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Abstract 

The paper introduces a structural model for bump-type foil bearings based on contact mechanics 

including gaps and friction. The starting point is a model introduced in [32] were the bump foil is 

approximated by a specific structure of interacting springs. Following this model, contacts between 

the top and bump foils and between the bump foil and the sleeve are always closed. Recent analyses 

[31] showed that this not always verified: contacts can become loose even for very simple loading 

situations. A new model is then developed for considering these situations. The new model takes into 

account the elasticity of the top foil and three kind of gaps: between the rotor and the top foil, 

between the top and the bump foils and between the bump foils and the sleeve. The former model 

of the bump foil was extended by considering an additional degree of freedom per bump. Friction 

was modeled with Coulomb law. An efficient numerical procedure borrowed from contact mechanics 

([41], [42]) was implemented for solving the structural problem with friction and close/loose gaps. 

The procedure uses the augmented Lagrangian algorithm for the normal contact forces and the 

penalty method for the tangential friction force. The procedure is very robust in dealing with stick-

slip situations and close/loose contacts. The model was validated by comparisons with results from 

the literature ([31], [32]). 

By considering gaps in the foil structure and close/loose contacts, the model is not only closer to 

reality but can also handle manufacturing errors of the foil structure. This is shown by considering 

bump foil height manufacturing errors. 
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Introduction 
Aerodynamic foil journal bearings represent a technology under scrutiny since decades. They 

represent a viable, proven technology for small and medium size, high speed rotating machinery 

operating on air or with gases. The key point of foil bearings is the compliant foil structure that brings 

a considerable damping compared to the very thin air film during operation. There are many types of 

foil bearings or, more generally, bearings with a compliant structure. The first bearing of this type, 

still in use, is the foil leaf bearing. It consists of many beam-like, thin foils that slightly overlap. These 

kind of bearings have a low ratio of load capacity versus damping. The bump-type foil bearings are 

more elaborate and use two foils (Figure 1): the smooth top foil and the underneath corrugated foil 

provided with bumps that act as cross-coupling springs. This kind of foil bearings have better 

characteristics in terms of load capacity and damping. Another kind of foil bearings use beam-like 

springs instead of bumps. However, these solutions are less popular.  

Among these types, the bump-type foil bearings are the most widely used and analyzed. The 

difficulties in accurately describing the characteristics of the foil structure are the reason behind 

systematic research efforts developed for years. An overview of the large number of publications 

dealing with this subject can be found in the review article [1]. 

The first model [2], [3] ignored the stiffness of the top foil and considered the bumps as non-

interacting springs. By considering the stiffness as being uniformly distributed, the foil structure 

appeared as a Winkler foundation. Friction was subsidiary taken into account [4] but the model could 

not predict the damping of the compliant structure and therefore additional viscous damping [5] or 

structural loss [6] parameters had to be added. This structural model became widespread used due 

to its easy implementation ([7], [8], [6], [9], [10]). The model was extended by taking into account the 

top foil. 

Carpino et al. [11], [12] introduced a membrane and bending effect of the top foil while the bump foil 

was still modeled as an elastic foundation. The elastic foundation model was extended in [13] for 

taking into account radial and circumferential displacements of bumps. Other references modeled 

the top foil either as a beam or a shell ([14], [15], [16], [17], [18]) in contact with isolated bumps. 

These latter are described by the stiffness analytic formulas from [4]. The models have the advantage 

of predicting the sagging effects of the top foil. Moreover, the model in [17] considers also the inertia 

of the top foil. However, their accuracy can be questioned because they still discard any direct 

interaction between bumps (a.e. the bending moment that links two successive bumps). 

Ku and Heshmat [19] have partially remedied this limitation by adding plate elements between 

successive bumps and by bookkeeping the different stick-slip state of bumps under load and friction 

forces. However, this algorithm is quite difficult to implement.  
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A different category of models discretizes both the top and the bump foil with structural finite 

elements. Lee et al. [20], [21], [22] modeled the foils with bar and beam elements and took friction 

into account by using a stick-slip algorithm similar to the one employed in [19]. Lehn et al. [23] used 

two dimensional shell elements and modeled Coulomb forces with a penalty contact model and a 

regularized friction law. 

A finite element model with a Lagrange multiplier contact model was employed in [24] for foil leaf 

type bearings but friction was discarded. 

Barzem et al. [25] introduced a non-linear model using shell elements for the bumps and for the top 

foil. The model took into account large (non-linear) deformations of the bumps including buckling. 

Friction was taken into account following an updated Lagrangian algorithm from Kalker [26]. 

Larsen et al. [27] adopted a similar approach based on shell elements and large displacements for the 

bump and the top foil. However, friction was taken into account by using a very specific approach 

related to penalty method. 

Other researchers employed non-linear elasticity commercial codes for modeling the foil structure 

([28], [29], [30], [31]). These approaches benefited from the implementation of modern, full non-

linear contact and friction algorithms but the models were somewhat difficult to handle due to the 

large computational effort. 

