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Existence and regularity of Faber-Krahn minimizers
in a Riemannian manifold

Jimmy Lamboley1, Pieralberto Sicbaldi2

Abstract

In this paper, we study the minimization of λ1(Ω), the first Dirichlet eigenvalue of the Laplace-Beltrami operator, within
the class of open sets Ω of fixed volume in a Riemmanian manifold (M, g). In the Euclidian setting (when (M, g) =
(Rn, e)), the well-known Faber-Krahn inequality asserts that the solution of such problem is any ball of suitable volume.
Even if similar results are known or may be expected for Riemannian manifolds with symmetries, we cannot expect to
find explicit solutions for general manifolds (M, g). In this paper we study existence and regularity properties for this
spectral shape optimization problem in a Riemannian setting, in a similar fashion as for the isoperimetric problem. We
first give an existence result in the context of compact Riemannian manifolds, and we discuss the case of non-compact
manifolds by giving a counter-example to existence. We then focus on the regularity theory for this problem, and using
the tools coming from the theory of free boundary problems, we show that solutions are smooth up to a possible residual
set of co-dimension 5 or higher.

Résumé

Dans cet article on étudie le problème de minimiser λ1(Ω), la première valeur propre de Dirichlet de l’opérateur de
Laplace-Beltrami, parmi les ensembles ouverts Ω de volume fixé dans une variété riemannienne (M, g). Dans le cadre
euclidien (quand (M, g) = (Rn, e)), l’inégalité de Faber-Krahn afirme que les solutions de ce problème sont des boules.
Même si des résultats similaires ont été démontrés, ou sont susceptibles d’être prouvés pour des variétés riemanniennes
ayant des symétries, on ne peut pas s’attendre à pouvoir déterminer explicitement les solutions du problème pour des
variétés générales (M, g). Dans cet article, on étudie des propriétés d’existence et de régularité pour ce problème spectral
d’optimisation de forme dans le cadre riemannien, avec une approche similaire au problème isopérimétrique. En premier
lieu, on donne un résultat d’existence dans le contexte d’une variété riemannienne compacte, et on discute le cas des
variétés non compactes avec la construction d’un contre-exemple à l’existence. Ensuite, on se concentre sur la théorie
de la régularité pour ce problème, et en utilisant des techniques de la théorie des problèmes à frontière libre, on prouve
que les solutions sont régulières sauf dans un ensemble résiduel de codimension supérieure ou égale à 5.

Keywords: Shape optimization, Laplace-Beltrami operator, first eigenvalue, regularity of free boundaries, Rieman-
nian manifold, Faber-Krahn profile, isoperimetric problems.

MCS codes: 35P05, 35R35, 49Q10, 49R50, 53C21, 74P20.

1. Introduction and main results

Let (M, g) be a smooth n-dimensional Riemannian manifold (without boundary), where n ≥ 2. For all open subset Ω
of M , we denote by λ1(Ω) the first eigenvalue of the Laplace-Beltrami operator ∆g in Ω, with zero Dirichlet boundary
conditions on ∂Ω, that is

λ1(Ω) = min


ˆ

Ω

‖∇gu‖2g dvolgˆ
Ω

u2 dvolg
, u ∈ H1

0 (Ω)

 , (1)

where dvolg , ‖ · ‖g and ∇g represent respectively the volume form, the norm and the gradient, all with respect to the
metric g. The Sobolev space H1

0 (Ω) also refers to the metric g. When Ω is smooth enough, we can characterize λ1(Ω)
by the existence of uΩ such that{

∆guΩ + λ1(Ω)uΩ = 0 in Ω,

uΩ = 0 on ∂Ω,
with uΩ ≥ 0 and

ˆ
Ω

u2
Ω dvolg = 1, (2)
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and uΩ is called the first normalized eigenfunction of the Laplace-Beltrami operator with Dirichlet boundary condition
on ∂Ω.

Let Volg(M) denote the volume of the Riemannian manifoldM , that can be infinite. We are interested in the existence
and the regularity of optimal sets for the following shape optimization problem: for anym ∈ (0,Volg(M)), find an open
subset Ω∗ ⊂M of volume m such that

λ1(Ω∗) = min{λ1(Ω); Ω open subset ofM,Volg(Ω) = m}. (3)

The solutions Ω∗ of such optimization problem are called Faber-Krahn minimizers, and the function

FK : m ∈ (0,Volg(M)) 7→ FK(m)

associating to m the value of the infimum in (3), is called the Faber-Krahn profile of the manifold (M, g).

This problem is inspired by the classical isoperimetric problem: for any m ∈ (0,Volg(M)), find an open domain
Ω ⊂ M whose boundary Σ = ∂Ω minimizes area among regions of volume m. The region Ω and its boundary Σ are
called isoperimetric region and isoperimetric hypersurface respectively. In the Euclidean space, Ω must be a ball by
the standard isoperimetric inequality, and Σ is then a sphere. For a general Riemannian manifold this fact fails, and the
shape of the optimal region can be very difficult to understand. Nevertheless, the following fundamental results about
the existence and the regularity of isoperimetric regions are now very well-known: by the seminal papers of Almgren
[2], Grüter [32], and Gonzalez, Massari, Tamanini [31], if M is a compact n-dimensional Riemannian manifold, then,
for any positive m < Volg(M), there exists an open set Ω ⊂ M whose boundary Σ minimizes area among regions
of volume m, and, except for a closed singular set of Hausdorff dimension at most n − 8, Σ is a smooth embedded
hypersurface with constant mean curvature. In particular, for dimensions of the ambient manifold less or equal to 7, the
isoperimetric hypersurface Σ (that is an objet of dimension n− 1, then less or equal to 6) is an embedded hypersurface.
In fact, an isoperimetric hypersurface Σ has an area-minimizing tangent cone at each point, and if a tangent cone at
p ∈ Σ is an hyperplane, then p is a regular point of Σ. The value of the critical dimension (i.e. 8 if we consider the
dimension of the ambient manifold, and 7 if we consider the dimension of the isoperimetric hypersurface) relies on the
existence of the Simons cone in R8, i.e.

C = {(x1, ..., x8) ∈ R8 | x2
1 + x2

2 + x2
3 + x2

4 = x2
5 + x2

6 + x2
7 + x2

8}

which is a global minimizer of the area functional.

Coming back to the problem of finding Faber-Krahn minimizers, when the manifold is the Euclidean space it is well
known that a ball Ω∗ of volume m > 0 is a solution to the problem (3) (as for the isoperimetric problem), and in
particular it exists and it is smooth. This fact follows from the Faber-Krahn inequality : for all open subset Ω of Rn
whose volume is m, we have

λ1(Ω) ≥ λ1(Bm) (4)

where Bm is a round ball in Rn with volume m; moreover equality holds in (4) if and only if Ω = Bm up to translation
and to sets of 0 capacity. We point out that the proof of the Faber-Krahn inequality relies on the isoperimetric inequality.

When (M, g) is a general Riemannian manifold with no symmetry, we cannot expect to explicitely identify min-
imizers for problem (3), and very few results are known. Nevertheless, the Faber-Krahn profile and the isoperimetric
profile are linked (see for example [18]), and starting from the analogy with the isoperimetric problem, in the follow-
ing papers there is a construction of examples of domains that are critical for Ω 7→ λ1(Ω) under volume constraint in
some Riemannian manifolds, but it is not known a priori if such critical domains are or not Faber-Krahn minimizers:
[44, 46, 47, 25, 42, 40]. Notice that when the manifold has no symmetry, the constructions of such examples is limited
to small or big volumes. Moreover, all such examples have regular boundary.

In this paper, we are inspired by the existence and regularity results for the isoperimetric problem recalled before,
and we plan to obtain similar results for the Faber-Krahn problem (3). Nevertheless, for the existence, it is now classical
(see for example [12]) that one cannot expect to prove directly that there exists an open set solution of (3). Indeed,
such a result (first part of Theorem 1.2, which will be proven in Section 4.3) is already a regularity result for an optimal
set; the reason is that the class of open sets does not satisfy any suitable compactness property for our problem. The
usual way to overcome this difficulty is to relax our minimization problem in the class of quasi-open sets, relying on the
notion of capacity. Basically, quasi-open sets are level sets of functions of H1(M), which happen to not be necessarily
continuous, so their level sets aren’t necessarily open (however, any open set is quasi-open); for more details on the
study of capacity and quasi-open sets, see for example [28, 34]. If Ω ⊂M is a quasi-open set, we can define

H1
0 (Ω) = {u ∈ H1(M), u = 0 q.e. on M \ Ω}. (5)

where q.e. means quasi-everywhere, which means everywhere except on a set of capacity 0 (see Section 2 for the
definition of the capacity in the Riemannian setting). This definition retrieves the usual definition of H1

0 (Ω) when Ω is
an open set, namely the closure of C∞c (Ω) for the H1-norm. Once we have a definition of the space H1

0 (Ω), definition
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(1) can be applied to define λ1(Ω) for any quasi-open set Ω, and it is classical that equation (2) has a meaning in the
weak sense, in particular uΩ ∈ H1

0 (Ω) solution to (2) exists and is unique.
For the regularity of Faber-Krahn minimizers, as it happens for the isoperimetric hypersurfaces, we will prove that

there exists a critical dimension k∗ for which Faber-Krahn minimizers are regular if n < k∗, and singularities can
appear starting from the dimension n = k∗. In order to define this critical dimension k∗, we need to recall notion of
homogeneous global minimizer of the Alt-Caffarelli functional in Rn, that is a homogeneous function u0 ∈ H1

loc(Rn)
such that: ˆ

BR(0)

|∇eu0|2 + Vole({u0 > 0} ∩BR(0)) ≤
ˆ
BR(0)

|∇ew|2 + Vole({w > 0} ∩BR(0)). (6)

for everyR > 0 andw ∈ H1
loc(Rn) such thatw = u0 outsideBR(0) (the Euclidean ball of radiusR and center 0), where

∇e is the Euclidean gradient and Vole is the Lebesgue measure in Rn. We will see that the Alf-Caffarelli functional plays
in our problem the same role as the area functional in the isoperimetric problem, and k∗ can be defined as the smallest
integer such that there exists a non-trivial homogeneous global minimizer of the Alt-Caffarelli function. Unfortunately,
finding the exact value of k∗ is still a difficult open problem. Nevertheless, thanks to the important results by Caffarelli,
Jerison, Kenig [17], De Silva, Jerison [24], and Jerison, Savin [38] we know such dimension belongs to the set {5, 6, 7}.

We are now in position to state our main results. The first one is the following:

Theorem 1.1. (Existence) If M is compact and m ∈ (0,Volg(M)), then there exists a quasi-open set Ω∗ solution of

λ1(Ω∗) = min{λ1(Ω); Ω quasi-open subset ofM,Volg(Ω) = m}. (7)

Notice that in this result we need the compactness of the manifold M . In Section 3.2, we discuss the compactness
hypothesis, and we exhibit a non-compact manifoldM so that for any parameterm > 0, problems (3) and (7) do not have
solutions. Compactness in not required to state the regularity result about Faber-Krahn minimizers. Nevertheless we
need an other important topological assumption that is the connectedness (the discussion of the connectedness hypothesis
of the manifold M is done in Remark 1.4 that follows). Our second main result is then the following:

Theorem 1.2. (Regularity) Let Ω∗ be a solution of (7) for m ∈ (0,Volg(M)), and assume M is connected. Let k∗ be
the lowest dimension k such that there exists a non-trivial homogeneous global minimizer of the Alt-Caffarelli functional
in Rk (it is known that k∗ ∈ J5, 7K). Then:

1. Ω∗ is open (and therefore solves (3)) and has finite perimeter in M .
2. We can decompose ∂Ω∗ = Σreg ∪ Σsing in two disjoint sets such that:

(a) Σreg is relatively open in ∂Ω and is a smooth hypersurface inM (C∞ ifM isC∞, analytic ifM is analytic),
(b) we have:

• if n < k∗, then Σsing = ∅,
• if n = k∗, then Σsing is made of isolated points,
• if n > k∗, then dimH(Σsing) ≤ n− k∗, i.e.

∀s > n− k∗,Hs(Σsing) = 0. (8)

Combining these two results, we get that for any n-dimensional connected and compact Riemannian manifold M ,
one can find an open set Ω∗ solution of (3), which is C∞, up to a singular set of dimension less than n− 5.

Remark 1.3. Notice that the first eigenvalue of a quasi-open Ω does not change if one modifies the set Ω with a set of
zero-capacity (see Section 2 for definitions); as usual, the topological boundary ∂Ω here refers to the measure theoretic
boundary, which is equal in this context to the set

∂Ω = {x ∈M, ∀r > 0 small enough, 0 < Vol(Ω ∩Br(x)) < Vol(Br(x))}

where Br(x) denote the euclidian ball centered in x and with radius r > 0 smaller than the injectivity radius at x.

Remark 1.4. Without connectedness assumption for the manifold M , regularity of a minimizer may fail. Consider M
to be the union of two disjoint copies of unit spheres Sn1 ∪ Sn2 endowed with its usual metric g; for

m ∈ (Volg(Sn), 2Volg(Sn) = Volg(M)) ,

any set of the form Ω = Sn1 ∪ ω where ω is any quasi-open subset of Sn2 of volume m − Volg(Sn) is a solution to
(7) because λ1(Sn1 ∪ ω) = λ1(Sn1 ) < λ1(ω), and to (3) if ω is open, so one cannot expect any regularity property.
Nevertheless, by replacing ω by any other smooth set of same volume, it is not hard to see that there still exists a smooth
solution to (3), see also [11, Appendix].
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Let us discuss the strategy for proving these results, and their relation to the state of the art.

About Theorem 1.1. In the Euclidian setting, while the ball is known to be a solution, the problem retrieves its interest
if one consider an extra “box constraint” of the form Ω ⊂ D where D is an open and bounded subset of Rn. In this
setting, existence results were obtain for problem (3) with two different strategies in [33] and [10]. The main difficulty
for these results is to obtain a solution that is an open set. We focus first only on proving that there exists a quasi-open
set solution to (7); the fact that solutions are open will be dealt with in Theorem 1.2.

Similarly to [10], we use the variational formulation of λ1(Ω) to show that problem (7) is equivalent to solving a
free boundary problem (namely (12)), which is a calculus of variation problem consisting in the minimization of an
energy J(u) involving the level set Ωu = {u 6= 0}, among functions u ∈ H1(M). Considering a solution u to this
free boundary problem, the set Ωu will be a solution to (7). Once we obtain a free boundary formulation, one can use
the same strategy as in the seminal paper [3] of Alt and Caffarelli (see below for more details) to prove existence of a
solution, which relies on classical tools of calculus of variation.

This strategy may fail if the manifold M is not compact, and, as we said before, we give in Section 3 an explicit
example of manifold M so that (3) has no solution. In order to exhibit such a manifold, we will need two essential
properties:

• the Faber-Krahn profile of the manifold (M, g) is strictly bounded from below by the Faber-Krahn profile of the
euclidian space (Rn, e); this happens to be true if the same is valid for the isoperimetric profile, see Proposition
3.6;

• M is asymptotically Euclidian in the sense that a geodesic ball inM converging to infinity is a smooth perturbation
of a euclidian ball of same volume.

We show that both properties are valid whenM is the usual catenoid in R3, which provides the expected counter-example
to existence of Faber-Krahn minimizers (Theorem 3.4).

About Theorem 1.2. Regularity results for such kind of shape optimization problems are quite involved and will rely
on many steps that we will describe in the introduction of Section 4. Similarly to the existence result, we start with
formulation (11) and the definition of the functional J in (12) introduced in Section 3, and we are naturally led to the
field of “regularity of free boundaries”. In order to understand our strategy, let us start by commenting on the extensive
litterature on this topic: the regularity theory for such problems was initiated in [3], where the authors study the regularity
of the free boundary for

min

{ˆ
D

|∇ev|2 + γVole({v > 0}) ; v ∈ H1(D), v = u0 ∈ ∂D
}
, (9)

where u0 ≥ 0 is given and D is an open bounded set in Rn. In particular, the authors show that an optimal solution v
is locally Lipschitz continuous inside D, which is the optimal regularity one can expect for v, and implies in particular
that {v > 0} is an open set. They show then that the free boundary ∂{v > 0} ∩ D can be decomposed into a smooth
(analytic) part Σreg where one can write the classical optimality condition |∇ev|2|Σreg = γ, and a (possibly) singular
part Σsing which is small in the sense thatHn−1(Σsing) = 0 (whereHs denotes the s-dimensional Hausdorff measure);
they also show that in fact Σsing = ∅ if n = 2. These results have been improved by Weiss in [53] who introduced a
monotonicity formula to study blow-up limits, which combined to the study of global homogeneous minimizer of the
Alt-Caffarelli functional lead to the estimate dimH(Σsing) ≤ n− 5 if n ≥ 5, and Σsing = ∅ if n < 5.

