inefficient decentralized specification. New metrics

would be automatically instrumented on all existing algorithms and experiments could be easily

replicated to compare them.

Weakening round constraints. In the current setting, all monitors of the decentralized specifi-

cations are required to perform their evaluation based on a global round. This condition can be

weakened to a relation between only dependent monitors, instead of the whole system.

12 CONCLUSION
We present a general approach to monitoring decentralized specifications. A specification is a

set of automata associated with monitors that are attached to various components. We provide

a general decentralized monitoring algorithm defining the major steps needed to monitor such

specifications. We make a clear distinction between the topology of monitors and the behavior

of each monitor. We elaborate on two properties associated with decentralized specifications:

compatibility, and monitorability. In addition, we present the EHE data structure which allows us

to (i) aggregate monitor states with strong eventual consistency (ii) remain sound with respect to

the execution of the monitor, and (iii) characterize the behavior of the algorithm at runtime. We

then map three existing algorithms: Orchestration, Migration and Choreography to our approach

using our data structures. We develop and use THEMIS to implement algorithms and analyze their

behavior by designing new metrics. We implement four algorithms in THEMIS under our model and

data-structures: orchestration (Orch), migration using earliest obligation (Migr), migration using

round-robin (Migrr), and choreography (Chor). Using THEMIS and the designed metrics, we explore

simulations of the four algorithms on two scenarios and validate the trends observed in the analysis.

In the first scenario, we use the synthetic benchmark comprising of random specifications and traces.

In the second scenario, we use a real example (Chiron) with existing formalized specifications.

REFERENCES
[1] Patterns Project. (1999). http://patterns.projects.cs.ksu.edu/.

[2] Patterns Project: List of specifications. (1999). http://patterns.projects.cs.ksu.edu/documentation/specifications/AFTER.

raw.

[3] George S. Avrunin, James C. Corbett, Matthew B. Dwyer, Corina S. Pasareanu, and Stephen F. Siegel. 1999. Comparing
Finite-State Verification Techniques for Concurrent Software. Technical Report.

[4] Ezio Bartocci. 2013. Sampling-based Decentralized Monitoring for Networked Embedded Systems. In Proceedings
Third International Workshop on Hybrid Autonomous Systems, HAS 2013, Rome, Italy, 17th March 2013. (EPTCS), Luca
Bortolussi, Manuela L. Bujorianu, and Giordano Pola (Eds.), Vol. 124. 85–99. https://doi.org/10.4204/EPTCS.124.9

[5] Ezio Bartocci and Yliès Falcone (Eds.). 2018. Lectures on Runtime Verification - Introductory and Advanced Topics. Lecture
Notes in Computer Science, Vol. 10457. Springer. https://doi.org/10.1007/978-3-319-75632-5

[6] Ezio Bartocci, Yliès Falcone, Borzoo Bonakdarpour, Christian Colombo, Normann Decker, Klaus Havelund, Yogi Joshi,

Felix Klaedtke, ReedMilewicz, Giles Reger, Grigore Rosu, Julien Signoles, Daniel Thoma, Eugen Zalinescu, and Yi Zhang.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

http://patterns.projects.cs.ksu.edu/
http://patterns.projects.cs.ksu.edu/documentation/specifications/AFTER.raw
http://patterns.projects.cs.ksu.edu/documentation/specifications/AFTER.raw
https://doi.org/10.4204/EPTCS.124.9
https://doi.org/10.1007/978-3-319-75632-5

On the Monitoring of Decentralized Specifications :47

2017. First international Competition on Runtime Verification: rules, benchmarks, tools, and final results of CRV 2014.

International Journal on Software Tools for Technology Transfer (2017), 1–40. https://doi.org/10.1007/s10009-017-0454-5

[7] David A. Basin, Felix Klaedtke, and Eugen Zalinescu. 2015. Failure-aware Runtime Verification of Distributed Systems.

In 35th IARCS Annual Conference on Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2015,
December 16-18, 2015, Bangalore, India (LIPIcs), Prahladh Harsha and G. Ramalingam (Eds.), Vol. 45. Schloss Dagstuhl -

Leibniz-Zentrum fuer Informatik, 590–603. https://doi.org/10.4230/LIPIcs.FSTTCS.2015.590

[8] Andreas Bauer and Yliès Falcone. 2016. Decentralised LTL monitoring. Formal Methods in System Design 48, 1-2 (2016),

46–93. https://doi.org/10.1007/s10703-016-0253-8

[9] Andreas Bauer, Martin Leucker, and Christian Schallhart. 2011. Runtime Verification for LTL and TLTL. ACM Trans.
Softw. Eng. Methodol. 20, 4 (2011), 14. https://doi.org/10.1145/2000799.2000800

[10] Andreas Klaus Bauer and Yliès Falcone. 2012. Decentralised LTL Monitoring. In FM 2012: Formal Methods - 18th
International Symposium, Paris, France, August 27-31, 2012. Proceedings (Lecture Notes in Computer Science), Dimitra

Giannakopoulou and Dominique Méry (Eds.), Vol. 7436. Springer, 85–100. https://doi.org/10.1007/978-3-642-32759-9_

10

[11] Borzoo Bonakdarpour, Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers. 2016. Challenges in Fault-Tolerant

Distributed Runtime Verification, See [40], 363–370. https://doi.org/10.1007/978-3-319-47169-3_27

[12] David Buchfuhrer and Christopher Umans. 2008. The Complexity of Boolean Formula Minimization. In Automata,
Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings,
Part I: Tack A: Algorithms, Automata, Complexity, and Games (Lecture Notes in Computer Science), Luca Aceto, Ivan
Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz (Eds.), Vol. 5125.

Springer, 24–35. https://doi.org/10.1007/978-3-540-70575-8_3

[13] CERN. http://dst.lbl.gov/ACSSoftware/colt/. (1999). http://dst.lbl.gov/ACSSoftware/colt/.

[14] Christian Colombo and Yliès Falcone. 2014. Organising LTL Monitors over Distributed Systems with a Global Clock.

In Runtime Verification - 5th International Conference, RV 2014, Toronto, ON, Canada, September 22-25, 2014. Proceedings
(Lecture Notes in Computer Science), Borzoo Bonakdarpour and Scott A. Smolka (Eds.), Vol. 8734. Springer, 140–155.

https://doi.org/10.1007/978-3-319-11164-3_12

[15] Christian Colombo and Yliès Falcone. 2016. Organising LTL monitors over distributed systems with a global clock.

