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In this paper we propose a global positioning algorithm of multiple assets based on Received Signal Strength (RSS) measurements
that takes into account the gain uncertainties of each hardware transceiver involved in the system, as well as the uncertainties on
the Log-Distance Path Loss (LDPL) parameters. Such a statistical model is established and its Maximum Likelihood Estimator
(MLE) is given with the analytic expression of the Cramér-Rao Lower Bound (CRLB). Typical values of those uncertainties are
given considering whether calibration is done in production, in situ, or if hardware is used uncalibrated, in order to know what
is the expected accuracy in function of the calibration setup. Results are tested by numerical simulations and confronted to real
measurements in different roomconfigurations, showing that the theoretical bound can be reached by the proposedMLE algorithm.

1. Introduction

Assets positioning raised a great interest in the last decade,
especially with the Internet of Things (IoT) business. In
this context, we expect indoor and outdoor positioning
to be achieved with the same hardware, a low energy
constraint for an autonomy of a few years. Economical
aspect can even constrain each reference node, named Access
Point (AP), used to locate the target assets, to run on
battery.

Outdoor positioning is mainly achieved using Global
Navigation Satellite System (GNNS) with an accuracy of
a few meters that is enough for this kind of applications.
Even if GNNS receiver energy consumption has been greatly
improved in the past decade [1–5], this still mainly limits
the asset autonomy to a few years. There is more energy
efficient but less accurate work in progress systems where
the measurement effort and position estimation are reported
from the asset to the infrastructure usingmainly a LowPower
Wide Area Network (LPWAN) connection [6–10]. Sub-GHz

bands allow using the same transceiver for both indoor and
outdoor positioning.

Indoor positioning using GNNS requires additional
infrastructure because of the poor signal level; the monolithic
solutions [11–14] can be very precise but the need of a great
number of external antenna does not meet most economical
requirements.

This paper focuses on indoor solutions that meet the
constraints of low energy (for assets and APs) with minimal
infrastructure and setup to reach a precision of a few meters.
We particularly focus on the static assets positioning use-
case, which implies that some techniques such as pedestrian
dead reckoning are not applicable for the solutions we are
studying. This area of indoor positioning using LPWANs,
WIFI, or Bluetooth Low Energy (BLE) raised a great interest
in the last decade and many solutions have been proposed,
based on Received Signal Strength Indication (RSSI), Time of
Arrival (ToA), andAngle of Arrival (AoA). Reviews on recent
advances and capacities can be found [15–17], and theoretical
bounds like Cramér-Rao Lower Bound (CRLB) and
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algorithms have been given and reviewed formost techniques
[18–20].

The common framework widely used proceeds in two
steps instead of direct estimation to reduce complexity even
if this is suboptimal in general [19]:

(i) A given number of measurements related to distance
are collected in a short time slot; outliers and noise are
filtered and an approximate distance measurement is
inferred from those, which are not coherent one with
the other due to multipath and measurement noise.

(ii) Those distances are then aggregated using algorithms,
which can belong to the following domains:

(a) Geometry (finding the intersection of distance
circles).

(b) Machine learning (neural networks, Smallest
M-vertex Polygon (SMP), or Support Vector
Machine (SVM)).

(c) Cellular algorithms (closest neighbour, weighted
neighbors, etc. . . .).

(d) Statistical estimation algorithms (mainly maxi-
mum likelihood).

ToA based solutions can be very accurate (within a meter
or centimeter), such as Ultra Wide Band (UWB) or col-
laborative positioning, but they require expensive hardware
and moreover synchronization signals are involved which
increases the power consumption. On the other hand such
a precision is not needed for asset positioning.

This paper then considers less precise but lower cost
solutions like Received Signal Strength (RSS) positioning
using low energy protocols like BLE. In this case the accu-
racy is strongly limited by the fast and slow fading effect
arising in dense multipath environments. Fast fading can
be mitigated using several measurements in time and their
first step preprocessing (averaging and removing outliers
from the average, i.e., values that are far from the mean
value, or using median value) before running the second
step positioning algorithm (which is known as time diversity
[21]).

Contrariwise, slow fading effects need spatial diversity or
frequency diversity to be reduced. For a given multipath con-
figuration, frequency diversity changes fading effects on the
RSS allowing simple algorithms like averaging or maximum
selection to improve the measurement at the preprocessing
stage of the positioning [22, 23]; this solution is promising
because it is only at the energy cost of a few emissions using
an agile emitter. Theoretical bounds and finding algorithms
should be more developed in the future to tackle the slow
fading effect.

Fingerprinting methods include the multipath effect for
each specific room in the propagation model to compensate
the static part of slow fading effects. Depending on the
AP placement, this method can drastically improve the
accuracy of positioning compared to physical models based
solutions. The main drawback is the learning process energy
consumption and hardware cost that should be deployed
at the setup for static environments, and moreover the

continuous learning process needed to correct slow changes
in the environment.

An energy efficient solution to reduce slow fading is to
use a sufficient number of APs in sparse places of the room
to give redundant measurements, with different multipath
biases. This spatial diversity may increase the accuracy of the
positioning algorithm when it is able to take advantage of
redundant measurements. There is then a trade-off between
the hardware cost of a great number of APs and the desired
accuracy of positioning. Part of the hardware cost resides
in its installation process which is greatly reduced when
those receivers are battery powered (so they do not need
to be connected to a power source), when no calibration of
the hardware gain is needed, and moreover when precise
coordinates of AP placement in the room are not needed.

Calibration of APs gains can be done in the fabrication
process or at setup time which takes into account the antenna
coupling with the environment, or calibration can be run
jointly to positioning as an unsupervised learning process.
Many works deal with the calibration of radio map with pure
machine learning [24–27], where others introduce path-loss
model into the learning process [17, 24, 28]. It is difficult
to find how much radio map learning can improve the
positioning performances and what will be quantitatively the
positioning error after the learning phase.

To help the design of a positioning system, the authors
of the previous work proposed theoretical bounds of posi-
tioning error with uncalibrated propagation model that are
reachable in an analytic way [29]. This bound has already
been derived for RSS, ToA, and Difference Time of Arrival
(DToA) techniques but not in the specific case of uncalibrated
Aps [19]. In the case of RSS phenomena like measurements
quantification are taken into account but lead to numerical
expression of the CRLB [30]. The CRLB is generally used in
statistics to bound the error variance of a given estimation
problem using the FIM derived from the likelihood function
of an estimate. This bound cannot be used to find an
estimation algorithm but gives a limit to the performance
of any estimator that can be proposed to solve this specific
estimation problem. Moreover this bound can sometimes be
optimistic when there is no existing algorithm capable of
reaching the performances of the bound.