We will apply a similar strategy for solutions to (11)-(12) (which are the free boundary formulations of our intial
problem (7)), with three main differences that we need to take into account:

• deal with the term
´
M
w2 in J(w), coming from the fact that we are dealing with an eigenvalue problem,

• deal with the Riemannian metric g; if gij(x) is the matrix of the coefficients of the metric g in some suitable local
coordinates system, from the PDE point of view to deal with g replaces the Euclidian Laplace operator by an
operator of the form

hdiv(A∇e·)

where h(x) = 1√
|gij(x)|

and A = gij(x)
√
|gij(x)|, being |gij(x)| and gij(x) respectively the determinant of the

matrix gij(x) and the inverse matrix of the matrix gij(x).

• handle the volume constraint instead of a penalization of the volume as in (9).

Let us mention a few important contributions in similar developements. In [11], T. Briançon and the first author of the
present paper managed to overcome the first and third difficulties in the Euclidian setting. Note however that they only
adapted the result by Alt and Caffarelli and did not adapt the improvement given by Weiss, therefore the estimate of the
singular set they obtain was not optimal. In other words, even in the Euclidian setting, Theorem 1.2 improves the results
in [11] (of course, one could argue that solutions are Euclidian balls in this context, but as in [11], one can consider a
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box constraint of the type Ω ⊂ D where D ⊂M , so that it may happen that balls are not admissible sets; even if we did
not take into account this constraint in the current paper, when we are concerned with the regularity inside the box (far
from ∂D), since all argument are local, Theorem 1.2 remains valid in this case).

In [51], A. Wagner did study the first steps of the strategy from [3] for a problem similar to (12) (in the Euclidian
setting but with an operator of the form div(A∇·)). He studies a penalized version of the problem, in a similar fashion
to [1], which leads to the existence of a solution to (3) (in particular, it is an open set), enjoying some density estimates
and a weak formulation of the optimality condition (named “weak solutions” in [3]). Again, our result is an improvment
in the sense that we show that every solution is an open set, and we improve their regularity properties.

More recently, in [21, 20], the authors develop a regularity theory for quasi-minimizers of the Alt-Caffarelli functional,
including the improvment given by the Weiss-monotonicity formula (therefore, leading to a similar regularity as in
Theorem 1.2). However, it is not true that minimizers we are interested in are quasi-minimizers in the sense of [20], as
one cannot see the Laplace-Beltrami operator as a small deformation of the Euclidian Laplacian. A similar regularity
theory for div(A∇·) operators has been started in [22], though they only deal with the first step of the strategy in proving
that optimal solutions are Hölder-continuous in the general case. But even if a similar regularity theory was valid for
such elliptic operator, it would still remain the difficulty to prove that a solution to (12) is a quasi-minimizer in the sense
of [20], the main difficulty here being to handle the volume constraint. This seems to be a significant and important open
problem.

The last contributions we would like to mention are [41, 45] which were a strong inspiration for our work. The results
in [45] are similar to ours in the sense that they extend results for the Euclidean Laplace operator to a more general
class, though the author deal with a drifted operator of the form −∆ +∇Φ · ∇. Nevertheless, as we have to deal with a
Laplace-Beltrami operator, several steps and ideas differ from the current paper.

Description of the paper. In the following section, we introduce the Riemannian setting of our problem. In the third
section we introduce the main free boundary formulation which is in some sense equivalent to our shape optimization
problem (7), and we use this formulation to prove Theorem 1.1. We also exhibit a non-compact manifold leading to a
non-existence phenomenon. Finally, in Section 4, we prove Theorem 1.2.

2. Basic Riemannian notations

Since one of the goals of this paper is to bring the regularity theory for free boundary problems to Riemannian
manifold, and then to mix together the geometric and the analytic language, we think it can be convenient for the reader
to fix the basic Riemannian notation. For a more complete presentation see [18]. Let M be a Riemannian manifold with
metric g. If p ∈ M and f is a C1 real function defined in a neighborhood of p, we will denote by ∇gf(p) the gradient
of f at p, i.e. the only vector of the tangent space TpM such that

g(∇gf(p), νp) = νpf

for every vector νp ∈ TpM , where νpf is the directional derivative of f at p in the direction νp;∇gf will be the gradient
vector field, i.e. ∇gf ∈ TM , where TM is the tangent bundle of M . If∇νX is the covariant derivative of a vector field
X on the manifold M with respect to ν ∈ TM , the divergence of X is defined as

divgX = trace(ν → ∇νX),

and the generalization of the Laplacian on a manifold, known as the Laplace-Beltrami operator, is defined by

∆gf = divg(∇gf),

where f is supposed to be of class C2. Let U be an open set of M and φ : U → Rn a chart on M , i.e. a diffeomorphism
of U into Rn. If (x1, ..., xn) are the local coordinates and ∂

∂xi are the coordinate vector fields, i = 1, ..., n, we can define
the matrix

G = (gij)i,j=1,...,n

where gij = g
(
∂
∂xi ,

∂
∂xj

)
are the coefficients of the metric g, which can be written as

g = gij(x) dxi dxj

using the Einstein summation convention. We denote by |g| the determinant of G and by gij the coefficients of G−1, the
inverse matrix of G. Straightforward computations show:

∇gf = gij ∂jf

and
∆gf =

1√
|g|

∂i

(
gij
√
|g| ∂jf

)
= gij ∂i∂jf + ∂i g

ij ∂jf +
1

2
gij ∂i(log |g|) ∂jf
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where ∂j denotes the standard derivation with respect to xj . We will denote dvolg the Riemannian measure associate to
g, that in U is

dvolg =
√
|g| dx

where dx is the Lebesgue measure on φ(U). More generally, if {φi : Ui → Rn} is a chart covering of M , with an
associate partition of unity {bi}, we have

dvolg =
∑
i

bi
√
|g| dx

in every chart. A function f : M → R is measurable if it is measurable in every chart, and the definition of dvolg makes
possible the integration of such functions. A set K ⊂M is measurable if it is measurable in every chart, and its volume
is given by

Volg(K) =

ˆ
K

dvolg .

The Lp-space on M , denoted as Lp(M), the Sobolev spaces on M (in particular H1(M)) and the distribution space
on M , D′(M), are defined in the same way as in the Euclidean space, but using the Riemannian measure, and g as the
scalar product on the tangent bundle. If Ω ⊂M , the capacity of Ω is given by

capg(Ω) = inf {‖u‖2H1 | u ∈ H1(M) , u ≥ 1 a.e. in a neighborhood of Ω}

where a.e. means almost everywhere with respect to the measure dvolg . The notion of capacity plays an important role
in the definition of the space H1

0 (Ω), see definition (5). We say that a property holds quasi-everywhere (q.e.) if it holds
on the complementary of a set of zero capacity. A set Ω ⊂ M is quasi-open if there exists a decreasing sequence ωi of
open sets such that, for every Ω∪ ωi is open limi→∞ capg(ωi) = 0. A function u : M → R is quasi-continuous if there
exists a decreasing sequence ωi of open sets such that the restriction of u to the complement of ωi is continuous, and
limi→∞ capg(ωi) = 0. Every function in H1(M) has a quasi-continuous representative which is unique up to a set of
zero capacity, and in this paper we will identify every function inH1(M) with one of its quasi-continuous representative
(see Section 4.1 for more details about the choice of the right representative). If u ∈ H1(M), the set {u > 0} is quasi-
open and for a quasi-open set Ω, there exists a function u ∈ H1(M) such that Ω = {u > 0} up to a set of zero capacity.
We refer to [14, 28, 13, 34] for more details about capacity, quasi-open sets and quasi-continuous functions, and remark
that the Riemannian metric does not change the basic theory about such topics.

We will denote by dg(p, q) the distance between two points p, q ∈M , i.e. the infimum of

L(γ) =

ˆ b

a

√
gγ(t)(γ′(t), γ′(t)) dt

taken over all continuous and piecewise C1 curve γ : [a, b] → M such that γ(a) = p and γ(b) = q. For every p ∈ M
and every vector ν ∈ TpM there exists a unique maximal geodesic γp,ν satisfying γp,ν(0) = p and γ′p,ν(0) = ν (here I
is an open interval containing the origin, and is maximal with respect to the existence of γp,ν). The injectivity radius at
a point p will be

ip = inf
ν∈S

c(ν)

where S denotes the unit sphere in TpM , and

c(ν) = sup{t ∈ I | d(p, γp,ν(t)) = t}

The injectivity radius of the manifold is iM = infp ip, that is positive if the manifold is compact. We will denote by
expp : TpM →M the exponential map, that is given by

expp(ν) = γp,ν(1)

if γp,ν(1) exists. We notice that γp,ν(t) = expp(t ν). If r is less than the injectivity radius at p, then we can have a
geodesic ball of radius r and center p, that in the following will be denoted by

Bgr (p) = {q ∈M | d(p, q) ≤ r} = {expp(ν) | ‖ν‖g < r} .

For vector fields X,Y, Z on M we denote by

R(X,Y )Z = ∇Y (∇XZ)−∇X(∇Y Z)−∇[Y,X]Z

the Riemann curvature tensor, where [Y,X] is the vector field

[Y,X] = ∇YX −∇XY .

If ν1, ν2 ∈ TpM , we will denote by Rmp(ν1, ν2) the sectional curvature at p of the 2-plane determined by ν1, ν2, i.e.

Rmp(ν1, ν2) =
g(R(ν1, ν2)ν1, ν2)

‖ν1‖g ‖ν2‖g − g(ν1, ν2)
.

6



On the other hand, we will denote by Ricp the Ricci tensor at p, i.e.

Ricp(ν1, ν2) =

n∑
i=1

g(R(ν1, e1)ν2, e2)

where ν1, ν2 ∈ TpM and {e1, e2, ..., en} is an orthonormal basis of TpM . The function Ricp(ν, ν) on the set of tangent
vectors ν of length 1, that we will write Ricp(ν), is the Ricci curvature at p. If S is an (n− 1)-submanifold of M and ν
is the normal vector to S, we recall that the second fundamental form on S is given by

A(ξ1, ξ2) = (∇ξ1ξ2)ν

where ξ1, ξ2 ∈ TS and the superscript ν indicated that we consider only the component on the direction ν. We will
denote by HS the mean curvature of S, i.e. the trace of the second fundamental form.

3. Existence

3.1. The compact case
In this section, (M, g) is a Riemannian manifold. We start by giving some free boundary formulations of a relaxed

version of (3), where we replace the volume constraint by an inequality constraint:

Proposition 3.1. If Ω∗ is a solution to

λ1(Ω∗) = min
{
λ1(Ω); Ω quasi-open subset ofM,Volg(Ω) ≤ m

}
, (10)

then uΩ∗ (solution of (1)) is solution of
ˆ
M

‖∇guΩ∗‖2g dvolg = min

{ˆ
M

‖∇gw‖2g dvolg , w ∈ H1(M),

ˆ
M

w2 dvolg = 1, Volg(Ωw) ≤ m
}
, (11)

and is also solution of
J(uΩ∗) = min

{
J(w), w ∈ H1(M), with Volg(Ωw) ≤ m

}
, (12)

where we denote

J(w) :=

ˆ
M

‖∇gw‖2g dvolg − λ(m)

ˆ
M

w2 dvolg, λ(m) := inf
{
λ1(Ω); Ω quasi-open subset ofM,Volg(Ω) ≤ m

}
and Ωw = {w 6= 0}.

Reciprocally, if u solves (11) or (12), then the set Ωu = {u 6= 0} is a solution to (10).

Proof. Let Ω∗ be a solution to (10). The fact that uΩ∗ solves (11) comes easily using the variational formulation (1). In
order to see that uΩ∗ is also solution of (12), we apply (11) to w

‖w‖2 , leading to J(w) ≥ 0 for all w ∈ H1(M) such that
Volg(Ωw) ≤ m, and we conclude noticing that J(uΩ∗) = 0.

Let now u be a solution to (11) (in the case where u is assumed to solve (12), it is clear that u then also solves (11)).
Then given Ω a quasi-open subset of M with Volg(Ω) ≤ m, optimizing (11) in w ∈ H1

0 (Ω) such that ‖w‖L2(Ω) = 1
gives that

λ1(Ωu) =

ˆ
M

‖∇gu‖2g dvolg ≤ λ1(Ω)

which concludes the proof. �

The next result deals with the question of saturation of the constraint, and explains how one can link solutions of (12)
with solutions of (7). This will be used in Section 4.

Proposition 3.2 (Saturation of the constraint). We assumeM to be connected. If u is a solution to (12), then Volg(Ωu) =
m. Equivalently, if Ω∗ is a solution to (10), then Volg(Ω

∗) = m and Ω∗ = {uΩ∗ 6= 0}.

Proof. Let u be a solution of (12). Assume to the contrary that Volg(Ωu) < m; then w = u + tϕ is admissible in (12)
for any ϕ smooth with small support, and |t| small. It implies

0 =
dJ(u+ tϕ)

dt |t=0
= 2

ˆ
M

g(∇gu,∇gϕ) dvolg − 2λ(m)

ˆ
M

uϕ dvolg

which means −∆gu = λ(m)u in M in the sense of distribution. Since u has constant sign (see for example [10,
Remark 2.10]), say nonnegative, from strong maximum principle and connectedness of M , we get u > 0 on M , which
contradicts m < Volg(M) (in fact, in this case u is constant because λ(m) would be the first eigenvalue of M , which is
simple).

If now Ω∗ solves (10), then uΩ∗ solves (12) and has constant sign, say nonnegative. From the strong maximum
principle, uΩ∗ > 0 on Ω∗, and from the previous point, Vol(uΩ∗) = m, which concludes the proof. �

7



Using Proposition 3.1, one can deduce existence of a solution for (7):

Proof of Theorem 1.1: The most convenient formulation for existence is (11): it is clear that the set of admissible
functions is nonempty and that the infimum in (11) is nonnegative. Taking any minimizing sequence (uk)k∈N, and using
that it is bounded in H1(M), we get that there exists u∗ ∈ H1(M) such that, up to a subsequence:

∇guk ⇀ ∇gu∗ weakly in L2(M), uk → u∗ a.e. and strongly in L2(M),

(we use the weak-compactness of closed bounded convex sets in the Hilbert space H1(M) and the Rellich-Kondrachov
Theorem about the compact embeddingH1(M) ↪→ L2(M) whenM is compact, see Theorem 2.34 in [5]). We therefore
get

Volg(Ωu∗) ≤ lim inf
k→∞

Volg(Ωuk),

ˆ
M

u∗2 dvolg = 1

and
ˆ
M

‖∇gu∗‖2g dvolg ≤ lim inf
k→∞

ˆ
M

‖∇guk‖2g dvolg

so u∗ solves (11), and from Proposition 3.1, the set Ω∗ = {u∗ 6= 0} solves (10). In order to build a solution to
(7), we simply check that there exists a quasi-open set Ω̃∗ ⊃ Ω∗ such that Volg(Ω̃∗) = m. From monotonicity,
λ1(Ω̃∗) ≤ λ1(Ω∗) and therefore Ω̃∗ solves (7). �

Remark 3.3. Let us notice that it is possible to adapt to the Riemannian setting some more general existence result.
Using the method in [36, Chapter 2, Theorem 2.1] one can prove existence for

min{f(λ1(Ω), . . . , λk(Ω)), Ω quasi-open ⊂M, Volg(Ω) = m},

where f is lower semi-continuous and non-decreasing in each variable, M is compact, and λ1(Ω) ≤ . . . ≤ λk(Ω) are
the k first eigenvalues of the Laplace-Beltrami operator with Dirichlet boundary conditions.