Le Lez and Arghir introduced a different kind of model in 2007 [32]. The model neglected the 

stiffness of the top foil and modeled the bump foil as a network of interacting trusses behaving like 

springs. This lead to a linear stiffness matrix of the bump foil defined in a manner similar to the finite 

element method where each bump is an element. The model was validated by comparison against 

full non-linear simulations performed with a commercial code [34] and was also coupled to the gas 

film [35] in journal bearings. Coulomb forces were taken into account by using a dynamic model from 

[33] where regularized friction forces were estimated from first order differential equations. 

Structural models of the bump foil similar to [32] were successfully developed by Hryniewicz et al. 

[36], Feng and Kaneko [37], Gad and Kaneko [38], von Osmanski [39] or by Hoffman et al. [40]. Some 

of these models took the top foil into account. The top foil was modeled either as a shell [37], [38] or 

as a beam [39]. Friction was taken into account using either stick-slip bookkeeping algorithms ([36], 

[37], [38]) or dynamic, regularized friction forces ([39], [40]). In [39] the inertia of the top and bump 

foil was also considered in the dynamic model. 

The model introduced in [32] is considered as a compromise between accuracy and computational 

effort because the structural model remains linear while the bumps are fully coupled. However, the 

model supposes that the contacts between the top and the bump foils as well as the contacts 

between the bump foil and the sleeve are always closed. This is an ad-hoc assumption aimed to 
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simplify the numerical algorithm but calculations performed in [31] with a commercial, non-linear 

elasticity code showed that this not true. Even for very simple loading cases, the contact state might 

change between loose or close. The model introduced in [32] could not handle these situations 

because it neglected the top foil stiffness and any possible gaps in the foil structure.  

The purpose of the present work is to extend the model introduced in [32] for taking into account 

close/loose contacts between the top and the bump foil, between the bump foil and the sleeve and 

between the top foil and the rotor. The top foil stiffness is now taken into account and an additional 

degree of freedom is added to each bump.  

Normal and friction forces between the foils and between the bump foil and the sleeve are solved 

with the augmented Lagrangian method (Uzawa algorithm) [41], [42]. The contact between the rotor 

and the top foil is solved with the penalty method.  

Comparisons with the models from [32] (linear model) and from [31] (full non-linear) for simple static 

loadings show hysteresis loops in good agreement. Manufacturing errors of the bump foil are then 

added to the new model and the results are again compared with [31] showing the same level of 

agreement. The contact algorithm proved to be very robust and efficient in terms of computational 

time even for irregular foil structures.  

 

 

Figure 1. Foil bearing (first generation design) 

The foil bearing structure 

The gaps 

The structural model presented in [32] was based on a linear approximation of the bump foil with 

structure made of trusses. Curvature effects were neglected and the foil structure was unwrapped. 

Figure 2 depicts two typical bumps and the associated simplified model. Each bump had three 

degrees of freedom (DOF), a vertical and a horizontal displacement for the top point of the bump and 

a horizontal displacement for the point connecting two successive bumps. It was supposed that the 
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bump foil is continuously in contact with the top foil and with the bearing casing. Moreover, it was 

supposed that the stiffness of the top foil was negligible compared to the bump foil. Therefore, the 

structural model neglected the top foil. Closed and open contacts between the bump foil and the top 

foil and between the bump foil the bearing casing were not taken into account. All contacts were 

closed and the friction forces were calculated using Coulomb law. 

 

 

Figure 2. Structural model of the bump foil used in [32] (3DOF per bump) 

 

 

Figure 3. The foil bearing structure with gaps (5DOF per bump) 

 

If the contacts may become loose then additional DOFs must be taken into account as shown in 

Figure 3. For the contacts between the bump and the top foil, an additional DOF, the radial 

displacement of the top foil, must be added per bump. The gap between the top foil and the bump 

foil is:  

 ��,� � ���,� � ��,� 	 �
,��
����� (1) 

 

with i the bump number and ���,� the initial gaps between the bump and the top foil. The non-

interference condition between the bump and the top foil is, ��,� � 0, � � 1…�
���. 

The gap between the rotor and the top foil can also be described with the aid of the radial 

displacement of the top foil: 

 ��,� � �� 	 ��,� � 0 (2) 

 

were �� is the distance between the rotor and the undeformed top foil.	1 
 

                                                           
1 The angle θ is measured from the welding point as shown in Figure 1. 
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�� � �� 	 ��� !"� 	 #�!�$"� (3) 

 

The non-interference condition is, ��,� � 0, � � 1…�
���. 

An additional DOF must be added to the bump foil if its contacts with the sleeve may become loose. 

The additional DOF corresponds to the radial displacement of the bottom node of the bump (Figure 

3). The gap between the bump foil and the sleeve is: 

 �
,� � ��
,� � �
,
�
����� (4) 

 

where ��
,� are the initial gaps between the bump foil and the sleeve. The non-interference 

condition between the bump and sleeve is, �
,� � 0, � � 1…�
���. 

Due to the additional DOFs a stiffness matrix for the top foil must be introduced and the stiffness 

matrix of the corrugated bump foil must be reviewed. 

