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Abstract. In this paper we are concerned with generalised L1-minimisation
problems, i.e. Bolza problems involving the absolute value of the control with
a control-affine dynamics. We establish sufficient conditions for the strong
local optimality of extremals given by the concatenation of bang, singular and
inactive (zero) arcs. The sufficiency of such conditions is proved by means of
Hamiltonian methods. As a by-product of the result, we provide an explicit
invariant formula for the second variation along the singular arc.

1. Introduction

L1-minimisation problems, that is, optimal control problems aiming to minimise
the L1 norm of the control, have shown to model quite effectively fuel consump-
tion optimisation problems in engineering [CCC16, Che16, Ros06, Sak99] and some
systems appearing in neurobiology [BDJ+08]. In a recent paper dealing with the
problem of minimising the fuel consumption of an academic vehicle [BO20], a gen-
eralised version of this problem is studied: the cost to be minimised is the absolute
work, modelled as the integral of the absolute value of the control, weighted by the
absolute value of a function dependent on the state (such kind of problems have
been called generalised L1 optimal control problems in [CP19]).

Besides the well known solutions given by concatenations of singular and bang
arcs, generalised L1-optimal control problems are known to present a new category
of extremal arcs, in which the control is neither singular nor bang, that is, its value
is uniquely determined by Pontryagin Maximum Principle, but is not an extremum
point of the control set. In these arcs the control is identically zero, so they are
commonly called zero arcs, zero thrust arcs, inactivated arcs or cost arcs. The
property of L1 minimisation of generating zero arcs is well known and exploited in
practical situations, see for instance [NQN15].

The Pontryagin Maximum Principle, suitably generalised for non-smooth frame-
works (see e.g. [Cla89]), provides a set of necessary conditions for the optimality of
admissible trajectories. The aim of this paper is to give a set of sufficient conditions
for the optimality of admissible trajectories that satisfy the Pontryagin Maximum
Principle and whose associated extremal contains bang, singular and inactivated
arcs.
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Before proceeding with further discussion, let us state the problem in detail. Let
M be a smooth n-dimensional manifold, ψ : M → R a smooth function, f0, f1 two
smooth vector fields on M . Finally let T > 0 be fixed and let q0, qT be two given
points in M . Consider a Bolza optimal control problem of the following form:

(1.1) minimise

∫ T

0

|u(t)ψ(ξ(t))| dt

over all absolutely continuous trajectories that are Carathéodory solutions of the
boundary value problem (admissible trajectories)

(1.2)





ξ̇(t) = (f0 + u(t)f1) ◦ ξ(t),
ξ(0) = q0, ξ(T ) = qT ,

u ∈ L∞([0, T ], [−1, 1]).

For a solution ξ̂ of the Cauchy problem (1.2), according to [ASZ98b], we adopt the
following notion of optimality.

Definition 1 (Strong local optimality). The trajectory ξ̂ is a strong local minimiser
of problem (1.1)-(1.2) if there exists a neighbourhood O of its graph in R×M such

that ξ̂ is a minimiser among the admissible trajectories whose graphs are contained

in O , independently of the values of the associated control function. We say that ξ̂
is a strict strong local minimiser if it is the only minimising trajectory whose graph
is in O.

Pontryagin Maximum Principle states that, if ξ̂ is locally optimal, then it must
be an extremal trajectory, i.e. the projection on the manifold M of the solution of a
suitable Hamiltonian system defined on the cotangent bundle T ∗M , see e.g. [AS04,
Cla89]. If we limit ourselves to consider normal extremals only, then such Hamilton-
ian system is determined by the values of the two Hamiltonian functions Φ±(ℓ) =
〈ℓ , f1(πℓ)〉 ± |ψ(πℓ)|, ℓ ∈ T ∗M , whose role is analogous to the one played by the
switching functions in smooth control-affine optimal control problems. In partic-
ular, when neither of the two functions vanishes, the maximised Hamiltonian is
realised by one and only one admissible control value, which, according to the sign
of these two functions, is either ±1 or 0. In the first case, in analogy with the
control-affine case, we say that we have a regular bang control, while in the latter
case we say that we have a zero or inactivated control; on the other hand, if either
Φ+(ℓ) or Φ−(ℓ) vanishes along a nontrivial arc of a Pontryagin extremal, then only
the sign of the control is prescribed, and we say that we have a singular control.

In [BO20] the authors consider a specific parameter-dependent problem fitting
in the class of problem (1.1)–(1.2). They show that, according to the values of
the parameters, the optimal extremal trajectories are given by the concatenations
of bang-zero-bang arcs or of bang-singular-zero-bang arcs. Inspired by this result,
we look for sufficient optimality conditions for such extremals: in [CP17, CP19],
we focus on extremals made by a concatenation of bang-zero-bang arcs; here we
consider the case of a concatenation of bang-singular-zero-bang arcs and provide
an adequate set of sufficient conditions.

Our approach, successfully applied also for other classes of problems (see for
instance [ASZ98a, ASZ02, PS04, PS11b, PS16, CS16, SZ16]) relies on Hamiltonian
methods. The main steps in these methods are the following:
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• if the flow generated by the maximised Hamiltonian is well defined, and the
maximised Hamiltonian is at least C2, find a Lagrangian submanifold Λ1 of
the cotangent bundle that projects injectively onto the base manifold, and
such that at each time t ∈ [0, T ] its image under the flow generated by the

maximised Hamiltonian projects one-to-one onto a neighbourhood of ξ̂(t)
in the base manifold;

• thanks to the local invertibility of this flow, lift all admissible trajectories,
with graph belonging to the neighbourhood of the graph of the reference
one, to Λ1;

• estimate the cost associated with every trajectory, by means of a line inte-
gral in Λ1.

As long as this construction is possible - that is, as long as the image of the
manifold via the flow generated by the maximised Hamiltonian is invertible - it is
possible to show that the reference trajectory is indeed a local minimiser.

In the series of papers [ASZ02, PS04, Ste08, CS10, PS11b], the existence of
a suitable manifold Λ1 is shown to be related to the coerciveness of the second
variation associated with some sub-problem of the original one. Indeed, the second
variation is written as an accessory linear-quadratic control problem on the tangent
space; by the classical theory of linear-quadratic systems (see e.g. [SZ97, Theorem
2.6]), if the second variation is coercive, then the image, under the linearised flow, of
the space of transversality conditions of the accessory problem projects injectively
onto the base manifold. A good candidate for the manifold Λ1 is thus given by
the image of such manifold of transversality conditions, under a suitably defined
symplectic (or anti-symplectic) isomorphism.

We stress that one of the main strengths of this approach relies on the fact
that all trajectories whose graph is close to the reference one can be lifted to Λ1,
regardless of the value of the associated control, thus yielding optimality in the
strong topology.

In the case of bang-bang extremals, the maximised Hamiltonian is not C2. Nev-
ertheless, the Hamiltonian methods described above can be applied with minor
adjustments, see e.g. [ASZ02, PS04, Pog06, PS08, PS11a]. When the extremal is
singular or is the concatenation of bang and singular arcs, then a more sophisti-
cated construction is required. In particular, it is no longer possible to use the flow
associated with the maximised Hamiltonian of the control system (see Section 5.1
for details). However, as observed for the first time in [Ste08], Hamiltonian methods
work even if the maximised Hamiltonian is replaced by a suitable over-maximised
Hamiltonian. In the present paper, this construction is made possible thanks to a
set of regularity assumptions (Assumptions 1-5), holding along the reference tra-
jectory.

The problem under study presents another tough issue: indeed, we are dealing
with a Bolza problem containing a singular arc. As it happens, for instance, for
singular extremals of the minimum-time problem or of a Mayer problem, the second
variation is degenerate, thus not coercive. This problem can be surmounted by
means of a Goh transformation, which provides a non-degenerate second variation,
defined on a larger Hilbert space. Moreover, since we are dealing with a Bolza
problem, the construction of such second variation is particularly elaborate and,
up to the authors’ knowledge, this is the first time it is computed, at least in the
invariant form we are using.
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The paper is organised as follows: in Section 2 we state the notations that we
are going to use throughout the paper; in Section 3 we state the first part of our
assumptions. In Section 4 we define the extended second variation. In Section 5,
by using the regularity assumptions, we construct the over-maximised flow and
in Section 6 we prove that the projected over-maximised flow emanating from an
appropriate Lagrangian manifold is locally invertible. Finally, in Section 7 we state
and prove the main result of the paper. The result is illustrated in Section 8 with
an example for which explicit analytical computations can be done. For the sake
of readability, some technical computations are postponed to the Appendices.

2. Notations

We denote with TM and with T ∗M the tangent bundle and the cotangent bundle
to M , respectively. π denotes the canonical projection of T ∗M on M ; the elements
of T ∗M are denoted with ℓ.

In the following, small letters f, g, k denote vector fields on the manifold M , and
the corresponding capital letters are used to denote the corresponding Hamiltonian
lift, i.e. F (ℓ) = 〈ℓ, f(πℓ)〉. Given a vector field f on M , the Lie derivative at a
point q ∈ M of a smooth function ϕ : M → R with respect to f is denoted with
Lfϕ(q) = 〈dϕ(q), f(q)〉, and L2

fϕ(q) = Lf

(
Lfϕ

)
(q). The Lie bracket of two vector

fields f, g is denoted as commonly with [f, g]. In particular, for Lie brackets of
indexed vector fields as f0, f1, we adopt the following notations:

fij = [fi, fj], fijk = [fi, fjk].

Analogously, Fij(ℓ) = 〈ℓ, fij(πℓ)〉 and Fijk(ℓ) = 〈ℓ, fijk(πℓ)〉.
The symbol ς denotes the Poincaré-Cartan invariant on T ∗M , defined as ςℓ =

ℓ ◦ π∗ ∀ℓ ∈ T ∗M . The symbol σℓ = dςℓ denotes the canonical symplectic form on
T ∗M . With each Hamiltonian function F we associate the Hamiltonian vector field
~F on T ∗M defined by

〈dF (ℓ) , ·〉 = σℓ(·, ~F (ℓ)).

In this paper, a special role is played by the switching time τ̂1 between the first
bang arc and the singular one. Thus, we shall always consider flows starting from
time τ̂1, evolving backwards in time up to time t = 0 or forward in time up to time
t = T . Capital cursive letters are used for the Hamiltonian flows associated with
some Hamiltonian vector fields: for instance, Ft denotes the flow, from time τ̂1 to

time t, associated with the Hamiltonian vector field ~F .

Throughout the paper, the superscript ·̂ is used for objects related to the refer-

ence trajectory ξ̂. In particular, û(t) denotes the control associated with ξ̂, f̂t the

vector field f0 + û(t)f1 and Ŝt its flow, i.e. Ŝt(q) is the solution at time t of the
Cauchy problem

{
ξ̇(t) = f̂t ◦ ξ(t),
ξ(τ̂1) = q.

Analogously, F̂t(ℓ) = 〈ℓ , f̂t(πℓ)〉 is the Hamiltonian associated with f̂t, and F̂t

denotes its associated Hamiltonian flow. Finally, we define the function ψ̂t : M → R

as ψ̂t = ψ ◦ Ŝt.
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3. Regularity assumptions

We consider an admissible trajectory ξ̂ of the control system (1.2) whose associ-
ated control û has the following structure:

(3.1) û(t) =





1 t ∈ (0, τ̂1),

ûS(t) ∈ (0, 1) t ∈ (τ̂1, τ̂2),

0 t ∈ (τ̂2, τ̂3),

−1 t ∈ (τ̂3, T ).

where 0 < τ̂1 < τ̂2 < τ̂3 < T . ξ̂ is called the reference trajectory. The times
τ̂i, i = 1, 2, 3 are called (reference) switching times and, analogously, the points

q̂i = ξ̂(τ̂i) are called (reference) switching points.
This section is devoted to the statement of the necessary conditions for optimality

and the discussion of the regularity assumptions along the reference trajectory.

Assumption 1. Along the reference trajectory, the cost ψ does not vanish for

t ∈ [τ̂1, τ̂2] and t = τ̂3. Without loss of generality, we assume that ψ ◦ ξ̂|[τ̂1,τ̂2] > 0.

Assumption 2. For every t ∈ [0, T ] such that ψ(ξ̂(t)) = 0, it holds L ˙̂
ξ(t)

ψ(ξ̂(t)) 6=
0.

Assumptions 1-2 deal with the behaviour of the function ψ; in particular, a di-
rect consequence of Assumption 2 is that the zeroes of the cost function ψ along

ξ̂ are isolated, thus finite. Since the zeroes of ψ are the only non-smoothness
points of the running cost, we can apply a classical version of PMP. Indeed, due to
non-smoothness, more general versions of PMP (see, e.g., [Cla89, Theorem 22.2],
[KL14]) would be required. Nevertheless, thanks to Assumption 2, we can rearrange
the optimal control problem into a hybrid control problem, as defined in [Cla89,
Section 22.5], setting the surface S = {(t, x, y) : ψ(x) = 0, y = x} as switching
surface. The analogue of the classical PMP for hybrid optimal control problems
is the Hybrid Maximum Principle (see [Sus99, Theorem 17.4.1] and [Cla89, The-
orem 22.26]) which, under Assumption 2, reduces to the standard smooth version
of PMP, see[AS04]. For this reason, here below we refer to the classical notions of
Pontryagin extremal and PMP.

Definition 2 (Pontryagin extremals). For every u ∈ [−1, 1] and for p0 ∈ {0, 1}, we
consider the pre-Hamiltonian function associated with the optimal control problem
(1.1)-(1.2)

h(ℓ, u) := F0(ℓ) + uF1(ℓ)− p0|uψ(πℓ)|,

and we define the maximised Hamiltonian as

Hmax(ℓ) = max
u∈[−1,1]

h(ℓ, u).