Even more generally, it is also possible to adapt the theory of Buttazzo and Dal Maso (see [14]) to the case of a
compact Riemannian manifold: one obtains that there exists a solution of the minimization problem:

min{F (Ω), Ω quasi-open ⊂M, Volg(Ω) = m}

if M is a compact Riemannian manifold, F is a shape functional defined on quasi-open subsets of M , decreasing with
respect to set inclusion, and lower-semicontinuous for a suitable topology (namely γ-convergence, see [14]). For more
details we refer to [15].

3.2. The non compact case: counter-example to existence
Through all this subsection, M will be the minimal catenoid in R3, i.e. the surface given by the equation

x2 + y2 = λ2 cosh2
( z
λ

)
(13)

for some λ > 0, where (x, y, z) are the coordinates of R3. It is the surface of revolution generated by a catenary, i.e. the
curve

s→ λ
(

cosh
( s
λ

)
, s
)
.

We consider the natural metric g on M , i.e. the metric induced by the immersion of M in R3. It is useful to express the
metric of this surface in the form

ds2 = (f(t))2dθ2 + dt2

for some function f . For this we need the length parameterization of the catenary, i.e.

t→
(√

t2 + λ2, λ arcsinh

(
t

λ

))
.

The catenoid is then the image of the annulus S1 × R in R3 by the application

F (θ, t)→
(√

t2 + λ2 cos θ ,
√
t2 + λ2 sin θ , λ arcsinh

(
t

λ

))
and the metric is given by

ds2 =

〈
∂F

∂θ
,
∂F

∂θ

〉
dθ2 +

〈
∂F

∂t
,
∂F

∂t

〉
dt2 + 2

〈
∂F

∂θ
,
∂F

∂t

〉
dθ dt = (t2 + λ2) dθ2 + dt2

In this section we prove the following result:
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Theorem 3.4. For any volume m > 0, problems (3) or (7) have no solution when M is the minimal catenoid defined in
(13).

The proof of Theorem 3.4 follows from the following Propositions 3.6 and 3.7. We start by recalling a well known
fact about the isoperimetric problem in the minimal catenoid.

Proposition 3.5. ([16]). Let m > 0. Then, for all regular open set Ω in M whose volume is equal to m we have

P (Ω) > P (Bm)

where Bm is a Euclidean ball of volume m, and P represents the perimeter, i.e. the area of the boundary of the open set.

The Faber-Krahn inequality allows to obtain the same result for the Faber-Krahn profile.

Proposition 3.6. Let m > 0. Then, for all regular open set Ω in M whose volume is m we have

λ1(Ω) > λ1(Bm)

where Bm is a Euclidean ball of volume m.

Proof. By the Faber-Krahn Theorem (see [18], chapter IV, section 2, Theorem 2 and Remark 1), if for all m > 0 the
inequality

P (Ω) ≥ P (Bm)

holds for every regular open set Ω with equality if and only if Ω is isometric to Bm, then inequality

λ1(Ω) ≥ λ1(Bm) (14)

holds for every open set (non necessarily regular) Ω with equality if and only if Ω is isometric to Bm. The result
follows then from Proposition 3.5 because if there were in M a regular open set Ω isometric to Bm then we would have
P (Ω) = P (Bm) �

Note that in the previous proof, the fact that there does not exist in M a regular open set Ω isometric to Bm follows
also from the Egregium Theorem because the Gauss curvature of M is negative).

Now we want to show that in M there does not exist any minimizer of Ω 7→ λ1(Ω) under volume constraint. In order
to do that, we will show that there exists a minimizing sequence of domains with the same volume whose first eigenvalue
converges to the first eigenvalue of a Euclidean ball. We denote by Br the ball of radius r in R3, and e will represents
the Euclidean metric as usual. We will need the following:

Proposition 3.7. For any m > 0, there exists a sequence Bgrj (pj), j ∈ N such that

1. Volg(B
g
rj (pj)) = m for all j ∈ N, and

2. λ1(Bgrj (pj))→ λ1(B1) for j → +∞.

Proof. It is convenient to consider just the superior part M+ of the catenoid (i.e. the part with t > 0). By changing the
coordinates as

t2 = x2 + y2 θ = arctan
y

x

(remember that t > 0), M+ can be seen as R2 with the metric

g = dx2 + dy2 +
λ2

(x2 + y2)2
(xdy − ydx)

2

If p = (xp, yp) ∈M+ and we take a chart centered at p, the metric writes

g = dx2 + dy2 +
λ2

[(x+ xp)2 + (y + yp)2]
2 [(x+ xp)dy − (y + yp)dx]

2

and it is clear that if ‖p‖e = ε−1, being ‖ · ‖e the Euclidean norm in R3, we have

g = dx2 + dy2 +O(ε2)(dx2 + dxdy + dy2) (15)

for ε small enough, uniformly in a ball Br for a fixed value r.

Now let m > 0. Let R be the radius of the Euclidean ball of R2 of volume m. We claim that M+ contains a geodesic
ball Bgrq (q) of volume m, and for every point p ∈M+ with ‖p‖e ≥ ‖q‖e there exists rp > 0 such that the geodesic ball
Bgrp(p) is contained in M+ and has volume m. Moreover we have that rp → R when ‖p‖e → +∞.
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Proof of the claim. If we take a point q = (xq, yq, zq) ∈M+ (considering the catenoid in the form (13)), the intersection

of M+ with the vertical cylinder of radius
√
x2
q + y2

q − 1 and axis (x, y) = (xq, yq) is a graph on a 2-dimensional ball

of radius
√
x2
q + y2

q − 1, and its volume tends to∞ when ‖q‖e →∞. In particular, if ‖q‖e is big enough, it contains a

geodesic ball Bgrq (q) of volume m, and this is true also if we replace q by a point p such that ‖p‖e ≥ ‖q‖e. Now, if we
take ‖p‖e = ε−1, it is clear that on a chart centered at p with radius 2R we have the estimation (15) uniformly in ε, i.e.
g converges to the Euclidean metric uniformly in a chart of radius 2R, and then rp → R.

Now, fix ε > 0 small, take ‖p‖e ∈ M+ such that ‖p‖ = ε−1 and consider the geodesic ball Brp(p) of volume m.
We want to show that the first eigenvalue of the Laplace-Beltrami operator on this ball converges to the first eigenvalue
of the Laplacian on BR when ε→ 0. To proceed, it will be more convenient to work on the fixed domain BR, endowed
with the metric (depending on p)

ĝ =
(rp
R

)2

g .

Let φ and φ̂ the first eigenfunction of the Laplace-Beltrami operator on Bgrp(p) with respect to g and ĝ (normalized to 1
in the L2 norm), and let λ and λ̂ the associated eigenvalue. We have ∆ĝ φ̂+ λ̂ φ̂ = 0 in BR

φ̂ = 0 on ∂BR

(16)

being Volĝ(BR) = m. When ε = 0 the metric ĝ is the Euclidean metric and the solution of (16) is therefore given by
φ̂ = φ1, λ̂ = λ1, the first eigenfunction and eigenvalue on the Euclidean ball BR.

Let us doing now a formal reasoning. In BR, for some constant µε and some (small) function wp defined in BR with
0 Dirichlet boundary condition we have

0 = ∆ĝ (φ1 + wp) + (λ1 + µp) (φ1 + wp) = (∆e + λ1)wp + (∆ĝ −∆e) (φ1 + wp) + µp (φ1 + wp) (17)

The kernel of ∆e + λ1 is spanned by φ1. Then if we write

wp = w‖p + w⊥p

where w‖p ∈ ker(∆e + λ1) (say w‖p = ap φ1, ap ∈ R) and w⊥p ∈ (ker(∆e + λ1))⊥, when we project (17) onto
ker(∆e + λ1) we obtain

(1 + ap)µp =

ˆ
BR

φ1 (∆e −∆ĝ) (φ1 + wp) dvole

It is then natural to ask the function wp to be in (ker(∆e + λ1))⊥, in order that ap = 0.

According to the previous formal reasoning, for all w ∈ C2,α(B1) orthogonal to the kernel of ∆e + λ1, we define the
operator

N(ε, w) := (∆e + λ1)w + (∆ĝ −∆e + µ) (φ1 + w)

where µ is given by

µ = µ(ε, w) = −
ˆ
BR

φ1 [(∆ĝ −∆e) (φ1 + w)] dvole .

N is L2(B1)-orthogonal to φ1 (with respect to the Euclidean metric). Our aim is to find, for all ε small enough, a
function w = w(ε) smooth such that N(ε, w) = 0, that is 0 when ε = 0. In fact, this condition suffices to prove the
proposition, because in this case we have

λ1(Brp(p)) = λ̂ = λ1 + µ

that is a smooth function with respect to ε and µ vanishes when ε = 0.

We have
N(0, 0) = 0.

The mapping N is a smooth map from a neighborhood of (0, 0) in [0, E)×C2,α
⊥,0(B1) (for some E > 0) into a neighbor-

hood of 0 in C0,α
⊥ (B1) (here the subscript ⊥ indicates that functions in the corresponding space are L2(B1)-orthogonal

to φ1 (for the Euclidean metric) and the subscript 0 indicates that functions vanish on ∂B1). The differential of N
computed at (0, 0), is given by ∆e + λ1 since ĝ is the Euclidean metric when ε = 0. Hence the partial differential
of N computed at (0, 0) is invertible from C2,α

⊥,0(B1) into C0,α
⊥ (B1) and the implicit function theorem ensures, for all ε

small enough (say ε < ε0) the existence of a unique solution w = w(ε) ∈ C2,α
⊥,0(B1) depending smoothly on ε such that

N(ε, w) = 0. �
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4. Regularity

As annouced in the introduction, we follow the strategy intitiated in [3] to study the regularity of free boundaries, and
adapt it to solutions of (12). We also adapt the contribution given by G. Weiss in [52] to improve the estimate on the
singular set. One major difficulty is due to the volume constraint, for which we need to show that one can consider a
penalized version of the problem, similarly to [11].

Our main goal is to be able to prove existence of blow-up limits and to study them: this will be achieved in Section
4.10, only after several preleminary steps:

• choose an appropriate representative of u solution to (12) using properties of subharmonic functions in Riemannian
manifolds (Section 4.1),

• prove Lipschitz regularity of this representative (Corollary 4.9) which requires a first penalization of the volume
constraint (Section 4.2). This allows to prove existence of blow-up limits for u, see the beginning of the proof of
Proposition 4.25,

• prove the nondegeneracy of u near the boundary (Corollary 4.19), so that blow-up limits are nontrivial. This
requires a deeper analysis of the penalization of the volume constraint, in particular to show that the penalization
parameter can be chosen positive for inner perturbations (Sections 4.4 and 4.5),

• deduce from the previous steps that Ωu has finite perimeter (which allows to consider blow-ups near points of the
reduced boundary, which have a normal vector in a weak sense) and density estimates (to improve the convergence
of blow-up limits), see Sections 4.7 and 4.8,

• prove a Weiss type almost monotonicity formula (Proposition 4.22), to show that the blow-up will be a global
homogeneous minimizers of the Alt-Cafarelli functional, see (61).

After all these preliminary steps, we can analyse blow-ups and then conclude, using the classification of homogenous
minimizers in dimensions less or equal to 5, and the approach by De Silva in [23] to study the regularity of flat points,
see Section 4.11. The first step is fundamental to prove the Lipschitz regularity and nondegenerancy of the solution u,
and here our strategy is different and simpler with respect to other more recent proofs for problems involving general
operators with variable coefficients, see for example [50, 19].

In this section, M denotes a smooth, connected and compact Riemannian manifold. The compactness hypothesis is
made only for convenience, all arguments can be localized, which explains that we drop this hypothesis in the statement
of Theorem 1.2. The function u will denote a solution to (12), as we know from Proposition 3.2 that Ω∗ solution to (7)
can be seen as Ω∗ = Ωu = {u 6= 0} where u solves (12). It is also well-known that u can be assumed to be nonnegative
(see Proposition 4.1), so that Ωu = {u > 0}.

Let x0 ∈M , letE1, . . . , En be an orthonormal basis of the tangent space Tx0M . We denote by expx0
the exponential

map on the manifold M at the point x0. The coordinates we want to use are the classical geodesic normal coordinates at
x0,

x := (x1, . . . , xn) ∈ Rn ,

defined by the chart
X(x) := expx0

(Θ(x))

where

Θ(x) :=

n∑
i=1

xiEi ∈ Tx0
M . (18)

In order to study the regularity of our optimal set Ω∗, we fix an arbitrary point x0 ∈ ∂Ω∗, and we just consider a
neighborhood of x0 in M (we do not need the rest of the manifold). If we fix r0 as a positive constant less than the cut
locus at x0 and we define the geodesic ball of radius r0 and center x0 as

Bgr0(x0) :=
{

Expx0
(Θ(x)) : x ∈ Rn 0 ≤ |x| < r0

}
,

we just need to understand the behavior of ∂Ω∗ ∩Bgr0(x0). If R is the Riemann curvature tensor on the manifold M , we
have a Taylor expansion of the coefficients gij(x) of the metric in these geodesic normal coordinates given by

gij = δij +
1

3
Rikj` x

k x` +O(|x|3), (19)

where δij is the Kronecker symbol and Rikj` = g
(
R(Ei, Ek)Ej , E`

)
at the point x0 (here the Einstein summation

convention is understood). Hence we can choose r0 small enough such that we have

id

2
≤ g ≤ 2id ,
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in Bgr0(x0), and so the Laplace-Beltrami operator is uniformly elliptic in Bgr0(x0). Moreover, a straightforward compu-
tation shows that at the point of coodinates x

gij(x) = δij −
1

3
Rikj` x

k x` +O(|x|3)

log |g|(x) =
1

3
Rk` x

k x` +O(|x|3)

where

Rk` =

n∑
i=1

Riki` ,

and then for a function f with bounded fist derivatives we have

‖∇gf −∇ef‖∞ ≤ C r0 ,

in Bgr0(x0), where the constant C depends on the bound of the first derivatives of the function f in Bgr0(x0), and for a
function f with bounded first and second derivatives we have

‖∆gf −∆ef‖∞ ≤ C r0 (20)

in Bgr0(x0), where the constant C depends on the bound of first and second derivatives of the function f in Bgr0(x0).

In some parts of the proof of the regularity result, it will be necessary to study the behavior of a function in a very
small geodesic ball Bgε (x0), and for that aim we will do a scaling. In the Euclidean framework, this means that given a
function w(x) for x ∈ Bε we define the function w̃(y) = w(ε y) for y ∈ B1, where Bε and B1 are the Euclidean balls
of radius ε and 1. This means that the metric on B1 (i.e. the Euclidean metric) is not the metric g induced on B1 by the
parameterization x = εy of Bε, but ε−2 g. We do the same in the Riemannian framework. Given ε > 0 small enough,
we define on the manifold M the metric ḡ := ε−2 g and the parameterization given by

Y (y) := expgx0
(εΘ(y))

with y = (y1, ..., yn) ∈ BR, beingBR the Euclidean ball of radiusR, and Θ defined in (18). If x are the normal geodesic
coordinates around x0 of the same point as y, it is clear that

ḡij(y) dyi dyj = ḡ = ε−2 g = ε−2 gij(x) dxi dxj = ε−2 gij(ε y) ε2 dyi dyj = gij(ε y) dyi dyj

Hence in the coordinates y, the metric ḡ is given by

ḡij(y) = gij(ε y)

i.e.
ḡij(y) = δij +

1

3
ε2Rikj` y

k y` +O(ε3) .

4.1. A priori regularity
In this first paragraph, we recall standard properties of eigenfunctions in a domain, without using the optimality of

the shape itself, but only the optimality of u in (1). Therefore in this section, Ω ⊂M denotes a bounded quasi-open set.

Proposition 4.1. Let u a solution to (1). Then

• u has constant sign (and we will always assume u ≥ 0)

• ∆gu+ λ1(Ω)u ≥ 0 in D′(M), and in particular ∆gu is a signed Radon measure on M ,

• u is bounded in M .

Proof. We know that
∀v ∈ H1

0 (Ω),

ˆ
M

g(∇gu,∇gv) dvolg = λ1(Ω)

ˆ
M

uv dvolg . (21)

The fact that u has constant sign is a classical result, see for example [35, Theorem 1.3.2]. Let ϕ ∈ C∞c (M) such that
ϕ ≥ 0. We introduce pn(s) = inf{ns, 1}+ for s ∈ R and apply (21) to v = ϕpn(u) which belongs to H1

0 (Ω). This
gives ˆ

M

g (∇gu,∇gϕ) pn(u) dvolg +

ˆ
M

‖∇gu‖2g ϕp′n(u) dvolg︸ ︷︷ ︸
≥0

= λ1(Ω)

ˆ
M

(uϕ) pn(u) dvolg .

