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ABSTRACT  

 

 The nature of trace element carriers contained in sewage and combined sewer 

overflow (CSO) was investigated by TEM-EDX-Electron diffraction and SEM-EDX. During 

dry weather, chalcophile elements were found to accumulate in sewer sediments as early-

diagenetic sulfide phases. The sulfurization of some metal alloys was also evidenced. Other 

heavy metal carriers detected in sewage include metal alloys, some iron oxihydroxide phases 

and neoformed phosphate minerals such as anapaite. During rain events, the detailed 

characterization of individual mineral species allowed to differentiate the contributions from 

various specific sources. Metal plating particles, barite from automobile brake, or rare earth 

oxides from catalytic exhaust pipes, likely originated from road runoff, whereas PbSn alloys 

and lead carbonates were attributed to zinc-works from roofs and paint from building siding. 

Soil contribution was traced by the presence of clay minerals, iron oxihydroxides, zircons and 

rare earth phosphates. However, the most abundant heavy metal carriers in CSO samples were 

the sulfide particles eroded from sewer sediments. The evolution of relative abundances of 

trace element carriers during a single storm event, suggests that the pollution due to the “first 

flush” effect mainly results from the sewer stock of sulfides and previously deposited metal 

alloys, rather than from urban surface runoff. 

 

Keywords 

Heavy metal, Speciation, Runoff, Storm water, Combined sewer overflows, SEM, TEM, 

EDX. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

INTRODUCTION 

 

The impact of combined sewer overflows (CSO) upon quality of receiving aquatic 

systems is a major concern in environmental protection. In most cases, the pollution issued 

from CSO exceeds annual discharges from factories and sewage plants (Bedient et al., 1978; 

Ellis and Hvitved-Jacobsen, 1996). Contaminants in CSO are derived from a number of 

sources. Thus, materials from wet and dry atmospheric deposition, traffic-related activities 

(tire wear, vehicle brake emissions, fluid leakages), or released from roofs and building 

siding, may be flushed by rainfall and collected in the municipal sewer system (Mason et al., 

1999; Davis et al., 2001). In addition, sewage and sewer-deposited material can also represent 

a significant contribution to CSO pollutant load (Gromaire et al., 2001). 

Early work has focused on estimating the relative contributions of specific sources to 

CSO pollutant load in terms of total amount of heavy metals, hydrocarbons, nutrients... 

(Chebbo et al., 1995; Lee and Bang, 2000). However, this approach only provides a rough 

assessment of contaminant mobility and bioavailability in receiving waters, since pollutant 

behavior is mainly governed by its speciation (Morrison and Revitt, 1987; Florence et al., 

1992; Perin et al., 1997). Indeed, heavy metals may be present under numerous 

physicochemical forms such as soluble, adsorbed on mineral surfaces, complexed with 

organic matter, precipitated or entrapped in mineral phases. Exchangeable forms are usually 

considered as immediately bioavailable species (Morrison and Revitt, 1987). The partitioning 

of metal contaminants between specific forms is classically determined using sequential 

extraction methods (Tessier et al., 1979; Lake et al., 1984; Serne, 1975). Thus, sorbed metal 

ions, metals associated with carbonates, iron and manganese oxihydroxides, sulfides, can be 

distinguished by adding appropriate reagents to the sample. Such procedures have been 

applied to separate CSO contributors such as street deposits (Morrison and Revitt, 1987), roof 

deposits (Förster, 1996), gully pot solids (Morrison et al., 1989; Butler et al., 1995) and 

combined sewer suspended solids of dry and wet weather (Gromaire et al., 2001). 

However, it is now recognized that metal fractions obtained by selective chemical 

extraction procedures are only operationally defined, as incomplete dissolution of the target 

phase, dissolution of nontarget species, incomplete removal of dissolved species due to 

readsorption or precipitation, may occur (Ostergren et al., 1999; La Force and Fendorf, 2000). 