Let λ : [0, T ] → T ∗M be an absolutely continuous curve such that ψ(πλ(t)) vanishes
only for a finite number of times 0 < t1 < . . . < tk < T . λ is called a Pontrya-
gin extremal of problem (1.1)-(1.2), if there exist a constant p0 ∈ {0, 1} and an
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admissible control u(t) (called extremal control) such that

(λ(t), p0) 6= 0, ∀ t ∈ [0, T ],

λ̇(t) = ~h(λ(t), u(t)), a.e. t ∈ [0, T ],(3.2a)

h(λ(t), u(t)) = Hmax(λ(t)), a.e. t ∈ [0, T ],(3.2b)

πλ(0) = q0, πλ(T ) = qT .

If p0 = 1, then λ is called a normal Pontryagin extremal, if p0 = 0 we say that
λ is an abnormal Pontryagin extremal.

As discussed in the Introduction, in the case of normal extremals, the Hamilton-
ian functions

Φ±(ℓ) := F1(ℓ)± |ψ(πℓ)|
play the same role as the switching functions do in control-affine problems. Indeed,
if both Φ− and Φ+ are non-zero along an extremal, then the extremal control is
uniquely determined by equation (3.2b): in particular, it is zero if Φ− and Φ+ have
different signs, it is +1 if both are positive, and it is −1 if both are negative. If only
one between Φ− and Φ+ is zero, then PMP prescribes only the sign of the extremal
control. The last case, where both Φ− and Φ+ are zero, is highly degenerate and
in this case equation (3.2b) gives no information about the value of the extremal
control. For these reasons, Φ− and Φ+ are called switching functions. Subarcs of
a Pontryagin extremal are thus classified according to the signs of the switching
functions.

Definition 3. Let λ : [0, T ] → T ∗M be a normal Pontryagin extremal for Prob-
lem (1.1)-(1.2), and let I ⊂ [0, T ] be an open interval.

If Φ−(λ(t))Φ+(λ(t)) > 0 for every t ∈ I, then λ|I is called a regular bang arc.
If Φ−(λ(t))Φ+(λ(t)) < 0 for every t ∈ I, then λ|I is called an inactivated or

zero arc.
If Φ−(λ(t))Φ+(λ(t)) = 0 for every t ∈ I, then λ|I is called a singular arc.
In particular, if one between Φ−(λ(t)) and Φ+(λ(t)) is different from zero for

every t ∈ I, then λ|I is a non-degenerate singular arc. Else we call it degenerate.

Assumption 3. There exists a normal Pontryagin extremal λ̂ associated with the

reference control û such that πλ̂(t) = ξ̂(t) for every t ∈ [0, T ]. We assume that

λ̂|[0,τ̂1) and λ̂|(τ̂3,T ] are regular bang arcs, that λ̂|(τ̂1,τ̂2) is a non-degenerate 1 singular

arc, and that λ̂|(τ̂2,τ̂3) is an inactivated arc.

Notation. We set ℓ̂i = λ̂(τ̂i), for i = 0, 1, 2, 3, and ℓ̂T = λ̂(T ).
Moreover, we define the following constants:

ai = sign
(
ψ(q̂i)

)
, i = 1, 2, 3.

Thanks to Assumption 1, it follows that a1 = a2 = 1.

Remark 3.1. We recall that, if the reference extremal is optimal, then it must sat-
isfy PMP and the switching functions must satisfy the mild version of the inequal-
ities appearing in Definition 3; the only additional requirements in Assumption 3
are the regularity of the arcs and the fact that the extremal is normal.

1We point out that degenerate singular arcs occur if and only if for some t ∈ (τ̂1, τ̂2) F1(λ(t)) =

ψ(πλ(t)) = 0; for the extremal λ̂ this situation is precluded by Assumption 1.
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Remark 3.2. Assumption 1 ensures that, in a neighbourhood of λ̂([0, T ]), the
switching surfaces {Φ+ = 0} and {Φ− = 0} do not intersect each other. To-

gether with the fact that the zeroes of ψ along ξ̂ are finite, this fact guarantees that

the Hamiltonian vector field associated with F̂t is well defined along the reference
trajectory, but for at most a finite number of times, that is, the switching times and

the zeroes of ψ(πλ̂(t)).

Assumption 3 and equation (3.1) imply the following conditions on the sign of
the switching functions along the reference extremal:

Φ−(λ̂(t)) > 0 t ∈ [0, τ̂1),(3.3)

Φ−(λ̂(t)) = 0 t ∈ [τ̂1, τ̂2],(3.4)

Φ−(λ̂(t)) < 0 < Φ+(λ̂(t)) t ∈ (τ̂2, τ̂3),(3.5)

Φ+(λ̂(t)) < 0 t ∈ (τ̂3, T ].(3.6)

Equations (3.3)–(3.6) yield a set of higher order necessary conditions. Indeed, com-

bining equations (3.3) and (3.4), we obtain that d
dt
Φ−(λ̂(t))|t=τ̂−

1
≤ 0, while (3.4)

gives d
dt
Φ−(λ̂(t)) = d2

dt2
Φ−(λ̂(t)) = 0 for every t ∈ (τ̂1, τ̂2). Explicit computa-

tions show that d
dt
Φ−(λ̂(t))|t=τ̂±

1
= {F0,Φ

−}(ℓ̂1). By continuity this implies that

d
dt
Φ−(λ̂(t))

∣∣∣
t=τ̂1

= 0, so that we must have d2

dt2
Φ−(λ̂(t))|t=τ̂−

1
≥ 0.

Analogously, from equations (3.4) and (3.5), we obtain that d2

dt2
Φ−(λ̂(t))|t=τ̂+

2
≤

0.
At time τ̂3, Φ

+(λ̂(t)) is differentiable and changes sign from positive to negative,

thus d
dt
Φ+(λ̂(t))|t=τ̂3 ≤ 0.

The regularity assumptions at the switching points consist in a strengthening of
the above inequalities.

Assumption 4 (Regularity at the switching points.).

(F001 + F101) (ℓ̂1) + a1Lf01ψ
(
q̂1
)
− a1Lf0+f1Lf0ψ

(
q̂1
)
=

d2

dt2
Φ−(λ̂(t))|t=τ̂−

1
> 0

F001(ℓ̂2)− a2L
2
f0
ψ
(
q̂2
)
=

d2

dt2
Φ−(λ̂(t))|t=τ̂+

2
< 0

r3 = F01(ℓ̂3) + a3Lf0ψ(q̂3) =
d

dt
Φ+(λ̂(t))|t=τ̂3 < 0.

A well-known second order necessary optimality condition concerning singular
arcs is given by the Generalised Legendre condition (see for instance [AS04, Theo-
rem 20.16]), which in our context reduces to

F101(λ̂(t)) + a1
(
Lf01ψ

(
ξ̂(t)

)
− Lf1Lf0ψ

(
ξ̂(t)

))
≥ 0.

We assume that the inequality here above holds in the strict form.

Assumption 5 (Strong generalised Legendre Condition (SGLC)). For all t ∈
[τ̂1, τ̂2]

(3.7) F101(λ̂(t)) + a1
(
Lf01ψ

(
ξ̂(t)

)
− Lf1Lf0ψ

(
ξ̂(t)

))
> 0.

For the purpose of future computations, we introduce the following notation:

L(ℓ) = F101(ℓ) + a1
(
Lf01ψ

(
πℓ
)
− Lf1Lf0ψ

(
πℓ
))

ℓ ∈ T ∗M,
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so that equation (3.7) reads L(λ̂(t)) > 0, t ∈ [τ̂1, τ̂2].
Assumption 5 yields some geometric properties of two subsets of T ∗M which are

crucial for our construction:

Σ− = {ℓ ∈ T ∗M : Φ−(ℓ) = 0},
S− = {ℓ ∈ Σ− : F01(ℓ)− Lf0ψ(πℓ) = 0}.

Indeed, thanks to Assumption 5, it is easy to see that, in a neighbourhood of

λ̂([τ̂1, τ̂2]), Σ− is a codimension one embedded submanifold of T ∗M . Moreover,

Assumption 5 implies that ~Φ− is not tangent to S−, so that S− is a codimension
one embedded submanifold of Σ−. We finally notice that, for every ℓ ∈ S−, the
tangent space to Σ− at ℓ splits in the following direct sum

(3.8) TℓΣ
− = TℓS

− ⊕ R~Φ−(ℓ).

We end the section with a technical assumption concerning again the zeroes of
the running cost along the reference trajectory. Indeed, as already stressed, the
flow generated by the maximised Hamiltonian, appearing in (3.2a)-(3.2b), depends
on how many times the function ψ changes sign along the reference trajectory, as
each of these points bears a non-smoothness point. This issue has been accurately
treated in [CP19], and the same computations carried out there could extend with
no modifications to the current problem. Thus, due to the complexity introduced
by the presence of a singular arc, and in order to simplify the presentation, we make
the following assumption.

Assumption 6. Along the first bang-arc, the singular and the last bang arc, the
function ψ is positive.

Remark 3.3. We stress that this assumption does not cause any loss of general-
ity; the result (Theorem 7.1) holds true also if we drop it, provided that the other
assumptions are satisfied and that the second variation and the maximised flow are
suitably computed, according to the rules given in [CP19].

4. The second variation

Following the approach initiated in [ASZ98a], we write the second variation as an
accessory problem, that is, an LQ optimal control problem defined on the tangent
space to M at q̂1.

2 The admissible control functions of the accessory problem are
the admissible control variations of the original optimal control problem, that is,
all functions δu ∈ L∞([0, T ],R) such that û + δu is still an admissible control for
problem (1.2); the set of admissible control variations is then completed as a suitable
subspace of the Hilbert space L2([0, T ],R) (see [ASZ98a, Remark 6]). However,
facing the problem from the most general point of view, that is, considering all
possible admissible variations, is not only cumbersome, but possibly pointless: in
many general cases, indeed, the space of admissible variations is “too big”, so that
the second variation cannot be coercive on it (see for instance [PS12] for bang-
singular concatenations and [CS16] for an example in the case of totally singular
extremals). On the other hand, in many cases ([ASZ02, PS11b, CS16]) it has
been proved that it is possible to properly reduce the set of admissible variations,

2In principle, the basepoint could be any point of the reference trajectory. The choice of q̂1
considerably simplifies the expression of the second variation, as it permits to neglect variations
along the first bang arc.
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and still obtain sufficient conditions for optimality in terms of the coerciveness of
the second variation. The goal is then to find the “smallest” space of admissible
variations such that the coerciveness of the second variation on it still implies that
the Hamiltonian flow is invertible.

In particular, in [ASZ02] it has been shown that, for bang-bang extremals, it
is sufficient to consider only the variations of the switching times. As it will be
proved in the paper, it turns out that, for problem (1.1)-(1.2), an appropriate set
of admissible variations is constituted by the variation of the third switching time
and the variation of the control function along the singular arc.

Clearly, this reduction considerably simplifies the expression of the second vari-
ation. The rest of this section is devoted to its construction.

It is well known that computing higher order derivatives on manifolds is a delicate
task, as they are not invariant under change of coordinates. To overcome this
problem and obtain an intrinsic expression of the second variation, we transform
the original problem into a Mayer one and we pull-back the linearisation of the
system along the reference trajectory to the tangent space Tq̂1M . Setting ξ =
(ξ0, ξ) ∈ R×M , problem (1.1)-(1.2) reads

minimise ξ0(T )− ξ0(0)

among all solutions of the control system

(4.1)





ξ̇0(t) = |u(t)ψ(ξ(t))|,
ξ̇(t) = (f0 + uf1) ◦ ξ(t),
ξ(0) = (0, q̂0), ξ(T ) ∈ R× {q̂T },
u ∈ [−1, 1].

It is immediate to see that the covector λ = (λ0, λ̂) ∈ R× T ∗M , with λ0(t) ≡ −1
satisfies normal PMP.

The reference flow from time τ̂1 associated with the system (4.1) is denoted as

Ŝt, and is given by

Ŝt(c1, q) =

(
Ŝ0
t (c1, q)

Ŝt(q)

)
=

(
c1 +

∫ t

τ̂1
|û(s)ψ(Ŝs(q))|ds
Ŝt(q)

)
=

(
c1 +

∫ t

τ̂1
|û(s)ψ̂s(q))|ds
Ŝt(q)

)
.

Remark 4.1. Notice that Ŝ0
t does depend on c1, while its differential does not. In

what follows, with some abuse of notation, we write dŜ0
t (q) for the differential of

q 7→ Ŝ0
t (c1, ·) at a point q.

Consider some τ3 ∈ (τ̂2, T ) and a measurable control function v : [τ̂1, τ̂2] → (0, 1),
and let ξ be the solution of (4.1), starting from the point ξ(0) = (0, q̂0) associated
with the control

u(t) =





1 t ∈ [0, τ̂1),

v(t) t ∈ (τ̂1, τ̂2),

0 t ∈ (τ̂2, τ3),

−1 t ∈ (τ3, T ].
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We consider the piecewise-affine reparametrization of time ϕ : [0, T ] → [0, T ] defined
by

ϕ̇(t) =





1 t ∈ [0, τ̂2),
τ3−τ̂2
τ̂3−τ̂2

t ∈ (τ̂2, τ̂3),
T−τ3
T−τ̂3

t ∈ (τ̂3, T ],

ϕ(0) = 0,

and we set ηt :=

(
η0t
ηt

)
= Ŝt

−1
(ξ(ϕ(t))). Let γ0, γT : M → R be two smooth

functions such that

dγ0(q̂0) = ℓ̂0, dγT (q̂T ) = −ℓ̂T ,

and let γ̂0 := γ0 ◦ Ŝ0, γ̂T := γT ◦ ŜT . Then, the cost can be written in terms of the
pull-back trajectory ηt as

(4.2) J(u) = Ŝ0
T (ηT )− Ŝ0

0(η0) + γ̂0(η0) + γ̂T (ηT ).