Formal Methods in System Design 49, 1-2 (2016), 109–158. https://doi.org/10.1007/s10703-016-0251-x

[16] Sylvain Cotard, Sébastien Faucou, Jean-Luc Béchennec, Audrey Queudet, and Yvon Trinquet. 2012. A Data Flow

Monitoring Service Based on Runtime Verification for AUTOSAR. In 14th IEEE International Conference on High
Performance Computing and Communication & 9th IEEE International Conference on Embedded Software and Systems,
HPCC-ICESS 2012, Liverpool, United Kingdom, June 25-27, 2012, Geyong Min, Jia Hu, Lei (Chris) Liu, Laurence Tianruo

Yang, Seetharami Seelam, and Laurent Lefèvre (Eds.). IEEE Computer Society, 1508–1515. https://doi.org/10.1109/

HPCC.2012.220

[17] Ben D’Angelo, Sriram Sankaranarayanan, César Sánchez, Will Robinson, Bernd Finkbeiner, Henny B. Sipma, Sandeep

Mehrotra, and Zohar Manna. 2005. LOLA: Runtime Monitoring of Synchronous Systems. In 12th International
Symposium on Temporal Representation and Reasoning (TIME 2005), 23-25 June 2005, Burlington, Vermont, USA. IEEE
Computer Society, 166–174. https://doi.org/10.1109/TIME.2005.26

[18] Normann Decker, Philip Gottschling, Christian Hochberger, Martin Leucker, Torben Scheffel, Malte Schmitz, and

AlexanderWeiss. 2017. Rapidly Adjustable Non-intrusive Online Monitoring for Multi-core Systems. In Formal Methods:
Foundations and Applications, Simone Cavalheiro and José Fiadeiro (Eds.). Springer International Publishing, Cham,

179–196.

[19] Volker Diekert and Martin Leucker. 2014. Topology, monitorable properties and runtime verification. Theoretical
Computer Science 537 (2014), 29 – 41. https://doi.org/10.1016/j.tcs.2014.02.052 Theoretical Aspects of Computing

(ICTAC 2011).

[20] Volker Diekert and Anca Muscholl. 2012. On Distributed Monitoring of Asynchronous Systems. In Logic, Language,
Information and Computation - 19th International Workshop, WoLLIC 2012, Buenos Aires, Argentina, September 3-6, 2012.
Proceedings (Lecture Notes in Computer Science), C.-H. Luke Ong and Ruy J. G. B. de Queiroz (Eds.), Vol. 7456. Springer,

70–84. https://doi.org/10.1007/978-3-642-32621-9_5

[21] Alexandre Duret-Lutz. 2013. Manipulating LTL formulas using Spot 1.0. In Proceedings of the 11th International
Symposium on Automated Technology for Verification and Analysis (ATVA’13) (Lecture Notes in Computer Science),
Vol. 8172. Springer, Hanoi, Vietnam, 442–445. https://doi.org/10.1007/978-3-319-02444-8_31

[22] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. 1999. Patterns in Property Specifications for Finite-State

Verification. In Proceedings of the 1999 International Conference on Software Engineering, ICSE’ 99, Los Angeles, CA, USA,
May 16-22, 1999., Barry W. Boehm, David Garlan, and Jeff Kramer (Eds.). ACM, 411–420. https://doi.org/10.1145/

302405.302672

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

https://doi.org/10.1007/s10009-017-0454-5
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.590
https://doi.org/10.1007/s10703-016-0253-8
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1007/978-3-642-32759-9_10
https://doi.org/10.1007/978-3-642-32759-9_10
https://doi.org/10.1007/978-3-319-47169-3_27
https://doi.org/10.1007/978-3-540-70575-8_3
http://dst.lbl.gov/ACSSoftware/colt/
https://doi.org/10.1007/978-3-319-11164-3_12
https://doi.org/10.1007/s10703-016-0251-x
https://doi.org/10.1109/HPCC.2012.220
https://doi.org/10.1109/HPCC.2012.220
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1016/j.tcs.2014.02.052
https://doi.org/10.1007/978-3-642-32621-9_5
https://doi.org/10.1007/978-3-319-02444-8_31
https://doi.org/10.1145/302405.302672
https://doi.org/10.1145/302405.302672

:48 Antoine El-Hokayem and Yliès Falcone

[23] Antoine El-Hokayem and Yliès Falcone. 2017. Monitoring Decentralized Specifications. In Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2017). ACM, New York, NY, USA, 125–135.

https://doi.org/10.1145/3092703.3092723

[24] Antoine El-Hokayem and Yliès Falcone. 2017. THEMIS: A Tool for Decentralized Monitoring Algorithms. In Proceedings
of 26th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA’17-DEMOS), Santa Barbara, CA,
USA, July 2017. https://doi.org/10.1145/3092703.3098224

[25] Antoine El-Hokayem and Yliès Falcone. THEMIS Website. (2017). https://gitlab.inria.fr/monitoring/themis.

[26] Antoine El-Hokayem and Yliès Falcone. THEMIS Article Artifact. (2018). https://gitlab.inria.fr/monitoring/

themis-artifact-article.

[27] Yliès Falcone. 2010. You Should Better Enforce Than Verify. In Runtime Verification - First International Conference,
RV 2010, St. Julians, Malta, November 1-4, 2010. Proceedings (Lecture Notes in Computer Science), Howard Barringer,

Yliès Falcone, Bernd Finkbeiner, Klaus Havelund, Insup Lee, Gordon J. Pace, Grigore Rosu, Oleg Sokolsky, and Nikolai

Tillmann (Eds.), Vol. 6418. Springer, 89–105. https://doi.org/10.1007/978-3-642-16612-9_9

[28] Yliès Falcone, Tom Cornebize, and Jean-Claude Fernandez. 2014. Efficient and Generalized Decentralized Monitoring of

Regular Languages. In Formal Techniques for Distributed Objects, Components, and Systems - 34th IFIPWG 6.1 International
Conference, FORTE 2014, Held as Part of the 9th International Federated Conference on Distributed Computing Techniques,
DisCoTec 2014, Berlin, Germany, June 3-5, 2014. Proceedings (Lecture Notes in Computer Science), Erika Ábrahám and

Catuscia Palamidessi (Eds.), Vol. 8461. Springer, 66–83. https://doi.org/10.1007/978-3-662-43613-4_5