We make n go to∞ and use that pn(u) converges to 1{u>0}; using that u ≥ 0 in M , we obtain

∀ϕ ∈ C∞c (M) such that ϕ ≥ 0,

ˆ
M

g(∇gu,∇gϕ) dvolg − λ1(Ω)

ˆ
M

uϕ dvolg ≤ 0,

which leads to ∆gu+ λ1(Ω)u ≥ 0 in the sense of distribution on M . The second point follows classically from the fact
that [−∆g − λ1(Ω)]u ≤ 0 and u ∈ L2(M), see for example [29, Theorem 8.15 and p. 214]. �
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Remark 4.2. We recall [6, Th 1.1] (see also [7]) that generalizes the mean value property in the Riemannian context:
for every x ∈ M , there exists a family {Dr(x)}0<r<r0 of open sets, monotone with respect to the inclusion, and
converging to the point x when r → 0 such that for any v subharmonic in M (meaning that ∆gv ≥ 0), we have that

r ∈ (0, r0) 7→
 
Dr(x)

v dvolg is increasing. Moreover, for almost every x ∈M we have

v(x) = lim
r→0

 
Dr(x)

v dvolg,

and this representative is defined everywhere on M and is upper-semi-continuous.

We add the following lemma3:

Lemma 4.3. Let v : M → R, x0 ∈M and r0 > 0 smaller than the injectivity radius.

• In Bgr0(x0), if ∆gv ≤ 0, v ≥ 0 and the Ricci curvature satisfies Ric ≥ (n− 1)k for some constant k ∈ R, then

r ∈ (0, r0) 7→ 1

Volgk(Sgkr )

ˆ
Sgr (x0)

v dvolg|Sgr (x0) is decreasing, where Sgr (x0) = ∂Bgr (x0) and Sgkr is a geodesic

sphere of radius r in the space form with metric gk with constant sectional curvature k.

• In Bgr0(x0), if ∆gv ≥ 0, v ≥ 0 and the sectional curvature satisfies Rm ≤ k for some constant k, then r ∈

(0, r0) 7→ 1

Volgk(Sgkr )

ˆ
Sgr (x0)

v dvolg|Sgr (x0) is increasing.

Here Volgk(Sgkr ) represent the area of Sgkr in the metric induced by gk.

Proof. For the first case, we assume v smooth and apply Hadamard formula for derivation of integrals defined in a
domain with variable boundary:

0 ≥
ˆ
Bgr (x0)

∆gv dvolg =

ˆ
Sgr (x0)

g(∇gv, ν) dvolg|Sgr (x0)

=
d

dr

(ˆ
Sgr (x0)

v dvolg|Sgr (x0)

)
−
ˆ
Sgr (x0)

vHSgr (x0) dvolg|Sgr (x0)

where HSgr (x0) represents the mean curvature at points of Sgr (x0). Let HS
gk
r

be the mean curvature of a geodesic sphere
of radius r in the space form of constant curvature k, i.e.

HS
gk
r

= (n− 1)
ck(r)

sk(r)

where

sk(r) =


r if k = 0

sin(
√
kr) if k > 0

sinh(
√
−kr) if k < 0

and ck(r) =


1 if k = 0

cos(
√
kr) if k > 0

cosh(
√
−kr) if k < 0

.

If Ric ≥ (n− 1)k, by the mean curvature comparison theorem (see [54]) we have H ≤ HS
gk
r

, and then

0 ≥ d

dr

(ˆ
Sgr (x0)

v dvolg|Sgr (x0)

)
−
ˆ
Sgr (x0)

vHS
gk
r

dvolg|Sgr (x0)

=
d

dr

(ˆ
Sgr (x0)

v dvolg|Sgr (x0)

)
− (n− 1)

ck(r)

sk(r)

ˆ
Sgr (x0)

v dvolg|Sgr (x0).

If wn is the volume of the unit n-dimensional ball, we obtain

0 ≥ wnsk(r)n−1 d

dr

(ˆ
Sgr (x0)

v dvolg|Sgr (x0)

)
− (n− 1)wnsk(r)n−2ck(r)

ˆ
Sgr (x0)

v dvolg|Sgr (x0) ,

which implies

0 ≥ d

dr


ˆ
Sgr (x0)

v dvolg|Sgr (x0)

wnsk(r)n−1

 =
d

dr

(
1

Volgk(Sgkr )

ˆ
Sgr (x0)

v dvolg|Sgr (x0)

)

3We didn’t find a reference for this result, but it can be found in https://cuhkmath.wordpress.com/2015/08/14/
mean-value-theorems-for-harmonic-functions-on-riemannian-manifolds/
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and leads to the result. The case of non-smooth function v is obtained by approximation, because smooth subharmonic
functions are dense in the space of subharmonic functions (see for example [8]).

The proof for the subharmonic case is similar except that we require the sectional curvature to be less or equal to k in
order to use the Hessian comparison theorem. �

Corollary 4.4. Let u be a solution of (1). Then u can be pointwise defined by an upper-semi-continuous representative
(still denoted u) with the following formula (see Remark 4.2 for the definition of Dr(x)):

u(x) = lim
r→0

 
Dr(x)

u dvolg. (22)

Moreover, there exist c, c′ > 0 and r0 > 0 such that for any r < r0, one has

u(x) ≤ c

( 
Bgr (x)

u dvolg + r2

)
≤ c′

( 
Sgr (x)

u dvolg|Sgr (x0) + r2

)
. (23)

Proof. From Proposition 4.1, we know that ∆gu ≥ −λ‖u‖∞. Let fix x0 ∈ M and r0 such that Bgr0(x0) can be
represented by a unique chart, and define w(x) = |x|2 in local geodesic coordinates. Then in Bgr (x0) for r ≤ r0, one
has using (20),

∆gw ≥ ∆w − Cr
for some constant C independant on r. Therefore ũ := (u+λ‖u‖∞w) is sub-harmonic inBgr1(x0) if r1 is small enough.
Applying Remark 4.2, we obtain first that

lim
r→0

 
Dr(x0)

(u+ λ‖u‖∞w) dvolg = lim
r→0

 
Dr(x0)

u dvolg

exists. As g is uniformly elliptic inside Bgr1(x0), from [7, Theorem 6.3], one has

Bgc0r(x0) ⊂ Dr(x0) ⊂ Bgc1r(x0)

for some constants 0 < c0 < c1, and r < r1
c1

. From Lebesgue differentiation Theorem, (22) is valid almost everywhere,
and this representative is upper semi-continuous, see also [7]. Using the representative of u given in (22) and the
monotonicity of

r ∈ (0, r1) 7→
ˆ
Dr(x0)

ũ dvolg,

we obtain

u(x0) ≤
 
Dr/c1 (x0)

ũ dvolg ≤
1

Volg(B
g
c0r/c1

(x0))

ˆ
Bgr (x0)

ũ dvolg =
Volg(B

g
r (x0))

Volg(B
g
c0r/c1

(x0))

 
Bgr (x0)

ũ dvolg

≤ 2

(
c1
c0

)n  
Bgr (x0)

ũ dvolg ≤ c

( 
Bgr (x0)

u dvolg + r2

)
,

where c = 2 max{1, λ‖u‖∞}
(
c1
c0

)n
. For the last property, we show there exists c2 such that

 
Bgr (x0)

ũ dvolg ≤ c2
 
Sgr (x0)

ũ dvolg|Sgr (x0).

First, we choose k positive such that Rm ≤ k in the ball Bgr (x0). Therefore, from Lemma 4.3, we know that

r ∈ (0, r1) 7→ 1

Volgk(Sgkr )

ˆ
Sgr (x0)

ũ dvolg|Sgr (x0)

is increasing. Moreover
 
Bgr (x0)

ũ dvolg =
1

Volg(B
g
r (x0))

ˆ r

0

(ˆ
Sgs (x0)

ũ dvolg|Sgs (x0)

)
ds

=
1

Volg(B
g
r (x0))

ˆ r

0

(
1

Volgk(Sgks (x0))

ˆ
Sgs (x0)

ũ dvolg|Sgs (x0)

)
Volgk(Sgks (x0))ds

≤ Volgk(Bgkr (x0))

Volg(B
g
r (x0))

(
1

Volgk(Sgkr (x0))

ˆ
Sgr (x0)

ũ dvolg|Sgr (x0)

)

and hence the result, as
Volgk(Bgkr (x0))

Volg(B
g
r (x0))

is bounded from above for r ≤ r1. �
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4.2. First penalization
In the first steps of the analysis in [3], which will lead to the optimal regularity for u (see Section 4.3), the authors use

a test function whose support is larger than Ωu = {u 6= 0}. Therefore, this test function is a priori not allowed because
of the volume constraint. We therefore prove that (12) is equivalent to a penalized version. Note that one could skip this
step as in Section 4.4 we will prove a more precise penalization result (see [45] where this strategy is applied), but we
decided to keep the result in this section as they are more straightforward and global. We use in this section that M is
compact. Nevetheless this hypothesis is not required for Theorem 1.2 since this section can be skipped.

Proposition 4.5 (Global Penalization from above). If u is a solution of (12), then there exists µ∗ ∈ R+ such that for
all v ∈ H1(M)

ˆ
M

‖∇gu‖2g dvolg ≤
ˆ
M

‖∇gv‖2g dvolg + λ(m)

[
1−

ˆ
M

v2 dvolg

]+

+ µ∗
[
Volg(Ωv)−m

]+
. (24)

We will argue as in [10, Theorem 2.4] where they deal with the Euclidian case. Only the last part of the proof requires
some new developments in the Riemannian case, though we will recall the whole proof.

Remark 4.6. This implies in particular that if Ω∗ solves (7) and M is compact, then for µ large enough,

∀Ω ⊂M, λ1(Ω∗) ≤ λ1(Ω) + µ [Volg(Ω)−m]
+

Proof. Let us introduce uµ a solution of

min

{
Gµ(v) :=

ˆ
M

‖∇gv‖2g dvolg + λm

[
1−

ˆ
M

v2 dvolg

]+

+ µ
[
Volg(Ωv)−m

]+
, v ∈ H1(M)

}
.

The existence of such uµ follows from standard compactness arguments: observing indeed that Gµ(|w|) = Gµ(w), and
that Gµ(w/‖w‖L2) ≤ Gµ(w) if ‖w‖L2 ≥ 1, one can consider a minimizing sequence in the set

{w ∈ H1(M) / w ≥ 0, ‖w‖L2 ≤ 1} .

Such minimizing sequence has a gradient uniformly bounded in L2 and is therefore bounded in H1(M); similarly than
in the proof of Theorem 1.1, this provides a solution uµ, which is moreover non-negative and such that ‖uµ‖L2 ≤ 1.
Then, it only remains to show that for µ large enough, we necessarily have Volg(Ωuµ) ≤ m. Indeed, in that case we
have, using optimality of uµ, Gµ(uµ) ≤ Gµ(u) and one hand, and on the other hand using (12):

ˆ
M

‖∇gu‖2g dvolg ≤
ˆ
M

‖∇guµ‖2g dvolg + λ(m)

[
1−

ˆ
M

u2
µ dvolg

]
≤ Gµ(uµ)

so u is also a minimizer for (24).

We therefore assume that Volg(Ωuµ) > m; then we can write, Gµ(uµ) ≤ Gµ((uµ− t)+) for t > 0 small enough and
get, using in particular that ‖(u− t)+‖L2 ≤ ‖u‖L2 ≤ 1:

ˆ
{0<uµ<t}

‖∇guµ‖2g dvolg + µVolg({0 < uµ < t}) ≤ λm

[ˆ
M

u2
µ dvolg −

ˆ
{uµ≥t}

(uµ − t)2 dvolg

]

≤ λm

[ˆ
{0<uµ<t}

u2
µ dvolg +

ˆ
{uµ≥t}

2tuµ dvolg

]

and using the Cauchy-Schwarz inequality and the fact that ‖uµ‖L2 ≤ 1, we get:
ˆ
{0<uµ<t}

(
‖∇guµ‖2g − λmu2

µ

)
dvolg + µVolg({0 < uµ < t}) ≤ 2λmtVolg(Ωuµ)1/2.

With the co-area formula, we obtain

ˆ t

0

ˆ
{uµ=s}

[
‖∇guµ‖g +

µ− λmu2
µ

‖∇guµ‖g

]
︸ ︷︷ ︸
≥
√

2µ for s such that λms2≤µ/2

dvolg|{uµ=s}dt ≤ 2λmtVolg(Ωuµ)1/2, for t small enough

which gives, dividing by t and letting t→ 0:

√
2µP (Ωuµ) ≤ 2λmVolg(Ωuµ)1/2, and then

√
2µ ≤ 2λ(m)Volg(M)1/2

IM (Volg(Ωuµ))
,
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where IM : [0,Volg(M)] → R+ is the isoperimetric profile of M , which is positive on (0,Volg(M)) as M is compact
and connected. From the estimate

Gµ(uµ) ≤ Gµ(u) =

ˆ
M

‖∇gu‖2g dvolg ,

we know that µ
[
Vol(Ωuµ) −m

]
is bounded uniformly in µ, so there exists µ0 such that forall µ ≥ µ0, Volg(Ωuµ) ∈[

m,
Volg(M)+m

2

]
. As a conclusion, if µ > max

µ0,
2λ(m)Volg(M)

inf
{
IM (s), s ∈

[
m,

Volg(M)+m
2

]}
, then Volg(Ωµ) ≤ m,

which concludes the proof. �

4.3. Lipschitz continuity of the first eigenfunction
A first step in the regularity theory is to study the regularity of the state function, seen as a function defined on M .

The regularity is obvious inside or outside Ωu (so far though, we do not know yet that the interior of Ωu is not empty),
but the regularity across the free boundary is non trivial, especially as we don’t know anything about the regularity of
this free boundary. It is clear that one cannot expect more than Lipschitz continuity: even if we already knew that Ωu is
smooth, then the eigenfunction vanishes outside Ωu and has a linear growth from the boundary, inside Ωu. The purpose
of this section is to prove the Lipschitz continuity of u despite the lack of knowledge about ∂Ωu; this is often referred
to as the optimal regularity of the state function. This will have some consequences about weak regularity of the free
boundary, and will be useful to prove existence of blow-ups. We will use here the penalization result of the previous
section. But we could also use the refined penalization result of Section 4.4 (for which the compactness of the manifold
is not required), see also [45].

As in [3], we express the Lipschitz regularity as an uniform bound of the mean value of u on spheres crossing ∂Ωu,
so the main tool in this section is the following lemma:

Lemma 4.7 (Upper bound to the growth of u near the boundary). Let u be a solution of (12). There exist C > 0
and r0 > 0 such that, for all geodesic ball Bgr (x0) ⊂M with r ≤ r0,

1

r

 
∂Bgr (x0)

u dvolg|∂Bgr (x0)
≥ C =⇒ u > 0 on Bgr (x0). (25)

Proof. Let Bgr (x0) ⊂M and v satisfying{
−∆gv = λ(m)u in Bgr (x0),
v = u outside Bgr (x0).

(26)

We first notice that from maximum principle v ≥ u ≥ 0, so Ωu ⊂ Ωv .
Step 1: Using optimality of u for the penalized version given in Proposition 4.5, let us first proveˆ

Bgr (x0)

‖∇g(u− v)‖2g dvolg ≤ µ∗Volg({u = 0} ∩Bgr (x0)). (27)

We compare the energies of u and v in (24), which gives,

J(u)− J(v) ≤ µ∗
[
Volg(Ωv)−Volg(Ωu)

]
.