Thanks to PMP, it is possible to show that the first variation of J evaluated at û
is null (see Appendix A for more details).

In order to compute the second variation of J , we introduce the pullbacks to
time τ̂1 of the vector fields governing the dynamics of ηt:

g1t := Ŝ−1
t∗ f1◦Ŝt, k3 := Ŝ−1

τ̂3∗
f0◦Ŝτ̂3, k4 := Ŝ−1

τ̂3∗
(f0−f1)◦Ŝτ̂3 , k = k4−k3 := −Ŝ−1

τ̂3∗
f1◦Ŝτ̂3 .

Setting ε := −(τ3− τ̂3), the second variation of the optimal control problem is given
by

J ′′[δv, ε]2 :=

∫ τ̂2

τ̂1

δv(s)Lδη(s)

(
ψ̂s + Lg1

s

(
γ̂T + Ŝ0

T − Ŝ0
s

))
(q̂1)ds

− ε2

2
L2
k

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1) +

ε2

2
L[k4,k3]

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1)

− ε2

2
Lk4ψ̂τ̂3(q̂1),

(4.3)

where δv ∈ L∞([τ̂1, τ̂2]) and δηt is the linearisation of ηt at u = û, and satisfies the
control system

(4.4) δ̇ηt =





0 t ∈ [0, τ̂1),

δv(t)g1t (q̂1) t ∈ (τ̂1, τ̂2),

− ε
τ̂3−τ̂2

k3(q̂1) t ∈ (τ̂2, τ̂3),
ε

T−τ̂3
k4(q̂1) t ∈ (τ̂3, T ],

δη0 = 0,
δηT = 0.

The second variation (4.3) is degenerate, as the quadratic term in δv (Legendre
term) is missing; to overcome this issue, we perform a Goh transformation, that
is, we integrate the control variation and we add an additional variation ε0, in the
same spirit of [PS11b]:

w(t) :=

∫ τ̂2

t

δv(s)ds, t ∈ [τ̂1, τ̂2], ε0 := w(τ̂1).
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We thus obtain the extended admissible variations as the triples δe := (ε0, ε, w) ∈
R× R× L2([τ̂1, τ̂2]) such that the system

(4.5)





ζ̇(t) = w(t)ġ1t (q̂1),

ζ(τ̂1) = ε0f1(q̂1),

ζ(τ̂2) = −εk(q̂1)

admits a solution, and the extended second variation as the quadratic form

J ′′
e [δe]

2 =
ε20
2
Lf1

(
ψ + Lf1

(
γ̂T + Ŝ0

T

))
(q̂1) +

1

2

∫ τ̂2

τ̂1

(
w2(s)R(s) + 2w(s)Lζ(s)A(s, q̂1)

)
ds

− ε2

2
Lk4 ψ̂τ̂3(q̂1)−

ε2

2
L2
k

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1) +

ε2

2
L[k4,k3]

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1),

(4.6)

where we put

A(s, q) :=
(
L
ġ1
s

(
γ̂T + Ŝ0

T − Ŝ0
s

)
+ Lg0

s
ψ̂s

)
(q),

R(s) :=L[ġ1
s ,g

1
s]
(
γ̂T + Ŝ0

T − Ŝ0
s

)
(q̂1) + L

ġ1
s
ψ̂s(q̂1)− Lg1

s
Lg0

s
ψ̂s(q̂1).

Remark 4.2. We remark that R(s) = L(λ̂(s)), which is positive by Assumption 5.

We can now state our final assumption.

Assumption 7. The quadratic form J ′′
e (4.6) is coercive on the space of admissible

variations

W :=
{
δe = (ε0, ε, w) ∈ R×R×L2([τ̂1, τ̂2]) such that system (4.5) admits a solution

}
.

4.1. Consequences of coerciveness of J ′′
e .

Lemma 4.1. Assume that Assumption 7 holds true. Then f1(q̂1) 6= 0.

Proof. Assume by contradiction that f1(q̂1) = 0. Then δe :=
(
ε0 = 1, ε = 0, w ≡ 0

)

is a non-trivial admissible variation and J ′′
e [δe]

2 = Lf1

(
ψ + Lf1

(
γ̂T + Ŝ0

T

))
(q̂1) = 0,

since f1(q̂1) = 0. Thus we have a contradiction. �

Lemma 4.2. Under Assumption 7, there exist a neighbourhood Uq̂1 of q̂1 in M and
a smooth function α : Uq̂1 → R such that

J ′′
e [δe]

2 =
ε20
2
L2
f1

(
α+ γ̂T + Ŝ0

T

)
(q̂1) +

1

2

∫ τ̂2

τ̂1

(
w2(s)R(s) + 2w(s)Lζ(s)A(s, q̂1)

)
ds

− ε2

2
Lk4 ψ̂τ̂3(q̂1)−

ε2

2
L2
k

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1) +

ε2

2
L[k4,k3]

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1).

In particular, it holds

Lf1α
(
q
)
= ψ(q) ∀q ∈ Uq̂1 , dα(q̂1) = ℓ̂1.

Proof. Thanks to Lemma 4.1, we can choose local coordinates (y1, y2, . . . , yn) around

q̂1 such that f1 ≡ ∂

∂y1
in a neighbourhood Uq̂1 of q̂1.
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Let ℓ̂1 =
(
p̂1, p̂2, . . . , p̂n

)
. Thus p̂1 = F1(ℓ̂1) = ψ(q̂1). Possibly shrinking Uq̂1 , let

α : Uq̂1 → R be the solution of the Cauchy problem





∂α

∂y1
(y1, y2, . . . , yn) = ψ(y1, y2, . . . , yn),

α(0, y2, . . . , yn) =
∑n

j=2 p̂jyj.

Then, by construction, dα(q̂1) =
(
ψ(q̂1), p̂2, . . . , p̂n

)
= ℓ̂1. The term Lf1ψ(q̂1) in J

′′
e

can thus be replaced by L2
f1
α(q̂1), and this proves the claim. �

We claim that the term L2
f1

(
α+ γ̂T + Ŝ0

T

)
(q̂1) in the expression for J ′′

e can be

replaced by D2
(
α + γ̂T + Ŝ0

T

)
(q̂1)[f1(q̂1)]

2. Indeed, by definition of γT , it holds

dγT (q̂T ) = −ℓ̂T ; since, by (A.1), we have that ℓ̂T =
(
ℓ̂1 +dŜ0

T

)
Ŝ−1
T∗ , we obtain that

dα(q̂1) = ℓ̂1 = −
(
dγ̂T +dŜ0

T

)
(q̂1), and we are done. We can thus write J ′′

e on W as

J ′′
e [δe]

2 =
1

2
D2
(
α+ γ̂T + Ŝ0

T

)
(q̂1)[ε0f1(q̂1)]

2 +
1

2

∫ τ̂2

τ̂1

(
w2(s)R(s) + 2w(s)Lζ(s)A(s, q̂1)

)
ds

− ε2

2
Lk4 ψ̂τ̂3(q̂1)−

ε2

2
L2
k

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1) +

ε2

2
L[k4,k3]

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1).

(4.7)

We now extend the space of admissible variations, in the following way: we
remove the constraint on ζ(τ̂1) and we consider the control system

(4.8)





ζ̇(s) = w(s)ġ1s (q̂1),

ζ(τ̂1) = δz ∈ Tq̂1M,

ζ(τ̂2) = −εk(q̂1).

The associated space of variations is thus defined as

W :=
{
δe = (δz, ε, w) ∈ Tq̂1M×R×L2([τ̂1, τ̂2]) such that system (4.8) admits a solution

}
.

Applying [Hes66, Theorem 11.6], we can easily verify that (4.7) defines a Le-

gendre form on W . For s ∈ R
+, we define θ(y1, y2, . . . , yn) :=

s

2

∑n
j=2 y

2
j where

(y1, y2, . . . yn) are the coordinates defined in the proof of Lemma 4.2. Applying
[Hes66, Theorem 13.2], we obtain that, under Assumption 7 and if s is large enough,
then the quadratic form

J ′′[δe]2 := J ′′
e [δe]

2 +
1

2
D2θ[δz]2

is coercive on W .
We can write J ′′ explicitly as

J ′′[δe]2 =
1

2
D2
(
α+ θ + γ̂T + Ŝ0

T

)
(q̂1)[δz]

2 +
1

2

∫ τ̂2

τ̂1

(
w2(s)R(s) + 2w(s)Lζ(s)A(s, q̂1)

)
ds

− ε2

2
Lk4ψ̂τ̂3(q̂1)−

ε2

2
L2
k

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1) +

ε2

2
L[k4,k3]

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1).

(4.9)
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5. Construction of the over-maximised flow

As briefly mentioned in the Introduction, Hamiltonian methods to prove the
optimality of an extremal need two ingredients: a Lagrangian submanifold Λ1 of
the cotangent bundle, containing a point of the reference extremal, and a over-
maximised Hamiltonian flow (that is, the flow associated with a Hamiltonian func-
tion which is greater than or equal to Hmax, and which coincides with it along the
reference extremal, at least up to the first order); the optimality of the reference
extremal is proved if, at each time t ∈ [0, T ], the image of Λ1 under the flow of the

over-maximised Hamiltonian projects one-to-one onto a neighbourhood of ξ̂(t) in
the base manifold (see Section 7).

This section is devoted to the construction of the over-maximised Hamiltonian
and of its associated flow, that we refer to as over-maximised flow. It is defined
patching together some piecewise smooth Hamiltonian flows, each one defined on
a suitable neighbourhood of each arc. We stress that, to achieve this task, to
coerciveness of J ′′

e is not needed; though, we extensively use Assumptions 1–6,
which are assumed to hold true throughout the whole section.

5.1. The over-maximised Hamiltonian near the singular arc. By definition,

the singular arc evolves on the hypersurface Σ− = {Φ− = 0} and Φ+(λ̂(t)) > 0.

Thus, in a sufficiently small neighbourhood of λ̂([τ̂1, τ̂2]), the maximised Hamilton-
ian is given by

Hmax =

{
F0 +Φ− if Φ− ≥ 0,

F0 if Φ− ≤ 0.

Therefore, Hmax is continuous, but its associated Hamiltonian vector field is not
well defined on Σ−: for every smooth Hamiltonian v(t, ℓ), every Hamiltonian of the
form F0 + vΦ− coincides with Hmax on Σ−.

On the other hand, no Hamiltonian of the form F0 + vΦ− can be used in place
of the maximised Hamiltonian: indeed, by Assumption 5, for every t ∈ (τ̂1, τ̂2)

and every U neighbourhood of λ̂(t) in Σ−, there exists some ℓ ∈ U such that

F01(ℓ)−Lf0ψ(πℓ) < 0. For any choice of v > 0, the flow of ~F0+ v~Φ− sends ℓ in the
region {Φ− < 0}, where F0 + vΦ− is no more the maximised Hamiltonian. Indeed,

whatever the choice of v, the Hamiltonian vector field ~F0 + v~Φ− is tangent to Σ
only on S− = {ℓ ∈ Σ− : F01(ℓ)−Lf0ψ(πℓ) = 0}. We refer to [PS11b] for a detailed
description of the phenomenon.

However, as proposed in [Ste08], the flow associated with Hmax may be replaced
by the flow of a suitable over-maximised Hamiltonian tangent to Σ−, at least for

t ∈ [τ̂1, τ̂2]. The construction of such a flow in a neighbourhood of λ̂([τ̂1, τ̂2]) in
Σ− relies on the definition of a C1 over-maximised Hamiltonian that agrees with
the maximised one at least up to the first order along the reference extremal, and
whose Hamiltonian vector field is tangent to Σ− (see [Ste08, PS11b, SZ16, CS16]
for similar constructions).

In order to do so, following the steps of [CS10, CS16], we substitute F0 with a
suitable Hamiltonian H0 which is constant along the integral lines of Φ−.

Lemma 5.1. There exist a neighbourhood U of λ̂([τ̂1, τ̂2]) in T ∗M and a smooth
function ϑ : U → R such that

(
F01 − Lf0ψ ◦ π

)
◦ exp

(
ϑ(ℓ)~Φ−

)
(ℓ) = 0 ∀ℓ ∈ U ,
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and, for any ℓ ∈ U ∩ S−,

(5.1) 〈dϑ(ℓ) , (·)〉 = − 1

L(ℓ)

(
〈dF01(ℓ) , (·)〉 − Lπ∗(·)Lf0ψ

(
πℓ
))
.

Proof. By Assumption 5, we can apply the implicit function theorem to the function

(s, ℓ) 7→
(
F01 − Lf0ψ ◦ π

)
◦ exp

(
s~Φ−

)
(ℓ) at the point (0, λ̂(t)), and obtain the

result. �

Thanks to Lemma 5.1, we can define the following Hamiltonian H0 : U → R

H0(ℓ) = F0 ◦ exp(ϑ(ℓ)~Φ−)(ℓ).

Proposition 5.1. The Hamiltonian H0 satisfies the following properties.

(1) For every ℓ ∈ Σ− ∩ U , ~H0(ℓ) is tangent to Σ− and is given by

(5.2) ~H0(ℓ) = exp(−s~Φ−)∗ ~F0 ◦ exp(s~Φ−)(ℓ)|s=ϑ(ℓ).