[29] Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier. 2012. What can you verify and enforce at runtime? STTT
14, 3 (2012), 349–382. https://doi.org/10.1007/s10009-011-0196-8

[30] Yliès Falcone, Klaus Havelund, and Giles Reger. 2013. A Tutorial on Runtime Verification. In Engineering Dependable
Software Systems, Manfred Broy, Doron a. Peled, and Georg Kalus (Eds.). NATO science for peace and security series, d:

information and communication security, Vol. 34. ios press, 141–175. https://doi.org/10.3233/978-1-61499-207-3-141

[31] Yliès Falcone, Srdan Krstic, Giles Reger, and Dmitriy Traytel. 2018. A Taxonomy for Classifying Runtime Verification

Tools. In Runtime Verification - 18th International Conference, RV 2018, Limassol, Cyprus, November 10-13, 2018, Proceed-
ings (Lecture Notes in Computer Science), Christian Colombo and Martin Leucker (Eds.), Vol. 11237. Springer, 241–262.

https://doi.org/10.1007/978-3-030-03769-7_14

[32] Yliès Falcone, Leonardo Mariani, Antoine Rollet, and Saikat Saha. 2018. Runtime Failure Prevention and Reaction. See

[5], 103–134. https://doi.org/10.1007/978-3-319-75632-5_4

[33] Adrian Francalanza, Jorge A. Pérez, and César Sánchez. 2018. Runtime Verification for Decentralised and Distributed

Systems. See [5], 176–210. https://doi.org/10.1007/978-3-319-75632-5_6

[34] Sylvain Hallé. 2016. When RV Meets CEP. In Runtime Verification, Yliès Falcone and César Sánchez (Eds.). Springer

International Publishing, Cham, 68–91.

[35] Sylvain Hallé, Raphaël Khoury, and Sébastien Gaboury. 2017. Event Stream Processing with Multiple Threads. In

Runtime Verification, Shuvendu Lahiri and Giles Reger (Eds.). Springer International Publishing, Cham, 359–369.

[36] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G. Griswold. 2001. An Overview

of AspectJ. In ECOOP 2001 - Object-Oriented Programming, 15th European Conference, Budapest, Hungary, June 18-22,
2001, Proceedings (Lecture Notes in Computer Science), Jørgen Lindskov Knudsen (Ed.), Vol. 2072. Springer, 327–353.

https://doi.org/10.1007/3-540-45337-7_18

[37] Moonjoo Kim, Mahesh Viswanathan, Hanêne Ben-Abdallah, Sampath Kannan, Insup Lee, and Oleg Sokolsky. 1999.

Formally specified monitoring of temporal properties. In 11th Euromicro Conference on Real-Time Systems (ECRTS 1999),
9-11 June 1999, York, England, UK, Proceedings. IEEE Computer Society, 114–122. https://doi.org/10.1109/EMRTS.1999.

777457

[38] Martin Leucker and Christian Schallhart. 2009. A brief account of runtime verification. J. Log. Algebr. Program. 78, 5
(2009), 293–303. https://doi.org/10.1016/j.jlap.2008.08.004

[39] Martin Leucker, Malte Schmitz, and Danilo à Tellinghusen. 2016. Runtime Verification for Interconnected Medical

Devices, See [40], 380–387. https://doi.org/10.1007/978-3-319-47169-3_29

[40] Tiziana Margaria and Bernhard Steffen (Eds.). 2016. Leveraging Applications of Formal Methods, Verification and
Validation: Discussion, Dissemination, Applications - 7th International Symposium, ISoLA 2016, Imperial, Corfu, Greece,
October 10-14, 2016, Proceedings, Part II. Lecture Notes in Computer Science, Vol. 9953. https://doi.org/10.1007/

978-3-319-47169-3

[41] MennaMostafa and Borzoo Bonakdarpour. 2015. Decentralized RuntimeVerification of LTL Specifications in Distributed

Systems. In 2015 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2015. IEEE Computer Society,

494–503. https://doi.org/10.1109/IPDPS.2015.95

[42] Aravind Natarajan, Himanshu Chauhan, Neeraj Mittal, and Vijay K. Garg. 2017. Efficient abstraction algorithms for

predicate detection. Theor. Comput. Sci. 688 (2017), 24–48. https://doi.org/10.1016/j.tcs.2015.12.037

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

https://doi.org/10.1145/3092703.3092723
https://doi.org/10.1145/3092703.3098224
https://gitlab.inria.fr/monitoring/themis
https://gitlab.inria.fr/monitoring/themis-artifact-article
https://gitlab.inria.fr/monitoring/themis-artifact-article
https://doi.org/10.1007/978-3-642-16612-9_9
https://doi.org/10.1007/978-3-662-43613-4_5
https://doi.org/10.1007/s10009-011-0196-8
https://doi.org/10.3233/978-1-61499-207-3-141
https://doi.org/10.1007/978-3-030-03769-7_14
https://doi.org/10.1007/978-3-319-75632-5_4
https://doi.org/10.1007/978-3-319-75632-5_6
https://doi.org/10.1007/3-540-45337-7_18
https://doi.org/10.1109/EMRTS.1999.777457
https://doi.org/10.1109/EMRTS.1999.777457
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1007/978-3-319-47169-3_29
https://doi.org/10.1007/978-3-319-47169-3
https://doi.org/10.1007/978-3-319-47169-3
https://doi.org/10.1109/IPDPS.2015.95
https://doi.org/10.1016/j.tcs.2015.12.037

On the Monitoring of Decentralized Specifications :49

[43] Vinit A. Ogale and Vijay K. Garg. 2007. Detecting Temporal Logic Predicates on Distributed Computations. In

Distributed Computing, 21st International Symposium, DISC 2007, Proceedings (Lecture Notes in Computer Science),
Andrzej Pelc (Ed.), Vol. 4731. Springer, 420–434. https://doi.org/10.1007/978-3-540-75142-7_32

[44] Amir Pnueli and Aleksandr Zaks. 2006. PSL Model Checking and Run-Time Verification Via Testers. In FM 2006: Formal
Methods, 14th International Symposium on Formal Methods, Hamilton, Canada, August 21-27, 2006, Proceedings (Lecture
Notes in Computer Science), Jayadev Misra, Tobias Nipkow, and Emil Sekerinski (Eds.), Vol. 4085. Springer, 573–586.