We first consider in this paper the whole estimation of
multiple assets positions, as it may improve performances
compared to the independent estimation of each single target
in presence of common APs miss-calibrated parameters.
Then full equations are given and compared to previous
paper single asset positioning [29].TheMaximumLikelihood
Estimator (MLE) is also confronted to real experimentation
and measurement. Comparing error performances to CRLB
gives the efficiency of each solution so one can judge the loss
of precision in regard to the algorithm complexity and energy
efficiency. Moreover the analytic expression of the bound
helps to design, without any experimentation or simulation,
the best APs coverage density and calibration efforts to be run
with a given precision objective.

In the next section, we first give the stochastic propaga-
tion model and state the positioning problem as an uncertain
static parameter estimation. Then analytic CRLB and the
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MLE reaching this bound are derived. Section 3 aims to verify
previous results using simulations: the analytic bound is
compared with variance and RMSE of numerically computed
estimates.

2. Optimal RSS Positioning Algorithm with
Uncertain Calibration Parameters

We consider the positioning problem of I target assets which
sends N signals to J APs placed in a given room. The
positioning algorithm takes part of a propagation model
which contains uncertain parameters model for each asset
and APs.

It must be noted that this estimation problem is not a
joint estimation of the model parameters and the position
at the same time (like it is often done when dealing with
fingerprinting) but rather a position estimator which takes
into account the residual uncertainties of model parameters
from the calibration process to estimate a position.

Thepropagationmodel and estimation problemare stated
in the next section; the likelihood and maximum likelihood
estimator is derived in Section 2.2. The analytic CRLB is
given in Section 2.3, and finally the impact of asset gain, APs
gain, and reference model gain are shown using this analytic
formula at the end of Section 2.3.

2.1. Problem Statement and Uncertain Model. We consider
the position estimation problem to be a static parameter esti-
mation: knowing the RSSI channel model, the uncertainties
on the parameters model, we want to find 𝜃, the best estimate
of position 𝜃, inside a given room from some measurements𝑟(𝜃) by maximizing the likelihood functionL(𝜃 | 𝑟(𝜃)):

𝜃 = argmax
𝜃

(L (𝜃 | 𝑟 (𝜃))) (1)

The use of probabilistic algorithms requires a propagation
model; the Log-Distance Path Loss (LDPL) model is a
common choice for indoor (NLOS) propagation [31], which
defines the received power in relation with the distance as it
follows:

𝑃𝑅 (𝑑) = 𝐺 + 𝑎0 − 10𝛾 log10 (𝑑) + 𝑅 +V (𝜎) (2)

where 𝑎0 is the loss at a reference distance of 1m, 𝛾 is
commonly known as path loss exponent, path loss factor, or
path loss gradient, 𝑅 (𝐺, resp.) is the loss due to receiver’s
antenna (transmitter, resp.), andV(𝜎) is the measuring noise
modeled as a random Gaussian variable.

Fast fading phenomenon is removed by the preprocessing
step, usually by removing outliers using median or Kalman
filtering. NLOS situation is taken into account by the log-
normal probability of shadowing V(𝜎) and does not worth
to bemodeled separately frommeasurement noise as for time
delay techniques.

Path Loss parameters are known with relative precision
depending on the calibration setup when it exists; its value
differs from the theoretical value of 2 (valid in the case of
isotropic propagation in vacuum). Density of obstacles and

antenna directivity change this value which can be different
from an AP to another. However, it is possible to find average
values for those parameters working fine in most case and
improving themwith the collected RSSI over time [27, 31] and
measure a mean value and a variance for 𝐺 and 𝑅.

If we do not calibrate 𝐺 (𝑅, 𝑎0, and 𝛾, resp.), then we can
consider it as a random variable normally distributed around
an average value 𝐺 with a variance 𝜎𝐺. Similarly, we can
model all those parameters by a mean value and a variance
expressing the residual uncertainty of the measure. We want
to provide some typical values for three different calibration
modes: production calibration where the static gains are
measured prior to installation, in situ calibration where the
gains are measured with the device fixed at its final position
(more complexes and being costly for industrials, but it takes
into account the possible change in gain because antenna cou-
pling with the material the device is attached on), and finally
no calibration where we only know the general Probability
Density Function (PDF) of the gains frommean and variance
measurements. We conducted experiments in three different
rooms (confined, semiconfined, and open environment) to
get typical values for our hardware: we measured RSSIs
at known distance from multiple APs with several target
assets and measured the mean and standard deviation of
each parameter of the model using a Root Minimum Square
(RMS) optimization. We also measured the static gain in an
anechoic chamber using an USRP B200 from Ettus Research,
measuring as well the variance of our measurement; results
are compiled in Table 1. It must be noted that mean gains
(𝐺 and 𝑅) are set to zero for in situ calibration because their
mean value is reported to be 𝑎0 as we do not have a reference
measuring tool such as in production calibration.

Wepropose studying the influence of those variances over
the accuracy and precision of the likelihood estimate using
CRLB, for instance, to know which accuracy we could expect
by skipping or not the calibration of the receivers or the APs.

Let us consider that 𝐼 assets send 𝑁 signals to 𝐽 APs
in the same room. The APs have known positions and are
placed at coordinates 𝜃𝑎𝑝𝑗 = 𝑇[𝑥𝑗 𝑦𝑗 𝑧𝑗] if we are interested
in 3D coordinates or 𝜃𝑎𝑝𝑗 = 𝑇[𝑥𝑗 𝑦𝑗] when estimating 2D
coordinates with 𝑗 ∈ [0, 𝐽 − 1], and the assets have unknown
coordinates named 𝜃𝑡𝑖 = [𝑥𝑖 𝑦𝑖 𝑧𝑖] or 𝜃𝑡𝑖 = 𝑇[𝑥𝑖 𝑦𝑖], 𝑖 ∈[0, 𝐼 − 1], respectively, for 3D and 2D estimation.