In particular, it coincides with ~F0(ℓ) if ℓ ∈ S− ∩ U .
(2) Possibly shrinking U , H0(ℓ) ≥ F0(ℓ) for any ℓ ∈ Σ− ∩ U . Equality holds if

and only if ℓ ∈ S−.
(3) For every smooth function υ(t, ℓ) : R × T ∗M → R, the Hamiltonian vector

field associated with H0(ℓ) + υ(t, ℓ)Φ−(ℓ) is tangent to Σ−.

Proof. Claim (1) easily follows from the fact that 〈dF0 , ~Φ
−〉 = 0 on S−. Indeed,

by construction, H0 is constant along the integral lines of ~Φ−, so that 〈dΦ− , ~H0〉 =
〈dH0 , ~Φ

−〉 = 0, for any ℓ ∈ U , i.e. ~H0 is tangent to Σ−. Equation (5.2) can be
verified with simple computations.

Since ϑ = 0 on S−, by definition and equation (5.2) we have that H0 = F0 and
~H0 = ~F0 on S−. Thus the differential of H0 −F0 is identically zero on S−, and, for
any ℓ ∈ S− ∩ U , we can compute its second derivative:

D2(H0 − F0)(ℓ)[δℓ]
2 = 2〈d (L~Φ−F0)(ℓ) , δℓ〉〈dϑ(ℓ) , δℓ〉+ L2

~Φ−
F0(ℓ)〈dϑ(ℓ) , δℓ〉2

= −L2
~Φ−
F0(ℓ)〈dϑ(ℓ) , δℓ〉2.

Noticing that L2
~Φ−
F0(ℓ) = −L(ℓ) and thanks to Assumption 5, we see that the

expression here above is non negative and it vanishes only if 〈dϑ(ℓ) , δℓ〉 = 0;

equation (3.8) and the fact that 〈dϑ(ℓ) , ~Φ−(ℓ)〉 = −1 for ℓ ∈ Σ− ∩ U prove Claim
(2).

Since ~H0 is tangent to Σ−, then ~H0+u~Φ
− is tangent to Σ− too, for every u ∈ R.

Let υ be a smooth function on R × T ∗M . Then the Hamiltonian field associated
with H0 + υ(t, ℓ)Φ− is given by

~H0(ℓ) + υ(t, ℓ)~Φ− +Φ−(ℓ)~υ(t, ℓ),

and, by definition of Σ−, this completes the proof. �

5.2. The over-maximised flow. Thanks to the regularity of the bang and zero
arcs, for any t ∈ [0, τ̂1) ∪ (τ̂2, τ̂3) ∪ (τ̂3, T ], it is possible to find a neighbourhood

of λ̂(t) where Hmax and its associated vector field are unambiguously defined. As
observed in the previous section, this is no longer true for t ∈ [τ̂1, τ̂2]. On the other
hand, thanks to Proposition 5.1, we know that any over-maximised Hamiltonian of
the form H0 + vΦ− may replace the maximised Hamiltonian in a neighbourhood of
the singular arc in Σ−.
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Here below we show how to concatenate the flows of Hmax and of the over-
maximised Hamiltonian, in order to obtain a flow defined for all t ∈ [0, T ].

The first bang arc.
We first construct the over-maximised flow for t ∈ [0, τ̂1].

Proposition 5.1 guarantees that H0 ≥ F0 in a neighbourhood of λ̂([τ̂1, τ̂2]) con-
tained in Σ− only. In other words, if we want to use H0 to construct the over-
maximised Hamiltonian, we have to be sure that, for t ∈ [τ̂1, τ̂2], the image of the
sub-manifold Λ1 under the over-maximised flow is in Σ−. For this reason, it is
convenient to start from τ̂1 and construct the flow integrating backward in time.

Fix some ǫ > 0 and consider a sufficiently small tubular neighbourhood U of

λ̂((τ̂1 − ǫ, τ̂1 + ǫ)) in T ∗M . The manifold Σ− separates U in two regions, one in
which Φ− > 0 (and Hmax = F0 +Φ−), the other one in which Φ− < 0 < Φ+ (and

Hmax = F0), since ψ(q) 6= 0 in a neighbourhood of ξ̂(τ̂1); in particular, the first
bang arc is contained in the first region. On the other hand, by Assumption 5, the
manifold S− separatesU∩Σ− into two regions, in which F01−Lf0ψ◦π has different

sign. Consider now a small neighbourhood of ℓ̂1 in Σ−. The trajectories obtained

by integrating backward in time the flow generated by ~F0 + ~Φ−, starting at t = τ̂1
from a point ℓ satisfying F01(ℓ)−Lf0ψ(πℓ) < 0, immediately leave Σ− and enter in
the region {Φ− > 0}; in particular, they evolve with the maximised flow and stay

close to the reference extremal (if ℓ is sufficiently close to ℓ̂1). The same happens
for trajectories starting from a point ℓ such that F01(ℓ)− Lf0ψ(πℓ) = 0, thanks to
Assumption 4.

On the contrary, the integral curves of ~F0 + ~Φ− with an initial condition ℓ

satisfying F01(ℓ) − Lf0ψ(πℓ) > 0 immediately enter into the region {Φ− < 0},
so that they are not integral curves of ~Hmax and may soon leave U. To fix this
issue, for initial conditions belonging to the region where F01(ℓ)−Lf0ψ(πℓ) > 0, we

substitute the flow of ~F0+ ~Φ− with the one of ~H0+ ~Φ−, until the trajectories reach
S−. This construction is explained in Proposition 5.2 here below, whose proof relies
on the following lemma.

Lemma 5.2. There exist a neighbourhood O1 of ℓ̂1 in Σ− and a smooth function

t1 : O1 → R satisfying t1(ℓ̂1) = τ̂1 such that

(F01 − (Lf0ψ) ◦ π) ◦ exp
(
(t1(ℓ)− τ̂1)( ~H0 + ~Φ−)

)
(ℓ) = 0 ∀ℓ ∈ O1.

Moreover, t1(ℓ) R τ̂1 if and only if F01(ℓ)− Lf0ψ(πℓ) ⋚ 0.

Proof. The existence of the function t1 is a straightforward application of the im-

plicit function theorem to the function ϕ(t, ℓ) = (F01−(Lf0ψ)◦π)◦exp((t− τ̂1)( ~H0+
~Φ−))(ℓ) at (τ̂1, ℓ̂1), which is possible since ∂

∂t
ϕ(t, ℓ)|(τ̂1,ℓ̂1) > 0, by Assumption 4.

The sign of t1(ℓ) − τ̂1 is determined by the fact that t1(ℓ) = τ̂1 for every ℓ ∈
S− ∩ O1, and again by Assumption 4. �

We define the piecewise smooth function τ1 : O1 → R as

τ1(ℓ) = min{t1(ℓ), τ̂1},
and the flow H1 : [0, τ̂1]×O1 → T ∗M as

H1(t, ℓ) =

{
exp

(
(t− τ̂1)( ~H0 + ~Φ−)

)
(ℓ) t ∈ [τ1(ℓ), τ̂1],

exp
(
(t− τ1(ℓ))(~F0 + ~Φ−)

)
◦ exp

(
(τ1(ℓ)− τ̂1)( ~H0 + ~Φ−)

)
(ℓ) t ∈ [0, τ1(ℓ)).
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Remark 5.1. Clearly, if t1(ℓ̄) ≥ τ̂1 for some ℓ̄, then H1(t, ℓ̄) is the flow of ~F0+ ~Φ−

for every t ∈ [0, τ̂1].

Proposition 5.2. The flow H1 defined above is C1. Moreover

(5.3) Φ−(H1(t, ℓ)) = 0 ∀t ∈ [τ1(ℓ), τ̂1], Φ−(H1(t, ℓ)) > 0 ∀t ∈ [0, τ1(ℓ)).

In particular

(5.4)
(
πH1(t, ·)

)
∗
|
ℓ̂1

= Ŝt∗π∗ ∀t ≤ τ̂1.

Proof. At every point (t, ℓ) such that t 6= τ1(ℓ), the flow is well defined and smooth.
Therefore, to prove its regularity on the whole [0, τ̂1]×O1, it suffices to verify the
continuity of its derivatives at points of the form (t, ℓ) = (τ1(ℓ̄), ℓ̄). In particular,
we can distinguish two cases, that is, t1(ℓ̄) > τ̂1 and t1(ℓ̄) ≤ τ̂1. In the former case,

the flow coincides with exp((t− τ̂1)(~F0 + ~Φ−))(ℓ) for every t ∈ [0, τ̂1] and for every
ℓ in a neighbourhood of ℓ̄ in Σ−, thus it is C1.

If instead τ1(ℓ̄) ≤ τ̂1, then the flow starting from points ℓ in a neighbourhood of
ℓ̄ has different expressions according to the sign of t− τ1(ℓ). However, by straight-
forward computations, it is easy to prove that they coincide as (t, ℓ) → (τ1(ℓ̄), ℓ̄),
for every ℓ̄ ∈ O and that the first order partial derivatives are continuous.

Let us now prove equation (5.3). First of all, we recall that ∂
∂t
Φ−(H1(t, ℓ))|t=τ1(ℓ) =

(F01 − (Lf0ψ) ◦ π)) ◦ H1(t, ℓ)|t=τ1(ℓ).
If t1(ℓ) > τ̂1, then τ1(ℓ) = τ̂1 and, by Lemma 5.2, F01− (Lf0ψ)◦π < 0, so that, if

ℓ is close enough to ℓ̂1, equation (5.3) follows immediately from a first order Taylor
expansion, with respect to the first variable, at t = τ̂1.

Let us now consider the case in which t1(ℓ) ≤ τ̂1. By construction, ~H0 + ~Φ− is
tangent to Σ−, so that Φ−(H1(t, ℓ)) = 0 for t ∈ [τ1(ℓ), τ̂1]. At t = τ1(ℓ), H1(t, ℓ) is
in S−, that is, (F01 − (Lf0ψ) ◦π)) ◦H1(t, ℓ)|t=τ1(ℓ) = 0, so that we must look at the
second order Taylor expansion of t 7→ Φ−(H1(t, ℓ)) at τ̂1. By Assumption 4, the

second order derivative of this map at (t, ℓ) = (τ̂1, ℓ̂1) is strictly positive, so that,

by continuity, it is strictly positive also at (τ1(ℓ), ℓ), for ℓ close enough to ℓ̂1.

We can conclude that there exists a ǫ > 0 and a neighbourhood O1 of ℓ̂1 in
Σ− such that Φ−(H1(t, ℓ)) > 0 for t ∈ (τ1(ℓ)− ǫ, τ1(ℓ)), for every ℓ ∈ O1. Possibly
shrinking O1, we can conclude that the inequality is satisfied for every t ∈ [0, τ1(ℓ)).

�

The singular arc. We recall that for any t ∈ [τ̂1, τ̂2], the reference extremal λ̂

takes values in S−. Moreover, thanks to Assumption 5 and since d2

dt2Φ
−(λ̂(t)) = 0

for any t ∈ (τ̂1, τ̂2), the reference control along the singular arc can be computed in
a feedback Hamiltonian form. More precisely

û(t) = −
F001(ℓ)− L2

f0
ψ
(
πℓ
)

L(ℓ)
|
ℓ=λ̂(t) ∀t ∈ (τ̂1, τ̂2).

In a neighbourhood of λ̂([τ̂1, τ̂2]) in S
−, we thus define

ν(ℓ) = −
F001(ℓ)− L2

f0
ψ
(
πℓ
)

L(ℓ)
.

We extend ν to a neighbourhood of λ̂([τ̂1, τ̂2]) in Σ− by setting it constant along

the integral lines of ~Φ−, and then to a full-measure neighbourhood of the range of
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the singular arc by setting it constant along the integral lines of the Hamiltonian
field associated with F01 − Lf0ψ

3.
We set

K(ℓ) = H0(ℓ) + ν(ℓ)Φ−(ℓ),

and define the over-maximised flow on the interval [τ̂1, τ̂2] as the flow of ~K:

K(t, ℓ) = exp((t− τ̂1) ~K)(ℓ).

Proposition 5.3. The manifolds Σ− and S− are invariant under the action of the

flow of K. Moreover, ~Φ− is invariant with respect to the flow of K on Σ−, that is,

for ℓ belonging to a small neighbourhood of λ̂([τ̂1, τ2]) in Σ−, it holds

K(t, ℓ)∗~Φ
−(ℓ) = ~Φ− ◦ K(t, ℓ) ∀t ∈ [τ̂1, τ̂2].

This result is proved (in a more general version) in Proposition B.1.

The inactivated arc. The construction of the over-maximised flow on a right hand
side neighbourhood of τ̂2 presents the same issues as its construction on [0, τ̂1], thus
we overcome these difficulties likewise.

Lemma 5.3. Possibly shrinking O1 and setting O2 = K(τ̂2,O1), there exists a

smooth function t2 : O2 → R satisfying t2(ℓ̂2) = τ̂2 such that

(F01 − (Lf0ψ) ◦ π) ◦ exp((t2(ℓ2)− τ̂2) ~H0)(ℓ2) = 0 ∀ℓ2 ∈ O2.

Moreover, t2(ℓ2) R τ̂2 if and only if F01(ℓ2)− Lf0ψ(πℓ2) R 0.

As above, we define the piecewise smooth function

τ2(ℓ2) = max{t2(ℓ2), τ̂2},
and the flow H3 for t ≥ τ̂2 as
(5.5)

H3(t, ℓ) =

{
exp((t− τ̂2) ~H0)(ℓ2) t ∈ [τ̂2, τ2(ℓ2)],

exp((t− τ2(ℓ2))~F0) ◦ exp((τ2(ℓ2)− τ̂2) ~H0)(ℓ2) t ∈ [τ2(ℓ2), τ2(ℓ2) + δ(ℓ2))

where ℓ2 = K(τ̂2, ℓ) and δ(·) is a positive function that will be specified here below.
The flowH3 enjoys the same properties ofH1, as stated in the following proposition.