 

The stiffness of the top foil 

The top foil is modeled as a circular (curved) beam with the appropriate plate correction. The beam 

end corresponding to the welding is fixed while the other end is free (Figure 1). The discretization 

nodes correspond to the top of the bumps and each node has a one DOF represented on the 

unwrapped foil on Figure 3 as a vertical displacement, ��,� (downwards positive). For the circular 

beam ��,�  corresponds to a radial displacement (outwards positive). The elasticity matrix is obtained 

with the aid of Bresse formulas and yields: 

 

!�,% � &'()' 12⁄ 1 � ,
- ./0
/1 � !"�!�$"%2 � "%� !2"� � "%32 , �4	"% 5 "�� !"%!�$"�2 � "�� !2"% � "�32 ,  67)�8�!)	 "�, "% 9 0, �, : � 1…�
��� 

 

(5) 

 

The stiffness matrix of the top foil is then: 

 ;< � =�� (6) 

 

 

Figure 4. Discretization of the bump foil with 4DOF per bump 
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The stiffness of the bump foil 

The stiffness of the bump foil with 3 DOF per bump was presented in [32]. For the bump foil with 

4DOF per bump, the parameters k1…k4 and θd depicted in Figure 4 remain the same as in [32] but an 

additional DOF, namely the vertical displacement of the bump bottom, �
,
�
����� must be taken 

into account. For example, the potential energy of the corrugated foil with two bumps depicted in 

Figure 4 is: 

 Π

 � 12 ?@�2ΔB

 	 ΔB'
 	 ΔBC
 	 ΔBD
3 	 @
2ΔBE
 	 ΔBF
3 	 @'ΔBG
 	 @EΔB�
H (7) 

ΔB� � �� ΔBG � �' � �� ΔB
 � ��� � I�! ΔBC � �'� � I'!��
� 	 I
! ΔB' � �
� � ����I�! 	 I
! ΔBD � �E� � �'��I'! 	 IE! ΔBE � �
 ΔBF � �E � �
 

 

where � � � !"J, ! � !�$"J and its DOF are the elements of the following vector: 

 KLM � N�
,� �
,
 �
,' �
,E �
,G �
,C �
,D �
,FOP (8) 

 

The stiffness matrix is obtained by deriving the potential energy Π

 following each DOF. This yields: 

(9) ;LM � 

QR
RR
RR
RR
S2@��
 	 @' 	 @E 0 �@��
 �@��! �@' 0 0 00 2@�!
 �@�!� �@�!
 0 0 0 0�@��
 �@��! 2@
 	 2@��
 0 �@��
 @��! �@
 0�@�!� �@�!
 0 2@�!
 @�!� �@�!
 0 0�@' 0 �@��
 @��! @' 	 2@��
 0 �@��
 �@��!0 0 @��! �@�!
 0 2@�!
 �@�!� �@�!
0 0 �@
 0 �@��
 �@�!� @
 	 @��
 @��!0 0 0 0 �@�!� �@�!
 @�!� @�!
 TU

UU
UU
UU
V
 

 

 

This matrix can be cast as the sum of individual stiffness matrixes of each bump plus a coupling 

matrix (Appendix 1). 

 

The contact model  

The mathematical model of the aerodynamic foil bearing structure must include the rotor, the top, 

the bump foil and the bearing casing plus the non-interference constraints that link these four 

elements. The non-interference constraints are expressed with the aid of the gap functions described 

by (1)-(4). If the gap functions are positive, then contacts are loose and the normal and the tangential 

contact forces are zero. On the other hand, if the gap functions are nil, then the contacts are closed 

and the normal forces are non-zero. This is mathematically expressed by the following equations: 

 �� � 0, WX,� 5 0, ��WX,� � 0 (10) 
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where �� stands for any of the gap functions and WX,� for the corresponding normal contact forces. In 

contact mechanics, these are known as the Hertz-Signorini-Moreau conditions [41]. 

The elastic problem of the foil structure is solved by minimizing the potential energy of the elastic 

structure (i.e. a functional) Π, 

 Π � 12KMP;MKM 	 12K<P;<K< (11) 

 

with constraints issued from contact conditions, �� � 0. 

The methods usually adopted in contact mechanics include the effect of constraints into the 

potential energy of the elastic structure. The penalty method, the Lagrange multiplier method or the 

augmented Lagrange method can be employed. Each method has its advantages and drawbacks. For 

the penalty method the extended functional of the potential energy is: 

 ΠY � Π	 12 ZY[P[ 
(12) 

 

where g in eq. (12) are the constraints for the contacts supposed to be closed (contacts supposed 

loose are not included) and ZY is a parameter similar to a spring stiffness. For high accuracy Z must be 

of the order 1012 N/m or larger. The method has the advantage of being simple because the stiffness 

matrix obtained when minimizing ΠY has the same size as the linear elastic stiffness matrix. 

However, it includes the parameters Z that might damage its conditioning. 