The path loss model (2) applied to the 𝑛 ∈ N = {𝑛, 0 ≤𝑛 < 𝑁} signal sent from the ith asset and received at the jth AP
gives a strength measurement (in dB) 𝑟𝑖𝑗𝑛 and its expectation𝑟𝑖𝑗𝑛 is expressed by

𝑟𝑖𝑗𝑛 = 𝑔𝑗 + 𝑎0 + 𝑟𝑖 − 𝛾𝑗Δ 𝑖𝑗 (𝜃𝑡𝑖 , 𝜃𝑎𝑝𝑗 )
𝑟𝑖𝑗𝑛 = 𝑟𝑖𝑗𝑛 +V𝑔𝑗 +V𝑎0 +V𝑟𝑖 + Δ 𝑖𝑗V𝛾𝑗 +V

𝑖𝑗𝑛
𝑚

(3)

with Δ 𝑖𝑗(𝜃𝑡𝑖 , 𝜃𝑎𝑝𝑗 ) = 5 log10 𝑔(𝑑𝑖𝑗(𝜃𝑡𝑖 , 𝜃𝑎𝑝𝑗 )2) being the

log–distances and 𝑑𝑖𝑗(𝜃𝑡𝑖 , 𝜃𝑎𝑝𝑗 )2 = 𝑇(𝜃𝑡𝑖 − 𝜃𝑎𝑝𝑗 )(𝜃𝑡𝑖 − 𝜃𝑎𝑝𝑗 )
being the distance between the target i and the AP number j.

It is shown in the Appendix that the vector 𝑟 of all 𝐼×𝐽×𝑁
measurement can be modeled as the statistical expectation
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Table 1: Typical uncertain parameters models when production calibration is run, or when calibration is done at the setup process in situ, or
for the uncalibrated scenario.The 𝑥 notation is the value obtained from calibration whereN(], 𝜎2) is the normal law of mean ] and variance𝜎2.
Parameters Production calibration In situ calibration Not calibrated𝐺(𝑑𝐵): AP gain mismatch N (𝐺, 0.12) N (0, 1) N (0, 22)
𝑅(𝑑𝐵): asset gain mismatch N (𝑅, 0.12) Non Applicable N (0, 22)
𝛾: room path loss exponent Nonrelevant N (1.4, 0.12) N (1.4, 0.42)𝑎0(𝑑𝐵): reference gain N (52, 2.32)
](𝑑𝐵): noise measurement and shadow probability N (0, 62)

of the measurement vector 𝑟 given all the target positions 𝜃𝑡
added to multivariate Gaussian vectorsW𝛾(𝜃𝑡) andW𝐿. The
final expression (A.7) is recalled here:

𝑟 (𝜃𝑡) = 𝑀Γ (𝜃𝑡) ⋅ Γ (4)

𝑟 (𝜃𝑡) = 𝑟 (𝜃𝑡) +W (5)

with

W ∼ N (O𝐼𝐽𝑁, ΣW (𝜃𝑡) = ΣW𝛾
(𝜃𝑡) + ΣW𝐿

) (6)

ΣW (𝜃𝑡) = (𝜎𝛾2diag
𝐼𝐽

(Δ 𝑖𝑗 (𝜃𝑡𝑖 , 𝜃𝑎𝑝𝑗 )2) + 𝜎𝑎0 21◻𝐼𝐽
+ 𝜎𝐺21◻𝐼 ⊗ I𝐽 + 𝜎𝑅2I𝐼 ⊗ 1

◻
𝐽) ⊗ 1

◻
𝑁

(7)

𝑀Γ (𝜃𝑡) = [Δ𝑑𝑖𝑎𝑔 (𝜃𝑡) 1𝐼𝐽 1𝐼 ⊗ I𝐽 I𝐼 ⊗ 1𝐽] ⊗ 1𝑁 (8)

Thus the measurements are affected linearly by a multi-
variate covariant random uncertain vector, so the likelihood
and MLE can be obtained.

2.2. Log-Likelihood Expression. Thepositioning problem is to
find all the assets coordinates components 𝜃𝑡𝑘 of the vector 𝜃𝑡
with 𝑘 ∈ K = {𝑘, 0 ≤ 𝑘 < 𝐾}, 𝐾 = 3𝐼, for 3D positioning
and 𝐾 = 2𝐼 for 2D where 𝜃𝑡 = [𝜃0 ⋅ ⋅ ⋅ 𝜃𝐾]. The likelihood
of a measurement vector 𝑟 is simply the probability density
of the multivariate random vector W to equal 𝑟 − 𝑟. Then
the probability density function of such a vector follows a
multivariate normal law and can be expressed in matrix form
[32], which gives the following expressions for likelihood (L)
and log–likelihood (LL):

L (𝑟 | 𝜃𝑡)
= 1
√2𝜋𝐼𝐽𝑁√ΣW (𝜃𝑡)

e−(1/2)
𝑇
(𝑟−𝑟(𝜃𝑡))ΣW(𝜃

𝑡)−1(𝑟−𝑟(𝜃𝑡))

− 2LL (𝑟 | 𝜃𝑡)
= 𝐼𝐽𝑁 ln (2𝜋) + ln ΣW (𝜃𝑡)

+ 𝑇(𝑟 − 𝑟 (𝜃𝑡))ΣW (𝜃𝑡)−1 (𝑟 − 𝑟 (𝜃𝑡))

(9)

Then the maximum likelihood to be solved is
𝜃𝑡 = argmax

𝜃𝑡∈R𝐾
L (𝑟 | 𝜃𝑡) = argmax

𝜃𝑡∈R𝐾
LL (𝑟 | 𝜃𝑡) (10)

Analytic solution to this optimization problem seems
complicated as long as uncertainties on 𝛾𝑗 (involved in the
covariance matrix ΣW(𝜃𝑡)) are to be taken into account: this
involves a covariance matrix which depends on the unknown
optimization. This is the scope of future work because the
part of ΣW that depends on 𝜃𝑡 is the diagonal matrix ΣW𝛾

in an additive way and further calculations may be solved
analytically in the future.