We now notice, using that u− v vanishes on ∂Bgr (x0),

J(u)− J(v) =

ˆ
Bgr (x0)

‖∇g(u− v)‖2g dvolg + 2

ˆ
Bgr (x0)

g(∇g(u− v),∇gv) dvolg − λ(m)

ˆ
Bgr (x0)

(u2 − v2) dvolg

=

ˆ
Bgr (x0)

‖∇g(u− v)‖2g dvolg − 2

ˆ
Bgr (x0)

∆gv (u− v) dvolg − λ(m)

ˆ
Bgr (x0)

(u2 − v2) dvolg

=

ˆ
Bgr (x0)

‖∇g(u− v)‖2g dvolg + λ(m)

ˆ
Bgr (x0)

(u− v)2 dvolg (28)

and therefore, ˆ
Bgr (x0)

‖∇g(u− v)‖2g dvolg ≤ J(u)− J(v) ≤ µ∗Volg({u = 0} ∩Bgr (x0)) . (29)

Step 2: Using classical elliptic tools (here we do not use the optimality of u anymore), we obtain in this step the reverse
estimate4

ˆ
Bgr (x0)

‖∇g(u− v)‖2g dvolg ≥ cVolg({u = 0} ∩Bgr (x0))

(
1

r

 
∂Bgr (x0)

u dvolg|∂Bgr (x0)

)2

, (30)

4One can find a different proof in [3, Lemma 3.2] in the harmonic case; the proof we use here is an adaptation of an argument that has been
communicated to us by Antoine Mellet, see https://vimeo.com/118498464

16

https://vimeo.com/118498464


for some constant c > 0.
For r small enough and for any x0 in a compact set of M the exponential map expx0

is a bi-Lipschitz continuous
diffeomorphism from Bgr (x0) to the ball Br of radius r in the tangent space, with a Lipschitz constant independent of r
and of x0. If we denote by u∗ and v∗ the pull back of the functions u and v in the tangent space, by the Hardy inequality
we have ˆ

Br

‖∇(u∗ − v∗)‖2e dvole ≥
1

4

ˆ
Br

(
v∗ − u∗

r − |x|

)2

dvole .

Now, using the bi-Lipschitz diffeomorphism given by the exponential map we get the same estimate with a smaller
constant c1 > 0: ˆ

Bgr (x0)

‖∇g(u− v)‖2g dvolg ≥ c1
ˆ
Bgr (x0)

(
v − u
δr,x0

)2

dvolg

where δr,x0
(x) = dg(x, ∂B

g
r (x0)) and then

ˆ
Bgr (x0)

‖∇g(u− v)‖2g dvolg ≥ c1
ˆ
Bgr (x0)∩{u=0}

(
v

δr,x0

)2

dvolg .

To estimate the last term, it remains to understand the behavior of v in the ball. We introduce φ such that u − φ ∈
H1

0 (Bgr (x0)) and φ harmonic in Bgr (x0), i.e. φ is the harmonic replacement of u in that geodesic ball. Take a negative
constant k such that the Ricci curvature of the manifold M satisfies, in Bgr0(x0), Ric ≥ (n− 1)k. Then by the first part
of Lemma 4.3 we have

φ(x0) ≥ 1

Volgk(Sgkr )

ˆ
Sgr (x0)

φ dvolg|Sgr (x0) .

Similarly to the proof of Corollary 4.4, we write

1

Volgk(Sgkr )

ˆ
Sgr (x0)

φ dvolg|Sgr (x0) =
1

Volg(S
g
r (x0))

Volg(S
g
r (x0))

Volgk(Sgkr )

ˆ
Sgr (x0)

φ dvolg|Sgr (x0)

≥ c2
1

Volg(S
g
r (x0))

ˆ
Sgr (x0)

φ dvolg|Sgr (x0)

for some constant c2 depending only on k, that is to say uniformly in r < r0 and x0. Then

φ(x0) ≥ c2
 
Sgr (x0)

φ dvolg|Sgr (x0)

Using now Harnack’s inequality (see for example [29, Theorem 8.20]), there is a constant c3 > 0 independant on x0 and
r ≤ r0 such that φ ≥ c3φ(x0) in Bgr

2
(x0). Denoting c4 = c2c3 we finally get

v ≥ φ ≥ c4
 
∂Bgr (x0)

u dvolg|∂Bgr (x0) in Bgr
2
(x0). (31)

InBgr (x0)\Bgr
2
(x0) we argue as in the proof of the classical Hopf’s lemma (see for example [27, Section 6.4.2]; see also

[51, Lemma 4.1]). In normal geodesic coordinates we consider the function w(x) = e−γ
|x|2

r2 − e−γ . After computation
we have that in the chart representing Bgr (x0) \Bgr

2
(x0), the Euclidean Laplacian of w is

∆ew(x) =
2γ

r2

[
2γ
|x|2

r2
− n

]
e−γ

|x|2

r2 ≥ 2γ

r2

[γ
2
− n

]
e−

γ
4

so that, if γ is large enough, −∆ew(x) ≤ −k′, for some positive constant k′, independant on x0 and r ≤ r0. Then,
choosing r small enough and using (20), −∆gw ≤ 0 in Bgr (x0) \Bgr

2
(x0). On the other hand, we define

ϕ := φ−


c4

 
Sgr (x0)

u dvolg|Sgr (x0)

w
(r

2

)
w

which is such that ϕ ≥ 0 on ∂Bgr
2
(x0), ϕ = u ≥ 0 on ∂Bgr (x0) and −∆gϕ ≥ 0. We obtain from maximum principle

that

v ≥ φ ≥

[
c4

 
∂Bgr (x0)

u dvolg|∂Bgr (x0)

]
w

w
(
r
2

) (32)
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in Bgr (x0) \ Bgr
2
(x0). We finally remark that there is a constant c5 = c5(γ) such that

e−γy
2 − e−γ

e−γ/4 − e−γ
≥ c5(1 − y) for

y ∈ [0, 1], so that
w

w(r/2)
≥ c5

(
1− |x|

r

)
. Combining (31) and (32) we get that there exists a constant c6 independant

on x0 and r ≤ r0 such that

v(x) ≥ c6

(
1

r

 
∂Bgr (x0)

u dvolg|∂Bgr (x0)

)
(r − dg(x, x0)) = c6

(
1

r

 
∂Bgr (x0)

u dvolg|∂Bgr (x0)

)
δr0,r0(x)

which leads to the estimate (30).

Conclusion: Combining (27) and (30), we obtain that if
1

r

 
∂Bgr (x0)

u dvolg|∂Bgr (x0)
>

√
µ∗

c
then u = v almost every-

where on Bgr (x0). Using the representation (22) for both u and v, we deduce that u = v > 0 everywhere on Bgr (x0),
which concludes the proof. �

Remark 4.8. Note that from (27) and using the representation (22), we deduce that if u > 0 almost everywhere in
Bgr (x0), then u = v everywhere in Bgr (x0), and therefore u > 0 everywhere in Bgr (x0). This fact will be used in
Sections 4.4 and 4.5.

Corollary 4.9. Let M be a compact Riemannian manifold, m ∈ (0,Volg(M)) and u a solution of (12). Then u is
Lipschitz continuous in M .

Remark 4.10. If M is noncompact, one deduces that u is locally Lipschitz in M . Also, combined with Proposition 3.2,
one deduces that If M is connected and Ω∗ solves (7), then Ω∗ is an open set and hence solves (3). See Remark 1.4 for
a counterexample in the disconnected case.

Remark 4.11. In order to prove that Ωu is open (where u solves (12)), we only need to prove that the eigenfunction
u is continuous on M (rather than Lipschitz continuous), which can be obtained in several ways, see for example the
elementary proof in [10, Lemma 3.8], or also [10, Remark 3.10] and [51, Section 3] based on a classical method
from Morrey [43]; this last method gives Hölder regularity for any order α < 1. Nevertheless, we will need Lipschitz
continuity in the following sections.

Proof of Corollary 4.9: The fact that Ωu is open is a consequence of Corollary 4.4 and Lemma 4.7. Indeed, let x0 ∈M
such that u(x0) > 0: then from (23) we get that (c′ and r0 coming from Corollary 4.4)

 
∂Bgr (x0)

u dvolg|∂Bgr (x0)
+ r2 ≥ u(x0)

c′

for every r ≤ r0. So
1

r

 
∂Bgr (x0)

u dvolg|∂Bgr (x0)
≥ u(x0)

c′r
− r

and with Lemma 4.7, we obtain u > 0 in Bgr (x0) for r small enough.
We are now in position to prove the Lipschitz continuity of u. Since Ωu is an open set, we can choose the maximal

radius r such that the geodesic ballBgr (x0) is included in Ωu. As u is smooth inside Ωu, we may assume r < r0. Thanks
to Lemma 4.7,

1

r + δ

 
∂Bgr+δ(x0)

u dvolg|∂Bg
r+δ

(x0)
≤ C ,

where C is introduced in Lemma 4.7, and for all small δ > 0. Therefore

1

r

 
∂Bgr (x0)

u dvolg|∂Bgr (x0)
≤ C.

From this estimate, we deduce now that the gradient of u is bounded: we introduce w defined by{
−∆gw = λ(m)u in Bgr (x0),
w = 0 outside Bgr (x0).

On one hand, as u − w is harmonic, introducing G the Green function with Dirichlet boundary condition on ∂Bgr (x0)
(see [5, Theorem 4.17]), we have

‖∇g(u− w)(x)‖g ≤
ˆ
∂Bgr (x0)

‖(∇gy)2G(x, y)‖g︸ ︷︷ ︸
≤kd(x,y)−n

u(y) dvolg|∂Bgr (x0)
(y) ≤

≤ k
(r

2

)−n ˆ
∂Br(x0)

u(y) dvolg|∂Bgr (x0)
(y) ≤ kC ,

(33)
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for x ∈ Bgr (x0), where k is a constant depending on the distance of x to ∂Bgr (x0). This constant k is not depending on
x, if we take x ∈ Bgr

2
(x0) (according to [5, 4.10], k is not depending on x if the injectivity radius ix at x with respect to

the manifold Bgr (x0) is bigger than a positive constant ρ, and this is the case for x ∈ Bgr
2
(x0)).

We use now the scaling argument introduced at the beginning of Section 4 to prove:

‖∇gw(x)‖g ≤ Crλ(m)‖u‖L∞(Br(x0)) (34)

for x ∈ Bgr
2
(x0). Indeed, considering y ∈ B 1

2
, the Euclidean ball of radius 1

2 , and endowing on B 1
2

the metric ḡ, let us
define w̃(y) = w(expgx(rΘ(y))), with Θ defined in (18). We have

−∆ḡw̃(y) = −r2 ∆gw(expgx(ry)) = r2λ(m)u(expgx(rΘ(y)))

where ḡ = r−2g, so by interior gradient estimates, there is a constant C such that

|∇ew̃(0)| ≤ Cr2λ(m)‖u‖L∞(Br(x0))

and then also
‖∇ḡw̃(0)‖ḡ ≤ Cr2λ(m)‖u‖L∞(Br(x0)) .

Now, using that∇gw(x) = 1
r∇

ḡw̃(0), we obtain (34). Combining with (33), we obtain a uniform bound on∇gu(x) for
x ∈ Bgr

2
(x0), and therefore u is Lipschitz continuous.

�

4.4. Refined penalization of the volume constraint
In order to investigate further regularity properties of the free boundary, we need to prove a more involved version

(though localized) of the penalization property stated in Proposition 4.5: let u be a solution of (12), and Bgr0(x0) be a
geodesic ball centered at x0 ∈ ∂Ωu. We define

F = F(u, x0, r0) = {v ∈ H1(M), u− v ∈ H1
0 (Bgr0(x0))}. (35)

For h > 0, we denote by µ−(x0, r0, h) the largest µ− ≥ 0 such that,

∀ v ∈ F such that m− h ≤ Volg(Ωv) ≤ m, J(u) + µ−Volg(Ωu) ≤ J(v) + µ−Volg(Ωv). (36)

We also define µ+(x0, r0, h) as the smallest µ+ ≥ 0 such that,

∀ v ∈ F such that m ≤ Volg(Ωv) ≤ m+ h, J(u) + µ+Volg(Ωu) ≤ J(v) + µ+Volg(Ωv). (37)

The following result deals with the aymptotic behaviour of these penalization coefficients:

Proposition 4.12. Let u be a solution of (12). There exists Λ = Λu ≥ 0 such that, for every x0 ∈ ∂Ωu and r0 small
enough, there exists h0 > 0 such that,

∀ h ∈ (0, h0), µ−(x0, r0, h) ≤ Λ ≤ µ+(x0, r0, h) < +∞,
and, moreover, lim

h→0
µ+(x0, r0, h) = lim

h→0
µ−(x0, r0, h) = Λ. (38)

We start writing a weak optimality condition for the constrained problem (12); in this way, we can define Λ as a
Lagrange multiplier.

Lemma 4.13 (Euler-Lagrange equation). If u is a solution of (12), then there exists Λ = Λu ≥ 0 such that,

∀Φ ∈ C∞(M,TM),

ˆ
M

[
2 g(DΦ∇gu,∇gu) + (λ(m)u2 − ‖∇gu‖2g) divgΦ

]
dvolg = Λ

ˆ
Ωu

divgΦ dvolg . (39)

Proof. For Φ ∈ C∞(M,TM) and t ∈ R, we consider ut(x) = u(expx(tΦ(x)) ∈ H1(M). If t is small enough,
x 7→ expx(tΦ(x)) is a C1-diffeomorphism of M , so with a change of variable we get:

Volg(Ωut) = Volg(Ωu)− t
ˆ

Ωu

divgΦ dvolg + o(t),

J(ut) = J(u) + t

ˆ
M

[
2g(DΦ∇gu,∇gu)− ‖∇gu‖2gdivgΦ + λ(m)u2divgΦ

]
dvolg + o(t).

Moreover, the linear form Φ 7→
´

Ωu
divgΦ dvolg does not vanish, so we can apply the Karush-Kuhn-Tucker condition

for the minimization of J among v ∈ H1(M) with the constraint Volg(Ωv) ≤ m: we get the existence of Λ ∈ R+ such
that

d

dt
J(ut)|t=0 = −Λ

d

dt
Volg(Ωut)|t=0, ∀Φ ∈ C∞(M,TM),

which concludes the proof. �
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Remark 4.14. We can rewrite this Euler-Lagrange equation in the following way:

∀Φ ∈ C∞(M,TM), lim
ε→0

ˆ
∂{u>ε}

g((‖∇gu‖2g − Λ)Φ, νε) dvolg = 0,

where νε denotes the outward unit normal to ∂{u > ε}, so this property can be seen as a very weak formulation of the
extremality condition for λ1, without regularity assumption. Indeed, we first notice that inside Ωu,

2g(DΦ∇gu,∇gu)− g(∇g(λ(m)u2 − ‖∇gu‖2g),Φ) = 2divg[g(Φ,∇gu)∇gu]− 2g((∆gu+ λ(m)u︸ ︷︷ ︸
=0

)Φ,∇gu),

so using Gauss-Green formula, we obtain

ˆ
M

[
2g(DΦ∇gu,∇gu) + (λ(m)u2 − ‖∇gu‖2g)divgΦ

]
dvolg

= lim
ε→0

ˆ
∂{u>ε}

g(2g(Φ,∇gu)∇gu+ (λ(m)u2 − ‖∇gu‖2g)Φ, νε) dvolg = lim
ε→0

ˆ
∂{u>ε}

‖∇gu‖2gg(Φ, νε) dvolg

since ∇gu = ‖∇gu‖gνε on {u = ε}.

We are now in position to prove Proposition 4.12: the proof is very similar to [11, Theorem 1.5], and the adaptation to
the framework of a manifold requires very little change. Therefore, we only sketch the argument; see also [36, Section
3.2.3] for a heuristical description of the argument and [45] in a different framework. Until the end of this section, u
denotes a solution of (12), x0 ∈ ∂Ωu, r0 > 0, and F is defined in (35); we denote µ±(h) instead of µ±(x0, r0, h) to
simplify the presentation and as no confusion is possible, and we denote Bgr for Bgr (x0). We first need the following
lemma which helps obtaining existence results:

Lemma 4.15. There exists a constant C = C(u) such that for r0 small enough,

∀v ∈ F , J(v) ≥ 1

2

ˆ
Bgr0

‖∇gv‖2g dvolg − C.