For the Lagrange multipliers method the extended functional of the potential energy is: 

 Π\] � Π	 ^P[ (13) 

 

where the Lagrange multiplier _ is part of the solution and represents the normal contact force. As in 

the previous method, the Lagrange multipliers are added only for the contacts supposed to be 

closed. The stiffness matrix obtained by minimizing Π\] is well conditioned but its size is not a priori 

known (it must include the Lagrange multipliers and therefore depends on the number of contacts 

supposed to be closed). Compared to the linear stiffness matrix of the elastic structure without 

constraints, the extended matrix it is not positive definite any more. 

The augmented Lagrange method avoids the ill conditioning problems of the penalty method and the 

problems related to the variable size of then extended matrix of the Lagrange multipliers method. 

The extended functional of the potential energy is : 

 Π`\] � Π	 ^P[ 	 12 Z̀ \][P[ 
(14) 
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and the Lagrange multipliers _ are iteratively updated following Uzawa algorithm [42]: 

 ^Xab � ^cdJ 	 Z̀ \][Xab (15) 

 

The iterative algorithm can start with _� � 0 and with a limited value of the parameter Z̀ \] for 

preserving the conditioning of the resulting stiffness matrix. The bar notation _ denotes that the 

Lagrange multipliers are kept constant and are updated only within what is addressed as “outer” 

iterations loop. Their significance is the same, i.e. normal contact forces. 

If friction forces are discarded, the advantages and drawbacks of these three methods were 

mentioned above. However, when friction forces are present the advantage of the augmented 

Lagrange method becomes clear. 

 

The Coulomb friction force 

 

 

Figure 5. The friction cone of the Coulomb law 

 

The friction forces are described by the Coulomb law. In its natural form this law is written in terms 

of the sliding velocity, �e �f. 

 

gWhg 5 4|WX| so that j�4	gWhg k 4|WX|	67)$	�e �f � 0, �!6��@�																																																				 67)�8�!)	gWhg � 4|WX|	l$m	∃o 9 0	! 	67l6	�e �f � �oWh , �!B�p�  
(16) 

 

The friction cone graphically depicts Coulomb law (Figure 5). The law is not conservative; therefore, 

the potential energy of the contact problem with friction has no minimum anymore. The functional 

(i.e. the potential energy) associated to Signorini’s problem with Coulomb friction is nonconvex, 

nonquadratic and nondifferentiable. Thus, standard uniqueness and existence results from convex 

analysis cannot be applied. However, the solution has been shown to exist for sufficiently small 

friction coefficients [41].  
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A fixed point iteration method in the normal force is used for the numerical solution of this problem. 

A contact problem with the so called Tresca friction will be solved at every iteration step. The Tresca 

friction law is a reduced frictional problem with a prescribed normal force. It is expressed in the same 

way as the Coulomb law 

 

gWhg 5 q so that j�4	gWhg k q	67)$	�e �f � 0, �!6��@�																																																				 67)�8�!)	gWhg � q	l$m	∃o 9 0	! 	67l6	�e �f � �oq, �!B�p�  
(17) 

 

where q � 4|WrX| and WrX is the prescribed normal force. The bar in the notation of the normal force 

indicates it remains constant during the iterative algorithm for the calculation of the friction force Wh. 

This will be addressed as the “inner” iterations loop. The bar notation also indicates the link between 

the prescribed nodal force and the Lagrange multipliers in the augmented Lagrange algorithm. In fact 

WrX will be exactly the Lagrange multipliers _ updated in an « outer » iterations loop.2  

In the “inner” iterations loop, the friction forces are calculated depending on the stick or slip state. It 

is supposed that closed contacts are initially in stick state and the friction force is described by a 

penalty approach. 

 Wh���sd � Zh t��f�u� � ��f���v (18) 

 

where ��f�u� is the tangential displacement3 at iteration (k) and ��f��� is the tangential displacement at 

the previous time or loading step. The corresponding potential energy is: 

 12 Zh t��f�u� � ��f���v
 
(19) 

 

and is added to the total potential energy of the structure. The displacements of the structure are 

calculated by minimizing the total potential energy in a step that will be further detailed. After 

updating the displacements of the structure, ��u�, the trial value of the friction force (18) can be 

estimated and the algorithm checks for stick or slip state: 

 

w�4	xWh���sdx k 4|WrX|	67)$	Wh�u� � Wh���sd 	�!6��@	!6l6)� 67)�8�!)	Wh�u� � 4WrX!��$ t�e �f�u�v	�!B�p	!6l6)�  

(20) 

 

                                                           
2 The Tresca approximation of the friction force described by eq. (18) can be interpreted as a solution search 

inside of a cylinder instead of a cone. 
3 For the present problem, these are lateral displacements of the bump top and bottom points. For a general 

case, these are relative displacements between the two sliding surfaces. 
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where it should be reminded that following the Hertz-Signorini-Moreau conditions, WrX k 0. It is to be 

underlined that for the stick state, ��f�u� and ��f��� are very close but not exactly equal. Following the 

penalty approach, the largest the value of the “stiffness” Zh, the lowest the error y��f�u� � ��f���y. 