In this paper we consider that all path-loss exponents are
certain, or sufficiently calibrated, with known values 𝛾. Then
only miss-calibrated gains on assets and APs are considered
uncertain as follows. Then ΣW does no longer depend on 𝛾,
which simplifies (9) and (15) to

LL (𝑟 | 𝜃𝑡) = −𝐼𝐽𝑁2 ln (2𝜋) − 12 ln ΣW𝐿


− 12 𝑇(𝑟 − 𝑟 (𝜃𝑡))ΣW𝐿

−1 (𝑟 − 𝑟 (𝜃𝑡))
𝜕LL (𝑟 | 𝜃𝑡)𝜕𝜃𝑡

𝑘

= − 𝑇 𝜕𝑟𝜕𝜃𝑡
𝑘

𝜃𝑡 ΣW𝐿

−1 (𝑟 − 𝑟 (𝜃𝑡))
(11)

The positioning problem becomes the following nonlin-
ear least square formulation:

𝜃𝑡 = argmax
𝜃𝑡∈R𝐾

LL (𝑟 | 𝜃𝑡)
= argmin
𝜃𝑡∈R𝐾

[𝑇(𝑟 − 𝑟 (𝜃𝑡))ΣW𝐿

−1 (𝑟 − 𝑟 (𝜃𝑡))] (12)

which is efficiently solved in an iterative way [33]:

𝜃𝑡 (𝑘 + 1) = 𝜃𝑡 (𝑘) + (𝑇 𝜕𝑟𝜕𝜃𝑡
𝜃𝑡(𝑘) ΣW𝐿

−1 𝜕𝑟𝜕𝜃𝑡
𝜃𝑡(𝑘))

−1

⋅ 𝑇 𝜕𝑟𝜕𝜃𝑡
𝜃𝑡(𝑘) ΣW𝐿

−1 (𝑟 − 𝑟 (𝜃𝑡 (𝑘)))
(13)

2.3. Analytic Cramer-Rao Lower Bound. To compute the
theoretical bound, the FIM matrix should be derived using

I (𝜃𝑡) = E[𝑇(𝜕LL (𝑟 | 𝜃𝑡)
𝜕𝜃𝑡 )𝜕LL (𝑟 | 𝜃𝑡)

𝜕𝜃𝑡 ] (14)
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Once again, the log-likelihood derivative with respect to𝜃𝑡 does not permit analytic expression of the bound because
of ΣW depending on 𝛾:

𝜕LL (𝑟 | 𝜃𝑡)𝜕𝜃𝑡 = (𝜕LL (𝑟 | 𝜃𝑡)𝜕𝜃𝑡
𝑘

)
𝑘∈K

with
𝜕LL (𝑟 | 𝜃𝑡)𝜕𝜃𝑡

𝑘

= − 𝜕 𝑇(𝑟 − 𝑟)𝜕𝜃𝑡
𝑘

𝜃𝑡 ΣW
−1 (𝜃𝑡) (𝑟 − 𝑟 (𝜃𝑡)) − 12Tr (ΣW

−1) ⋅ 𝜕ΣW𝛾𝜕𝜃𝑡
𝑘

𝜃𝑡 +
12 𝑇(𝑟 − 𝑟)ΣW

−1 (𝜃𝑡) 𝜕ΣW𝛾𝜕𝜃𝑡
𝑘

𝜃𝑡 ΣW
−1 (𝜃𝑡) (𝑟 − 𝑟)

(15)

In this case the FIM can only be obtained in a numerical
way. Taking the assumption of a well-calibrated path-loss
exponents (14) and (11) gives

I (𝜃𝑡) = E[𝑇 𝜕𝑟𝜕𝜃𝑡
𝜃𝑡 ΣW𝐿

−1 (𝑟 − 𝑟 (𝜃𝑡))
⋅ 𝑇(𝑟 − 𝑟 (𝜃𝑡))ΣW𝐿

−1 𝜕𝑟𝜕𝜃𝑡
𝜃𝑡] = 𝑇 𝜕𝑟𝜕𝜃𝑡

𝜃𝑡
⋅ ΣW𝐿

−1𝐸 [W𝐿 𝑇W𝐿] ΣW𝐿

−1 𝜕𝑟𝜕𝜃𝑡
𝜃𝑡 =
𝑇 𝜕𝑟𝜕𝜃𝑡

𝜃𝑡
⋅ ΣW𝐿

−1 𝜕𝑟𝜕𝜃𝑡
𝜃𝑡

(16)

Then the CRLB can be used to obtain the inequality

Var (𝜃𝑡) ≥ I
−1 = 𝑇 𝜕𝑟𝜕𝜃𝑡ΣW𝐿

−1 𝜕𝑟𝜕𝜃𝑡
−1

(17)

Then as 𝜕𝑟/𝜕𝜃𝑡 is overdetermined compared to the
dimension of W𝐿 we can use the Moore-Penrose Pseudo
Inverse (MPPI) [34]:

I
−1 = 𝜕𝑟𝜕𝜃𝑡

+ (ΣW𝐿

−1)+ 𝑇 𝜕𝑟𝜕𝜃𝑡
+ = 𝜕𝑟𝜕𝜃𝑡

+ΣW𝐿

𝑇 𝜕𝑟𝜕𝜃𝑡
+

(18)

where 𝐴+ and (𝐴)+ stand for the MPPI of 𝐴.
As the measurements sensibility is independent from an

asset to another and the expectation ofmeasurements is inde-
pendent from a measure to another, the derivative 𝜕𝑟/𝜕𝜃𝑡 is a
block diagonal repetition of the form diag𝑖∈I(𝜕𝑟𝑖𝑛/𝜕𝜃𝑡𝑖 ⊗ 1𝑁)
where 𝑟𝑖𝑛 = (𝑟𝑖𝑗)𝑗∈J is the vector of all expected measurement
for the ith asset. Then pseudoinverse is expressed as a vertical
vector as

𝜕𝑟𝜕𝜃𝑡
+ = diag
𝑖∈I

((𝑁 𝑇𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖
𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖 )

−1 𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖 )𝑖∈I ⊗ 1𝑁

= 1𝑁diag
𝑖∈I

(𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖
+) ⊗ 1𝑁

(19)

Then using the covariance matrix structure (A.5) ofW𝐿 with
expression (18) the inverse FIM is simplified in

I
−1 = 1𝑁2 (diag𝑖∈I (𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖

+) ⊗ 1𝑁) ⋅ ((𝜎𝑎0 21◻𝐼𝐽
+ 𝜎𝐺21◻𝐼 ⊗ I𝐽 + 𝜎𝑅2I𝐼 ⊗ 1

◻
𝐽 ) ⊗ 1

◻
𝑁 + 𝜎𝑚2I𝐼𝐽𝑁)