Furthermore, such speciation does not identify with certainty the various phases that may 

contain heavy metals. An alternative approach is to use microscopy techniques such as 

Transmission (TEM) and Scanning (SEM) electron microscopies combined with energy-



 

 

dispersive X-ray spectrometry (EDX). TEM-EDX-Electron diffraction and SEM-EDX 

observations in Backscattered Electron Imaging mode allow direct determination of heavy 

metal occurrences and provide combined data on both mineralogy and texture of heavy metal 

carriers (de Boer and Crosby, 1995; Zaggia and Zonta, 1997; Buatier et al. 2001). Such 

information is essential for the description of trace element cycles in urban environment 

(Zaggia and Zonta, 1997). Knowledge of heavy metal-bearing species can also be useful to 

improve the management of sludges retained in detention basins or generated during 

physicochemical treatment of CSO. The aim of the present study was then to evaluate the use 

of TEM-EDX and SEM-EDX for determining the nature of heavy metal carriers contained in 

sewage and CSO. 

 

EXPERIMENTAL SECTION 

Study site 

Samples (sewage and combined sewer overflow) were taken from the sewer pipe 

“Libération”, up-stream Boudonville detention basin (figure 1). Boudonville watershed lies in 

the North West part of the city of Nancy (France) on the left bank of Meurthe River. The 

catchment area receives runoff from 246 ha of urban surfaces, both residential and 

commercial areas (~ 20000 inhabitants), and is essentially drained with a combined sewer 

system (Marchand et al., 1993). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Study site location and map of Boudonville catchment area. 
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The average slope of the watershed is 0.034m/m with about 40 % of impervious 

surface. To prevent flooding at the lower part of the watershed during storm events, three 

detention tanks have been built. In consequence, Boudonville watershed has been equiped 

with 8 rain-gauges and 20 limnimeters, and has been used as an experimental catchment area 

for hydraulic and pollution transport studies for the past two decades (Marchand et al., 1993; 

Laurensot, 1998). In this study, data of "Libération" limnimeter and of 2 rain-gauge stations 

close to the sampling site, were graciously provided by Service Hydraulique of Nancy Urban 

Community. 

 

Sample collection and preparation 

Dry and wet weather flows (weak intensity rain events of long duration and storm 

events), were collected between June 2001 and April 2002. Samples, taken from the sewer 

using either a 1L chemo-sampler (Fisher Scientific) or a peristaltic pump (Delasco “Z” - flow 

rate ~ 5 L/min) (fig. 2a), were collected in 10L polyethylene jerrycans, transported to the 

laboratory and processed in the first h after sampling. 

The preparation procedure is schematized in figure 2b. After gentle over-end agitation 

of jerrycans, 1 L samples of raw water were taken and allowed to settle in Imhoff cones for 

two hours. This sedimentation time was selected to mimic large particle removal in 

conventional depollution tanks (Michelbach and Weib, 1996). It allows to separate a 

“settleable fraction” from a “suspended fraction”. The “setteleable fraction” was centrifuged 

at 12000 rpm (15000g) for 20 minutes (Beckman –L8-55M), and the sediment thus obtained 

was recovered and freeze dried (Virtic-Sentry). The “suspended fraction” was filtered without 

stirring through a 0.45 µm pore size Nuclepore membrane (polycarbonate - diameter 60 mm), 

and the filter was air dried at room temperature. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Schematics of (a) sampling procedure and (b) sample preparation. 

 

Trace element speciation by electron microscopy 

 

Electron microscopy observations were performed with a Philips CM20 TEM (200 

keV) coupled with an EDAX energy dispersive X-ray spectrometer (EDX), and with a S-2500 

Hitachi SEM equipped with a Kevex 4850-S EDX. Trace element carriers were identified 

from elemental analysis of individual particles. Stoichiometric ratios were first calculated 

from atomic percentages given by EDX spectra, and then compared with known 

mineralogical compositions. Electron diffraction patterns provided by TEM were also used to 

specify the crystal structure of particles. 