In the next iteration, nodes that are in a stick state are continued to be dealt with the penalty 

method and their contribution to the total potential energy is given by eq. (19) but the contribution 

of nodes that are in slip state is described by the mechanical work of the friction force: 

 Wh�u� t��f�u� � ��f���v � 4WrX!��$ t�e �f�u�v	t��f�u� � ��f���v (21) 

 

The displacements of the structure are calculated again by minimizing the total potential energy that 

includes the mechanical work of friction forces in slip state (21). 

The state of the friction force may change again between stick and slip. Therefore, the “inner” 

iteration loop is repeated until there is no change of the state of the friction forces. The convergence 

is possible because the normal contact forces (i.e. the Lagrange multipliers) are kept constant during 

the “inner” iteration loop. The advantage of the augmented Lagrange method is now clear. 

 

The total potential energy and the “inner” iterations loop  

Following the described algorithm, the total potential energy of the bump foil structure is: 

 Π`\]��� � 12KMP;MKM 	 12K<P;<K< 
	 z {_̅��� 	 12 Z̀ \]��
}~�����

���  

	12 z Zh t�
,� � �
,����v

~�����
��� � z 4_̅�!��$2�e
,�3�����������,�

t�
,� � �
,����v~����

���  

	12 z Z���,�
~�����
���  

 

 

 

 

(22) 

 

where ��X��� are all nodes where the contacts between bumps/top foil and bumps/sleeve are 

assumed to be closed (��X��� 5 2�
���), �����u and ��d�� are the nodes with friction state stick and 

slip, respectively4 and ��c�c� are the nodes where the rotor interferes with the top foil ��c�c� 5�
���. The third term on the right hand side of eq. (22) corresponds to the potential energy due to 

bump normal contacts (thus the gap functions �� are either ��,� or �
,�), the fourth term is the 

potential energy due to nodes that are in stick state, the fifth term corresponds to the mechanical 

work of slip friction forces and the sixth term is the potential energy due to the interference between 

                                                           
4 ��$6�6 � �!6��@ 	 �!B�p, �!6��@ ∩ �!B�p � Ø 
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the rotor and the top foil. The penalty parameters acting like springs Z̀ \] , Zh	, Z�  have different 

values and generally, Z̀ \] ≪	Zh	, Z�. 

For example, the equations of the algorithm can be detailed for a foil structure with one bump 

following the notations used in Figure 3. The extension to an arbitrary number of bumps is 

immediate. 

 Π`\] � 12KMP;MKM 	 12����
 

															_̅�2��� � �� 	 �
,
3 	 12 Z̀ \]2��� � �� 	 �
,
3
 

															_̅
2��
 � �
,E3 	 12 Z̀ \]2��
 � �
,E3
 

															 12 Zh t�
,� � �
,����v
 ������� � 4_̅�!��$2�e
,�3�����������,�
t�
,� � �
,����v �������� � 1� 

															 12 Zh t�
,' � �
,'���v
 ������
 � 4_̅
!��$2�e
,'3�����������,�
t�
,' � �
,'���v �������
 � 1� 

															 12 Z��� 	 ���
 

 

 

 

 

 

(23) 

 

where ISTICK=1 when the contact is stick and ISTICK=0 otherwise (i.e. slip). 

The minimization of the total potential energy following the degrees of freedom of the problem 

yields: 

 �Π`\]��
,� � z�
�,%�
,%E
%�� 	Zh t�
,� � �
,����v ������� � 4_̅�!��$2�e
,�3�������� � 1� � 0 

 

�Π`\]��
,
 � z�

,%�
,% 	 _̅� 	 Z̀ \]2��� � �� 	 �
,
3E
%�� � 0 

 

�Π`\]��
,' � z�
',%�
,%E
%�� 	Zh t�
,' � �
,'���v ������
 � 4_̅
!��$2�e
,'3�������
 � 1� � 0 

(24) 

�Π`\]��
,E � z�
E,%�
,% � _̅
 � Z̀ \]2��
 � �
,E3E
%�� � 0 

 

�Π`\]��� � ���� � _̅� � Z̀ \]2��� � �� 	 �
,
3 	 Z��� 	 ��� � 0 
 

 

In a matrix form: 
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�� ;M 00 ��¡ 	 QR

RR
SZh�������0000

0Z̀ \]00�Z̀ \]
	

00Zh������
	00
		

000Z̀ \]0
0�Z̀ \]00Z̀ \] 	 Z�TU

UU
V
¢
£¤
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(25) 

 

The sign function is discontinuous and thus strongly non-linear. Therefore, it is replaced by a 

continuous approximation and a Newton-Raphson algorithm explained in Appendix 2 can now solve 

the non-linear system. 

 

The “outer” iterations loop 

After solving for friction forces, the Lagrange multipliers are updated following eq. (15) in an ”outer” 

iterations loop. It was previously stated that the Tresca approximation of the friction force described 

by eq. (17) can be interpreted as a solution search inside of a cylinder. Figure 6 then shows how 

Tresca friction cylinders approximate the Coulomb friction cone. A structured pseudo-code of the 

“inner” and “outer” iterations loops for friction and normal forces, respectively, is given in Figure 7. 

The “inner” and “outer” lops can be also identified on the flowchart depicted in Figure 17 of the 

Appendix 3. 