Proof. Let v ∈ F ; since u− v ∈ H1
0 (Bgr0)

J(v) ≥
ˆ
M

‖∇gv‖2g dvolg − λ(m)‖v‖2L2(M) ≥
ˆ
M

‖∇gv‖2g dvolg − 2λ(m)
(
‖u− v‖2L2(Bgr0 ) + ‖u‖2L2(M)

)
≥

ˆ
M

‖∇gv‖2g dvolg − 2λ(m)

(
‖∇g(u− v)‖2

L2(Bgr0 )

λ1(Bgr0)
+
‖∇gu‖2L2(M)

λm

)

≥
ˆ
M

‖∇gv‖2g dvolg − 4λ(m)

(
‖∇gu‖2

L2(Bgr0 )
+ ‖∇gv‖2

L2(Bgr0 )

λ1(Bgr0)

)
− 2‖∇gu‖2L2(M)

≥

(ˆ
Bgr0

‖∇gv‖2g dvolg

)(
1− 4

λm
λ1(Bgr0)

)
− 2‖∇gu‖2L2(M)

(
1 + 2

λm
λ1(Bgr0)

)
which gives the result if λ1(Bgr0) is large enough, which is true if r0 is small enough. �

Remark 4.16. This lemma implies that J is bounded from below on F , and moreover that if vn ∈ F is a sequence
such that J(vn) is bounded, then ‖∇gvn‖L2(Bgr0 ) is also bounded. Since vn = u outside Bgr0 we deduce that vn weakly
converges up to a sub-sequence.

Sketch of proof of Proposition 4.12: Let Λ ≥ 0 be as in Lemma 4.13. The proof is divided in three steps.

- First step: Λ ≤ µ+(h) < +∞. To prove that µ+(h) is finite, we first notice that 0 < Volg(Ωu ∩ Bgr0) < Volg(B
g
r0),

see [11, Lemma 2.5] and Remark 4.8. We consider then h ∈ (0,Volg(B
g
r0) − Volg(Ωu ∩ Bgr0)) (and so, if v ∈ F with

Volg(Ωv) ≤ m+ h, then Volg(Ωv ∩Bgr0) < Volg(B
g
r0)), and the optimization problem

min {J(v) + µVolg(Ωv), v ∈ F ,m ≤ Volg(Ωv) ≤ m+ h} .

Using Remark 4.16, we have existence of a solution vµ. If Volg(Ωvµ0 ) = m for some µ0 then u is a solution to (37)
with µ0 and therefore µ+(h) is finite: we will suppose to the contrary that Volg(Ωvµ) > m for all µ. As vµ is solution
to

J(vµ) = min
{
J(w) , w ∈ F ,m ≤ Volg(Ωw) ≤ Volg(Ωvµ)

}
,
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we can write an Euler-Lagrange equation for vµ with a similar proof to Lemma 4.13 and there exists Λµ ≥ 0 such that
(39) is true for vµ in place of u and for Φ ∈ C∞c (Bgr0 , TM). On one hand, using the optimality condition for vµ we
obtain that Λµ ≥ µ, while on the other hand, using compactness and extracting from (39) formulas for Λ and Λµ we get
limµn→∞ Λµn = Λ for a sequence µn going to +∞. This leads to a contradiction, so µ+(h) is finite. To conclude this
first step, we show that Λ ≤ µ+(h), again using the optimality condition for u.

- Second step: limh→0 µ+(h) = Λ. We first see that µ+(h) > 0 for h > 0. Indeed, if µ+(h) = 0 we can use

for every ϕ ∈ C∞0 (Bgr0) with Volg({ϕ 6= 0}) < h, J(u) ≤ J(u+ tϕ),

which leads to −∆gu = λ(m)u in Bgr0 , and contradicts Volg(Ωu ∩ Bgr0) < Volg(B
g
r0). Let ε > 0. Since h 7→ µ+(h)

is non-decreasing, we just have to see that µ+(h) ≤ Λ + ε for some h > 0. If Λ > 0, we restrict to ε < Λ and define
µε(h) := µ+(h)− ε > 0; if Λ = 0, we define µε(h) = µ+(h)/2 > 0. We apply the same strategy as in the first step to
vh solution to

min {J(v) + µε(h)Volg(Ωv), v ∈ F ,Volg(Ωv) ≤ m+ h} .

We notive first that by definition of µ+(h) we have Volg(Ωvh) > m. Denoting then Λh the Lagrange multiplier associ-
ated to vh, we prove as before that Λh ≥ µε(h) and also that lim Λhn = Λ for some sequence hn going to 0. This leads
to µ+(h) ≤ Λ + 2ε for some h and concludes this step.

- Third step: limh→0 µ−(h) = Λ. As in the first step, we first see that µ−(h) ≤ Λ. As in the previous step, we study
vh solutions of the following minimization problem

min {J(w) + (µ−(h) + ε)Volg(Ωw), w ∈ F , m− h ≤ Volg(Ωw) ≤ m} .

to deduce that limh→0 µ−(h) = Λ and this concludes the proof. �

4.5. Positivity of the Lagrange multiplier
Proposition 4.17. Let u a solution of (12), and Λu given in Proposition 4.12. Then Λu > 0.

We follow [9, Proof of Proposition 6.1], though we slightly simplify the presentation. For another argument, see [45,
Appendix A] which relies only on the use of (39).

Proof. We argue by contradiction and suppose that Λ = 0. Our aim is to prove that under such assumption

−∆gu = λ(m)u in the sense of distribution in M

which asserts that the measure ∆gu does not charge ∂Ωu. We introduce (ωn)n∈N an increasing sequence of smooth
open sets such that {

x ∈ Ωu, dg(x, ∂Ωu) ≥ 1

n

}
⊂ ωn ⊂ ωn ⊂ Ωu,

so that
⋃
n ωn = Ωu. Take B = Bgr0(x) for some x ∈ ∂Ωu, and r0 > 0.

Step 1: the gradient of u vanishes near ∂Ωu. Let x0 ∈ (Ωu ∩ B) \ ωn. Denote r the largest number such that
Bgr (x0) ⊂ Ωu. We use the function v defined in (26); similarly to the proof in Lemma 4.7, we obtain from the definition
of µ+:

1

ρ

 
∂Bgρ(x0)

u dvolg|∂Bgρ(x0)
≤ C

√
µ+(Volg(B

g
ρ(x0))) ∀Bgρ(x0) ⊂ B such that Volg({u = 0} ∩Bgρ(x0)) > 0 (40)

and from the fact that Λ = 0 and using Proposition 4.12, the right hand side converges to 0 when ρ → 0. By definition
of r, for every δ > 0, {u = 0} ∩Bgr+δ(x0) 6= ∅, so as in Remark 4.8 this implies that Volg({u = 0} ∩Bgr+δ(x0)) > 0 ,
and therefore we can use (40) and the monotonicity of µ+:

1

r + δ

 
∂Bgr+δ(x0)

u dvolg|∂Bg
r+δ

(x0)
≤ C

√
µ+(Volg(B

g
r+δ(x0))) ≤ C

√
µ+(Volg(B

g
2r(x0))) ∀δ < r.

We can let δ go to 0. Then, as in the proof of Corollary 4.9, we obtain

‖∇gu(x0)‖g ≤ C

(
1

r

 
∂Bgr (x0)

u dvolg|∂Bgr (x0)
+ r

)
≤ C

(√
µ+(Volg(B

g
2/n(x0))) +

1

n

)
and therefore ‖∇gu‖∞,B\ωn converges to 0 when n goes to∞.
Step 2. Thanks to Proposition 4.1, we know that ∆gu is a Radon measure. Let ϕ ∈ C∞c (B). We can write

ˆ
B

ϕ d(∆gu) =

ˆ
B∩ωn

ϕ d(∆gu) +

ˆ
B\ωn

ϕ d(∆gu) (41)
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The first term is equal to λ(m)
´
B∩ωn uϕ and converges to λ(m)

´
B
uϕ when n goes to∞. We are therefore aiming at

proving that the second term in (41) converges to 0. We introduce the vector valued function Hn defined by

Hn ∈ H1(M,Rn),

{
∆gHn = 0 in ωn
Hn = ∇gu in ωcn

Then ˆ
B\ωn

ϕ d(∆gu) =

ˆ
B\ωn

ϕ d(divgHn) =

ˆ
B

ϕ d(divgHn)−
ˆ
B∩ωn

ϕ d(divgHn) (42)

The first term is equal to −
´
B
Hnϕ dvolg . As Hn uniformly converges to 0 on B ∩ ωcn and is harmonic on ωn, by

maximum principle Hn converges to 0 uniformly on any compact subset of B and therefore this first term converges to
0. In order to deal with the second term, we couple the two following statements:

• first, we know that divg(Hn) is harmonic in ωn, and its trace on ∂ωn is ∆gu = −λ(m)u, so it converges uniformly
to 0 on any compact set of Ωu ∩B;

• second, as we have {
∆g(Hn −∇gu) = λ(m)u in ωn
Hn −∇gu = 0 on ∂ωn

we get the classical bound ‖∇g(Hn − ∇gu)‖L2(B∩ωn) ≤ Cλ(m)‖u‖L2(ωn∩B) ≤ λ(m), for some constant C,
which leads to

‖divg(Hn)‖L2(ωn∩B) ≤ ‖divg(Hn −∇gu)‖L2(ωn∩B) + ‖∆gu‖L2(ωn∩B) ≤ (1 + C)λ(m).

Combing these two statements, we deduce with the Lebesgue convergence Theorem that the last term in (42) converges
to 0, which concludes the proof. �

4.6. Non-degeneracy of the state function
When we proved the Lipschitz-continuity of u, we obtained an estimate from above of the gradient of u near the

boundary of Ωu. We are going to prove a similar estimate from below, which says that in a weak sense the gradient of
u cannot vanish near ∂Ωu. To that end we use the penalization from below proven in Sections 4.4 and 4.5. We use a
strategy from [3, Lemma 3.4].

Let u, x0 and r0 as in Section 4.4.

Lemma 4.18. There exist c such that, for every ball Bgr (x) ⊂ Bgr0(x0) with r small enough,

‖u‖∞,Bgr (x) ≤ cr =⇒ u ≡ 0 on Bgr/2(x) . (43)

The strategy here is the opposite from Section 4.3, in the sense that we will consider a test function who is vanishing in
a small ball. We will therefore use the penalization from below that has been proven in Sections 4.4 and 4.5. Compare to
[3] and [11], the statement deals with the L∞-norm instead of the L1-average as in Section 4.3. This looks like a weaker
result, but before proving Lemma 4.18, we show in the next statement that this other version is a classical corollary.
This was noticed already in [4] where they state a result with Lp-average; even though it is likely possible to directly
obtain the following statement in our framework, we felt that the construction of the test function to obtain Lemma 4.18
is slightly easier, see also [45].

Corollary 4.19. There exists c such that, for every geodesic ball Bgr (x) ⊂ Bgr0(x0) with r small enough,

1

r

 
∂Bgr (x)

u dvolg|∂Bgr (x)
≤ c =⇒ u ≡ 0 on Bgr/4(x) (44)

Proof. Let Bgr (x) ⊂ Bgr0(x0). As in the proof of Corollary 4.4, we introduce w(y) = |y|2 in local coordinates centered
at x, and ũ = u+ λ(m)‖u‖∞w is subharmonic with respect to the metric g. Denoting φ the harmonic replacement of ũ
with respect to the metric g, we have:

• from maximum principle, 0 ≤ u ≤ ũ ≤ φ,

• from Lemma 4.3 (choosing k such that the condition on the curvature is satisfied in Bgr0(x0), and r0 small enough
such that the area of Sgkr (x) is close enough to the area of Sgr (x) for r < r0), there exists a constant c1 independant
of x, r such that φ(x) ≤ c1

ffl
∂Bgr (x)

ũ dvolg|∂Bgr (x)

• from Harnack inequality ([29, Theorem 8.20], there exists c2 also independant of x, r such that φ ≤ c2φ(x) in
Br/2(x).

Therefore there exists c′ such that

‖u‖∞,Bg
r/2

(x) ≤ c′
[ 

∂Bgr (x)

u dvolg|∂Bgr (x)
+ r2

]
.

We can therefore apply Lemma 4.18 in Bgr/2(x) and obtain that u vanishes on Bgr/4(x). �
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Proof of Lemma 4.18. We introduce w ∈ H1(Bgr (x)) such that:
−∆gw = β in Bgr (x) \Bgr/2(x)

w = ‖u‖∞,Bgr (x) in ∂Bgr (x)
w = 0 in Bgr/2(x).

where β ∈ (0,∞) will be chosen later. Then we define

v =

{
min{u,w} in Bgr (x)
u in M \Bgr (x)

.

As u ≤ w on ∂Bgr (x), v has no discontinuity across ∂Bgr (x) and therefore v ∈ H1(M) can be used as a test function.
Moreover, by construction Ωv = Ωu \ Bgr/2(x), so we can use the lower penalization given by Proposition 4.12 with
h = Volg(B

g
r/2(x)) and obtain, since u = v outside Bgr (x),

ˆ
Bgr (x)

‖∇gu‖2g dvolg − λ(m)

ˆ
Bgr (x)

u2 dvolg + µ−(h)Volg(Ωu ∩Bgr (x)) ≤

≤
ˆ
Bgr (x)

‖∇gv‖2g dvolg − λ(m)

ˆ
Bgr (x)

v2 dvolg + µ−(h)Volg(Ωv ∩Bgr (x)),

which can be written: ˆ
Bg
r/2

(x)

‖∇gu‖2g dvolg + µ−(h)Volg(Ωu ∩Bgr/2(x)) ≤

≤
ˆ
Bgr (x)\Bg

r/2
(x)

(
‖∇gv‖2g − ‖∇gu‖2g

)
+ λ(m)

ˆ
Bgr (x)\Bg

r/2
(x)

(u2 − v2) dvolg + λ(m)

ˆ
Bg
r/2

(x)

u2 dvolg (45)

The first term in the right hand side can be estimated with
ˆ
Bgr (x)\Bg

r/2
(x)

(
‖∇gv‖2g − ‖∇gu‖2g

)
dvolg ≤

ˆ
Bgr (x)\Bg

r/2
(x)

2g(∇gv,∇g(v − u)) dvolg (46)

= 2

ˆ
(Bgr (x)\Bg

r/2
(x))∩{u>w}

g(∇g(w − u),∇gv) dvolg

≤ −2β

ˆ
(Bgr (x)\Bg

r/2
(x))∩{u>w}

(w − u) dvolg (47)

+

ˆ
∂Bg

r/2
(x)∩{u>w}

∂nw(w − u) dvolg|∂Bg
r/2

(x) (48)

where ∂n denotes the normal derivative about ∂Bgr/2(x) (with respect to the metric g). We deal with the two other terms
with ˆ

Bgr (x)\Bg
r/2

(x)

(u2 − v2) dvolg ≤ 2‖u‖∞,Bgr (x)

ˆ
(Bgr (x)\Bg

r/2
(x))∩{u>w}

(u− w) dvolg

and ˆ
Bg
r/2

(x)

u2 dvolg ≤ ‖u‖2∞,Bgr (x) Volg(Ωu ∩Bgr/2(x)).