About 1250 mineral particles from samples of sewage, weak rain events, and storm 

events (table 1), were examined over the period of study (800 SEM-EDX spectra and 450 

TEM-EDX spectra). For TEM imaging and microanalysis, the sample was re-suspended in 

ethanol under ultrasonication, and a drop of suspension was evaporated on a carbon-coated 

copper grid (EuroMEDEX, Mesh200-Car#CF200CU). A spot size of about 70nm was used to 
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record EDX spectra with a counting time of 40seconds. EDX calibration standards were run 

to obtain quantitative analyses of major and trace elements with a detection limit of about 100 

ppm. 

 

Table 1. Sampling dates and corresponding physicochemical characteristics of sewage and 

CSO during storms and weak rain events.  

 

Date (M/D/Y) Suspended 

solids (mg/L) 

Volatile solids 

at 550°C (mg/L) 

pH Alkalinity 
(meq/L) 

Sewage 

(Dry weather) 

06-03-2001 785 523 7.63 1.51 

10-30-2001 980 590 7.58 1.70 

02-28-2002 835 562 7.35 1.61 

04-18-2002 910 540 7.84 1.68 

CSO 

(weak rain 

event) 

03-08-2001 165 98 6.10 0.12 

09-19-2001 147 89 6.15 0.14 

10-23-2001 255 155 6.40 0.18 

02-25-2002 185 103 6.10 0.16 

CSO 

(storm event) 

 

05-14-2001 595 434 6.92 0.34 

 

07-06-2001 

Local time    19h30min 

                      19h37min 

                      19h42min 

                      19h45min 

                      20h07min 

                      20h15min 

                      20h21min 

 

 

750 

820 

840 

910 

650 

540 

720 

 

410 

600 

470 

560 

380 

320 

420 

 

7.32 

7.39 

7.44 

6.75 

7.02 

5.95 

6.00 

 

1.44 

1.18 

0.54 

0.46 

0.54 

0.34 

0.24 

08-30-2001 1275 1055 6.32 0.32 

 

Samples for SEM-EDX examination were sprinkled onto 2 cm
2
 plates and carbon 

vaporized. Backscattered electron imaging (BEI) was used to locate the particles of interest. 

In that mode, brightness is related to the average atomic number of materials, and the mineral 

particles appear as bright spots within the organic matrix of sediment. The relative abundance 

of a given trace element carrier can then be assessed by conducting systematic microanalysis 

of bright spots. It should nevertheless be noted that this procedure largely overlooks mineral 



 

 

phases with low-atomic-number elements such as clays and carbonates. Statistics were 

conducted on about 100 trace element carriers identified per event. In order to increase the 

emission of backscattered electrons, the SEM microscope was generally operated with a beam 

current of 3 pA and an accelerating voltage of 20 kV (analysed microvolume of about 6 µm
3
). 

However, to improve the quantification of low atomic number elements, EDX analysis was 

sometimes carried out at an accelerating voltage of 10 kV (sampling volume of 3 µm
3
). 

 

RESULTS AND DISCUSSION 

 

1. Trace element speciation in sewage. 

Typical electron micrographs and corresponding EDX spectra of trace element carriers 

found in sewage are illustrated in figure 3. Particles of anthropic origin such as metallic alloys 

were easily recognized (fig. 3a-b). The ternary alloy of chemical composition (Fe 70  0.7%, 

Ni 14.4  1.5%, and Cr 15.5  1%) identifies stainless steel which is used in a variety of 

outdoor and indoor materials such as kitchen ustensils or wall claddings (Kumar et al., 1994; 

Wallinder et al., 2002). The flake morphology of the particle in figure 3a suggests removal 

under corrosive conditions (Wallinder et al., 2002). Particles containing Ni (61%), Fe (18%), 

and Cr (21%), associated with uses such as electrical resistances or thermocouple materials 

(Marucco, 1995), were also observed. Pb-Sn alloys (fig. 3b), generally used for soldering in 

zinc-works, pyrophyllite particles carrying Zn (2-3 %), probably originating from cosmetic 

products, provide other examples of heavy metal carriers directly related to human activity. 