https://doi.org/10.1007/11813040_38

[45] Grigore Rosu and Klaus Havelund. 2005. Rewriting-Based Techniques for Runtime Verification. Autom. Softw. Eng. 12,
2 (2005), 151–197. https://doi.org/10.1007/s10515-005-6205-y

[46] Torben Scheffel and Malte Schmitz. 2014. Three-valued asynchronous distributed runtime verification. In Twelfth
ACM/IEEE International Conference on FormalMethods andModels for Codesign, MEMOCODE 2014, Lausanne, Switzerland,
October 19-21, 2014. IEEE, 52–61. https://doi.org/10.1109/MEMCOD.2014.6961843

[47] Koushik Sen, Abhay Vardhan, Gul Agha, and Grigore Rosu. 2004. Efficient Decentralized Monitoring of Safety in

Distributed Systems. In 26th International Conference on Software Engineering (ICSE 2004), 23-28 May 2004, Edinburgh,
United Kingdom, Anthony Finkelstein, Jacky Estublier, and David S. Rosenblum (Eds.). IEEE Computer Society, 418–427.

https://doi.org/10.1109/ICSE.2004.1317464

[48] Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski. 2011. Conflict-Free Replicated Data Types. In

Stabilization, Safety, and Security of Distributed Systems - 13th International Symposium, SSS 2011, Grenoble, France,
October 10-12, 2011. Proceedings (Lecture Notes in Computer Science), Xavier Défago, Franck Petit, and Vincent Villain

(Eds.), Vol. 6976. Springer, 386–400. https://doi.org/10.1007/978-3-642-24550-3_29

[49] Robert Endre Tarjan. 1972. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput. 1, 2 (1972), 146–160.
https://doi.org/10.1137/0201010

[50] The Chiron Team. Chiron User Interface. (1999). http://laser.cs.umass.edu/verification-examples/chiron/index.html.

[51] Prasanna Thati and Grigore Rosu. 2005. Monitoring Algorithms for Metric Temporal Logic Specifications. Electronic
Notes in Theoretical Computer Science 113 (2005), 145 – 162. https://doi.org/10.1016/j.entcs.2004.01.029

[52] Leslie G. Valiant. 1990. A Bridging Model for Parallel Computation. Commun. ACM 33, 8 (Aug. 1990), 103–111.

https://doi.org/10.1145/79173.79181

[53] Gene T. J. Wuu and Arthur J. Bernstein. 1986. Efficient Solutions to the Replicated Log and Dictionary Problems.

Operating Systems Review 20, 1 (1986), 57–66. https://doi.org/10.1145/12485.12491

A PROOFS
Proof of Proposition 4.8. The proof is by induction on the number of timestamps in the EHE,

i.e., n = |rounds(I)|. Without loss of generality, we can assume the automaton being encoded is

normalized (see Remark 1), that is, all shared edges between any two states are replaced by one

edge which is labeled by the disjunction of their labels.

One could see that the base case only contains the initial state of an automaton, i.e., I0 = [0 7→

q0 7→ ⊤], and as such the proposition holds.

Let us consider n = 2, we have I1 = mov(I0, 0, 1). To compute mov, we first consider next(I0, 0)
which considers all states reachable from q0 as the only tuple in I0 is ⟨0,q0⟩, i.e., next(I

0, 0) =
{q′ ∈ Q | ∃e ∈ Expr : δ (q0, e) = q′}, we know that only one such e can evaluate to ⊤ for any

memory encoded with the identity encoder (idt), since the automaton is deterministic. Let us collect

all such states and their expressions as P = {⟨q′, e⟩ ∈ Q × Expr | ∃e ∈ Expr : δ (q0, e) = q′}. We

note that I1(0,q0) = ⊤ is the only entry for timestamp 0. The property holds trivially for that entry.

We now consider the entries in I1 for timestamp 1. Each of tuple ⟨q′, e⟩ ∈ P corresponds to the

expression I1(1,q′), constructed with to(I0, 0,q′, ts1) = I
0(0,q0) ∧ ts1(e). We note that ts1 only

adds the timestamp 1 to each atomic proposition. As such, for any given memory encoded with ts1

only one such expression can be evaluated to ⊤.

Inductive step: We assume that the property holds on In−1 for some n ∈ N, that is:
∀M ∈ Mem,∀t ∈ rounds(In−1), ∃q ∈ Q : (eval(In−1(t,q),M) = ⊤) =⇒ (∀q′ ∈ Q \ {q} =⇒

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

https://doi.org/10.1007/978-3-540-75142-7_32
https://doi.org/10.1007/11813040_38
https://doi.org/10.1007/s10515-005-6205-y
https://doi.org/10.1109/MEMCOD.2014.6961843
https://doi.org/10.1109/ICSE.2004.1317464
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1137/0201010
http://laser.cs.umass.edu/verification-examples/chiron/index.html
https://doi.org/10.1016/j.entcs.2004.01.029
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/12485.12491

:50 Antoine El-Hokayem and Yliès Falcone

eval(In−1(t,q′),M) , ⊤). Let us prove that the property holds for In .

The approach is similar to that of n = 2 using the recursive structure of the EHE to generalize. We

decompose In , using the definition of mov, as follows:

In = In−1 †∨

∨⊎
q′∈next(In−1 ,n)

{n 7→ q′ 7→ to(In−1,n − 1,q′, tsn)}

We know that rounds(In) = rounds(In−1)∪ {n}. The induction hypothesis states that the property

holds for all entries in In−1 (i.e. for t ∈ rounds(In−1)), we consider the entries for timestamp n only.