 

 

Figure 6. The approximation of the Coulomb friction cone by Tresca friction cylinders 
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Figure 7. Frictional contact algorithm using augmented Lagrange multipliers 

 

The “contacts” loop 

After converging the “outer” iterations loops for the normal forces, the state of the contacts must be 

checked. If the values of the Lagrange multipliers are positive, then the contact is open. This means 

that the initial assumption about the closed state of the contact is erroneous and the algorithm must 

be repeated by updating the state of the contact. A similar decision is taken if the contact is 

supposed open and the value of the gap function becomes negative. This is a third iterative loop that 

encompasses the “outer” one. Figure 8 displays the pseudo-code of the contact algorithm with 

friction. The algorithm contains three embedded loops. The first loop detects contacts, the second 

loop calculates the normal forces and the third loop the friction forces. The calculation of the nodal 

displacements given by the non-linear system (25) could be considered the fourth innermost loop. 

The flow chart of the complete contact algorithm is depicted in Figure 17 of the Appendix 3. The 

decision algorithm describing the tests and the actions taken for updating the close/loose state of 

the contacts can be identified in the lower part of this flowchart.  
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Figure 8. Algorithm for contact states detection and updating 

Numerical results 
The contact model is applied for the static analysis of the bump foil bearing structure described in 

[31]. It is a first generation foil bearing that was thoroughly analyzed in the literature and could now 

serve as a workbench. The characteristics of the foil structure are depicted in Figure 9 and listed in 

Table 1. 

 

 

Figure 9. The geometry of the bump foil structure 

 

Table 1 Geometric characteristics of the foil structure 

Axial bearing length (mm), L 38.1 

Shaft radius (mm), R 19.05 

Radial clearance (μm), �� 31.8 

Number of bumps, Nbump 26 

Foil thickness (mm), )h 0.102 

Young modulus (GPa), E 214 

Poisson’s ratio, υ 0.29 

Bump pitch (mm), p 4.572 

Bump length (mm), 2B� 3.556 

Bump height (mm), hb 0.508 
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The numerical tests consist of progressively pushing the rotor against the foil structure in positive 

and negative X and Y directions (Figure 1) by incrementing the eccentricity up to maximum radial 

displacement and then pulling the rotor back to the centered position. The force response of the 

compliant structure is calculated by summing the projected contributions of loaded bumps. 

 

Foil structure free of manufacturing errors 

The first comparisons are made with the model presented in [32] and for the bearing free of 

manufacturing errors. The results are depicted in Figure 10 for cases with friction (f=0.1) and without. 

Figure 10 depicts only the direct response forces (parallel to the rotor displacement), cross coupling 

forces being of small magnitude. The maximum radial displacement of the rotor was 79.5 µm (i.e. 

2.5Cr). This means the rotor interfered with the top foil over 47.7 µm. 
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Figure 10. Direct structural response forces for rotor push and pull; comparisons between the new model and 

the model from [32] (left f=0.1, right f=0) 

 

The former contact model from [32] considered Coulomb friction but was based on an algorithm that 

made no distinction between the static loading and unloading. Therefore, only a single (dotted) curve 

can be obtained. The present model makes a clear distinction between the loading and unloading 

part of the cycle with friction and therefore predicts the expected hysteresis loop. When friction is 

absent, both model predict a single loading-unloading curve.  

The influence of friction on the static load is clearly shown by the results depicted in Figure 10. A 

friction coefficient of 0.1 leads to an increase of 20-60% of the static load depending on the loading 

direction. 

Figure 10 shows that for the +X and –Y directions the results obtained with the contact model from 

[32] and the present model coincide while differences are present for the –X and +Y directions. These 

two latter loading cases correspond to radial displacements in the direction of the welding point of 

the foils (Figure 1). The differences can be explained when analyzing the load supported by each 

bump. Figure 11 depicts the load on each bump for the maximum radial displacement of the rotor 

(i.e. 2.5Cr or 79.5µm). It can be seen that for the -X direction, the first bump close to the welding is 

much more loaded than the rest of the bumps. While respecting this trend, the new model predicts a 

lower force for the first bump while the next bumps (from 2 to 5) are slightly more loaded. This result 

holds for both cases, with and without friction. This difference is due to the top foil that was absent 

in the former model and that enables a more uniform distribution of the bump load. The load 

predicted by the new model for the –X direction is therefore slightly lower.  