Titanium oxides of various stoichiometry (TiO2 rutile and anatase, TiO, and Ti2O3) used as 

pigments, and zeolites present in washing powders, were also frequently found in sewage 

samples but always devoid of trace elements. 

 In contrast, mineral particles such as anapaite (Ca2-xFex)(PO4)2, 4H2O, readily 

identified in TEM (fig. 3c), are likely formed within the sewer system. Indeed, this phosphate 

mineral is characteristic of slightly alkaline/reducing conditions, and is frequently detected in 

brackish and freshwater sediments (Stamatakis and Koukouzas, 2001). Anapaite particles 

were found to entrap zinc traces in their structure. Other phosphate species identified in 

sewage samples, include whitlokite (Ca,Mg)3(PO4)2, and apatite (Ca5-x/2Yx/2)(PO4)3-x(CO3)x. 

Even though apatite has been reported to regulate heavy metal concentration in natural 

environments (Chen et al., 1997), neither phases carried trace elements. In addition, fluoride 

or chloride substitutions were never detected in the apatite structure. 

 



 

 

 

Figure 3. Electron micrographs and corresponding EDX spectra of typical particles in 

sewage. (a) BEI of stainless steel particle and (b) of Pb-Sn alloy. (c) TEM image of anapaite. 

(d) SEI of transformed amalgam particle. 
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Sulfide particles found in sewage should also correspond to neoformed species. For 

instance, figure 3d shows an electron micrograph of a binary sulfide of silver and mercury. 

The EDX spectrum reveals a non-stoichiometric relationship between Ag, Hg, and S, 

characterized by a pronounced deficit in S. Some sulfur release under the electron beam may 

occur during analysis, and could account for such a deficit. However, the agglomerate aspect 

of the particle and the Ag/Hg association are reminiscent of dental amagalm (Chern Lin et al., 

2002; Acciari et al., 2001). As Ag and Hg are known to present a strong affinity for sulfur 

(Hesterberg et al., 2001), the observed particle could correspond to the transformation within 

the sewer of a piece of dental amalgam with fixation of reduced sulfur under anaerobic 

conditions. Another sulfide particle containing Hg, Ag, Cu, and Sn, could similarly be derived 

from the sulfurization of a dental amalgam. However, the most common metal sulfide 

minerals in sewage were monosulfides of Fe, Zn, and Pb, with some binary sulfides of Zn-Fe 

and Cu-Fe. In natural sediments, sulfide formation is usually associated with bacterial sulfate 

reduction, H2S thus produced subsequently reacting with Fe2+ and trace metals (Morse et al., 

1987; Herbert Jr. et al., 1998; Taillefert et al., 2000). As anoxic conditions are often 

encountered in stagnant portions of the sewer system (Hvitved-Jacobsen et al., 1995; Butler et 

al., 1995), precipitation of sulfide species can then be expected. 

 

Iron oxides and oxihydroxide particles such as goethite, hematite, and maghemite, 

were frequently identified in dry weather. Although such minerals are generally considered as 

potential sinks for heavy metals (Bellanca et al., 1996; Fanfani et al., 1997), EDX spectra 

revealed that less than one third of iron oxides found in sewage were carriers of trace 

elements such as Cr, Cu, and Zn. 

 

2. Trace element speciation in CSO (wet weather). 

 

Both sewage and surface runoff contribute to CSO. Runoff sources of trace elements 

include wet and dry atmospheric deposition, and specific release from urban surfaces such as 

highways (tires, automobile brakes), roofs and building siding, and from soil surfaces 

(garden, outcrops) (Mason et al., 1999; Davis et al., 2001). Resuspension of sewer sediment 

has also been demonstrated to represent a significant contaminant input (Gromaire et al., 

1998; 2001). As shown in figures 4, 5, and 6, mineral particles from these various sources can 

be identified in CSO. 