⋅ (diag
𝑖∈I

(𝑇 𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖
+) ⊗ 𝑇1𝑁)

= diag
𝑖∈I

(𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖
+ ((𝜎𝐺2 + 𝜎2𝑚𝑁 ) I𝐽

+ (𝜎𝑎0 2 + 𝜎𝑅2) 1◻𝐽)
𝑇 𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖
+) = diag

𝑖∈I

((𝜎𝐺2

+ 𝜎2𝑚𝑁 ) 𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖
+ 𝑇 𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖

+ + (𝜎𝑎0 2 + 𝜎𝑅2)
⋅ 𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖
+

1
◻
𝐽

𝑇 𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖
+)

(20)

The inverse FIM shows that each asset positioning accu-
racy is independent one from the other, which shows that
estimating positions of 𝐼multiple assets is equivalent to mak-
ing 𝐼 different estimations of one asset. Hence, information
measured by each asset does not improve positioning of
the others, and results from previous work [29] can also be
used for multiple assets without loss of optimality. Then the
CRLB of the ith target positioning can bound the RMSE of its
estimate error 𝜖𝑖 with

E [𝑇𝜖𝑖𝜖𝑖] ≥ Tr (Var (𝜖𝑖)) ≥ Tr (I−1)
≥ (𝜎𝐺2 + 𝜎2𝑚𝑁 )Tr(𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖

+ 𝑇 𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖
+)

+ (𝜎𝑎0 2 + 𝜎𝑅2)Tr(𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖
+

1
◻
𝐽

𝑇 𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖
+)

= (𝜎𝐺2 + 𝜎2𝑚𝑁 )Tr((𝑇𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖
𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖 )

−1)
+ (𝜎𝑎0 2 + 𝜎𝑅2)Tr(𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖

+

1
◻
𝐽

𝑇 𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖
+)

(21)
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This formula shows that the increase of assets to be
positioned does not improve accuracy (as the positioning
algorithm does not calibrate the gain mismatch, this result
seems fine). The number of measurements 𝑁 only helps to
mitigate the fast fading and noises measurement 𝜎2𝑚 and does
not compensate the calibration of the APs gains. Hence, we
see that we can stop measuring values when we reach 𝜎𝐺2 ≫𝜎2𝑚/𝑁. Two terms depending on the geometrical configura-
tion represent the Geometrical Dilution of Precision (GDoP)
of the positioning. Thismeans that the optimal AP placement
depends on the quality of assets, APs gain calibrations, and
fading probability.

3. Simulations and Experiments

In this section we compare analytic expression with simu-
lations. The first subsection validates the analytic form of
the FIM with simulations, showing analytic versus simulated
covariance matrices. Then Section 3.2 compares results from
real measurements against CRLB expectations for various
results from a numerical simulation. Those results were made
for several different configurations of APs.

3.1. Numerical Verification of Cramer-Rao Lower Bound. For
the numerical verification of previous equations, we used a
simulator generatingRSSIswith an additional pseudorandom
noise. From those values we computed a position estimate
using the MLE, and we measured the covariance matrix of
those estimates. We then plotted the estimates coordinates,
the 2-sigma ellipsis of the numerical verification, and the
CRLB covariance matrix. An example of the results is shown
in Figure 1 with a room of11 by 6 meters, one AP at each
corner, 𝜎𝐺 = 𝜎𝑅 = √2 and 𝜎 = √3, and two target assets
at positions 𝑥, 𝑦 = [5 5] and 𝑥, 𝑦 = [2 2]. In this figure,
we can see that the simulated covariance is bigger than the
CRLB which is consistent with the theory. On regions closer
to APs (position of transmitter 1 in Figure 1), the likelihood
function is highly nonlinear due to the nonlinearity of the
LDPL model close to zero; hence the estimated positions
will no longer be spread linearly but rather in circle around
the AP combined with the fact that we have further all APs
and the GDOP is not good in this configuration; some noisy
measurements might be estimated outside the room, which
is distorting the covariance ellipsis: the CRLB ellipsis less fits
the simulated values; however estimates covariance is always
above the CRLB, so the results are still theoretically correct.
We can see that filtering those outliers leads to a closest
match betweenCRLB and simulated values. On the rightmost
part of the figure you can see the RMSE of the Euclidean
distance ((1/𝑁)∑𝑁𝑖 √(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2 where 𝑥 and 𝑦 are
the estimates of the real coordinates 𝑥 and 𝑦) versus the trace
of the CRLB (the criterion in equation (21)).

3.2. Comparison with Real Data. To make sure that the
CRLB matches real case scenarios, we conducted experi-
ments in different room configurations, with several APs
configurations at various known positions and computed the
Cumulated Density Function (CDF) of the distance error

between estimated and real positions. This subsection depicts
the setup and the results.

3.2.1. Presentation of Hardware and Experimental Setup.
After a numerical verification of the equations, we confronted
the CRLB results with real measurements. Experiments took
place in 11 by 6 meters office with two devices from firm
FFLY4U: FFLYdot and Myria, respectively, for APs and
tracked devices (see Figure 2 for a schematic of the setup and
pictures of the devices). Both devices use a Nordic NRF52
for Bluetooth communication and RSSI ranging. It must
be noted that for practical issues in this scenario the APs
were set as BLE advertisers (iBeacon) and the RSSIs were
measured by the tracked asset. This is done without any loss
of generality and its impact on the algorithm results in a
change of gains between receivers and transmitters (𝑅 and𝐺 values are swapped). This inverted scenario is necessary
because the APs only have a broadcast capability. The APs
were broadcasting with a period of 25 milliseconds and a
total of 140 measurements were collected for each AP. The
tracked device was placed on a regular grid of 135 points
spaced with a distance of 0.6 meter, using existing marks
on the ground, whose size was fine-measured using a laser
rangefinder. To be able to easily change the APs coordinates
for position optimization tests, each AP was mounted on a
mobile wooden pillar.