Choosing β = λ(m)‖u‖∞,Bgr (x) so that two terms cancel, and denoting

E(u, r) =

ˆ
Bg
r/2

(x)

‖∇gu‖2g dvolg + µ−(h)Volg(Ωu ∩Bgr/2(x))

we obtain
E(u, r) ≤

ˆ
∂Bg

r/2
(x)

(∂nw)u dvolg|∂Bg
r/2

(x)
+ λ(m)‖u‖2∞,Bgr (x) Volg(Ωu ∩Bgr/2(x)). (49)

Using classical elliptic regularity results ([29, Theorem 9.11 and 9.15]) and a scaling argument as in the proof of 4.9, we
obtain the existence of C independant of x, r such that

‖∇gw‖∞,Bgr (x)\Bg
r/2

(x) ≤ C
[‖w‖∞,Bgr (x)

r
+ βr

]
= C‖u‖∞,Bgr (x)

[
1

r
+ λ(m)r

]
.
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On the other hand, working in the normal geodesic coordinates y centered at x such that Bgr/2(x0) is parametrized by
Br/2(0), using the test function ϕ(y) := |y|2/r we get that there exist C,C ′, C ′′ independant on x, r such that

ˆ
∂Bg

r/2
(x0)

u dvolg|∂Bg
r/2

(x0)
= C

[ˆ
Bg
r/2

(x0)

g(∇gu,∇gϕ) dvolg +

ˆ
Bg
r/2

(x0)

(∆gϕ)u dvolg

]

≤ C ′

(ˆ
Bg
r/2

(x0)

‖∇gu‖g dvolg +
1

r

ˆ
Bg
r/2

(x0)

u dvolg

)

≤ C ′

[ ˆ
Bg
r/2

(x0)∩Ωu

(
1

2
‖∇gu‖2g +

1

2

)
dvolg +

‖u‖∞,Bgr (x0)

r
Volg(Ωu ∩Bgr/2(x0))

]

≤ C ′′

[ ˆ
Bg
r/2

(x0)

‖∇gu‖2g dvolg +

(
1

2
+
‖u‖∞,Bgr (x0)

r

)
Volg(Ωu ∩Bgr/2(x0))

]
(50)

From Proposition 4.12, we can consider r small enough such that h = Volg(B
g
r/2(x0)) satisfies µ−(h) ∈ [Λ/2,Λ]

and therefore, using Proposition 4.17 asserting that Λ > 0, (49) and (50) leads to

E(u, r) ≤
(‖u‖∞,Bgr (x0)

r

)[
C ′′(1 + λ(m)r2)

[
1 +

2

Λ

(
1

2
+
‖u‖∞,Bgr (x0)

r

)]
+ λ(m)

2

Λ

‖u‖∞,Bgr (x0)

r
r2

]
E(u, r)

Knowing that r ≤ r0, if
‖u‖∞,Bgr (x0)

r is small enough then E(u, r) must vanish, and so does u in Bgr/2(x0). �

4.7. Finite perimeter

As in the previous section we will use the penalization from below to prove the following result, whose proof is
inspired by [45, Lemma 5.21]:

Proposition 4.20. Let M be compact and u solution of (12). Then Ωu has finite perimeter.

As in Remark 4.10, if M is noncompact then one obtains that Ωu has locally finite perimeter.
Proof. As the manifold M is compact, given x0 ∈ ∂Ωu, it is enough to prove that Ωu has a finite perimeter inside a ball
Bgr (x0) for which, applying Popositions 4.12 and 4.17, µ− := µ−(x0, r0,Volg(B

g
r (x0))) ≥ Λ

2 > 0. We want to apply
the same test function as in the proof of Proposition 4.5, but one needs to localize the argument. We introduce a cut-off
function η : M → R such that η = 1 inBgr/2(x0), η = 0 outsideBgr (x0), 0 ≤ η ≤ 1, and ‖∇gη‖g ≤ C/r. Then one can
consider ut = η(u−t)++(1−η)u for t > 0, which is such that Ωut ⊂ Ωu and Volg(Ωut) ≥ Volg(Ωu)−Volg(B

g
r (x0)).

Therefore from (36) one has
ˆ
M

‖∇gu‖2g − λ(m)

ˆ
M

u2 + µ−Volg(Ωu) ≤
ˆ
M

‖∇gut‖2g − λ(m)

ˆ
M

u2
t + µ−Volg(Ωut). (51)

We easily obtain the following estimates: there exists a constant C depending on u and r0 such that for every t ∈ (0, 1],

•
ˆ
M

(u2 − u2
t ) ≤ Ct

•
ˆ
{u>t}

(
‖∇gu‖2g − ‖∇gut‖2g

)
≥ −Ct

•
ˆ

[Bgr (x0)\Bgr (x0)]∩{u<t}

(
‖∇gu‖2g − ‖∇gut‖2g

)
≥ −Ct

Also, one has Volg(Ωu)−Volg(Ωut) = Volg({0 < u < t} ∩Bgr/2(x0)), therefore, (51) now leads to

Ct ≥
ˆ
{0<u<t}∩Bg

r/2
(x0)

[
‖∇gu‖2g + µ−

]
≥ 2
√
µ−

ˆ
{0<u<t}∩Bg

r/2
(x0)

‖∇gu‖g.

Applying the co-area formula, we obtain as in the proof of Proposition 4.5 that P (Ωu, B
g
r/2(x0)) ≤ C

2
√
µ−

, which ends
the proof by compactness. �
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4.8. Density estimates

From the previous results, we can obtain a first weak regularity result:

Proposition 4.21. Let u be a solution of (12). Then there exist δ > 0 and r0 > 0 such that

δ ≤ Volg(Ωu ∩Bgr (x0))

Volg(B
g
r (x0))

≤ 1− δ, for any x0 ∈ ∂Ωu and any r < r0.

Proof. The proof is classical, see also [3, 41]: by Lemma 4.18 asserting a non-degeneracy property for u, there exists
xr ∈ Bgr/2(x0) such that u(xr) ≥ c

4r where c is given in Lemma 4.18. Using now Lipschitz continuity of u (Corollary
4.9), we get that u > 0 on Bgθr(xr) for some θ which does not depend on x0; this leads to

Volg(Ωu ∩Bgr (x0))

Volg(B
g
r (x0))

≥
Volg(B

g
θr(xr))

Volg(B
g
r (x0))

.

hence the lower estimate. For the upper bound, we go back to the proof of Lemma 4.7, where we obtained the following
estimate (27) (v being defined by (26), and µ∗ introduced in Proposition 4.5):

Volg({u = 0} ∩Bgr (x0)) ≥ 1

µ∗

ˆ
Bgr (x0)

‖∇g(u− v)‖2g dvolg .

As u = v on ∂Bgr (x0), we also have:
ˆ
Bgr (x0)

‖∇g(u− v)‖2g dvolg ≥ λ1(Bgr (x0))

ˆ
Bgr (x0)

(u− v)2 dvolg .

We want to obtain a lower bound for this last term, which will rely on the fact that u is small near x0, while v is large.
By Lipschitz continuity, we have u(x) ≤ Lκr in Bgκr(x0), where L is Lipschitz constant for u. On the other hand, we
had shown that

v ≥ c6

(
1

r

 
∂Bgr (x0)

u dvolg|∂Bgr (x0)

)
(r − dg(x, x0)).

From Corollary 4.19 one has
(

1
r

ffl
∂Bgr (x0)

u dvolg|∂Bgr (x0)

)
≥ c and therefore v ≥ c7(1 − κ)r on Bgκr(x0) for some

constant c7 > 0. Choosing κ small enough, this leads to v − u ≥ c8r in Bgκr(x0) with c8 > 0, which leads to

Volg({u = 0} ∩Bgr (x0)) ≥ cr2λ1(Bgr (x0))Volg(B
g
κr(x0))

and allows to conclude from the facts that r2λ1(Bgr (x0)) is uniformly bounded from below for r small (see [26]), and
Volg(B

g
κr(x0)) ≥ cVolg(B

g
r (x0)). �

4.9. Weiss-monotonicity formula in a manifold

Let u be a local minimum of (12) and x0 ∈ ∂Ωu. Following [52], we define, for r small enough, the function

φgu,x0
(r) :=

1

rn

ˆ
Bgr (x0)

(
‖∇gu‖2g + Λ1u>0

)
dvolg −

1

rn+1

ˆ
∂Bgr (x0)

u2 dvolg|∂Bgr (x0)
(52)

We have the following:

Proposition 4.22. There exists C > 0 and r0 > 0 such that for all r < r0,

(φgu,x0
)′(r) ≥ 2

rn

ˆ
∂Bgr (x0)

(
∂νu−

u

r

)2

dvolg|∂Bgr (x0)
−Cr . (53)

We give immediately the following corollary of Proposition 4.22, which will be fundamental in the blow-up procedure
of the following subsection:

Corollary 4.23. The limit lim
r→0+

φgu,x0
(r) exists and is finite.

Proof. It suffices to observe firstly that the function φgu,x0
(r) is bounded for r small because u is Lipschitz continuous

(4.9), and secondly that the function

r → φgu,x0
(r) +

C

2
r2 ,

is monotone nondecreasing by Proposition 4.22. �
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We turn now to the proof of Proposition 4.22. We cannot proceed as in [41], as if we use optimality, one cannot control
the penalization term with enough precision. Therefore, we use the approach from [52] using only the Euler-Lagrange
equation from Lemma 4.13, which is available with volume constraint. See also [45] for a similar strategy.

Remark 4.24. In [52], it is proven, when M is replaced by D a bounded domain in Rn and when g is the euclidian
metric, that

(φeu,0)′(r) =
2

rn

ˆ
∂Br(0)

(
∂ru−

u

r

)2

dvole , (54)

if u is such that

∀Φ ∈ C∞c (D,Rn),

ˆ
D

[
2 (DΦ∇eu) · ∇eu− |∇eu|2 divΦ

]
dvole = Λ

ˆ
Ωu∩D

divΦ dvole. (55)

which is the Euler-Lagrange equation (similarly to Lemma 4.13) for the minimization of the Alt-Caffarelli functional

u 7→
ˆ
D

|∇eu|2dvole + ΛVole(Ωu ∩D). We will use this result when studying blow-up limits in the next section.

Proof of Proposition 4.22. We proceed in several steps.

First step. In this first step we just compute formally the derivative of the function φgu,x0
with respect to r, without

using the optimality of u. If we denote

A(r) =

ˆ
Bgr (x0)

(
‖∇gu‖2g + Λ1u>0

)
dvolg ,

we classically have

A′(r) =

ˆ
∂Bgr (x0)

(
‖∇gu‖2g + Λ1u>0

)
dvolg|∂Bgr (x0)

,

and then we can write:

φ′u,x0
(r) = − n

rn+1
A(r) +

1

rn
A′(r)− d

dr

[
1

rn+1

ˆ
∂Bgr (x0)

u2 dvolg|∂Bgr (x0)

]
. (56)

Let us compute explicitly the third terms of (56):

d

dr

[
1

rn+1

ˆ
∂Bgr (x0)

u2 dvolg|∂Bgr (x0)

]
= −n+ 1

rn+2

ˆ
∂Bgr (x0)

u2 dvolg|∂Bgr (x0)
+

1

rn+1

d

dr

[ˆ
∂Bgr (x0)

u2 dvolg|∂Bgr (x0)

]
and we have

d

dr

[ˆ
∂Bgr (x0)

u2 dvolg|∂Bgr (x0)

]
=

ˆ
∂Bgr (x0)

g(∇(u2), ν) dvolg|∂Bgr (x0)
+

ˆ
∂Bgr (x0)

u2H dvolg|∂Bgr (x0)

=

ˆ
∂Bgr (x0)

2u∂νu dvolg|∂Bgr (x0)
+

ˆ
∂Bgr (x0)

u2H dvolg|∂Bgr (x0)

where ν and H denote the outer normal vector to ∂Bgr (x0) and the mean curvature (sum of the principal curvatures)
respectively, and ∂ν denotes the normal derivative with respect to the metric g. In conclusion, the third term of the
second member of (56) is given by

d

dr

[
1

rn+1

ˆ
∂Bgr (x0)

u2 dvolg|∂Bgr (x0)

]
=

1

rn+1

ˆ
∂Bgr (x0)

[(
H − n+ 1

r

)
u2 + 2u∂νu

]
dvolg|∂Bgr (x0)

.

Finally we obtain:

φ′u,x0
(r) =

1

rn+1

{
−nA(r) + rA′(r)−

ˆ
∂Bgr (x0)

[(
H − n+ 1

r

)
u2 + 2u∂νu

]
dvolg|∂Bgr (x0)

}
. (57)

Using the fact that on ∂Bgr (x0) the mean curvature is

H =
n− 1

r
+O(r)

(where the error term O(r) is smooth in r) we obtain:

φ′u,x0
(r) =

1

rn+1

{
−nA(r) + rA′(r)−

ˆ
∂Bgr (x0)

[
2u∂νu+

(
−2

r
+O(r)

)
u2

]
dvolg|∂Bgr (x0)

}
(58)
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Second step: We want now to compute the main order of the term

−nA(r) + rA′(r) ,

and in this computation we will use the optimality condition for the function u. We claim that

− nA(r) + rA′(r) = (1 +O(r))(n+ 2)λ(m)

ˆ
Bgr (x0)

u2dvolg+

+ (1 +O(r))

ˆ
∂Bgr (x0)

[
2u∂νu− 2r(∂νu)2 − λ(m)ru2

]
dvolg|∂Bgr (x0)

, (59)

where the error termO(r) is smooth in r. In order to prove the claim, let x = (x1, ..., xn) be normal geodesic coordinates
aroung x0 as in (18). Let Φε be an approximation of

Φ(expx0
Θ(x)) = Θ(x)1Bgr (x0) .

More precisely, given ε > 0, we consider

Φε(expx0
Θ(x)) = ρε(expx0

Θ(x)) Θ(x)

where ρε(expx0
Θ(x)) = ϕε(d(expx0

Θ(x), x0)) is smooth and equal to 1 in Bgr (x0), vanishes outside Bgr+ε(x0), and
such that ϕε is decreasing on [r, r + ε]. Using Lemma 4.13 we obtain

ˆ
M

[
2ρε‖∇gu‖2g +

(
λ(m)u2 − ‖∇gu‖2g

)
divgΘ(x) ρε + 2g((Θ(x)⊗∇gρε)∇gu,∇gu)+

+
(
λ(m)u2 − ‖∇gu‖2g

)
g(Θ(x),∇gρε)

]
dvolg = Λ

ˆ
Ωu

(divgΘ(x) ρε + g(Θ(x),∇gρε)) dvolg

Passing to the limit ε→ 0, we obtain:

ˆ
Bgr (x0)

[
2‖∇gu‖2g + divgΘ(x)

(
λ(m)u2 − ‖∇gu‖2g

)]
dvolg+

− (r +O(r2))

ˆ
∂Bgr (x0)

[
2(∂νu)2 + λ(m)u2 − ‖∇gu‖2g

]
dvolg|∂Bgr (x0)

=

= Λ

(ˆ
Bgr (x0)

divgΘ(x)1u>0 dvolg − (r +O(r2))

ˆ
∂Bgr (x0)

1u>0 dvolg|∂Bgr (x0)

)
. (60)

In fact, in order to justify the previous passage, we use the fact that, since r is small, the metric g can be approximated
with the Euclidean one. Then, first we have

ˆ
M

g((Θ(x)⊗∇gρε)∇gu,∇gu) dvolg = (1 +O(r))

ˆ
Br+ε\Br

ϕ′ε(|x|)
xixj∂iu∂ju

|x|
dx

−→
ε→0
−(r+O(r2))

ˆ
∂Br

xixj∂iu∂ju

|x|2
dσx = −(r+O(r2))

ˆ
∂Br

(∂ru)2 dσx = −(r+O(r2))

ˆ
∂Bgr (x0)

(∂νu)2 dvolg|∂Bgr (x0)

where Br represents the Euclidean ball of radius r, |x| the Euclidean lengh of x, dx, dθ, ds the Euclidean Lebesgue
measure with respect to the variables x, θ, s, and dσx the Euclidean Lebesgue measure induced on ∂Br. Secondly, for a
general function f

ˆ
M

f(x)g(Θ(x),∇gρε) dvolg = (1+O(r))

ˆ
Br+ε\Br

f(x)ϕ′ε(|x|)|x| dx = (1+O(r))

ˆ r+ε

r

snϕ′ε(s)

ˆ
Sn−1

f(rθ)dθds

−→
ε→0
−(1 +O(r))rn

ˆ
Sn−1

f(rθ)dθ = −(r +O(r2))

ˆ
∂Br

f dσx = −(r +O(r2))

ˆ
∂Bgr (x0)

f dvolg|∂Bgr (x0)

where we used the same notation as before, and dθ, ds are the Euclidean Lebesgue measures with respect to the spherical
variables θ, s. We observe that

divgΘ(x) =
1√

det g

∂i

(√
det g
gii

xi

)
∂xi

= n+O(r2)
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and then (60) can be rewritten as

(1 +O(r2)) (nA(r)− r A′(r)) = 2

ˆ
Bgr (x0)

‖∇gu‖2g dvolg − 2(r +O(r2))

ˆ
∂Bgr (x0)

(∂νu)2dvolg|∂Bgr (x0)

+ λ(m)(n+O(r2))

ˆ
Bgr (x0)

u2dvolg − λ(m)(r +O(r2))

ˆ
∂Bgr (x0)

u2dvolg|∂Bgr (x0)
.

Using the fact the following easy consequence of the Green formula
ˆ
Bgr (x0)

‖∇gu‖2g = λ(m)

ˆ
Bgr (x0)

u2dvolg +

ˆ
∂Bgr (x0)

u∂νu,

we finally obtain (59), and the claim is proved.