 

 

 

Contribution from urban surfaces  

 

Particles of barium sulfate, 10 to 20 µm in size, were frequently observed in wet 

weather samples (fig. 4a). The electron diffraction pattern revealed crystallisation in an 

orthorhombic lattice, thus identifying barium sulfate particles as barite. Among the potential 

sources of barite in urban environment, automobile brake (inset of fig. 4a) and road paint are 

the most likely in wet weather. Barite particles would then originate from road runoff. 

Micron size W–Cr-Co carbide granules (fig. 4b) are also probably flushed from the 

road surface. Indeed, these carbide particles are especially used as metal coating in vehicles to 

prevent wear and corrosion (Kusoffsky et al., 1997). The coating is applied to steel surface by 

air plasma spraying in presence of oxygen in order to promote the nucleation of oxycarbide 

(Murthy et al., 2001). This may explain the relatively high percentages of oxygen and Fe in 

the EDX spectrum. 

 

Rare earth oxides such as the La-Ce particle shown in figure 4c, were exclusively 

found in CSO. These particles present excellent catalytic properties and they are generally 

used in association with cuprous oxide for gaz depollution in exhaust-pipes (Pestryakov and 

Davidov, 1996; Kili and Normand, 1999). Cuprite particles (Cu2O) were also evidenced in 

wet weather samples, and may be considered as a contribution from drained urban surfaces. 

 

Franklinite (Mn1-xZnxFe2O4) (fig. 4d), a face-centered cubic structure in which Zn is 

substituted for Mn, was identified in CSO by TEM-EDX. Although franklinite presents some 

applications as inductor in transformers and in loud-speakers (Guaita et al., 1999), this high 

temperature spinel is mainly known to be emitted during Zn-ore smelting operations and 

household waste incineration (Jdid et al., 2000); it is then likely to result from atmospheric 

deposition. 

 

 

 

 

 

 



 

 

 

Figure 4. Electron micrographs and corresponding EDX spectra of typical urban surfaces 

particles. (a) BEI of barite in CSOs and barite of automobile brake (inset), (b) BEI of W-Cr-
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Co carbide. (c) SEI of rare earth oxide particle. (d) TEM image of franklinite particle and the 

corresponding diffraction pattern (inset). 

Contribution from sewer sediments 

CSO samples were found to be substantially enriched in sulfide particles. EDX 

analyses and microscopic observations revealed that the sulfide species occured in a wide 

range of composition and textural forms. Thus, iron sulfides were encountered both as 

framboid-like and well-crystallized particles (fig. 5a), with Fe/S ratios close to 1:1, 1:2 and 

3:4. Such iron-to-sulfur ratios identify mackinawite (FeS), pyrite (FeS2), and greigite 

(Fe3S4), respectively. Coexistence of iron sulfides of variable composition has already been 

reported in freshwater canal sediments and anoxic marine sediments (e.g. Large et al., 2001; 

Cutter and Kluckholn, 1999; Schippers and Jorgensen, 2002). Mackinawite is a known 

precursor to pyrite formation (Herbert Jr et al., 1998; Lennie et al., 1997), whereas greigite 

has been shown to be easily formed by oxidation of mackinawite (Lennie et al., 1997), and is 

usually present in environments which show a seasonal oxic/anoxic cyclicity (Hilton, 1990). 

Similarly, EDX microanalyses revealed that Zn-monosulfides occured as two main 

forms with Zn/S elemental ratios of approximate 1:1 and 2:3. The 1:1 ZnS mineral phase 

corresponds to sphalerite which is commonly found in anaerobic sediments (Labrenz et al., 

2000; O’Day et al., 2000; Large et al., 2001). On the other hand, the 2:3 stoichiometry has 

only been evidenced as nanoclusters that are intermediates in ZnS mineral formation (Luther 

III et al., 1999). Pb-monosulfide minerals were also found in CSO samples, but the overlap of 

S Kand Pb L radiations make the EDX assessment of lead-to-sulfur ratios inaccurate. 