Since

∨⊎
applies †∨ on the entire set, and it is associative and commutative we consider the expression

for a given state after all the merges, without consideration of order of merges. As such the states

associated with timestamp n are computed using next(In−1,n). We have ∀q′ ∈ next(In−1,n):

In(n,q′) = to(In−1,n − 1,q′, tsn) (Def. mov)

=
∨

{ ⟨q,e ′⟩ | δ (q,e ′)=q′ }

(In−1(n − 1,q) ∧ tsn(e
′)) (1)

(1) follows from the definition of to. If we examine the disjunction we notice using the induction

hypothesis that there can only be a unique qu ∈ Q with In−1(n − 1,qu) that evaluates to ⊤ at

timestamp n − 1. As such, the conjunction can only hold for one such qu. Consequently, we can
rewrite (1) by simplifying the disjunction and considering only states reachable from qu, as the rest
cannot evaluate to ⊤. Let us collect all such states and expressions in the set Pu = {⟨q

′, e ′⟩ | q′ ∈
next(In−1,n) ∧ ∃e ′ ∈ ExprAP : δ (qu, e

′) = q′}. The only entries that can still evaluate to ⊤ are:

∀⟨q′, e ′⟩ ∈ Pu : I
n(n,q′) = In−1(n − 1,qu) ∧ tsn(e

′)

= tsn(e
′)

Since the automaton is deterministic, we know that we have one unique expression eu that can
evaluate to ⊤, given any memory encoded with idt. Since tsn only adds the timestamp n to the

atomic propositions without changing the expression, we deduce that only tsn(eu) evaluates to ⊤.
As such, there is a unique expression that can evaluate to ⊤ for any given memory encoded with

tsn . Furthermore, we know that the expression has only been encoded with tsn so when memories

encoded with different timestamps or encoders are merged, they do not affect the evaluation of

tsn(eu). As such, we have a unique entry I
n(n,q′

u
) s.t. δ (qu, eu) that can evaluate to ⊤. Therefore:

∀M ∈ Mem,∀t ∈ rounds(In), ∃q ∈ Q :

(eval(In(t,q),M) = ⊤) =⇒

(∀q′ ∈ Q : q′ , q =⇒ eval(In(t,q′),M) , ⊤)

□

Lemma A.1 (Evaluation modulo encoding). Given a trace tr of length i and a reconstructed
global trace ρ(tr) = evt1 · . . . · evti , we consider two memoriesMi

A
andMi generated under different

encodings. We considerMi
A
= memc(evti , idt), andMi =

⊎
2

t ∈[1,i]{memc(evtt , tst)}. We show that

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

On the Monitoring of Decentralized Specifications :51

an expression encoded using different encodings evaluates the same for the memories, that is:

∀e ∈ ExprAP : eval(idt(e),Mi
A) ⇔ eval(tsi (e),M

i).

Proof of Lemma A.1. We first note that for the first evaluation eval(idt(e),Mi
A
), we rely only

on the event evti sinceMi
A
= memc(evti , idt). This is not the case for eval(tsi (e),Mi) asMi =⊎

2

t ∈[1,i]{memc(evtt , tst)}. However, we notice that for the second evaluation we evaluate the

expression tsi (e), that is, where the expression where all atomic propositions have been encoded by

the timestamp i . Therefore, let us denote the memory with timestamp i byM ′ = memc(evti , tsi).
We can rewriteMi

as follows:

Mi = memc(evti , tsi) †2
⊎

2

t ∈[1,k]{memc(evtk , tsk)},
=M ′ †2

⊎
2

t ∈[1,k]{memc(evtk , tsk)}.

We know that all entries ⟨k,a⟩ ∈ dom(Mi) with k < i do not affect at all the evaluation of an

expression encoded with tsi . As such, we have:

∀e ∈ ExprAP : eval(tsi (e),M
i) ⇔ eval(tsi (e),M

′)

We now show that the two memoriesMi
A
andM ′ contain simply an encoding of the same atomic

propositions. By construction, we have the following:

∀a ∈ dom(Mi
A
) : ⟨i,a⟩ ∈ dom(Mi) ∧ Mi

A
(a) =M ′(⟨i,a⟩),

∀⟨i,a′⟩ ∈ dom(M ′) : a′ ∈ dom(Mi
A
) ∧ M ′(⟨i,a′⟩) =Mi

A
(a′).

As such, we have: ∀e ∈ ExprAP : eval(idt(e),Mi
A
) ⇔ eval(tsi (e),M

′) ⇔ eval(tsi (e),M
i).

□

Proof of Proposition 4.10. Given a trace tr of length i and a reconstructed global trace ρ(tr) =
evt1 · . . . · evti , the proof is done by induction on the length of the trace |ρ(tr)|. We omit the label ℓ
for clarity.

Base case: |ρ(tr)| = 0, ρ(tr) = ϵ

∆∗(q0, ϵ) = q0 = sel(I0, [], 0)

I0 = mov([0 7→ q0 7→ ⊤], 0, 0) = [0 7→ q0 7→ ⊤]

We only have expression ⊤ which is mapped to q0 at t = 0. Expression ⊤ requires no memory to

be evaluated.

Inductive step: We assume that the property holds for a trace of length i for some i ∈ N, that is
∆∗(q0, evt1 · . . . · evti) = sel(Ii ,Mi , i) = qi . Let us prove that the property holds for any trace of

length i + 1.

We now consider the transition functions in the automaton:

qi+1 = ∆∗(q0, evt1 · . . . · evti+1)

= ∆(∆∗(q0, evt1 · . . . · evti), evti+1) (Def. 4.2)

= ∆(qi , evti+1) (Hyp.)

⇔ ∃e ∈ ExprAP :

δ (qi , expr) = qi+1 ∧ eval(e,M
i+1
A) = ⊤ (1)

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

:52 Antoine El-Hokayem and Yliès Falcone

We note that, since the automaton is deterministic, there is a unique qi+1 such that qi+1 =
∆(qi , evti+1).
We now consider the EHE operations to reach qi+1 from qi .

qi = sel(Ii ,Mi , i)

⇔ e = Ii (i,qi) with eval(e,Mi) = ⊤ (2)

∧ ∀q′i ∈ Q : q′i , qi =⇒ eval(Ii (i,q′i)) , ⊤ (Prop. 4.8)

⇔ to(Ii , i,qi+1, tsi+1) = ⊤ (3)

(3) From the induction hypothesis, we know that Ii (i,qi) = ⊤, thus:

to(Ii ,i,qi+1, tsi+1)

=
∨

{ ⟨q,e ′⟩ |δ (q,e ′)=q′i+1 }

(Ii (i,q) ∧ tsi+1(e
′))

=
∨

{ ⟨q,e ′′⟩ |δ (q,e ′′)=q′i+1∧q,qi }

(Ii (i,q) ∧ tsi+1(e
′′))

∨
∨

{ ⟨qi ,e ′′′⟩ |δ (qi ,e ′′′)=q′i+1 }

(tsi+1(e
′′′)).