3.2.2. Cumulative Density Function of the Error for Simulated
Data, Real Data, and CRLB in Various AP Configurations. To
compare thosemeasurements, we also computed aCDFusing
our RSSI simulator: for all 135 positions of measurements,
we simulated 140 measurements, from which we computed
the estimated position. For the CRLB, we generated 1000
positions estimates from the covariance matrix at each
measuring point. It must be noted that the number of
estimates is significantly higher than the CRLB because we
want to generate a theoretical smooth curve and the random
generated position is just an easier way to compute the
theoretical curve from the analytic expression, taking into
account all the different values of the CRLB at the different
positions of the room. We made measurements with 7 and
4 APs placed at easiest mount points in the room (close
to existing pillars, e.g., not on windows); the resulting CDF
curves of those simulations and measurements are shown in
Figure 3, showing that the CRLB is as expected slightly better
than reality but not too much conservative or optimistic.
Hence, the CRLB could be used as a good indicator of the
performance of the AP topology, giving a metric of the error
in meters. Moreover, simulated values also produced a more
slightly better result as they do not include effect of multipath
propagation and fading.

3.3. Impact of Calibration on the Expected Accuracy. Cali-
bration is a step costly in time, which involves measuring
in postproduction the static gain of all devices (APs and
tracked assets), which might also vary in time for devices
on battery. However, it could be skipped by measuring the
average and variance of gains and model parameters and
using those values in the model. As it could save time and
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money for industrial deployments, we want to study its
impact on the expected accuracy. Now, we showed that our
CRLB is consistent with real measurements; we will use it as
a criterion to see if calibration is required depending on the
expected accuracy. We simulated the CRLB in the case of a
squared room with an AP at each corner in function of the
size of the room (Δ, which symbolizes the meshing density),
our relative coordinates [𝛿𝑥, 𝛿𝑦] = [𝑥, 𝑦] /Δ, and the number
of measures 𝑁. We compared the result in the case where
no calibration has been made (𝜎𝐺 = 𝜎𝑅 = 2), where APs
are calibrated in production (𝜎𝑅 = 2, 𝜎𝐺 ≈ 0), and where
both APs and tracked devices are calibrated in production
(𝜎𝑅 = 𝜎𝐺 ≈ 0). Results are shown in Table 2.

What we can see on those results is that if we do
not calibrate the APs gains, the lower error achievable is
equivalent to Δ/2; that means the positioning is equivalent
to a cellular algorithm. If we want a higher precision than
cellular setup, we necessarily have to calibrate the APs.

4. Conclusion

The positioning problem of multiple assets with uncertain
receivers gain and uncertain propagation model has been
addressed. Typical values of uncertainties have been given
from the observation of multiple setups and calibration
realized in different industrial environments. Based on this

model, the global MLE algorithm is given and formulated,
having an iterative nonlinear least square solver. The CRLB is
expressed in the general form and analytically for the specific
case of well-calibrated path-loss exponents. Simulations show
that the bound is reached by the MLE and moreover real
measurements and estimations show that this result is not too
much conservative; that is, the bound is a good estimation of
the expected accuracy. Using this analytic CRLB, we discuss
the impact on the accuracy of access points gain calibration,
assets gain calibration, precision of measurements, number
of measurements repetitions, and number of joint assets to
be positioned.

It first shows that in contrary to joint calibration and
positioning algorithms the number of assets to be estimated
has no effect on the accuracy of each estimation. One can
then reduce the solver complexity by running independent
estimations without loss of optimality.

Secondly, it shows that the positioning of RMSE is
split into two terms involving APs calibration, measurement
precision and repetition, weighted by a parameter connected
to the geometric position of the APs inside the room on
the one hand. And on the other hand the asset calibration
gain and LDPL reference gain are weighted by a different
geometrical factor to impact the accuracy. Then it shows that
depending on different calibration quality or efforts different
geometrical terms can be involved and then different optimal
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Table 2: CRLB RMSE. Coordinates are 𝛿𝑥 and 𝛿𝑦: fractions of Δ the inter-APs distance (the meshing density).

Δ (𝛿𝑥,𝛿𝑦) I Not calibrated Calibrated APs Calibrated APs & targets
5 (0.5, 0.5) 1 2.13 0.48 0.48
5 (0.5, 0.5) 20 2.08 0.11 0.11
5 (0.1, 0.5) 1 3.14 1.95 1.16
5 (0.1, 0.5) 20 3.09 1.87 1.01
10 (0.5, 0.5) 1 4.26 0.96 0.96
10 (0.5, 0.5) 20 4.15 0.21 0.21
10 (0.1, 0.5) 1 6.27 3.89 2.31
10 (0.1, 0.5) 20 6.17 3.73 2.03
20 (0.5, 0.5) 1 8.51 1.92 1.92
20 (0.5, 0.5) 20 8.30 0.43 0.43
20 (0.1, 0.5) 1 12.54 7.79 4.62
20 (0.1, 0.5) 20 12.35 7.47 4.05

APs configurations can arise. Using a numerical application,
we also showed that with typical hardware the error was close
to those of cellular positioning if we do not calibrate APs.

More generally, this can be used for dimension and to
optimize a setup to reach a desired accuracy. It showed an
example of how to infer the number of APs to reach accuracy
in a given room. Future work could infer the number of
measurements required for a given accuracy in function
of the calibration error of the APs or even to find the
optimal AP disposition in a given room for a given calibra-
tion.

Appendix

Full Measurement Vector Construction

Equation (3) givesthe RSS measurement obtained for signal
number 𝑛 ∈ N received by the AP number 𝑗 ∈ J = {𝑗, 0 ≤𝑗 < 𝐽} sent from asset number 𝑖 ∈ I = {𝑖, 0 ≤ 𝑖 < 𝐼}. In this
section we use matrix algebra with the Kronecker product,
noted ⊗, to give the full 𝐼𝐽𝑁 measurements vector 𝑟 and its
expectation value 𝑟.

