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Abstract| This paper describes an original approach for

content-based video indexing and retrieval. We aim at pro-

viding a global interpretation of the dynamic content of video

shots without any prior motion segmentation and without any

use of dense optic ow �elds. To this end, we exploit the spatio-

temporal distribution, within a shot, of appropriate local motion-

related measurements derived from the spatio-temporal deriva-

tives of the intensity function. These distributions are then rep-

resented by causal Gibbs models. To be independent of camera

movement, the motion-related measurements are computed in

the image sequence generated by compensating the estimated

dominant image motion in the original sequence. The statisti-

cal modeling framework considered makes the exact computa-

tion of the conditional likelihood of a video shot belonging to a

given motion or more generally to an activity class feasible. This

property allows us to develop a general statistical framework for

video indexing and retrieval with query-by-example. We build a

hierarchical structure of the processed video database according

to motion content similarity. This results in a binary tree where

each node is associated to an estimated causal Gibbs model. We

consider a similarity measure inspired from Kullback-Leibler di-

vergence. Then, retrieval with query-by-example is performed

through this binary tree using the MAP criterion. We have ob-

tained promising results on a set of various real image sequences.

Keywords|Non-parametric motion analysis, video databases,

motion-based indexing, query-by-example, statistical modeling,

maximum likelihood estimation, spatio-temporal cooccurrences

I. Introduction and related work

Image sequence archives are at the core of various application
�elds such as meteorology (satellite image sequences), road traf-
�c surveillance, medical imaging, or TV broadcasting (audio-
visual archives including movies, documentaries, news, etc.).
An entirely manual annotation of visual documents is no longer
able to cope with the rapidly increasing amount of these video
data. In addition, the eÆcient use of these databases requires a
reliable and relevant means to access visual information. This
implies indexing and retrieving visual documents by their con-
tent. A great deal of research is currently devoted to image
and video database management [1], [5], [10]. Nevertheless, it
remains hard to identify the relevant information for a given
query, due to the complexity of image and scene interpretation.

Furthermore, new needs appear for tools and functionalities
concerned with eÆcient navigation and browsing within videos
[8], [12], with the classi�cation of video sequences into di�er-
ent genres (sports, news, movies, commercials, documentaries,
etc.) [44], with the retrieval of examples similar to a given video
query [17], [20], [30], or with high-level video structuring such
as macro-segmentation [38], [45]. Such applications require the
combination of content-based video descriptions with the de�-
nition of an appropriate measure of video similarity.

As far as content-based video indexing is concerned, the pri-
mary task generally consists in segmenting the video into ele-

mentary shots [5], [9], [47]1. This stage is usually associated
with the recognition of typical forms of video shooting such
as static shot, panning , traveling or zooming [9]. At a sec-
ond stage, it appears necessary to provide an interpretation
and a representation of the shot content. In that context, dy-
namic content analysis is of particular interest. Two types of
approaches are usually considered for characterizing dynamic
content in video sequences. A �rst class of approaches, based
on parametric or dense motion �eld estimation, includes image
mosaicing [22], [27], segmentation, tracking and characteriza-
tion of moving elements in order to determine a spatio-temporal
representation of the video shot [13], [21], [22]. The description
of the motion content may then rely on the extraction of per-
tinent qualitative features of the entities of interest, such as
the direction of the displacement [22], or on the analysis of the
trajectories of the center of gravity of the tracked objects [14].
However, these techniques turn out to be unsuitable for certain
classes of sequences with complex dynamic contents such as the
motion of rivers, ames, foliage in the wind, crowds, etc. Fur-
thermore, as far as video indexing is concerned, the entities of
interest may not be single objects but rather groups of objects,
particularly when dealing with sport videos. No tool currently
exists to automatically extract these kinds of entities. There-
fore, in the context of video indexing, it seems appropriate to
adopt a global point of view that avoids any explicit motion
segmentation step.

The unsuitability of parametric or dense motion �eld esti-
mation leads us to consider a second category of methods for
motion-based video indexing and retrieval. The goal is to inter-
pret dynamic contents without any prior motion segmentation
and without any complete motion estimation in terms of para-
metric motion models or optical ow �elds. Preliminary works
in this direction have led to the extraction of \temporal tex-
ture" features, [7], [17], [34], [37], [42]. Motion of rivers, foliage,
ames, or crowds, for instance, can indeed be regarded as tem-
poral textures. In [37], temporal texture features are extracted
from the description of surfaces generated by spatio-temporal
trajectories. In [34], features issued from spatial cooccurrences
of the normal ow �eld are exploited to classify sequences ei-
ther as simple motions (rotation, translation, divergence) or as
temporal textures. In our previous work concerned with motion-
based video classi�cation and retrieval [7], [17], we considered
global features extracted from temporal cooccurrence distribu-
tions of local motion-related measurements, which proved more
reliable than normal velocities. In this paper, we introduce a
non-parametric probabilistic modeling of the dynamic content
of video shots evaluated by these temporal cooccurrences. This
modeling allows us to design an original, coherent and eÆcient

1Henceforth, for convenience, the term "sequence" will be used to designate

an elementary shot.
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framework for both motion-based video indexing and motion-
based video retrieval.

The remainder of the paper is organized as follows. Section II
outlines the general ideas underlying our work. Section III de-
scribes the local non-parametric motion-related measurements
that we use. In Section IV, we introduce our method based on
the statistical modeling of the spatio-temporal distribution of
the motion-related quantities computed from a video sequence
and the associated estimation scheme. Section VI deals with the
application to content-based video indexing. This involves the
design of a hierarchical video classi�cation scheme and of an
appropriate video similarity measure based on the Kullback-
Leibler divergence. Both tools are then exploited to satisfy
queries by example within a statistical framework. In Section
VII, we report experimental results of video classi�cation and
retrieval examples over a set of video sequences. Section VIII
contains concluding remarks.