Proposition 5.4. The flow H3 defined above is C1 and

Φ−(H3(t, ℓ)) = 0 ∀t ∈ [τ̂2(ℓ), τ2(ℓ2)], Φ−(H3(t, ℓ)) < 0 ∀t ∈ (τ2(ℓ2), τ2(ℓ2)+δ(ℓ2)).

Moreover, for every t ∈ [τ̂2, τ̂2 + δ(ℓ̂2)) it holds

(5.6)
(
πH3(t, ·)

)
∗
|
ℓ̂1

= exp
(
(t− τ̂2)f0

)
∗

(
πKτ̂2

)
∗
|
ℓ̂1
.

We remark that, thanks to Assumption 1 and by continuity, Φ+(H3(t, ℓ)) > 0
on [τ̂2, τ̂2 + δ(ℓ2)).

The last bang arc. For t ≥ τ2(ℓ2), F0 is the maximised Hamiltonian until its
integral curves hit the switching surface {Φ+ = 0}. To detect the hitting time, we
solve the implicit equation

(5.7) Φ+ ◦ exp
(
(t− τ2(ℓ2))~F0

)
◦ exp

(
(τ2(ℓ2)− τ̂2) ~H0

)
(ℓ2) = 0,

3Indeed, thanks to Assumption 5, Tℓ(T
∗M) = TℓΣ

− ⊕
−−−−−−−−−−−→
F01 − Lf0ψ ◦ π(ℓ) for every ℓ ∈ Σ− in

a neighbourhood of λ̂([τ̂1, τ̂2]).
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where we recall that ℓ2 = K(τ̂2, ℓ) ∈ O2. The derivative with respect to t of the left

hand side of (5.7) equals r3 for (t, ℓ2) = (τ̂3, ℓ̂2); thanks to Assumption 4 and the
implicit function theorem, we obtain that equation (5.7) is satisfied if and only if

(t, ℓ2) = (τ3(ℓ2), ℓ2), where τ3 : O2 → R is a smooth function satisfying τ3(ℓ̂2) = τ̂3.
In addition, for every δℓ ∈ T

ℓ̂2
(T ∗M), it holds

〈dτ3(ℓ̂2) , δℓ〉 = −
σ

ℓ̂3

(
exp

(
(τ̂3 − τ̂2)~F0

)
∗
δℓ, ~Φ+

)

r3
.(5.8)

We choose δ(·) = τ3(·) − τ2(·) in equation (5.5), and we consider the following
flow for t ∈ [τ̂2, T ]:

H3(t, ℓ) =





exp
(
(t− τ̂2) ~H0

)
(ℓ2) t ∈ [τ̂2, τ2(ℓ2)]

exp
(
(t− τ2(ℓ))~F0

)
◦ H3(τ2(ℓ2), ℓ2) t ∈ [τ2(ℓ2), τ3(ℓ2)]

exp
(
(t− τ3(ℓ2))(~F0 − ~Φ+)

)
◦ H3(τ3(ℓ2), ℓ2) t ≥ τ3(ℓ2).

Thanks to the regularity assumptions, H3 is an over-maximised flow for every t ∈
[τ̂2, T ].

Finally, the over-maximised flow H : [0, T ]×O1 → T ∗M is defined as

H(t, ℓ) =





H1(t, ℓ) t ∈ [0, τ̂1],

K(t, ℓ) t ∈ [τ̂1, τ̂2],

H3(t, ℓ) t ∈ [τ̂2, T ].

Here below, we will also use the notations

Ht = H(t, ·), Kt = K(t, ·).
We remark that, for every t ∈ [0, T ], Ht is the Hamiltonian flow associated with

the Hamiltonian

Ht(ℓ) =





F0(ℓ) + Φ−(ℓ) t ∈ [0, τ1(ℓ)],

H0(ℓ) + Φ−(ℓ) t ∈ [τ1(ℓ), τ̂1],

K(ℓ) t ∈ [τ̂1, τ̂2],

H0(ℓ) t ∈ [τ̂2, τ2(ℓ)],

F0(ℓ) t ∈ [τ2(ℓ), τ3(ℓ)],

F0(ℓ)− Φ+(ℓ) t ∈ [τ3(ℓ), T ].

6. Invertibility

In order to define a manifold Λ1 such that πHt : Λ1 → M is locally one-to-one
for every t, we shall also exploit the coerciveness of the extended second variation,
i.e. Assumption 7. So, from now, we assume that all the Assumptions 1-7 are
satisfied. We define Λ1 by means of the functions α and θ appearing in (4.9):
namely, we consider the Lagrangian submanifold

Λ1 = {d(α+ θ)(q) : q ∈ Uq̂1}.

Remark 6.1. It is immediate to see that Λ1 ⊂ Σ− and that ~Φ−(ℓ) ∈ TℓΛ1 for
every ℓ ∈ Λ1.

This section is devoted to the proof of the following result.
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Proposition 6.1. For every t ∈ [0, T ], t 6= τ̂3, the flow πHt : Λ1 → M is a

local diffeormorphism from a neighbourhood of ℓ̂1 onto a neighbourhood of ξ̂(t).
πHτ̂3 : Λ1 →M is a locally invertible Lipschitz continuous map with Lipschitz con-
tinuous inverse.

The proof is done in several steps: we consider separately the sub-intervals [0, τ̂1],
[τ̂1, τ̂2] and [τ̂2, T ].

Invertibility for t ∈ [0, τ̂1]. The invertibility for t ∈ [0, τ̂1] is a direct consequence
of equation (5.4).

Λ1

T ∗M

M

π

Λ2

ξ̂

H1 K

Ŝt

ℓ̂1

q̂1

ℓ̂2

q̂2

Figure 1. Invertibility for t ∈ [0, τ̂3): Ht(Λ1) projects diffeormor-

phically onto a neighbourhood of ξ̂(t) for every t ∈ [0, τ̂3).
Solid lines denote the bang arcs, dashed lines inactivated arcs, and
dotted lines singular arcs.

Invertibility for t ∈ [τ̂1, τ̂2]. In order to prove the claim, we introduce the auxiliary
Hamiltonian

Ĥt = H0 + û(t)Φ−, t ∈ [τ̂1, τ̂2].

This new Hamiltonian shares some important features with K. In particular, Ĥt

is an over-maximised Hamiltonian on Σ− too, and its Hamiltonian vector field is

tangent to Σ−; we denote with Ĥt its flow from time τ̂1 to time t. The invertibility

of πĤt|Λ1 is related to the invertibility of πKt|Λ1 , as the following result shows.
The proof uses the same arguments of [PS11b, Lemma 9]; we sketch it in the

Appendix.

Lemma 6.1. For every t ∈ [τ̂1, τ̂2], the followings hold

(1) Ĥt∗(Tℓ̂1Λ1) = Kt∗(Tℓ̂1Λ1).

(2) If ker
(
πĤt

)
∗
|T

ℓ̂1
Λ1 = 0, then ker

(
πKt

)
∗
|T

ℓ̂1
Λ1 = 0.

Taking advantage of Lemma 6.1, the invertibility of πĤt|Λ1 implies the one of

πK̂t|Λ1 . On the other hand, it turns out that Ĥt is directly linked to the Hamiltonian
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flow associated with the second variation (see details here below); therefore, it is

much easier to prove the invertibility of πĤt|Λ1 as a consequence of the coerciveness
of the second variation. Indeed, consider the subspace V ⊂ W defined by

V :=
{
δe ∈ W : ε = 0

}
.

Lemma 6.2. Assume that J ′′|V is coercive. Then ker
(
πĤt

)
∗
|T

ℓ̂1
Λ1 = 0 for any

t ∈ [τ̂1, τ̂2].

Proof. We consider the LQ optimal control problem on Tq̂1M given by

(6.1) min
δe∈V

J ′′[δe]2.

The maximised Hamiltonian associated by PMP with this LQ problem is

H ′′
t (δp, δz) =

1

2R(t)

(
〈δp, ġ1t (q̂1)〉 − LδzA(t, q̂1)

)2
(δp, δz) ∈ T ∗

q̂1
M × Tq̂1M.

Since δe ∈ V, δz is free so that PMP applied to problem (6.1) gives the following
transversality conditions at the initial point

(δp, δz) ∈ L′′
τ̂1

:= {(δp, δz) : δz ∈ Tq̂1M, δp = −D2
(
θ + α+ γ̂T + Ŝ0

T

)
[δz, ·]}.

Denote with H′′
t the Hamiltonian flow of H ′′

t . In order to compare H′′
t with Ĥt, we

define the anti-symplectic isomorphism ι : T ∗
q̂1
M × Tq̂1M → T

ℓ̂1
(T ∗M) as

ι(δp, δx) = −δp+ d
(
− Ŝ0

T − γ̂T
)
∗
δx.

By definition, σ ◦ ι ⊗ ι = −σ̂, where σ̂ denotes the standard symplectic structure
on T ∗

q̂1
M × Tq̂1M . It is immediate to verify that

ιL′′
τ̂1

= T
ℓ̂1
Λ1.

Moreover, by analogous computations to those in [CS10, PS11b], it is easy to prove
that

(6.2) H′′
t = ι−1F̂−1

t∗ Ĥt∗ι t ∈ [τ̂1, τ̂2],

which implies that

(6.3) (πH′′
t )

−1
= ι−1

(
πĤt

)−1

∗
Ŝt∗.

On the other hand, [SZ97, Theorem 2.6] states that J ′′|V is coercive if and only
if πH′′

t : L
′′
τ̂1

→ Tq̂1M is one to one for every t ∈ [τ̂1, τ̂2], so that the coerciveness of

J ′′|V implies that
(
πĤt

)
∗
|T

ℓ̂1
Λ1 is invertible for every t ∈ [τ̂1, τ̂2]. �

Coupling Lemma 6.1 with Lemma 6.2, we obtain that, if J ′′|V is coercive, then
(πKt)|Λ1 is invertible for t ∈ [τ̂1, τ̂2].

Remark 6.2. Set Λ2 := Kτ̂2(Λ1). Since Λ2 is a Lagrangian submanifold of T ∗M

which projects one to one onto a neighbourhood of M , there exist a neighbourhood
Uq̂2 of q̂2 and a smooth function α2 : Uq̂2 → R such that

dα2(q̂2) = ℓ̂2, Λ2 := Kτ̂2(Λ1) = {dα2(q) : q ∈ Uq̂2}.
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M

π∗

T
ℓ̂2

Λ2

L+

L−

ℓ̂1

q̂1

ℓ̂2

q̂2

λ̂(τ̂3)

ξ̂(τ̂3)

Figure 2. Invertibility at t = τ̂3. L+ (respectively, L−) denotes

the half space of all δℓ2 ∈ T
ℓ̂2
Λ2 such that 〈dτ̂3(ℓ̂2), δℓ2〉 ≥ 0 (re-

spectively, ≤ 0).
In purple, Hτ̂3∗L+; in yellow, Hτ̂3∗L−. These semi-planes project
without intersections on T

ξ̂(τ̂3)
M .

Invertibility for t ∈ [τ̂2, T ]. Thanks to equation (5.6), we obtain that, if J ′′|V is
coercive, then πHt|Λ1 is locally invertible for every t < τ̂3.

Let δℓ ∈ T
ℓ̂1
Λ1, and set δℓ2 = Kτ̂2∗δℓ. The first order approximation of πHτ̂3 at

ℓ̂1, applied to δℓ, is given by
{
exp

(
(τ̂3 − τ̂2)f0

)
∗
π∗δℓ2 if 〈dτ3(ℓ̂2) , δℓ2〉 ≥ 0,

〈dτ3(ℓ̂2) , δℓ2〉f1(q̂3) + exp
(
(τ̂3 − τ̂2)f0

)
∗
π∗δℓ2 if 〈dτ3(ℓ̂2) , δℓ2〉 ≤ 0,

which, up to a pullback, can be written as
{
π∗δℓ2 if 〈dτ3(ℓ̂2) , δℓ2〉 ≥ 0,

π∗δℓ2 − 〈dτ3(ℓ̂2) , δℓ2〉k̃(q̂2) if 〈dτ3(ℓ̂2) , δℓ2〉 ≤ 0,

where k̃ := Ŝτ̂2∗k is the pullback of −f1 from time τ̂3 to time τ̂2. Notice that, by

Assumption 1, f1(q̂3) 6= 0, so that k̃(q̂2) 6= 0.
By Clarke’s inverse function theorem [Cla76], πHτ̂3 is invertible if for every

a ∈ [0, 1] and for every δℓ2 ∈ T
ℓ̂2
Λ2 it holds

(6.4) π∗δℓ2 − a〈dτ3(ℓ̂2) , δℓ2〉k̃(q̂2) 6= 0.

By contradiction, assume there exist some a ∈ [0, 1] and δℓ2 ∈ T
ℓ̂2
Λ2, δℓ2 6= 0, such

that the left hand side of (6.4) is zero. This implies that π∗δℓ2 = ρk̃(q̂2), for some
ρ 6= 0, so that

ρk̃(q̂2)− a〈dτ3(ℓ̂2) , δℓ2〉k̃(q̂2) = 0,

which yields

1− a〈dτ3(ℓ̂2) , dα2∗k̃(q̂2)〉 = 0,
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since δℓ2 = ρdα2∗k̃(q̂2). Equivalently, using (5.8),

(6.5) r3 + aσ
ℓ̂3

(
exp((τ̂3 − τ̂2)~F0)∗dα2∗k̃(q̂2), ~Φ

+
)
= 0.