For the +Y direction, the results in Figure 10 obtained with friction show a slightly larger force 

predicted by the new model while when friction is absent both models give the same results. Figure 

11 shows that the forces predicted by the new model with friction are larger for bumps 2 to 4 

(especially for bump 2) while being identical with the previous model for the rest of the bumps. This 

difference can be due to a combined effect of the top foil and the friction force. In all cases, the 

presence of the top foil in the new model extends the coupling between bumps while decreasing 

slightly the load gradient from bump to bump. 
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Figure 11. Bump loading for 2.5Cr radial displacement of the rotor; comparisons between the new model and 

the model from [32] (left f=0.1, right f=0) 

 

Further comparisons made with a full non-linear elasticity model developed with a finite element 

commercial code are shown in Figure 12. Part of the results obtained with the finite element code 

were presented in [31]. In that reference, both the top and the bump foils were discretized with 

conventional shell elements and the sleeve was considered rigid. The interactions between the 

bumps, the sleeve and the top foil were taken into count with a penalty contact algorithm. Friction 

was considered by using the law of Coulomb. 
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Figure 12. Direct structural response forces for rotor push and pull; comparisons between the new model and 

the non-linear results from [31] (f=0.1) 

 

The results of the two models are very close but not identical. The differences come from the fact 

that in the non-linear structural model, the top foil and the bump foils are modeled as shells while 

the rotor and the sleeve were considered rigid. Surface contacts may then occur between 

discretization nodes and elements of the top and bump foils and are dealt with in a master-slave 

approach [41]. During loading and unloading, the master node may successively lay on the faces of 

different slave elements. Moreover, the contact is not reduced to a single pair of master-slave 

elements: many neighboring master nodes may lay on neighboring slave elements. This is a 

consequence of modeling the top foil and the bump foil as shells.  

The model presented in this work for the bump foil is much simple. The bumps are replaced by 

trusses and the contacts between the elements of the foil structure may occur only in a node-to 

node approach: every node of a foil knows a priori the node of the other foil that it may contact. 

Even if a more elaborate model would have been used for the top foil the results would not have 

been different because the node to node contact is mainly imposed by the simplified bump foil 

model.  

The present approach has the advantage of being very efficient in terms computation time compared 

to the complete structural model. For example, a loading-unloading cycle necessitates hours in the 

complete non-linear structural model and only minutes in the simplified model with 100 equally 

spaced intermediate steps. 
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Foil structure with manufacturing errors 

Further comparisons between the new model and the full non-linear elasticity model from [31] can 

be made in the case of the foil bearing with manufacturing errors. Bump foil height manufacturing 

errors can be imposed in the new simplified model by using the gap functions. 

It was considered that the manufacturing errors followed a normal distribution with an average value 

equal to the theoretical bump height (i.e. 508 µm) and a given standard deviation. 

The results obtained for a rotor displacement of 2.5Cr toward +X are depicted in Figure 13 and Figure 

14 for 10µm and 20µm standard deviations (i.e. 2% and 4% of the design bump height), respectively. 

The heights of the 26 bumps were randomly selected from a normal distribution. They are depicted 

as bars for each calculation case and are compared with the design bump height and the position of 

the rotor surface.  

Six different cases are depicted in Figure 13 and Figure 14: the five cases presented in Figs. 12-13 of 

reference [31] plus an additional one. The prediction of the new simplified model coincide well with 

full non-linear elasticity model. For some cases, the radial forces predicted by the new simplified 

model are higher but the hysteresis loop delimited by the loading-unloading cycle is always well 

predicted. 

The bump heights depicted as bars in Figure 13 and Figure 14 give also an insight of how the radial 

clearance is affected by manufacturing errors. The numerical analysis always needs a radial clearance 

for completely describing the geometry of the foil bearing. This design clearance can be even 

negative when it corresponds to an interference between the rotor and the top foil. However, due to 

the elasticity of the foil structure, the radial clearance is quite difficult to measure accurately even for 

an ideal foil structure, free of manufacturing errors. Therefore, the experimental measurements give 

a radial clearance affected by quite high uncertainties. For example, if the results in Figure 13 and 

Figure 14 would have been experimental data, the clearance in the +X direction could be estimated 

as the radial displacement of the rotor for which the direct structural force response Fx is lower than 

a given threshold. Figure 15 depicts the +X clearance estimated from Figure 13 and Figure 14 for 5N 

and 10N thresholds for Fx. The incertitude appears quite clear when comparing these results with the 

31.8µm design value of the radial clearance (dotted line). 

The difficulties encountered when measuring the radial clearance of real foil bearings (i.e. affected by 

manufacturing errors) can be explained by analyzing the deformation of the bumps and of the top 

foil during the loading and unloading process.  

Figure 16 depicts the deformed top and bump foils for successive +X loading displacements. The left 

hand side and the mid column figures depict the unwrapped top and bump foils following the 

bearing circumference. For a better visualization of the contacts, the left hand column shows only 

the upper part of the bumps depicted as bars while the mid column depicts the entire bump height. 
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The right hand columns depict the same results in a cylindrical coordinate system. The successive 

snapshots in Figure 16a-e correspond to the points indicated in Figure 14. Figure 16a shows that 

interferences between the rotor, the top foil and the bump foil may be present even if the rotor is 

centered, although the bearing was designed with a 31.8µm radial clearance. This situation can occur 

even for lower standard deviation of the manufacturing errors. Figure 16b-e show how the top and 

bump foil are deformed by the displacement of the rotor. It can be observed that not only contacts 

between the bumps and the top foil change state (close/loose) but also contacts between the top foil 

and the rotor and between the bump foil and the casing may change state.  