We first stack in the vector 𝑟𝑖𝑗 the 𝑁 expectations of the
strength measurement transmitted between a couple (𝑖, 𝑗) ∈
I × J of target and AP. This expectation is the same for all
measurements; only the measurement and shadowing effect
noise V𝑖𝑗𝑛𝑚 ∼ N(0, 𝜎2𝑚) change from one measurement to
another. We then define the Gaussian random vector variable
V𝑖𝑗𝑚 as 𝑇V𝑖𝑗𝑚 = 𝑇[V𝑖𝑗0𝑚 . . . V𝑖𝑗(𝑁−1)𝑚 ] = N(O𝑁, 𝜎2𝑚I𝑁),
where O𝑁 is the null vector of size N, and I𝑁 is the
identity matrix of size 𝑁, and express those measurements
as

𝑟𝑖𝑗 (𝜃𝑡𝑖) = (𝑔𝑗 + 𝑎0 + 𝑟𝑖 + 𝛾𝑗Δ 𝑖𝑗 (𝜃𝑡𝑖 , 𝜃𝑎𝑝𝑗 )) ⊗ 1𝑁

𝑟𝑖𝑗 (𝜃𝑡𝑖) = 𝑟𝑖𝑗 (𝜃𝑡𝑖)
+ (V𝑔𝑗 +V𝑎0 +V𝑟𝑖 + Δ 𝑖𝑗 (𝜃𝑡𝑖 , 𝜃𝑎𝑝𝑗 )V𝛾𝑗)
⊗ 1𝑁 +V

𝑖𝑗
𝑚

= 𝑟𝑖𝑗 (𝜃𝑡𝑖) + [1𝑁 I𝑁] ⋅ [V𝑎0
V𝑖𝑗𝑚

]
+ (V𝑔𝑗 +V𝑟𝑖 + Δ 𝑖𝑗 (𝜃𝑡𝑖 , 𝜃𝑎𝑝𝑗 )V𝛾𝑗) ⊗ 1𝑁

(A.1)
For stacking all APs on the vector we need to define

the mismatch gain vector 𝐺 of those J receivers as 𝑇𝐺 =
𝑇[𝑔0 . . . 𝑔𝐽−1] and the corresponding gain uncertainties
vector 𝑇V𝐺 = 𝑇[V0𝐺 . . . V𝐽−1𝐺 ] ∼ N(O𝐽, 𝜎𝐺2I𝐽). Similarly
for the path-loss exponent we get 𝛾 = 𝑇[𝛾0 . . . 𝛾𝐽−1] and
𝑇V𝛾 = 𝑇[V0𝛾 . . . V𝐽−1𝛾 ] ∼ N(O𝐽, 𝜎𝛾2I𝐽). The log-square-
distance vector between the ith asset and all the APs is noted
𝑇Δ 𝑖(𝜃𝑡𝑖 ) = 𝑇[Δ 𝑖𝑗(𝜃𝑡𝑖 , 𝜃𝑎𝑝0 ) . . . Δ 𝑖𝑗(𝜃𝑡𝑖 , 𝜃𝑎𝑝𝐽−1)]. Then the vector𝑟𝑖 of the 𝐽𝑁measurements and its expectation 𝑟𝑖 concerning
an asset number 𝑖 ∈ I are written (we consider that the
Kronecker operator ⊗ has priority on the matrix product):

𝑟𝑖 (𝜃𝑡𝑖) = [(diag (Δ 𝑖 (𝜃𝑡𝑖)) 𝛾 + 𝐺) + (𝑎0 + 𝑟𝑖) ⊗ 1𝐽]
⊗ 1𝑁

= [diag (Δ 𝑖 (𝜃𝑡𝑖 )) ⊗ 1𝑁 1𝐽 ⊗ 1𝑁 I𝐽𝑁] ⋅ [[[
[

𝛾
𝑎0
𝐺
]]]
]

+ 𝑟𝑖 ⊗ 1𝐽𝑁

𝑟𝑖 (𝜃𝑡𝑖) = 𝑟𝑖 (𝜃𝑡𝑖)
+ [diag (Δ 𝑖 (𝜃𝑡𝑖 )) ⊗ 1𝑁 1𝐽 ⊗ 1𝑁 I𝐽𝑁 I𝐽𝑁]

⋅ [[[[[
[

V𝛾

V𝑎0

V𝐺

V𝑖𝑚

]]]]]
]
+V𝑟𝑖 ⊗ 1𝐽𝑁

(A.2)
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where V𝑖𝑚 ∼ N(O𝐽𝑁, 𝜎𝑚2I𝐽𝑁) and 1𝑘 (O𝑘, resp.) is the
vertical vector of 𝑘 ones (zeros, resp.).

Finally, we note 𝑅 being the vector of the I expected
assets gain mismatch defined as 𝑇𝑅 = 𝑇[𝑟0 . . . 𝑟𝐼−1] and
its random multivariate vector 𝑇V𝑅 = 𝑇[V0𝑅 . . . V𝐼−1𝑅 ] ∼
N(O𝐼, 𝜎𝑅2I𝐼).

For the full log-square-distance vector defined as
𝑇Δ(𝜃𝑡) = 𝑇[Δ 𝑖(𝜃𝑡0) . . . Δ 𝑖(𝑇𝜃𝑡𝐼−1)], we added a rectangular
form 𝑇Δ𝑑𝑖𝑎𝑔(𝜃𝑡) = 𝑇[diag(Δ 𝑖(𝜃𝑡0)) . . . diag(Δ 𝑖(𝜃𝑡𝐼−1))] to
allowmatrix expression. All the targets relatedmeasurements
are stacked to obtain the full𝑁𝐽𝐼measurements vector 𝑟 and
its expectation 𝑟 being then expressed as

𝑟 (𝜃𝑡) = [diag (Δ (𝜃𝑡)) ⋅ 1𝐼 ⊗ 𝛾 + 𝑅 ⊗ 1𝐽 + 1𝐼

⊗ (𝐺 + 𝑎0 ⊗ 1𝐽)] ⊗ 1𝑁

= [Δ𝑑𝑖𝑎𝑔 (𝜃𝑡) 1𝐼𝐽 1𝐼 ⊗ I𝐽 I𝐼 ⊗ 1𝐽] ⊗ 1𝑁 ⋅
[[[[[[
[

𝛾
𝑎0
𝐺
𝑅

]]]]]]
]

𝑟 (𝜃𝑡) = 𝑟 (𝜃𝑡)
+ [Δ𝑑𝑖𝑎𝑔 (𝜃𝑡) ⊗ 1𝑁 1𝐼𝐽𝑁 1𝐼 ⊗ I𝐽 ⊗ 1𝑁 I𝐼 ⊗ 1𝐽𝑁 I𝐼𝐽𝑁]

⋅
[[[[[[[[
[

V𝛾

V𝑎0

V𝐺

V𝑅

V𝑚

]]]]]]]]
]