Zinc, lead, and iron monosulfides represented respectively, 48.6%, 22.4%, and 9.3% 

of all sulfide species observed in CSO samples. Other chalcophile elements occured as binary 

sulfides with stoichiometries close to that of chalcostibite (CuSbS2) (fig. 5b) or chalcopyrite 

(CuFeS2), and as traces associated with iron sulfide phases. All these sulfides certainly 

precipitate as a consequence of the reaction between dissolved heavy metals and reduced 

sulfur species derived from microbially-mediated sulfate reduction (Norsker et al., 1995). 

They accumulate in sewer sediments during dry weather and are resuspended in CSO during 

rain events. Such interpretation is consistent with Gromaire's observation that dissolved zinc, 

cadmium, copper, and lead concentrations are drastically reduced between the inlet and the 

outlet of the combined sewer (Gromaire et al., 2001). These authors attributed this decrease to 

a change in metal speciation within the sewer system. 

 

 



 

 

 

Figure 5. Electron micrographs and corresponding EDX spectra of typical particles from 

sewage sediments. (a) BEI of framboidal and well crystallized pyrite (inset). (b) SEI of 
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Chalcostibite; (c) SEI and BEI (inset) of Zn-sulfide grains and barite. (d) SEI of transformed 

Pb-Sn alloy. In situ formation of sulfides is also evidenced by the observation of sulfide 

coating on minerals allochtonous to the sewer. Thus, figure 5c shows SEI and BEI (inset) of 

Zn-sulfide grains grown on a barite surface. Even though numerous sources of sulfur such as 

detergent surfactants or organic matter may be recognized in sewage (Matthijs et al., 1995; 

Hvitved–Jacobsen et al., 1995), the association barite-Zn sulfide suggests that SO4 from 

barite may be mobilized as sulfide by sulfate-reducing bacteria. The solid-phase 

transformation of some mineral particles in presence of H2S, already suggested by “dental 

amalgam-sulfides” found in dry weather samples, is further substantiated by the observation 

of particles such as the Pb-Sn-S phase presented in figure 5d. This particle displays obvious 

cleavage planes which were absent in the original alloy (fig. 3b), and EDX microanalysis 

revealed a small non-stoichiometric percentage of associated sulfur. This indicates that the 

Pb-Sn alloy is instable in anoxic sewer sediments and evolves towards a sulfide phase. 

 

Contribution from soil surfaces 

Illite and kaolinite particles were frequently observed in wet weather samples by 

TEM-EDX (fig. 6a). The increased abundance of kaolinite was further confirmed by the 

presence of characteristic bands at 3698 and 3620 cm-1 (respectively, anti-symetric stretching 

of external and internal OH in kaolinite) in infrared spectra of freeze-dried CSO settleable 

fraction (El Samarani, 2003). Illite and kaolinite are known to be dominant minerals in terra 

fusca soils formed on the Bajocian calcareous parent rocks of the catchment area (Guillet et 

al., 1984). As a consequence, the presence of illite and kaolinite in wet weather samples 

indicates a contribution from soil surface runoff. Figure 5a shows an illite particle with a 

minor amount of Zn. Clay minerals have been shown to be potential trace element carriers 

(Du et al., 1997). However, most clay particles identified in CSO samples were free of heavy 

metals. Phosphate phases found in dry weather samples such as anapaite or apatite, were not 

detected in CSO presumably because of sewage dilution by runoff. On the other hand, a 

variety of rare earth phosphate minerals such as La-Ce (monazite fig. 6b), La-Y, Eu-Th and 

La-Eu phosphates were identified in CSO. These phosphate minerals, originally formed in 

igneous rocks, are known to be stable phases in the sedimentation cycle (Cliff et al., 1991), 

and probably come from the sedimentary rocks of the catchment area. Also commonly 

observed in CSO samples are slightly rounded zircon particles (fig. 6c). Zircon, considered as 

the most resistant mineral to weathering and dissolution (Velbel, 1999), should also reflect 

outcrop erosion during rain events. 