We split the disjunction to consider the expressions that only come from state qi , we now show

that one such expression evaluates to ⊤. We know from (1), that one such expression can be taken

in the automaton:

∃e ∈ ExprAP : δ (qi , e) = qi+1 ∧ eval(e,Mi+1
A) = ⊤ (1)

⇔ eval(tsi+1(e),Mi+1) = ⊤ (4)

⇔ to(Ii , i,qi+1, tsi+1) = ⊤ (5)

(4) is obtained using Lemma A.1 and idt(e) = e.
(5) follows from the disjunction.

Using the same approach, we can show that∀q′ ∈ next(Ii , i) : q′ , qi+1 =⇒ to(Ii , i,q′, tsi+1) , ⊤,
since the first part of the conjunction does not evaluate to ⊤, and we know that the second part

cannot evaluate to ⊤ by (2).

Finally, to(Ii , i,qi+1, tsi+1) = ⊤ iff sel(Ii+1,Mi+1, i + 1) = qi .
□

B CHIRON SYSTEM ATOMIC PROPOSITIONS
We broke down the Chiron system based on analysis of the examples provided in [22, 50], using the

various specifications rewritten in [2]. Table 6 displays various associations we used to generate our

traces and events. ColumnC assigns an ID to the component. ColumnName lists the logical module

of the system we considered as a component. Column Original (AP) lists the atomic proposition

provided by the authors of Chiron, and then edited by [22]. ColumnAPmaps the atomic proposition

to our traces. Column Comments includes comments on the atomic propositions.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

On the Monitoring of Decentralized Specifications :53

Table 6. Chiron Atomic Propositions and Components.

C Name Original (AP) AP Comments

A Dispatcher

registered_event_a1_e1 a0

True after an artist has completed registration

registered_event_a1_e2 a1

registered_event_a2_e1 a2

registered_event_a2_e2 a3

notify_a1_e1 a4

True when starting to dispatch an event to an artist

notify_a1_e2 a5

notify_a2_e1 a6

notify_a2_e2 a7

lst_sz0_e1 a8

Tracking the size of the list (state)

lst_sz0_e2 a9

lst_gt2_e1 a10

lst_gt2_e2 a11

B Artist1

notify_client_a1_e1 b0

Artist receives a notification

notify_client_a1_e2 b1

register_event_a1_e1 b2

Artist requests to register for event

register_event_a1_e2 b3

unregister_event_a1_e1 b4

Artist requests to unregister

unregister_event_a1_e2 b5

C Artist2

notify_client_a2_e1 c0

See Artist1

notify_client_a2_e2 c1

register_event_a2_e1 c2

register_event_a2_e2 c3

unregister_event_a2_e1 c4

unregister_event_a2_e2 c5

D Main term d0 Main program terminates

C CHANGES IN THEMIS

Figure 14 shows the data transferred for the migration algorithms, which is associated with the

size of the EHE. We reduced the size of the EHE by making calls to the simplifier only for complex

simplifications, and implement the basic Boolean simplification while traversing the expression

to replace atomic propositions by looking up the memory (in the operation rw). Since we have

less calls, we apply a more aggressive simplification that is more costly
26
, but also reduces the size

of the expressions. The x-axis indicates the algorithm’s variant and the number of components,

where Migr (resp. Migrr) stands for earliest the variant obligation (resp. round-robin). The y-axis is

presented in logarithmic scale. We notice a significant drop in the size of EHE, dropping from 769

in the ISSTA’17 version for Migrr-5 to 73.12.

D DETAILED COMPARISON
Tables 7 and 8 present the detailed comparison for the synthetic scenario and Chiron, respectively.

The metrics presented are (in order of columns): average information delay (δt), normalized average

number of messages (#Msgs), normalized data transferred (Data), maximum simplifications done

by any given monitor per run, averaged across all runs (Smax), normalized critical simplifications

26
We use ltlfilt from [21] with –boolean-to-isop to rewrite Boolean subformulas as irredundant sum of products.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

:54 Antoine El-Hokayem and Yliès Falcone

80.40

15.29

186.84

27.31

809.45

44.87

71.07

17.45

174.30

36.98

769.24

73.12

10

1000

Migr−3 Migr−4 Migr−5 Migrr−3 Migrr−4 Migrr−5

Algorithm

E
H

E
 S

iz
e Version

Current

ISSTA'17

Fig. 14. Size of EHE.

Table 7. Synthetic Benchmark. Cells contains mean and standard deviation in parentheses.

Alg. |C | δt #Msgs Data Smax Scrit ConvE

Orch

3 0.48 (0.50) 2.44 (0.61) 31.84 (8.07) 0.00 (0.00) 0.00 (0.00) 0.65 (0.02)

4 0.53 (0.50) 3.85 (0.94) 50.05 (12.39) 0.00 (0.00) 0.00 (0.00) 0.74 (0.02)

5 0.64 (0.48) 5.30 (1.16) 69.20 (15.55) 0.00 (0.00) 0.00 (0.00) 0.79 (0.02)

6 0.69 (0.46) 7.04 (1.50) 91.86 (20.02) 0.00 (0.00) 0.00 (0.00) 0.83 (0.02)

Migr

3 0.58 (0.58) 0.27 (0.32) 8.46 (15.32) 4.72 (4.41) 3.08 (2.66) 0.65 (0.02)

4 0.71 (0.67) 0.32 (0.34) 17.45 (35.87) 6.10 (6.17) 4.03 (3.75) 0.73 (0.03)

5 0.96 (0.71) 0.43 (0.34) 30.41 (56.68) 7.41 (6.18) 4.97 (3.76) 0.79 (0.03)

6 1.19 (0.86) 0.50 (0.34) 98.80 (244.94) 10.09 (8.32) 6.74 (4.87) 0.82 (0.04)

Migrr

3 0.76 (0.69) 0.78 (0.33) 14.51 (18.40) 5.62 (4.99) 3.51 (2.93) 0.65 (0.02)

4 1.02 (0.90) 0.76 (0.36) 31.76 (51.55) 7.64 (7.16) 4.58 (4.04) 0.74 (0.03)

5 1.39 (1.04) 0.75 (0.35) 62.83 (91.89) 9.70 (7.88) 5.70 (4.25) 0.79 (0.03)

6 1.72 (1.19) 0.70 (0.37) 180.35 (360.25) 12.56 (9.76) 7.35 (5.14) 0.82 (0.03)

Chor

3 1.47 (1.99) 2.79 (1.10) 24.98 (9.85) 60.22 (242.88) 12.27 (6.55) 0.16 (0.12)

4 1.36 (1.52) 3.84 (1.23) 34.36 (10.94) 44.71 (184.05) 12.95 (5.98) 0.13 (0.12)

5 1.41 (1.55) 4.63 (1.37) 41.17 (12.16) 44.06 (223.15) 12.68 (6.06) 0.12 (0.11)

6 1.29 (1.38) 5.87 (1.66) 52.09 (14.77) 38.35 (215.27) 13.01 (6.01) 0.13 (0.12)

(Scrit), and convergence based on expressions evaluated (ConvE). For more details on the metrics,

see Section 9.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

On the Monitoring of Decentralized Specifications :55

Table 8. Metrics for Chiron traces. Cells contains mean and standard deviation in parentheses.