Third step: In this last step we use the boundary condition u(x0) = 0 and the Lipschitz continuous regularity of the
optimal function u, which has been proven in Corollary 4.9.
Replacing (59) in (56) we obtain:

φ′u,x0
(r) =

(1 +O(r))

rn+1

[
−(n+ 2)λ(m)

ˆ
Bgr (x0)

u2dvolg+

+

ˆ
∂Bgr (x0)

(
2r(∂νu)2 + λ(m)ru2 − 4u∂νu+ 2

u2

r

)
dvolg|∂Bgr (x0)

= (1 +O(r))

[
2

rn

ˆ
∂Bgr (x0)

(
∂νu−

u

r

)2

dvolg|∂Bgr (x0)
+

− (n+ 2)λ(m)

rn+1

ˆ
Bgr (x0)

u2dvolg +
λ(m)

rn

ˆ
∂Bgr (x0)

u2dvolg|∂Bgr (x0)

]
Proposition 4.22 follows then from the facts that u(x0) = 0 and that u is Lipschitz continuous. �

4.10. Blow-up procedure
Let u be a solution of (12), x0 ∈ ∂Ωu. In this section we want to build and study the blow up of the solution u

around x0. To that end, given ε > 0 small enough, we define on the manifold M the metric ḡ := ε−2 g as we did at the
beginning of this section, and the parameterization of Bg√

ε
(x0) given by

Y (y) := expgx0
(εΘ(y))

with y = (y1, ..., yn) ∈ B 1√
ε

:=
{
y ∈ Rn / |y| < 1√

ε

}
and Θ defined in (18). In Bg√

ε
(x0) the metric ḡ is the Euclidean

one up to ε terms. Let us consider B 1√
ε

with the metric ḡ (induced by the parameterization Y ). In the coordinates y
beloning to B 1√

ε
we define

uε(y) :=
1

ε
u(expgx0

(εΘ(y))) .

We have the following result:

Proposition 4.25. Let u be a solution of (12), x0 ∈ ∂Ωu. Then there exists a sequence εk going to 0 such that uεk
converges to a function u0 : Rn → R uniformly on any compact set. Moreover u0 is nonnegative and Lipschitz
continuous.

We call such u0 a blow-up limit of u at x0.

Proof. Let R < 1√
ε
. With the notation we introduced above, we have

∇ḡuε(y) = ∇gu(expgx0
(εΘ(y)))

and
‖∇ḡuε‖∞,BR(0) ≤ ‖∇gu‖∞,BgεR(x0)

and so the Euclidean gradient of uε is uniformly bounded in BR(0). Therefore, as u(x0) = 0, we also get for any
y ∈ BR,

|uε(y)| ≤ C ‖∇ḡuε(y)‖ḡ ‖y‖ḡ ≤ C ′ ‖∇gu‖∞,BgεR(x0)

which is also bounded uniformly in ε. From Arzelà-Ascoli Theorem, we deduce that up to a subsequence, uε converges
uniformly to a function u0 onBR(0). Using a diagonalization argument, we prove that up to a subsequence, uε converges
to u0 : Rn → R uniformly on every ball BR(0) and therefore on any compact set. The properties of u0 follow easily.�
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Using the previous subsections, we are also in position to prove, similarly to [52], the following properties of blow
ups:

Proposition 4.26. Let u be a solution of (12), x0 ∈ ∂Ωu, and u0 a blow-up limits of u at x0. Then u0 is (positively)
1-homogeneous and is a non-trivial global solution of the Alt-Caffarelli functional, which means:

ˆ
BR(0)

|∇eu0|2 + Λ Vole(Ωu0 ∩BR(0)) ≤
ˆ
BR(0)

|∇ew|2 + Λ Vole(Ωw ∩BR(0)). (61)

for every R > 0 and w ∈ H1
loc(Rn) such that w = u0 outside BR(0).

Proof. By definition, there exists εk going to 0 such that uεk converges to u0 on any compact set in Rn. For the sake of
clarity, we drop reference to the subsequence and denote ε instead of εk. We proceed by steps.

First step: we start improving the convergence. Following the proof of [41, Proposition 4.5(a)] we obtain that for
any R > 0, uε converges to u0 strongly in H1(BR(0)), and that Ωε := {uε > 0} converges to Ω0 := {u0 > 0} strongly
in L1(BR).

Second step: using the density estimate given in Proposition 4.21, it is classical that we have in fact convergence of
Ωε to Ω0 and Ωcε to Ωc0 for the Hausdorff metric in BR (see for example [37, Proof of Theorem 2]).

Third step: we now prove that u0 is a global minimizer of the Alt-Caffarelli functional. LetR > 0 andw ∈ H1
loc(Rn)

such that w = u0 outside BR(0). For any given v defined at least on B 1√
ε

of Rn for some ε, we define for x <
√
ε,

vε(expgx0
(Θ(x))) = ε v

(x
ε

)
the blow-down of v centered at x0, assuming that the injectivity radius at x0 is bigger than

√
ε. Moreover, by scaling

properties,

J(vε) =

ˆ
Bg√

ε
(x0)

‖∇gvε‖2g dvolg+λ(m)

ˆ
Bg√

ε
(x0)

(vε)2 dvolg = εn

ˆ
B 1√

ε

‖∇ḡv‖2ḡ dvolḡ + λ(m) ε2

ˆ
B 1√

ε

v2 dvolḡ


and Volg(Ωvε) = εn Volḡ(Ωv). We introduce η ∈ C∞c (BR(0)) such that 0 ≤ η ≤ 1, and define

wε := w + (1− η)(uε − u0)

which is equal to uε outside BR(0). Therefore (wε)
ε = u in Bg√

ε
(x0) \BgεR(x0), and therefore

hε :=
∣∣Volg(Ω(wε)ε)−Volg(Ωu)

∣∣ ≤ C εn
so by Proposition 4.12, we have for ε small enough

J(u) + µ(hε)Volg(Ωu) ≤ J((wε)
ε) + µ(hε)Volg(Ω(wε)ε).

So, using the previous scaling properties and localizing in BR we obtain
ˆ
BR

‖∇ḡuε‖2ḡ dvolḡ + λ(m) ε2

ˆ
BR

(uε)
2 dvolḡ + µ(hε)Volḡ(Ωuε ∩BR)

≤
ˆ
BR

‖∇ḡwε‖2ḡ dvolḡ + λ(m) ε2

ˆ
BR

(wε)
2 dvolḡ + µ(hε)Volḡ(Ωwε ∩BR).

We first use the inclusion Ωwε ∩ BR ⊂ {x ∈ BR, w(x) > 0 and η(x) = 1} ∪ {x ∈ BR, 0 ≤ η(x) < 1} to dominate
Volḡ(Ωwε). Then using that uε converges to u0 strongly in H1

loc(Rn), and as the same goes for wε, we obtain as ε→ 0
(taking in account that the metric ḡ converges uniformly to the Euclidean metric):

ˆ
BR

|∇eu0|2 + Λ Vole(Ωu0
∩BR) ≤

ˆ
BR

|∇ew|2 + Λ(Vole(Ωw ∩ {η = 1}) + Vole({0 ≤ η < 1} ∩BR).

We conclude by choosing {η = 1} arbitrary close to BR.

Fourth step: Let us prove now that u0 is 1-homogeneous. with the notations of Proposition 4.22 and by scaling
properties, we have

φḡuε,0(r) = φgu,x0
(ε r) .

From Corollary 4.23, we know that φgu,x0
(0+) exists, and so

lim
ε→0+

φḡuε,0(r) = φgu,x0
(0+) .

29



From the convergence properties of the blow-up that we proved above, we have on the other hand that

lim
ε→0+

φḡuε,0(r) = φeu0,0(r) .

Combining the two previous results, we obtain that (φeu0,0)′(r) = 0, which implies from [53] (see Remark 4.24) that u0

is 1-homogeneous.

Fifth step: Classically, from the non-degeneracy of u given in Lemma 4.18, we conclude that u0 is non-trivial, see
for example [41, Proposition 4.5].

The proof of the proposition is then complete. �

From the previous results, one can deduce a formula linking the limit at 0 of the Weiss functional φgu,x0
(0+) and the

density of x0 ∈ ∂Ωu.

Proposition 4.27. (Density formula). Let u be a solution of (12) and x0 ∈ ∂Ωu. For any blow-up u0 of u at x0, we
have

θ(x0) := lim inf
r→0

Volg(Ω ∩Bgr (x0))

Volg(B
g
r (x0))

=
1

Λωn
φgu,x0

(0+) =
Vole({u0 > 0} ∩BR)

Vole(BR)
, (62)

where φgu,x0
is given by (52) and R > 0.

Proof. On one hand, because of the definition of blow ups, considering uε converging (up to a subsequence) to u0, one
has for ε small enough

Volg(Ωu ∩Bgε (x0))

Volg(B
g
ε (x0))

=
Volḡ(Ωuε ∩B1)

Volḡ(B1)

which gives at the limit ε→ 0,

θ(x0) =
Vole(Ωu0

∩B1)

Vole(B1)
.

Moreover, u0 being 1-homogeneous, the last term is independant on the radius of the considered ball. On the other hand,
in the fourth step of the proof of Proposition 4.26, we have seen that φeu0,0(r) = φgu,x0

(0+). As u0 is 1-homogeneous,
we also have

φeu0,0(r) = Λ
Vole({u0 > 0} ∩Br)

rd
,

which concludes the proof. �

We conclude this section with the following corollary about the possible values of the density:

Corollary 4.28. (Density bound-density gap). Let u be a solution of (12) and x0 ∈ ∂Ωu. Then θ(x0) ≥ 1
2 , and there

exists η > 0 independant on x0 such that if θ(x0) 6= 1
2 , then θ(x0) ≥ 1

2 + η.

We do not reproduce the proof of this result, as it is of purely Euclidean nature, when combined with Proposition
4.27; see [41, Lemma 5.3 and 5.4] or [20, Proposition 6.1 and Lemma 6.3] for a detailed proof. For the sake of clarity,
let us nevertheless recall the idea behind the first part of the result, namely that θ(x0) ≥ 1

2 . Thanks to Propositions
4.26 and 4.27, this relies on the non-existence of a non-trivial 1-homogeneous harmonic function on a cone of density
less that 1

2 . To see this, consider u0 such a function, then its trace on the sphere Sn−1 is a first eigenfunction of the
Laplace-Beltrami operator on subdomain of the sphere with eigenvalue n− 1. This cannot happen for a strict subset of
the sphere, because of Faber-Krahn type results in the sphere.

The second part of the statement (the gap estimate) is more involved and relies on a “flatness imply regularity” result
([3, Theorem 8.1] or [23, Theorem 1]).

To conclude this section, we see that the optimality condition ‖∇gu‖g =
√

Λ is valid in the sense of viscosity.

Proposition 4.29. Let u be a solution of (12). The function u is a viscosity solution to ‖∇gu‖g =
√

Λ on ∂Ωu. This
means that for every x0 ∈ ∂Ω:

• if ϕ : M → R is differentiable at x0 and such that u ≥ ϕ+ in Ωu with equality at x0, then ‖∇gϕ‖g(x0) ≤
√

Λ,

• if ϕ : M → R is differentiable at x0 and such that u ≤ ϕ+ in Ωu with equality at x0, then ‖∇gϕ‖g(x0) ≥
√

Λ.

The proof of this result follows exactly the same lines as [41, Lemma 5.2] or [45, Lemmas 5.30 and 5.31] and relies
again on Proposition 4.26 and the study of non-trivial 1-homogeneous global minimizers of the Alt-Caffarelli functional.
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4.11. Proof of Theorem 1.2
We are now in position to prove Theorem 1.2. The proof is now very close to the proof of [41, Proposition 5.18], so

we give fewer details; see also [45, Propositions 5.32 and 5.35] or [20, Corollary 7.2 and Theorem 8.1] for more detailed
proofs.

Proof of Theorem 1.2. Let Ω∗ be a solution of (7). Then as M is assumed to be connected, from Proposition 3.1 and
3.2, Ω∗ = Ωu where u = uΩ∗ is a solution of (12).

The first point of the Theorem has been proved in Sections 4.3 and 4.7. Let us prove the second part of the statement.

(a) Let us define Σreg := {x0 ∈ ∂Ω∗, θ(x0) = 1
2}. From the gap estimate in Corollary 4.28, it is easy to show that

Σreg is relatively open in ∂Ωu. Moreover, if x0 ∈ Σreg from the convergence properties of the blow-up, one can
see that the domain is flat in a neighborhood of x0, see also [20, Proposition 6.2]. The function u satisfies

∆gu+ λ1(Ω∗)u = 0 on Ω∗

u = 0 on ∂Ω∗

‖∇gu‖g =
√

Λ on ∂Ω∗

where the last equation is understood in the viscosity sense. We are then in position to apply [49, Appendix A]
(which is an adaptation of [23]) , which implies that near x0 the set ∂{u > 0} = ∂Ω∗ is C1,α. Indeed the equation
−∆gu = λ1(Ω∗)u can be written in divergence form

−∂i
(
gij
√
|g|∂j

)
u =

√
|g|λ1(Ω∗)u .

Moreover
‖∇gu‖g =

√
g(∇gu,∇gu) =

√
(gij∂ju)T gij (gij∂ju) =

√
(∇eu)T gij ∇eu =

=

√
(∇eu)T (gij)

1
2 (gij)

1
2 ∇eu =

√
((gij)

1
2 ∇eu)T (gij)

1
2 ∇eu = |(gij) 1

2 ∇eu| .

Then, if we define the matrix A = Aij = gij
√
|g|, we have that u satisfies

−div(A · ∇eu) =
√
|g|λ1(Ω∗)u on Ω∗

u = 0 on ∂Ω∗

|A 1
2∇eu| =

√
Λ |g| 14 on ∂Ω∗

and this allows us to use [49, Appendix A]. In order to obtain higher regularity for Σreg, we apply the classical
results in [39].

(b) We use a classical reduction of dimension argument, that can be found in two forms in the literature, namely the
Federer’s reduction principle (see for example [48, Appendix A]), or the approach of Weiss following [30]. We
follow the latter, though we only give the sketch of the proof as it is very similar to [41, Proposition 5.18], :

– if n < k∗, then any blow-up at x0 ∈ ∂Ωu is an 1-homogeneous global minimizer of the Alt-Caffarelli
functional, and is therefore a half-plane, by definition of k∗, so it’s density at the origin is 1

2 , which means
by (62) that θ(x0) = 1

2 , so x0 ∈ Σreg.

– if n = k∗, let assume by contradiction that there is an infinite set of points xn ∈ Σsing := ∂Ωu \Σreg in M .
Up to subsequence, we can assume that xn converges to x0, and as Σsing is closed, we still have x0 ∈ Σsing .
We denote εn = dg(xn, x0) and consider the blow-up around x0 done with the functions uεn , converging to
Ω0, a cone with singularity at 0.
First we note that Ω0 has only one singularity. Indeed, if it had another singularity, then by homogeneity
it would have a line of singularity, which contradicts the results of Weiss ([53, Theorem 4.1]). Therefore
denoting ξn := expgx0

Θ
(
xn
εn

)
∈ ∂Ωuεn , converging (up to a subsequence) to ξ0 ∈ ∂Ω0, we know that ξ0 is

a regular point of Ω0. As a consequence, for r0 small enough, φgu0,ξ0
(r0) is close to 1

2 . By convergence of
uεn to u0, this means that φḡuεn ,ξ0(r0) is close to 1

2 for n large enough. With similar computations as in [41],
this implies that φḡuεn ,ξn(r0) is close to 1

2 for n large enough. By monotonicity, this implies φḡuεn ,ξn(r) is
close to 1

2 for small r, and in particular its limit when r goes to 0, which is the density of ξn in Ωuεn . This
is a contradiction as ξn is a singular point.

– Assume by contradiction that for some s > n − k∗ we have Hs(Σsing) > 0. Then using again a blow-up
analysis, and the density gap result, one can prove that there is x0 ∈ Σsing and Ω0 a blow-up at x0 whose
singular set also has a positive Hs measure (the details follow the same lines as in [41, Proposition 5.18],
itself relying on the strategy of [53]). This constitutes a contradiction and concludes the proof. �
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