By Assumption 4, the left hand side of (6.5) is negative for a = 0. If we show that
it is negative also for a = 1, then, by linearity, we get a contradiction and we are
done. The last part of this section is devoted to prove that this is a consequence of
the coerciveness of the second variation on W .

We denote with the symbol Jb the bilinear form associated with J ′′. We recall
that J ′′ is coercive on W if and only if it is coercive both on V and on W ∩
V

⊥, where V
⊥ denotes the orthogonal complement to V with respect to Jb. In

order to compute V
⊥, we introduce, for every δe = (δz, ε, w) ∈ W , the trajectory

p : [τ̂1, τ̂2] → T ∗
q̂1
M solution of the Cauchy problem
{
ṗ(t) = −w(t)L·A(t, q̂1),

p(τ̂1) = −D2(α+ θ + γ̂T + Ŝ0
T )(q̂1)[δz, ·].

Let δ̃e = (δ̃z, ε̃, w̃) ∈ W be another admissible variation; then Jb[δe, δ̃e] can be
written as

Jb[δe, δ̃e] =
1

2
D2
(
θ + α+ γ̂T + Ŝ0

T

)
(q̂1)[δz, δ̃z]

+
1

2

∫ τ̂2

τ̂1

(
w2(t)w̃(t)R(t) + w(t)L

ζ̃(t)A(t, q̂1) + w̃(t)Lζ(t)A(t, q̂1)
)
dt

+
εε̃

2

(
L[k4,k3]

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
− Lk4ψ̂τ̂3(q̂1)− L2

k

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1)

)

=
1

2
〈D2

(
θ + α+ γ̂T + Ŝ0

T

)
(q̂1)[δz, ·] + p(τ̂1), δ̃z〉 −

1

2
〈p(τ̂2), ζ̃(τ̂2)〉

+
1

2

∫ τ̂2

τ̂1

w̃(t)
(
w(t)R(t) + Lζ(t)A(t, q̂1) + 〈p(t), ġ1t 〉

)
dt

+
εε̃

2

(
L[k4,k3]

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
− Lk4ψ̂τ̂3(q̂1)− L2

k

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1)

)
.

From the expression here above, we see that δe ∈ V
⊥ if and only if

(6.6) w(t)R(t) + Lζ(t)A(t, q̂1) + 〈p(t), ġ1t 〉 = 0 ∀t ∈ [τ̂1, τ̂2],

so that, for any δe ∈ V
⊥, we get that

J ′′[δe]2 = −1

2
〈p(τ̂2), ζ(τ̂2)〉+

ε2

2

(
L[k4,k3]

(
γ̂T+Ŝ

0
T−Ŝ0

τ̂2

)
−Lk4ψ̂τ̂3(q̂1)−L2

k

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1)

)
.

Remark 6.3. We stress that the solution (p(t), ζ(t)) of the Cauchy problem




ζ̇(t) = w(t)ġ1t (q̂1),

ṗ(t) = −w(t)L(·)A(t, q̂1),

(p(τ̂1), ζ(τ̂1)) ∈ L′′
τ̂1
,

associated with the control w(·) that satisfies equation (6.6) is also the solution of
the Hamiltonian system associated with H ′′

t with the same initial condition, that is

(p(t), ζ(t)) = H′′
t (p(τ̂1), ζ(τ̂1)).
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Remark that V
⊥ is a 1-dimensional linear space: indeed, for every ε, ζ(τ2) =

−εk(q̂1), so that δz is uniquely determined as the backward solution of the linear

system with control (6.6). By homogeneity, we can choose δe ∈ V
⊥ with ε = −1.

Then J ′′|V⊥ is coercive if and only if

0 > 〈p(τ̂2) , ζ(τ̂2)〉 − L[k4,k3]

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1) + Lk4 ψ̂τ̂3(q̂1) + L2

k

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1)

= 〈p(τ̂2) , k(q̂1)〉+ r3 + Lk|ψ̂τ̂3 |(q̂1) + L2
k(γ̂T + Ŝ0

T − Ŝ0
τ̂2
)(q̂1),

(6.7)

where the expression (6.7) is obtained applying (A.1) and the definition of γ̂T .
We now compute 〈p(τ̂2) , k(q̂1)〉 in terms of Hamiltonian flows. Consider the pair

(δp, δz) ∈ L′′
τ̂1

such that πH′′
τ̂2
(δp, δz) = k(q̂1) (thanks to the invertibility of πH′′

τ̂2
, it

exists and it is unique), so that, by (6.3), we get (δp, δz) = ι−1(πĤτ̂2)
−1
∗ Ŝτ̂2∗k(q̂1).

Thanks to (6.2) we obtain

〈p(τ̂2) , k(q̂1)〉 = σ̂
(
H′′

τ̂2
(πH′′

τ̂2
)−1k(q̂1), (0, k(q̂1))

)

= −σ
ℓ̂1

(
F̂−1

τ̂2∗
Ĥτ̂2∗ι(πH′′

τ̂2
)−1k(q̂1), d

(
− γ̂T − Ŝ0

T

)
∗
k(q̂1)

)

= −σ
ℓ̂1

(
F̂−1

τ̂2∗
dα2∗k̃(q̂2), d

(
− γ̂T − Ŝ0

T

)
∗
k(q̂1)

)
,(6.8)

where α2 is the function defined in Remark 6.2. Indeed, thanks to (6.3), we obtain

that ι(πH′′
τ̂2
)−1k(q̂1) = (πĤτ̂2)

−1
∗ k̃(q̂2), so that ι(πH′′

τ̂2
)−1k(q̂1) ∈ T

ℓ̂1
Λ1 and

Ĥτ̂2∗ι(πH′′
τ̂2
)−1k(q̂1) ∈ Ĥτ̂2∗(Tℓ̂1Λ1) = Kτ̂2∗(Tℓ̂1Λ1) = T

ℓ̂2
Λ2.

By cumbersome but standard computations, F̂τ̂2∗d
(
− γ̂T − Ŝ0

T

)
∗
k(q̂1) = d

(
(−γ̂T −

Ŝ0
T + Ŝ0

τ̂2
) ◦ Ŝ−1

τ2

)
∗
k̃(q̂2). Equation (6.8) thus gives

〈p(τ̂2) , k(q̂1)〉 = −σ
ℓ̂2

(
dα2∗k̃(q̂2), d

(
(−γ̂T − Ŝ0

T + Ŝ0
τ̂2
) ◦ Ŝ−1

τ2

)
∗
k̃(q̂2)

)

= −D2
(
α2 + (γ̂T + Ŝ0

T − Ŝ0
τ̂2
) ◦ Ŝ−1

τ̂2

)
[k̃(q̂2)]

2.

Finally, computing the value of ℓ̂2 by means of (A.1), we get

〈p(τ̂2), k(q̂1)〉+ L2
k(γ̂T + Ŝ0

T − Ŝ0
τ̂2
)(q̂1)

= −D2
(
α2 + (γ̂T + Ŝ0

T − Ŝ0
τ̂2
) ◦ Ŝ−1

τ̂2

)
[k̃(q̂2)]

2 + L2
k̃

(
(γ̂T + Ŝ0

T − Ŝ0
τ̂2
) ◦ Ŝ−1

τ̂2
)(q̂2)

= −D2α2[k̃(q̂2)]
2 − ℓ̂2Dk̃(q̂2)k̃(q̂2) = −L2

k̃
α2(q̂2).

Plugging this equality in equation (6.7), we obtain that

r3 + Lk|ψ̂τ̂3 |(q̂1)− L2
k̃
α2(q̂2) < 0.

It now suffices to notice that

σ
ℓ̂3

(
exp((τ̂3 − τ̂2)~F0)∗dα2∗k̃(q̂2), ~Φ

+
)
= σ

ℓ̂2

(
dα2∗k̃(q̂2), exp(−(τ̂3 − τ̂2)~F0)∗~Φ

+)
)

= −L2
k̃
α2(q̂2) + Lkψ̂τ̂3(q̂1),

to obtain that equation (6.5) holds true for a = 1, and we are done.
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7. Main results

We now state the main result of the paper. This section is devoted to its proof.

Theorem 7.1. Let ξ̂ be an admissible trajectory for system (1.2) and satisfying

Assumptions 1–7. Then ξ̂ is a strict strong local minimiser of problem (1.1)-(1.2).

The proof of the strong local optimality of the reference trajectory follows the
same lines of [CP19, Theorem 4.1] (see also [SZ16]), thus we are just recalling the
main arguments. We shall instead provide all details for the proof of the strictness
part.

Proof. We define on R×T ∗M the one-form ω = H∗
t ς −Ht ◦Htdt. Applying [SZ16,

Lemma 3.3] we can prove that ω is exact on [0, T ]× Λ1.

Let O ⊂ R ×M be a neighbourhood of the graph of ξ̂ such that πH : [0, T ] ×
Λ1 → O is invertible, with piecewise C1 inverse. Consider an admissible trajectory
ξ : [0, T ] → M of (1.2) whose graph is contained in O, and call v(t) its associated
control; set

ℓ(t) = (πHt)
−1(ξ(t)), λ(t) = Ht(ℓ(t)).

We define the closed path γ : [0, 2T ] → [0, T ]× Λ1 as

γ(t) =

{
(t, ℓ(t)) t ∈ [0, T ],

(2T − t, ℓ̂1) t ∈ [T, 2T ].

Integrating ω along γ, and recalling that Ht is an over-maximised Hamiltonian, we
obtain that

(7.1)

∫ T

0

|û(t)ψ(ξ̂(t))|dt ≤
∫ T

0

|v(t)ψ(ξ(t))|dt,

that is, ξ̂ is a strong local minimiser.

Assume now that ξ̂ is not a strict minimiser, that is, there exists an admissible
trajectory ξ with graph in O for which equality holds in equation (7.1); this is
equivalent to

(7.2) 〈λ(t), (f0 + v(t)f1)(ξ(t))〉 − |v(t)ψ(ξ(t))| = Ht(λ(t)) a.e. t ∈ [0, T ],

that is, both 〈λ(t), (f0 + v(t)f1)(ξ(t))〉 − |v(t)ψ(ξ(t))| and Ht(λ(t)) coincide with

Hmax(λ(t)). Since ξ(0) = ξ̂(0), and by regularity of the first bang arc, then, for t
small enough, h(λ(t), u) attains its maximum only for u = û(t) = 1. This implies

that v(t) = û(t) and ξ(t) = ξ̂(t) as long as Φ−(λ(t)) > 0, that is, for t ∈ [0, τ̂1).

Analogously, since ξ(T ) = ξ̂(T ), we can apply, backward in time, an analogous
argument, and prove that u(t) ≡ û(t) for t ∈ (τ̂2, T ] (see [CP19] for more details).

For t ∈ [τ̂1, τ̂2], equation (7.2) implies that λ(t) ∈ S−. Thus, since ~K is tangent
to S− (see Proposition 5.3), then ℓ(t) ∈ S− too. We claim that there exists a
function a : [τ̂1, τ̂2] → R such that

(7.3) ℓ̇(t) = −a(t)~Φ−(ℓ̂1).

If so, since ℓ̇(t) is tangent to S− and ~Φ− is transverse to S−, we obtain that

a(t) ≡ 0 and ℓ̇(t) ≡ 0 for t ∈ [τ̂1, τ̂2], that is ξ(t) = πKt(ℓ̂1) = ξ̂(t), which completes
the proof.
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In order to prove (7.3), we first observe that

ξ̇(t) = π∗λ̇(t) = π∗
(
~K(λ(t)) +Kt∗ℓ̇(t)

)
.(7.4)

On the other hand, it is not difficult to see that, for every t ∈ [τ̂1, τ̂2], the function

Σ− ∩ T ∗
ξ(t)M ∋ ℓ 7→ K(ℓ)− 〈ℓ, f0(ξ(t)) + v(t)f1(ξ(t))〉 + |v(t)ψ(ξ(t))|

has a minimum at ℓ = λ(t); thus, its derivative along variations in Σ− ∩ T ∗
ξ(t)M

(that is, δp with 〈δp, f1(ξ(t))〉 = 0) must be zero. This means that the derivative
with respect to the vertical coordinates (i.e., the directions contained in T ∗

ξ(t)M)

must be parallel to f1(ξ(t)), which implies that

(7.5) π∗ ~K(λ(t)) = f0(ξ(t)) + v(t)f1(ξ(t)) + a(t)f1(ξ(t)) = ξ̇(t) + a(t)f1(ξ(t)),

for some real function a(·). Combining (7.4) with (7.5), we obtain that

(πKt)∗ℓ̇(t) + a(t)f1(ξ(t)) = 0.