Alg. Spec δt #Msgs Data Smax Scrit ConvE

Orch

1 0.77 (0.42) 2.95 (0.00) 87.46 (0.00) 0.00 (0.00) 0.00 (0.00) 0.74 (0.00)

2 1.00 (0.00) 2.95 (0.00) 87.46 (0.00) 0.00 (0.00) 0.00 (0.00) 0.74 (0.00)

3 0.99 (0.10) 3.42 (0.02) 101.62 (1.00) 0.00 (0.00) 0.00 (0.00) 0.75 (0.00)

5 0.94 (0.24) 2.95 (0.00) 87.46 (0.00) 0.00 (0.00) 0.00 (0.00) 0.74 (0.00)

15a 1.00 (0.00) 2.95 (0.00) 87.46 (0.00) 0.00 (0.00) 0.00 (0.00) 0.74 (0.00)

15b 1.00 (0.00) 3.00 (0.01) 88.90 (0.16) 0.00 (0.00) 0.00 (0.00) 0.75 (0.00)

Migr

1 1.66 (0.03) 0.02 (0.00) 0.52 (0.00) 8.00 (0.00) 2.03 (0.00) 0.74 (0.00)

2 1.00 (0.00) 0.57 (0.00) 13.09 (0.10) 4.00 (0.00) 3.10 (0.01) 0.74 (0.00)

3 1.86 (0.00) 0.88 (0.01) 70.23 (1.00) 13.00 (0.00) 9.76 (0.05) 0.75 (0.00)

5 1.67 (0.00) 0.02 (0.00) 0.52 (0.00) 8.00 (0.00) 2.03 (0.00) 0.74 (0.00)

15a 1.00 (0.00) 0.97 (0.00) 10.71 (0.04) 4.00 (0.00) 3.90 (0.00) 0.74 (0.00)

15b 1.00 (0.00) 1.00 (0.00) 19.36 (0.35) 9.02 (2.00) 7.00 (0.03) 0.75 (0.00)

Migrr

1 1.98 (0.00) 1.01 (0.01) 50.19 (0.33) 9.80 (1.37) 5.29 (0.07) 0.74 (0.00)

2 1.81 (0.02) 1.01 (0.01) 212.55 (3.17) 12.00 (0.00) 5.82 (0.05) 0.74 (0.00)

3 2.37 (0.03) 0.89 (0.02) 147.00 (3.97) 15.97 (0.22) 10.65 (0.09) 0.75 (0.01)

5 1.98 (0.01) 1.01 (0.00) 50.16 (0.30) 9.80 (1.35) 5.28 (0.06) 0.74 (0.00)

15a 1.99 (0.01) 1.01 (0.01) 83.80 (0.34) 8.64 (0.94) 4.91 (0.01) 0.74 (0.00)

15b 2.50 (0.01) 1.00 (0.00) 136.05 (0.27) 16.86 (0.35) 11.41 (0.01) 0.75 (0.00)

Chor

1 1.01 (0.00) 4.89 (0.00) 44.02 (0.00) 20.00 (0.00) 15.88 (0.32) 0.20 (0.01)

2 133.86 (0.17) 2.95 (0.00) 26.52 (0.00) 2798.38 (211.11) 21.41 (0.74) 0.67 (0.02)

3 1.22 (0.04) 4.40 (0.13) 39.64 (1.16) 23.65 (0.87) 18.18 (0.93) 0.33 (0.02)

5 1.01 (0.00) 4.89 (0.00) 44.02 (0.00) 20.00 (0.00) 15.85 (0.33) 0.20 (0.01)

15a 1.00 (0.00) 0.98 (0.00) 8.84 (0.00) 10.00 (0.00) 9.25 (0.07) 0.47 (0.01)

15b 116.52 (1.19) 2.00 (0.00) 18.00 (0.00) 3387.04 (316.16) 28.01 (1.13) 0.71 (0.00)

E CHOREOGRAPHY SETUP PHASE
Choreography as presented in [15] splits the initial LTL formula into subformulas and delegates

each subformula to a monitor on a component. Thus choreography presents a complicated setup
phase. In this section, we present the setup phase. As such, we present the generation of the

decentralized specification from a start LTL formula.

Choreography begins by taking the main formula, then deciding to split it into subformulas.

Each monitor will monitor the subformula, notify other monitors of its verdict, and when needed

respawn . Recall from the definition of ∆′ (see Definition 5.4), that monitoring is recursively applied

to the remainder of a trace starting at the current event. That is, initially we monitor from e0 to
en and then from e1 to en and so forth. To do so, it is necessary to reset the state of a monitor

appropriately, this process is called in [15] a respawn. Once the subformulas are determined, we

generate an automaton per subformula to monitor it. Then, we construct the network of monitors

in the form of a tree, in which the root is the main monitor. Verdicts for each subformula are then

propagated in the hierarchy until a verdict can be reached by the root monitor.

A choreography monitor is a tuple ⟨id,Aφid , ref id , coref id , respawnid ⟩ where:
• id denotes the monitor unique identifier (label);

• Aid the automaton that monitors the subformula;

• ref id : 2
Mons

the monitors that this monitor should notify of a verdict;

• coref id : 2
Mons

the monitors that send their verdicts to this monitor;

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

:56 Antoine El-Hokayem and Yliès Falcone

• respawnid : B2 specifies whether the monitor should respawn;
To account for the verdicts from other monitors, the set of possible atoms is extended to include the

verdict of a monitor identified by its id. Therefore, Atoms = (N × AP) ∪ (Mons × N). Monitoring is

done by replacing the subformula by the id of the monitor associated with it.

Before splitting a formula, it is necessary to determine the component that hosts its monitor.