 

 

Figure 13. Direct structural response forces for rotor push and pull in “+X” direction; comparisons between 

the new model and the non-linear results from [31], bump heights manufacturing errors σhb=10µm 
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Figure 14. Direct structural response forces for rotor push and pull in “+X” direction; comparisons between 

the new model and the non-linear results from [31], bump heights manufacturing errors σhb=20µm 

 

 

Figure 15. Radial clearance estimated from results depicted in Figure 13 and Figure 14 
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Figure 16. Top and bump foil deformation for successive +X rotor displacements (20 µm standard deviation of 

the bump height error). (left and center: unwrapped, right: Cartesian coordinate system ) 

Summary and conclusions 
The present work introduces a new simplified model for taking into account the interactions with 

friction and gaps in a bump-type foil bearing structure. Simplified models are used for the bump and 

the top foil in order to reduce the computational effort. However, the contacts are dealt with in a 

very rigorous manner, by taking Coulomb friction into account and the possibility of having 

close/loose contacts. Three gap functions were employed for taking into account the close/loose 

states: between the bump foil and the sleeve, between the bump foil and the top foil and between 

the top foil and the rotor. 

The algorithm was tested by simulating a static loading of the foil structure. The rotor was 

progressively pushed against the foil structure up to a maximum radial displacement and then pulled 

back to the centered position. The results of the present model were compared with simulations 

performed with a previous model that could not consider loose contacts and with a full non-linear 

elasticity code where the foils were modeled as shells. The results compared well and dissimilarities 

were explained by the different contact characteristics : the present simplified model deals with 

point contacts while the non-linear model handles contacts between surfaces. 

The present model is able to deal very easily with manufacturing errors. This was proved by 

considering normally distributed errors of the bump height. It was shown that although the radial 

clearance of aerodynamic foil journal bearings is an important design parameter, its definition in a 

bearing with manufacturing errors is very difficult and prone to large measurement incertitude. 

The contact algorithm proved to be very robust and efficient even when dealing with irregular gaps 

and friction forces. 
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Nomenclature5 

                                                           
5 Bold characters indicate vectors. 
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Cr, design radial clearance, [m] 

E, Young modules of elasticity, [Pa] 

e, foil thickness, [m] 

F, force, [N] 

f, friction coefficient 

G, parameter in eq. (17) 

g, gap, [m] 

J, jacobian matrix, [N/m] 

K, stiffness matrix, [N/m] 

k1,…,k4, stiffness of the truss model, [N/m] 

L, bearing length, [m] 

Nbump, number of bumps of the corrugated foil 

Ncntct, number of closed contacts 

Nstick, number of contacts in stick state 

Nslip, number of contacts in slip state 

NRotor, number of rotor/top foil contacts  

R, bearing radius, [m] 

r, distance between the rotor and the 

undeformed top foil, [m] 

S or sij, elasticity matrix of the top foil, [m/N] �, displacement, [m] �e , sliding velocity, [m/s] 

x, y, Cartesian coordinates 

X, Y, axes of the Cartesian coordinates system 

 o, parameter in eqs. (16) and (17) 

Z, penalty parameter, [N/m] Z°, relative eccentricity in Figure 16 _, Lagrange multiplier, [N] ", angular coordinate measured as in Figure 1 Π, potential energy, [j] ,, Poisson coefficient ±h, time scale parameter, [s] 

 

Subscripts 

ALM, augmented Lagrange multiplier method 

b, bump foil 

f, friction 

i, j, bump number 

k, iteration number 

LM, Lagrange multiplier method 

n, normal 

r, rotor 

t, top foil 

tg, tangential 

P, penalty method 

0, initial value 

2b, corrugated foil with two bumps in Figure 3 

 

Superscripts ² , variables kept constant during iterations 
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Appendix 1 
The stiffness matrix of the 4DOF/bump model depicted in Figure 4 can be cast as the sum of 

individual stiffness matrixes of each bump plus a coupling matrix. 
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(A1) 

 

Equation (A1) suggests how the stiffness matrix of the corrugated foil with two bumps can be 

extended to an arbitrary number of bumps. 

Appendix 2 
For a robust solution of the non-linear system of equation (25), the discontinuous sign function must 

be approximated by a regular function. An approximation with the atan function is presently 

employed although other functions can be used (a.e. tanh) 

 

!��$ t�e �f�u�v � 2³ l6l$ ´��f
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The non-linear system for the displacements now yields: 
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where K � N�
,� �
,
 �
,' �
,E ��OP. 

Following the Newton-Raphson algorithm, the iterative solution writes: 
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(A4) 

 

where the Jacobian matrix is:6 
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(A5) 

 

The inverse of this symmetric and positive definite matrix is quite rapid. 

The time scale τh was calibrated with a trial and error approach. It should be underlined that the 

present numerical approximation of the Coulomb friction depends on two user calibrated 

parameters: Zh and τh. They can be interpreted as the stiffness of the contacts between surface 

roughness and the time scale needed for changing the sign of the sliding velocity.  

Appendix 3 
A general flowchart of the complete contact algorithm is given in Figure 17.   

                                                           
6 The DIAG function indicates a matrix with the first diagonal given by the argument vector. 
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Figure 17. General flowchart of the contact algorithm for the foil bearing structure 

 