Since (πKt)
−1
∗ f1(ξ(t)) = ~Φ−(ℓ̂1), applying (πKt)

−1
∗ to the equality here above we

get the claim. �

8. Example

In this section, we apply our result to the optimal control problem in R
2

min
|u(·)|≤1

∫ T

0

|u(t)x2(t)| dt

subject to the control system




ẋ1 = x2,

ẋ2 = u− ρx2,

x1(0) = 0, x2(0) = 0,

x1(T ) = X > 0, x2(T ) = 0,

where T , ρ and X are given positive constants. This problem, studied in [BO20],
models the fuel consumption minimisation problem for an academic electric vehicle
moving in one horizontal direction with friction. The authors prove that, if the
final time T is larger than

Tlim =
1

ρ
log
(
(1 +

√
2)eρ

2X − 1 +

√
(1 +

√
2)eρ2X − 1)2 − 1

)
,

then the optimal control has the bang-singular-inactivated-bang structure described
in equation (3.1). The corresponding trajectories satisfy PMP in normal form,
with adjoint covector p(t) = (p1(t), p2(t)), with p1(t) ≡ p01 for every t ∈ [0, T ]. In
particular, the following relations hold

(8.1)

τ̂1 =
1

ρ
log
( 2

2− p01

)
, τ̂3−τ̂2 =

1

ρ
log
(
1+

√
2
)
, T−τ̂3 =

1

ρ
log
(p01 + 2(1 +

√
2)

2(1 +
√
2)

)
,

and

(8.2) ûS(t) ≡
√
ρp2(0) =

p01
2

= ρp2(τ̂1) ∀t ∈ [τ̂1, τ̂2].
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Coupling equations (8.1) and (8.2), we deduce that p01 must be positive and smaller
than 2. Finally, the authors prove that along these extremals x2(t) is positive for
every t ∈ (0, T ) and

x2(t) ≡ p2(t) =
p01
2ρ

∀t ∈ [τ̂1, τ̂2].

Using the notations of our paper, the drift f0, the controlled vector field f1 and
the cost ψ at a point x = (x1, x2) ∈ R

2 are respectively given by

(8.3) f0(x) =

(
x2

−ρx2

)
, f1(x) =

(
0
1

)
, ψ(x) = x2.

Thus, the associated Hamiltonian functions have the following expressions

F0(p,x) = p1x2 − ρp2x2, F1(p,x) = p2, Φ±(p,x) = p2 ± |x2|.
Here below, we prove that Assumptions 1–7 are met.

8.1. Regularity assumptions. Since x2(t) never vanishes in (0, T ), then Assump-
tions 1-2 and 6 are trivially satisfied. To verify that also Assumption 3 holds true,
we are left to prove that the bang and inactivated arcs are regular. In order to
complete this task, we compute the iterated Lie brackets of the vector fields f0 and
f1:
(8.4)

f01(x) ≡
(
−1
ρ

)
, f101(x) ≡

(
0
0

)
adkf0f01(x) = ρkf01(x) ≡

(
−ρk
ρk+1

)
.

Regularity of the first bang arc. We have to prove that Φ−(p(t),x(t)) > 0 for

t ∈ [0, τ̂1). The claim follows directly from the computations

Φ−(p(t),x(t)) =
e−ρt

4ρ

(
eρt(2− p01)− 2

)2
,

and equation (8.1).

Regularity along the inactivated arc. We must verify that p2(t)−x2(t) < 0 <
p2(t) + x2(t) for t ∈ (τ̂2, τ̂3). By computations

p2(t)± x2(t) =
p01
2ρ

(
− eρ(t−τ̂2) + 2± e−ρ(t−τ̂2)

)
.

The claim follows from equation (8.1).

Regularity along the last bang arc. A straightforward computation gives
p2(t) + x2(t) ≤ 0 for t ∈ [τ̂3, T ], where the equality holds if and only if t = τ̂3.

Regularity at the switching points (Assumption 4).
At the first switching time t = τ̂1, Assumption 4 reads

0 <
(
F001+F101+Lf01ψ−Lf0+f1Lf0ψ

)
(ℓ̂1) = −ρp01+ρ2p2(τ̂1)+ρ+ρ(1−ρx2(τ̂1)) = ρ(2−p01),

which is verified thanks to equation (8.1).

At t = τ̂2, the regularity condition is

0 >
(
F001 − L2

f0
ψ
)
(ℓ̂2) = −ρp01 + ρ2p2(τ̂2)− ρ2x2(τ̂2) = −ρp01,

which is trivially satisfied.

At t = τ̂3, the regularity condition reads

0 >
(
F01 − Lf0ψ

)
(ℓ̂3) = −p01 + ρp2(τ̂3) + ρx2(τ̂3) = −p01,
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which is verified.

Assumption 5 (SGLC). This Assumption is trivially satisfied, since

L(p,x) = F101(p,x) + Lf01ψ(x)− Lf1Lf0ψ(x)

= ρ− Lf1(−ρx2) = 2ρ > 0 ∀(p,x) ∈ T ∗
R

2.

8.2. Second variation. First of all, we compute the pull-back vector fields, by
means of formula (C.1) and of equations (8.3)-(8.4). We obtain the following ex-
pressions:

g1t ≡ f1 +
eρ(t−τ̂1) − 1

ρ
f01, ġ1t ≡ eρ(t−τ̂1)f01, t ∈ [τ̂1, τ̂2],

k3 = f0 − ûS
eρ(τ̂2−τ̂1) − 1

ρ
f01, k = −f1 −

eρ(τ̂3−τ̂1) − 1

ρ
f01 =

(
eρ(τ̂3−τ̂1)−1

ρ

−eρ(τ̂3−τ̂1)

)
.

Admissible variations The pullback system (4.5) assumes the form

(8.5)

{
ζ1(t) = −

∫ t

τ̂1
w(s)eρ(s−τ̂1)ds,

ζ2(t) = ε0 + ρ
∫ t

τ̂1
w(s)eρ(s−τ̂1)ds,

so that the space of extended admissible variation W can be identified with the
following subspace of R× L2([τ̂1, τ̂2],R):

W =
{
(ε, w) :

∫ τ̂2

τ̂1

w(s)eρ(s−τ̂1)ds = ε
eρ(τ̂3−τ̂1) − 1

ρ

}
.

It is easy to see that Ŝ0
t is linear with respect to the state; since both ġ1t and

k are constant with respect to the basepoint, we choose γ̂T as a linear function of

the state, so that all second derivatives of the term γ̂T + Ŝ0
T − Ŝ0

τ̂2
are zero. In

particular, with this choice we obtain D2
(
α+ γ̂T + Ŝ0

T

)
[εf1]

2 = ε2.
Keeping all these facts into account, the second variation reads

(8.6) J ′′
e [(ε, w)]

2 = ε2(1 +
√
2ûS) +

∫ τ̂2

τ̂1

ρw2(t)− ρw(t)ζ2(t)e
−ρ(t−τ̂1)dt.

8.2.1. Coerciveness of the second variation. We recall that, given any subspace
V ⊂ W , J ′′

e is coercive on W if and only if it is coercive both V and V⊥, V⊥

denoting the orthogonal complement of V in W with respect to the bilinear form
associated with J ′′

e . To prove the coerciveness of (8.6), we choose

V =
{
(0, w) :

∫ τ̂2

τ̂1

w(s)eρ(s−τ̂1)ds = 0
}
.

Coerciveness on V. In order to prove the claim, we apply the characterization of

coerciveness given in [ASZ98a, Lemma 5], that is, we study the LQ optimal control
problem

min

∫ τ̂2

τ̂1

ρw2(t)− ρw(t)z2(t)e
−ρ(t−τ̂1)dt

subject to
{
ż(t) = w(t)eρ(t−τ̂1)f01,

z(τ̂1) = z(τ̂2) = 0,
w ∈ L2([τ̂1, τ̂2]) :

∫ τ̂2

τ̂1

w(t)eρ(t−τ̂1)dt = 0.
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The maximised Hamiltonian G′′ associated with this problem is given by

(8.7) G′′(p, z, t) =
1

4ρ

(
(ρp2 − p1)e

ρ(t−τ̂1) + ρz2e
−ρ(t−τ̂1)

)2
.

The solutions of the Hamiltonian system associated with (8.7) are given by




z1(t) = ρ(a+ b(t− τ̂1))e
ρ(t−τ̂1),

z2(t) = (a+ b(t− τ̂1))e
ρ(t−τ̂1),

p1(t) ≡ p1(τ̂1),

p2(t) =
p1(τ̂1)

ρ
+
(
2b+a
ρ

+ b(t− τ̂1)
)
e−ρ(t−τ̂1),

for some real constants a, b. The boundary conditions z(τ̂1) = z(τ̂2) = 0 are
satisfied only for a = b = 0, that is z(t) ≡ 0. Thanks to [ASZ98a, Lemma 5], this
implies that J ′′

e is coercive on V .
Coerciveness on V⊥. First of all, we characterize V⊥. The bilinear form associ-
ated with J ′′

e is given by the formula
(8.8)

Jb[δe, δ̃e] = εε̃(1+
√
2ûS)+

1

2

∫ τ̂2

τ̂1

2ρw(t)w̃(t)−ρ
(
w(t)ζ̃2(t)+ w̃(t)ζ2(t)

)
e−ρ(t−τ̂1)dt,

with δe, δ̃e ∈ W . Introducing p2(·) as the solution of the Cauchy problem
{
ṗ2(t) = w(t)eρ(t−τ̂1),

p2(τ̂1) = 0,

equation (8.8) becomes

Jb[δe, δ̃e] = εε̃(1+
√
2ûS)−ρζ̃2(τ̂2)p2(τ̂2)+

1

2

∫ τ̂2

τ̂1

ρw̃(t)
(
2w(t)−ζ2(t)e−ρ(t−τ̂1)+p2(t)e

−ρ(t−τ̂1)
)
dt.

It is immediate to see that an admissible variation δe belongs to V⊥ if and only

if e−ρ(t−τ̂1)
(
2w(t)− ζ2(t)e

−ρ(t−τ̂1) + p2(t)e
−ρ(t−τ̂1)

)
does not depend on t (indeed,

the orthogonal complement to zero-mean functions in L2([τ̂1, τ̂2]) is the space of
constant functions); we thus set

(8.9) Cε = e−ρ(t−τ̂1)
(
2w(t)− ζ2(t)e

−ρ(t−τ̂1) + p2(t)e
−ρ(t−τ̂1)

)
,

so that

(8.10) J ′′[δe]2|V⊥ = ε2(1 +
√
2ûS)− ερp2(τ̂2)e

(τ̂3−τ̂1) +
Cε

2
ε(e(τ̂3−τ̂1) − 1).

From equation (8.9), combined with (8.5), we can deduce that w(·) is smooth.
Differentiating (8.9) with respect to t, we obtain

(8.11) ẇ(t)e−ρ(t−τ̂1) − ρw(t)e−ρ(t−τ̂1) + ρζ2(t)e
−2ρ(t−τ̂1) = 0.

Multiplying (8.11) by e2ρ(t−τ̂1) and differentiating again, we obtain ẅ(t) = 0,
i.e. w(·) is an affine function. Plugging into the previous equations we obtain

Cε = ε
2
√
2 + ρ(τ̂2 − τ̂1)

ρ(τ̂2 − τ̂1)
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and

p2(τ̂2) =
ε

ρ2(τ̂2 − τ̂1)

(
−e−ρ(τ̂2−τ̂1)

(
2
√
2 + (1 +

√
2)ρ(τ̂2 − τ̂1)

)
+2

√
2+ρ(τ̂2− τ̂1)

)
.

Substituting these expressions into (8.10), we obtain

J ′′[δe]2|V⊥ = ε2
(
2 +

√
2 +

2

ρ(τ̂2 − τ̂1)
+
√
2ûS

)
,

which is positive whenever ε 6= 0.

8.2.2. The over-maximised Hamiltonian. Although the expressions of the Hamil-
tonians H0 and K are not necessary to deduce the optimality of the reference
extremal, we provide their explicit formulas, to give an insight on their construc-
tion.

Since, along the extremal, x2 > 0, we do not use the absolute value in the
expressions of Φ−. First of all, we see that Σ− = {(p,x) : p2 − x2 = 0} and
S− = {(p,x) : p2 = x2 and p1 = ρ(p2 + x2)}. Straightforward computations yield

ϑ(p,x) =
p1

2ρ
− x2 + p2

2
, H0(p,x) =

1

4ρ

(
p1 − ρ(p2 − x2)

)2
.

In particular, we obtain that

H0(p,x)− F0(p,x) =
1

4ρ

(
(p1 − 2ρx2)

2 + 4ρ2x2(p2 − x2)
)
.

This formula shows that H0 ≥ F0 only for (p,x) ∈ Σ−, with equality for (p,x) ∈
S−. Finally ν(p,x) =

p1

2
for any (p,x) ∈ T ∗

R
2, so that

K(p,x) =
1

4ρ

(
p1 − ρ(p2 − x2)

)2
+
p1

2
(p2 − x2).

9. Conclusions

In this paper, we develop the analysis of sufficient optimality conditions for gener-
alised L1-optimal control problems started in [CP19]. In particular, we consider the
case in which the reference extremal contains a singular arc. As already observed in
the Introduction, this fact brings significant technical difficulties, in particular the
necessity of computing the second variation of a singular arc for a Bolza problem,
which, to our knowledge, has not been done before.

We believe that [CP19] and the current paper, altogether, provide a solid basis
for the study of sufficient optimality conditions for problems of the form (1.1)-
(1.2): indeed, they give an insight of how to figure out more complex cases (as the
concatenation of several bang, singular and inactivated extremals).

Two only issues are left over: the possibility of bang-bang concatenations (here
prevented by Assumption 1), that, in our opinion, can be treated providing minor
changes to the existing results, taking advantage of the techniques developed, for
instance, in [PS16]; the case of degenerate singular arcs, which, even if it is a non-
generic case, is nevertheless theoretically challenging. The authors are planning to
consider this last situation.
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Appendix A. Sketch of the computation of the second variation

We first recall that the reference extremal λ̂, associated with the control (3.1),
satisfies the following equation
(A.1)

λ̂(t) =
(
ℓ̂1 +

∫ t

τ̂1

|u(s)| d|ψ̂s|(q̂1)ds
)
◦ Ŝ−1

t∗ =
(
ℓ̂1 + dŜ0

t (q̂1)
)
◦ Ŝ−1

t∗ ∀t ∈ [0, T ].