 

 

 

Figure 6. Electron micrographs and corresponding EDX spectra of particles found in 

CSO and likely originating from soil surfaces. (a) TEM image of kaolinite. (b) SEI 

of  monazite.  (c)  SEI  of  zircon  particles.  (d)  TEM  image  of  hematite  and 

corresponding electron diffraction pattern (inset).	
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 Iron oxihydroxide minerals such as ferrihydrite, goethite, and hematite (fig. 6d), were 

present in wet weather samples. However, in contrast with iron oxide phases observed in 

sewage, EDX microanalyses indicated that about half of iron particles in CSO entrapped 

heavy metal contaminants (Zn, Cu, Cr), thus suggesting a different origin (table 2). The likely 

source of iron oxide particles during rain events is the terra fusca soil where goethite and 

hematite have been previously described (Guillet et al., 1984). 

 

Table 2. Percentage of contaminated iron oxihydroxide species in settleable and suspended 

fractions of sewage and CSO of storms and weak rain events (n=number of identified 

particles). 

Particle fraction 

Contaminated iron oxihydroxide species 

Sewage (dry weather) CSO (weak rain) CSO (storm) 

Settleable  29% (n=65) 32% (n=70) 40% (n=64) 

Suspended 33% (n=64) 54% (n=68) 49% (n=72) 

 

Such contribution from soil runoff can be evidenced by plotting the relative 

abundance of particles identified by SEM-EDX as a function of time for a given storm event 

(6 july 2001). Indeed, figure 7a reveals that the highest proportion of iron oxihydroxides is 

shifted with regard to the peak of flow rate. This can be explained by the time needed to 

mobilize and transport particles from soil surfaces to the combined sewer. Such an 

interpretation is further supported by the fact that rare earth phosphates and most zircon 

particles observed in this storm event, were found in the three samples collected after 20h00. 

 On the other hand, the evolution of sulfide abundance closely follows the flow rate 

dynamics (fig. 7b). This agrees with a pattern of sediment resuspension and redeposition as 

flow rate changes in the combined sewer during the rain event. In parallel of EDX 

microanalyses, a sequential extraction for heavy metals (Zn, Pb, Cu, Cd, Cr) was conducted 

on CSO samples. It revealed that the oxidizable fraction represents the dominant contribution 

for Zn (30-46%), Cu (31-55 %), and Cd (35-56 %), while the exchangeable fraction was 

relatively insignificant for the same metals (El Samrani, 2003). As a consequence, the “first 

flush” effect, characterized by similar trends in flow rate and in heavy metal concentrations 

(Morrison et al., 1984), can be explained not only by urban surfaces runoff, but also by the 

mobilization of sulfide minerals formed in sewer sediments. In that case, the first flush would 



 

 

remain related to the length of the dry period preceding the rain (Sonzogni et al., 1980), as the 

stock in sulfide phases should principally increase during dry weather. Copper was also 

reported as mainly originating from the sewer sediment by Gromaire et al (2001). 

 

 

Figure 7. Flow rate and relative abundances of (a) iron oxyhydroxides and (b) heavy element 

sulfide particles during a storm event calculated with respect to the sum of the trace element 

carriers identified by SEM-EDX. 
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3. Abundance of heavy metal carriers 

 

 The averaged distributions of trace element carrier abundances for sewage and CSO 

samples are illustrated in figure 8. Interestingly, sewage and CSO samples from storm events 

display similar patterns for settleable and suspended fractions, whereas the proportions of iron 

oxides and sulfide phases drastically differ in fractions of CSO samples generated by weak 

rain events. Many factors such as size distribution, grain shape, and density, influence the 

settling velocity of particles. It is then unlikely that, after 2 hours of settling, the relative 

abundances of various trace element carriers can be similar in settleable and suspended 

fractions. As the amount of volatile solids is particularly high in sewage and storm event 

samples (table 1), one possible explanation is that heavy metal carriers become enmeshed in 

organic matter during transport, and the deposition is then controlled by the hetero-aggregates 

thus formed. 