(A.3)

whereV𝑚 ∼ N(O𝐼𝐽𝑁, 𝜎𝑚2I𝐼𝐽𝑁).
The path-loss exponents 𝛾𝑗 are the only parameters

involved with the targets positions 𝜃𝑡 in this equation;
thus we can define the vector Γ𝐿 of expected uncertain
parameters linearly involved in the equation as 𝑇Γ𝐿 =
𝑇[𝑎0 𝑇𝐺 𝑇𝑅] and its mismatch noise vector as 𝑇V𝐿 =
𝑇[V𝑎0 𝑇V𝐺 𝑇V𝑅 𝑇V𝑚] ∼ N(O, ΣΓ𝐿) which is a zero
mean independent random variables vector whose diagonal
covariance matrix is ΣΓ𝐿 = diag(𝜎𝑎0 2, 𝜎𝐺2I𝐽, 𝜎𝑅2I𝐼, 𝜎𝑚2I𝐼𝐽𝑁).

Then (A.3) becomes

𝑟 (𝜃𝑡) = 𝑀𝛾 (𝜃𝑡) ⋅ 𝛾 +𝑀Γ𝐿 ⋅ Γ𝐿
𝑟 (𝜃𝑡) = 𝑟 (𝜃𝑡) +𝑀𝛾 (𝜃𝑡) ⋅V𝛾

+ [𝑀Γ𝐿 | I𝐼𝐽𝑁] ⋅V𝐿
with 𝑀𝛾 (𝜃𝑡) = Δ𝑑𝑖𝑎𝑔 (𝜃𝑡) ⊗ 1𝑁

𝑀Γ𝐿 = [1𝐼𝐽 1𝐼 ⊗ I𝐽 I𝐼 ⊗ 1𝐽] ⊗ 1𝑁

(A.4)

Then the independent random Gaussian vector V𝛾
is linearly mixed by 𝑀𝛾(𝜃𝑡) to give the multivariate

Gaussian vector W𝛾 ∼ N(O, ΣW𝛾
(𝜃𝑡)). The covariance is

given by

ΣW𝛾
(𝜃𝑡) = 𝜎𝛾2𝑀𝛾 ⋅ 𝑇𝑀𝛾

= 𝜎𝛾2diag
𝐼𝐽

(Δ 𝑖𝑗 (𝜃𝑡𝑖 , 𝜃𝑎𝑝𝑗 )2) ⊗ 1
◻
𝑁

(A.5)

where diag(𝑖,𝑗)∈𝐼×𝐽(𝐴 𝑖𝑗) is the block diagonal matrix defined
as ((𝐴 𝑖𝑗)𝑗,𝑗)𝑖,𝑖.

The independent measurement noise vectorV𝑚 is added
to the independent Gaussian vector Γ𝐿 linearly mixed with𝑀Γ𝐿 to give the multivariate Gaussian vector W𝐿 ∼
N(O, ΣW𝐿

):
ΣW𝐿

= [𝑀Γ𝐿 | I𝐼𝐽𝑁] ⋅ ΣV𝐿
⋅ 𝑇[𝑀Γ𝐿 | I𝐼𝐽𝑁] (𝜎𝑎0 21◻𝐼𝐽

+ 𝜎𝐺21◻𝐼 ⊗ I𝐽 + 𝜎𝑅2I𝐼 ⊗ 1
◻
𝐽 ) ⊗ 1

◻
𝑁 + 𝜎𝑚2I𝐼𝐽𝑁

(A.6)

where 1◻𝑘 is the square 𝑘 × 𝑘matrix full of ones.
Finally measurements are modeled by

𝑟 (𝜃𝑡) = 𝑀𝛾 (𝜃𝑡) ⋅ 𝛾 +𝑀Γ𝐿 ⋅ Γ𝐿
𝑟 (𝜃𝑡) = 𝑟 (𝜃𝑡) +W𝛾 (𝜃𝑡) +W𝐿

(A.7)

The two multivariate random vectors W𝛾 and W𝐿 are inde-
pendent so they can be added to form a single multivariate
vector which simplify expression to

𝑟 (𝜃𝑡) = 𝑀Γ (𝜃𝑡) ⋅ Γ
𝑟 (𝜃𝑡) = 𝑟 (𝜃𝑡) +W

with W ∼ N (O𝐼𝐽𝑁, ΣW (𝜃𝑡) = ΣW𝛾
(𝜃𝑡) + ΣW𝐿

)
ΣW (𝜃𝑡) = (𝜎𝛾2 diag

𝐼𝐽

(Δ 𝑖𝑗 (𝜃𝑡𝑖 , 𝜃𝑎𝑝𝑗 )2) + 𝜎𝑎0 21◻𝐼𝐽
+ 𝜎𝐺21◻𝐼 ⊗ I𝐽 + 𝜎𝑅2I𝐼 ⊗ 1

◻
𝐽) ⊗ 1

◻
𝑁

𝑀Γ (𝜃𝑡) = [Δ𝑑𝑖𝑎𝑔 (𝜃𝑡) 1𝐼𝐽 1𝐼 ⊗ I𝐽 I𝐼 ⊗ 1𝐽] ⊗ 1𝑁

(A.8)

Abbreviations

AoA: Angle of Arrival
AP: Access Point
BLE: Bluetooth Low Energy
CDF: Cumulated Density Function
CRLB: Cramér-Rao Lower Bound
DToA: Difference Time of Arrival
FIM: Fisher Information Matrix
GDoP: Geometrical Dilution of Precision
GNNS: Global Navigation Satellite System
IoT: Internet of Things
LDPL: Log-Distance Path Loss
LPWAN: Low Power Wide Area Network
MLE: Maximum Likelihood Estimator
MPPI: Moore-Penrose Pseudoinverse
NLoS: Nonline of Sight
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PDF: Probability Density Function
RMS: Root Minimum Square
RMSE: Root Minimum Square Error
RSS: Received Signal Strength.
RSSI: Received Signal Strength Indication
SMP: Smallest M-vertex Polygon
SVM: Support Vector Machine
ToA: Time of Arrival
UWB: Ultra Wide Band.

Data Availability

Position estimation algorithm and Cramér-Rao bound
ellipses can be computed following the instructions and
using the code provided in https://github.com/XavierTolza/
RssiCRLB-plots.
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