The component score is computed by counting the number of atomic propositions associated with

a component in the subformula.

scor(φ, c) : LTL × C → N

= match φ with

| a ∈ AP →

{
1 if lu(a) = c

0 otherwise

| op ϕ → scor(ϕ, c)

| ϕ op ϕ ′ → scor(ϕ, c) + scor(ϕ ′, c)

The chosen component is determined by the component with the highest score, using chc : LTL→
C:

chc(φ) = argmax

c ∈C
(scor(φ, c))

In order to setup the network of monitors, firstly the LTL expression is split into subformulas

and the necessary monitors are generated to monitor each subformula. The tree of monitors is

generated by recursively splitting the formula at the binary operators. We present the setup phase

as a tree traversal of the LTL formula to generate the monitor network, merging nodes at each

operator, which is a different flavor of the generation procedure in [15]. Given the two operands,

we choose which operands remains in the host component, and (if necessary) which would be

placed on a different component. Therefore, we add the constraint that at least one part of the

LTL expression must still remain in the same component. Given two formulas φ and φ ′ and an

initial base component cb we determine the two components that should host φ and φ ′ with the

restriction that one of them is cb :

c1 = chc(φ), c2 = chc(φ ′)

s1 = scor(φ, cb), s2 = scor(φ ′, cb)

split(φ,φ ′, cb) =


⟨cb , cb ⟩ if c1 = c2 = cb
⟨c1, cb ⟩ if (c1 , cb)

∧ (c2 = cb ∨ s2 > s1)

⟨cb , c2⟩ otherwise

Algorithm 3 displays the procedure to split the formula. For each binary operator, we determine

which of the operands needs to be hosted in a new component. The result is a tuple: ⟨root,N , E⟩
where:

• root is the root of the tree;
• N is the set of generated monitor data;

• E is the set of edges between the monitors.

Monitor data is a pair ⟨id, spec⟩ that represents the id of the monitor and the formula that it

monitors.

• First, chc determines the host component where the root monitor resides.

• Second, the AST of the LTL formula is traversed using netx, which splits on binary operators.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

On the Monitoring of Decentralized Specifications :57

Algorithm 3 Setting up the monitor tree

1: procedure NET _CHOR(φ ,C ,M)

2: id ← 0

3: ch ← chc(φ)
4: ⟨root ,mons , edдes ⟩ ← netx(φ , id , ch)
5: return ⟨{root } ∪mons , edдes ⟩
6: end procedure
7: procedure netx (φ , idc , ch)
8: if φ ∈ AP then
9: m ← ⟨φ , idc ⟩
10: return ⟨m, ∅, ∅⟩
11: else if φ matches op e then ▷ Unary Operator

12: o ← netx(e , idc , ch)
13: m ← ⟨op o .f , idc ⟩
14: return ⟨m, o .N , o .E ⟩
15: else if φ matches e op e ′ then
16: ⟨c1, c2 ⟩ ← split(e , e ′, ch ,M)
17: if c1 = c2 = ch then ▷ No Split

18: l ← netx(e , idc , ch)
19: r ← netx(e ′, idc , ch)
20: m ← ⟨l .f op r .f , idc ⟩
21: return ⟨m, l .N ∪ r .N , l .E ∪ r .E ⟩
22: else if c1 = ch then ▷ Split Right Branch

23: idn ← newid()

24: l ← netx(e , idc , ch)
25: r ← netx(e ′, idn , c2)
26: m ← ⟨l .f op ⟨idn ⟩, idc ⟩
27: return ⟨m, (l .N ∪ r .N ∪ r .root), (l .E ∪ r .E ∪ {⟨idn , idc ⟩)}⟩
28: else ▷ Split Left Branch

29: idn ← newid()

30: l ← netx(e , idn , c1)
31: r ← netx(e ′, idc , ch)
32: m ← ⟨⟨idn ⟩ op r .f , idc ⟩
33: return ⟨m, (l .N ∪ r .N ∪ l .root), (l .E ∪ r .E ∪ {⟨idn , idc ⟩ })⟩
34: end if
35: end if
36: end procedure

– If both formulae can be monitored with the same monitor it does not split.

– Otherwise

(1) We recurse on the side kept, to further split the formula;

(2) We recurse on the side split, with a new host and id ;
(3) We merge the subnetworks by:

(a) Generating the host monitor with the formula resulting from the recursion;

(b) Connecting the split branch’s root monitor to the current host monitor;

(c) Adding the split branch’s root monitor to the set of additional monitors;

(d) Merging the set of additional monitors and edges from both branches.

Once the monitor data tree is created, monitors are created accordingly, generating an automaton

for the subformula, where some of its atomic propositions have been replaced with monitor ids.

Each monitor is initialized with the refs and corefs set based on the edges setup.

Remark 2 (Compacting the network). The monitor network can further be compacted as follows;
monitors with the same subformula are merged into one, and their refs and corefs will be the result of
the set union. However, one or more merged monitor will have to replace all occurrences of the id of the
other monitors in all subformulas of all monitors.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article . Publication date: August 2019.

	Abstract
	1 Introduction
	2 Methodological Overview
	2.1 Centralized Monitoring of a Centralized Specification
	2.2 Decentralized Monitoring of Centralized Specifications
	2.3 Decentralized Monitoring of Decentralized Specifications

	3 Common Notions
	3.1 The dict Data Structure
	3.2 Basic Monitoring Concepts

	4 Centralized Specifications
	4.1 Preliminaries
	4.2 The Execution History Encoding (EHE) Data Structure
	4.3 Decentralized Monitoring with EHE

	5 Decentralized Specifications
	5.1 Decentralizing a Specification
	5.2 Semantics of a Decentralized Specification

	6 Properties for Decentralized Specifications
	6.1 Decentralized Monitorability
	6.2 Compatibility

	7 Analysis
	7.1 Data Structure Costs
	7.2 Analyzing Existing Algorithms

	8 The THEMIS Framework
	9 Comparing Algorithms with THEMIS
	9.1 Synthetic Scenario
	9.2 The Chiron User Interface

	10 Related Work
	10.1 Monitoring by Formula Rewriting
	10.2 Monitoring Distributed Systems
	10.3 Fault-tolerant Monitoring
	10.4 Stream-based Monitoring

	11 Future Directions
	12 Conclusion
	References
	A Proofs
	B Chiron System Atomic Propositions
	C Changes in THEMIS
	D Detailed Comparison
	E Choreography Setup Phase