Moreover the cost realised by the trajectory ξ associated with the control u can

be written as J(u) = Ŝ◦
T (ηT )− Ŝ◦

0(η0)+ γ̂T (ηT )+ γ̂0(η0), thanks to equation (4.2).
Further, we notice that the variations δu = u − û can be encoded in three terms,
that is, the variation δv of the control along the singular arc, and the variations
ε3 = (τ3− τ̂2)− (τ̂3 − τ̂2) and ε4 = (T − τ3)− (T − τ̂3) of the length of the third and
fourth arc, related by the constraint ε3+ε4 = 0. In particular, there is no variation

of the terms −Ŝ◦
0 (η0) + γ̂0(η0). The second variation J ′′[δu] is thus given by

∂2J

∂u2
=
∂2η0T
∂u2

+
(
D2Ŝ0

T (q̂0) + D2γ̂T (q̂0)
)[∂ηT

∂u

]2
+ 〈dŜ0

T (q̂0) + dγ̂T (q̂0) ,
∂2ηT

∂u2
〉

where, for the differential of Ŝ0
t , we have used the notation established in Remark 4.1

and where the derivatives with respect to u have to be intended as the derivatives
with respect to the variables (v, ε3, ε4), which can be computed using the equations

η0T =

∫ τ̂2

τ̂1

(
(v(s) − û(s))ψ̂s(ηs)− Lη̇s

Ŝ0
s (ηs)

)
ds−

∫ τ̂3

τ̂2

Lη̇s
Ŝ0
s (ηs)ds+

∫ T

τ̂3

( ε4

T − τ̂3
ψ̂s(ηs)− Lη̇s

Ŝ0
s (ηs)

)
ds,

ηT = q̂1 +

∫ τ̂2

τ̂1

(v(s)− û(s))g1s(ηs)ds+

∫ τ̂3

τ̂2

ε3

τ̂3 − τ̂2
k3(ηs)ds+

∫ T

τ̂3

ε4

T − τ̂3
k4(ηs)ds.

We first show that the first order approximation of J , evaluated at (v, ε3, ε4) =
(û, 0, 0) is null, so that the second variation is intrinsically well defined. We point

out that, thanks to (A.1), dŜ0
T (q̂1) + dγ̂T (q̂1) = −ℓ̂1, so that

〈∂J
∂v
, δv(·)

〉
=
∂η0T
∂v

δv(·) − 〈ℓ̂1 ,
∂ηT

∂v
〉δv(·) =

∫ τ̂2

τ̂1

δv(s)
(
ψ̂s(q̂1)− Lg1

s
Ŝ0
s (q̂1)

)
ds+

∫ τ̂2

τ̂1

δv(s)〈ℓ̂1 , g1s(q̂1)〉ds

=

∫ τ̂2

τ̂1

δv(s)
(
ψ(ξ̂(s))− Lg1

s
Ŝ0
s (q̂1)− F1(λ̂(s)) + Lg1

s
Ŝ0
s (q̂1)

)
ds = 0.

Since only variations where ε4 = −ε3 are admissible, it suffices to show that
∂J

∂ε3
=

∂J

∂ε4
. Notice that

(A.2)

Lk4

(
Ŝ0
T − Ŝ0

τ̂2

)
(q̂1) = Lk4

(
Ŝ0
T − Ŝ0

τ̂3

)
(q̂1) =

∫ T

τ̂3

Lk4ψ̂s(q̂1)ds = ψ̂T (q̂1)− ψ̂3(q̂1),
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since Ŝ0
τ̂2

= Ŝ0
τ̂3

and, for every s ∈ [τ̂3, T ],
d
ds ψ̂s = Lk4 ψ̂s. Finally, we get

∂J

∂ε3
=
∂η0T
∂ε3

+ 〈ℓ̂1 ,
∂ηT

∂ε3
〉 = −Lk3 Ŝ

0
τ̂2
(q̂1)− 〈ℓ̂1 , k3(q̂1)〉 = −Lk3 Ŝ

0
τ̂3
(q̂1)− 〈ℓ̂1 , k3(q̂1)〉

∂J

∂ε4
=
∂η0T
∂ε4

+ 〈ℓ̂1 ,
∂ηT

∂ε4
〉 = −Lk4 Ŝ

0
T (q̂1) + ψ̂T (q̂1)− 〈ℓ̂1 , k4(q̂1)〉 = −Lk4Ŝ

0
τ̂3
(q̂1) + ψ̂τ̂3(q̂1)− 〈ℓ̂1 , k4(q̂1)〉

so that

∂J

∂ε3
− ∂J

∂ε4
= Lk4−k3 Ŝ

0
τ̂3
(q̂1)− ψ̂τ̂3(q̂1)− 〈ℓ̂1 , (k4 − k3)(q̂1)〉

= Lk4−k3 Ŝ
0
τ̂3
(q̂1)− ψ̂τ̂3(q̂1)− 〈−DŜ0

τ̂3
Ŝ−1
τ̂3∗

+ ℓ̂3 , f1(q̂3)〉 = −Φ+(ℓ̂3) = 0.

Let us now compute the second variation. By some long computations, it is
possible to obtain

J ′′[δv, ε3, ε4]
2 :=

∫ τ̂2

τ̂1

∫ s

τ̂1

δv(s)δv(r)Lg1
r

(
ψ̂s + Lg1

s

(
γ̂T + Ŝ0

T − Ŝ0
s

))
(q̂1)drds

+ ε3

∫ τ̂2

τ̂1

δv(s)Lg1
s
Lk3

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1)ds+ ε4

∫ τ̂2

τ̂1

δv(s)Lg1
s

(
|ψ̂T |+ Lk4 γ̂T

)
(q̂1)ds

+
ε23
2
L2
k3

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1) +

ε24
2
Lk4

(
|ψ̂T |+ Lk4 γ̂T

)
(q̂1)

+ ε3ε4Lk3

(
|ψ̂τ̂3 |+ Lk4 γ̂T

)
(q̂1)

=

∫ τ̂2

τ̂1

δv(s)Lδηr

(
ψ̂s + Lg1

s

(
γ̂T + Ŝ0

T − Ŝ0
s

))
(q̂1)ds

− εLδη(τ̂2)−δη(τ̂1)Lk3

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1) + εLδη(τ̂2)−δη(τ̂1)

(
|ψ̂T |+ Lk4 γ̂T

)
(q̂1)ds

+
ε2

2
L2
k3

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1) +

ε2

2
Lk4

(
|ψ̂T |+ Lk4 γ̂T

)
(q̂1)

− ε2Lk3

(
|ψ̂τ̂3 |+ Lk4 γ̂T

)
(q̂1),

(A.3)

where we set ε4 = −ε3 = ε. Integrating backward in time system (4.4), and
applying the constraints, we see that δητ̂2 − δητ̂1 = −εk(q̂1). Finally, plugging
equation (A.2) into (A.3) we obtain equation (4.3).

Appendix B. Some technical results and proofs

Proposition B.1. For every smooth function υ(t, ℓ) : R × T ∗M → R, the Hamil-

tonian flow associated with H0(ℓ) + υ(t, ℓ)Φ−(ℓ) preserves ~Φ− on Σ−, that is, if Ft
is the flow associated with H0(ℓ) + υ(t, ℓ)Φ−(ℓ) from τ̂1 to time t, then

(B.1) F
−1
t∗
~Φ− ◦ Ft(ℓ) = ~Φ−(ℓ), ∀ℓ ∈ O1.
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Proof. We notice that, for every ℓ ∈ Σ−,

∂

∂t
F
−1
t∗
~Φ− ◦ Ft(ℓ) = F

−1
t∗ [ ~H0 + υ(t, ·)~Φ− +Φ−(·)~υ(t, ·), ~Φ−] ◦ Ft(ℓ)

= F
−1
t∗ [ ~H0, ~Φ

−] ◦ Ft(ℓ),

since Φ−(Ft(ℓ)) = 0.
Using equation (5.2), for every ℓ ∈ Σ− we have

[ ~H0, ~Φ
−](ℓ) = [exp(−t~Φ−)∗ ~F0 ◦ exp(t(ℓ)~Φ−)|t=ϑ(ℓ), ~Φ

−]|ℓ
= [exp(−t~Φ−)∗ ~F0 ◦ exp(t~Φ−), ~Φ−](ℓ)|t=ϑ(ℓ)

+
(
〈dϑ, ~Φ−〉[~F0, ~Φ

−]
)
(exp(ϑ(ℓ)~Φ−))

=
(
1 + 〈dϑ, ~Φ−〉)[~F0, ~Φ

−]
)
|(exp(ϑ(ℓ)~Φ−)),

which is null by (5.1).
�

Proof of Lemma 6.1. Set Gt = Ĥ−1
t ◦ Kt and notice that Gt(ℓ̂1) = ℓ̂1 for every

t ∈ [τ̂1, τ̂2]. For every ℓ ∈ Σ−,

∂

∂t
Gt(ℓ) =

(
(ν − û(t))Ĥt∗

~Φ−
)
◦ Ĥt|Gt(ℓ) =

(
ν(Ĥt ◦ Gt(ℓ))− û(t)

)
~Φ−(Gt(ℓ)),

thanks to Proposition B.1. Since ~Φ− is tangent to Λ1, we obtain that Gt(Λ1) ⊂ Λ1.

Gt∗(Tℓ̂1Λ1) = T
ℓ̂1
Λ1 for every t ∈ [τ̂1, τ̂2], that is, Ĥt∗(Tℓ̂1Λ1) = Kt∗(Tℓ̂1Λ1) and

claim (1) is proved.
By simple computations, we can prove that Gt is the Hamiltonian flow associated

with the Hamiltonian Gt = (K − Ĥt) ◦ Ĥt. In particular, from the fact that
dGt|ℓ̂1 = 0, we obtain that

(B.2)

G′′
t :=

1

2
D2Gt|ℓ̂1 =

1

2

(
dΦ−⊗dν+dν⊗dΦ−

)
|
λ̂(t)[Ĥt∗·]2 = 〈dΦ−|

λ̂(t), Ĥt∗·〉〈dν|λ̂(t), Ĥt∗·〉

is a well defined Hamiltonian function on T
ℓ̂1
(T ∗M), and that Gt∗ is the Hamiltonian

flow associated with G′′
t , see [MR94].

We now restrict ourselves to vectors δℓ ∈ T
ℓ̂1
Σ−. By definition, and using the fact

that 〈dΦ−|
λ̂(t), Ĥt∗δℓ〉 = 0, it follows that ~G′′

t (δℓ) = 〈dν|
λ̂(t), Ĥt∗δℓ〉

−−−−−−−−−−−−→
〈dΦ−|

λ̂(t), Ĥt∗δℓ〉.
To compute this quantity, we set ϕ(δℓ) = 〈dΦ−|

λ̂(t), Ĥt∗δℓ〉, and choose some vector

X ∈ Tδℓ(Tℓ̂1(T
∗M)) ≃ T

ℓ̂1
(T ∗M); then

σδℓ(X, ~ϕ(δℓ)) = 〈dϕ|δℓ, X〉 = 〈dΦ−|
λ̂(t), Ĥt∗X〉 = σ

λ̂(t)

(
Ĥt∗X, ~Φ

−(Ĥt(ℓ̂1))
)

= σ
ℓ̂1

(
X, Ĥ−1

t∗
~Φ−(Ĥt(ℓ̂1))

)
,

so that, by (B.1),

(B.3) ~G′′
t (δℓ) = 〈dν|

λ̂(t) , Ĥt∗δℓ〉~Φ−(ℓ̂1).

Let us now assume that ker(πĤt)∗|T
ℓ̂1

Λ1 = 0 for some t ∈ [τ̂1, τ̂2].

Set λ(t) := Gt∗δℓ, for some δℓ ∈ T
ℓ̂1
Λ1. Thanks to (3.8), there exist a unique

δℓS ∈ T
ℓ̂1
S− and a unique a ∈ R such that δℓ = δℓS + a~Φ−(ℓ̂1). From equation
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(B.3), we obtain that λ(t) = δℓS+µ(t)~Φ
−(ℓ1), for some real function µ(·) satisfying

µ(τ̂1) = a.
In particular, this implies that

Kt∗δℓ = Kt∗δℓS + a~Φ−(λ̂(t)) = Ĥt∗

(
δℓS + µ(t)~Φ−(ℓ̂1)

)
.

Thus, if (πKt)∗δℓ = 0, then (πĤt)∗
(
δℓS + µ(t)~Φ−(ℓ̂1)

)
= 0, which implies, by

hypothesis, that δℓS + µ(t)~Φ−(ℓ̂1) = 0, that is, δℓS = 0 and µ(t) = 0. By (B.2)

µ(t) = a+
∫ t

τ̂1
〈dν|

λ̂(s) , Ĥs∗δℓ〉ds ≡ a since, by construction, ν is constant along the

integral lines of ~Φ−. Thus a = 0, so that claim (2) is proved. �

Appendix C. Useful formulas

In this section, we recall classical formulas of differential geometry that we ex-
tensively use throughout the paper.

Let f, g be two vector fields on some manifold M . Then, for every t for which
exp(tf) is defined, it holds

(C.1)
d

dt
exp(−tf)∗g ◦ exp(tf) = exp(−tf)∗[f, g] ◦ exp(tf).

Let F,G : T ∗M → R be some Hamiltonian functions, and denote, as usual, with
the script their flow from some time t0. Then

L~F
G = 〈dG, ~F 〉 = σ(~F , ~G), [~F , ~G] =

−−−−−→
σ(~F , ~G), F−1

t∗
~G|Ft(ℓ) =

−−−−→
G ◦ Ft|ℓ.
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