 

 

Figure 8. Distribution of trace element carriers relative abundances identified by SEM-EDX 

within suspended and settleable fractions of sewage and CSO during storms and weak rain 

events. 

 



 

 

 It must be pointed out that the proportions of trace element carriers such as carbonates, 

clays, and organic matter, are largely underestimated by electron microscope examination if 

not completely overlooked. Thus, sequential extractions indicated that, in CSO samples, the 

dominant fraction of Pb was associated with carbonates and phosphates (36-51 %), while Cr 

showed a relatively high exchangeable fraction (9-16 %) (El Samrani, 2003). Particles of lead 

carbonates were detected by SEM-EDX in wet weather samples. Such lead carriers have been 

reported to be released from weathered paints (Barnes and Davis, 1996; Davis and Burns, 

1999), although lead compounds such as cerusite are now forbidden in most paints. 

 

Moreover, barite particles (96 % of sulfates) have been described in CSO as 

originating from paint and brake wear. However, their relatively high relative abundance 

(16%) in sewage with respect to the other carriers suggests that another sources of barite such 

as medical application, may also contribute to their presence in sewage. 

 

Finally, it was noticed that tunsgten carbide and Pb-Sn alloys became much more 

frequent than stainless steel particles in wet weather samples. Such behavior is consistent with 

a re-suspension of high density alloys from sewer sediment during CSO events. 

 

Concluding remarks  

 

The main trace element carriers identified by TEM-EDX and SEM-EDX in sewage 

and combined sewer overflow, are summarized in table 3. Most metal contaminants are 

present under various mineral forms. Thus, in CSO samples, Zn was found associated with 

iron oxihydroxides, phosphates, clays, and occured predominantly as sulfide species. The 

chemical extraction also indicated that Zn was present to a lesser extent as exchangeable ions. 

Such a variety of physicochemical species implies that sludge retained in detention basins or 

generated by CSO treatment can only be disposed of in controlled landfills. In particular, such 

sludge can not be applied to land as heavy metals contained in sulfides will be released under 

oxidizing conditions. Electron microscope investigations always raise the problem of results 

representativity, especially on heterogeneous samples such as those studied here. 

Nevertheless, this approach appears rather fruitful to unravel geochemical cycling of heavy 

metals in urban environment. 

 



 

 

 

 

 

Table 3. Trace elements and corresponding carriers in sewage and CSO. 

Sewage 

Dry weather 

Alloys and metals (Pb) (Ag) (Fe, Cr) (Fe, Ni, Cr) 

Iron oxihydroxides (Pb), (Cu), (Cr), (Mn), (Cr, Mn), (Zn, Cu) 

Carbonates (Fe, Pb) 

Phosphates (Fe), (Zn) 

Sulfides 
(Zn) (Pb) (Fe) (Ag) (Cu) (Cu, Cr, Fe) 

(Cu, Sn, Fe) (Cu, Fe, Sb, Zn) (Ag, Hg) 

Sulfates (Ba) (Ba, Sr) 

Clays (Zn) 

Combined 

Sewer 

Overflow 

Alloys and metals 
(Pb) (Ag) (W) (Ni, Sn) (Fe, Cu) (Fe, Ni, Cr) 

(Fe, Ni, Mn, Cr) (W, Fe, Cr, Co) 

Iron oxyhydroxides (Fe, Zn) (Fe, Zn, Mn) (Fe, Zn, Cr) (Fe, Pb, Cu) 

Carbonates (Pb) 

Phosphates (La, Ce) (Zn, Fe) (Zn, Pb) (Y, Er, Yb) 

Sulfides 
(Zn) (Pb) (Fe) (Ag) (Cu) (Zn, Pb) (Zn, Fe) (Fe, Cu) 

(Fe, Mn) (Cu, Zn, Fe) (Ag, Hg, Sn, Cu) 

Sulfates (Ba) (Ba, Sr) 

Clays (Zn) 
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