II. Problem statement

As previously pointed out, the description of shot content
must be combined with the de�nition of an appropriate mea-
sure of shot similarity to handle video navigation, browsing or
retrieval [5]. Usually, shot content characterization relies on the
extraction of a set of numerical features or descriptors, and the
comparison of shot content is performed in the feature space
according to a given distance such as the Euclidean distance
or more elaborate measures [39]. As a consequence, to cope
with video databases involving various dynamic contents, it is
necessary to determine an optimal set of features and the as-
sociated similarity measure. These issues can be tackled using
Principal Component Analysis [31] or some other feature selec-
tion techniques [29]. Unfortunately, the feature space is usually
of high dimension, and the distance metric used is likely not
to properly capture the uncertainty attached to feature mea-
surements. Consequently, statistical methods may be a more
suitable approach, as in addition, they also provide a uni�ed
view for learning and classi�cation. Furthermore, a Bayesian
scheme can then be adopted to properly formalize the retrieval
process. In [43], modeling of DCT coeÆcients by Gaussian dis-
tribution mixtures is exploited for image texture indexing and
the retrieval operation is formulated in a Bayesian framework
w.r.t. the MAP (Maximum A Posteriori) criterion. This statis-
tical approach is shown to outperform classical techniques using
distances in the feature space.

We follow such a statistical approach in the context of motion-
based video indexing. Our goal is to de�ne a direct and general
characterization of motion information allowing us to provide
within the same framework eÆcient statistical tools for video
database classi�cation and for video retrieval with query-by-
example. To this end, we have designed a motion classi�cation
(or, more generally, motion activity classi�cation) method rely-
ing on a statistical analysis of the spatio-temporal distribution
of local non-parametric motion-related measurements. We aim
at identifying probabilistic models corresponding to di�erent
dynamic content types. In recent works [24], [48], a correspon-
dence has been established between cooccurrence distributions
and Markov random �eld models in the context of spatial tex-
ture analysis. We propose an extension to temporal textures
while introducing only causal statistical models. More precisely,
we consider causal Gibbs models. Since the exact conditional
likelihood function can be readily computed in this context, this
allows us to develop a general and eÆcient statistical framework
for video indexing and retrieval with query-by-example.

III. Local motion-related measurements

We have to de�ne appropriate local motion-related measure-
ments to be used for classi�cation. Since our goal is to charac-
terize the actual dynamic content of the scene, we have �rst to
cancel camera motion. To this end, we estimate the dominant
image motion between two successive images, which is assumed
to be due to camera motion. Then, to cancel it, we warp the
successive images to the �rst image of the video shot by com-
bining the elementary dominant motions successively estimated
over consecutive image pairs.

A. Dominant motion estimation

To model the transformation between two successive images,
we consider a 2d aÆne motion model. A possible alternative is a
2d quadratic model involving eight parameters, i.e. correspond-
ing to the 3d rigid motion of a planar surface. However, it is
computationally more demanding, while not being signi�cantly
more suitable in most situations. The displacement w�(p), at
pixel p, related to the aÆne motion model parameterized by �
is given by:

w�(p) =

�
a1 + a2x+ a3y
a4 + a5x+ a6y

�
(1)

with p = (x; y) and � = [a1 a2 a3 a4 a5 a6]. The estimation
of the dominant parametric motion model is achieved with the
gradient-based multi-resolution incremental method described
in [35]. The following minimization problem is solved:

b� = argmin
�

X
p2R

� (DFD(p;�)) (2)

where DFD(p;�) = It+1(p+w�(p))� It(p), with It being the
intensity function in the image at time t, is the \displaced frame
di�erence", R is he image grid, and � is a robust M-estimator
(here the Tukey biweight function). The use of a robust estima-
tor ensures the dominant image motion estimation is not sen-
sitive to secondary motions due to mobile objects in the scene.
Minimization (2) is conducted by an iterative reweighted least-
square technique embedded in a multiresolution framework and
involving appropriate successive linearizations of the DFD ex-
pression [35].

B. Local motion-related measurements

To characterize the nature of residual motion in the motion
compensated image sequence, we need to specify appropriate
local motion-related measurements. Dense optic ow �elds pro-
vide such local information [32], [41] and have been exploited
for feature-based video retrieval [2], [30]. However, as stressed
above, the accuracy and relevance of the estimation cannot al-
ways be guaranteed in complex motion situations and, the com-
putational load required remains prohibitive in the context of
video indexing involving large databases. Hence, we prefer to
consider local motion-related measurements directly computed
from the spatio-temporal derivatives of the intensity function in
the compensated sequence.
By assuming intensity constancy along 2d motion trajecto-

ries, the image motion constraint relating the 2d residual motion
and the spatio-temporal derivatives of the intensity function can
be expressed as follows [26]:

w(p) � rI�(p) +
@I�(p)

@t
= 0 (3)

where w(p) is the 2d residual motion vector at pixel p, and I�

the intensity function in the warped sequence. We can infer
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the residual normal velocity v�n(p) in the motion compensated
sequence at pixel p by:

v�n(p) =
�1

krI�(p)k

@I�(p)

@t
: (4)

Temporal derivative @I�(p)
@t

is approximated by a simple �nite
di�erence. Although this expression is explicitly related to ap-
parent motion, it can be null (whatever the motion magnitude),
if the residual motion direction is perpendicular to the spatial
intensity gradient. Moreover, the normal velocity estimate is
also very sensitive to noise related to the computation of the
intensity derivatives.
As pointed out in [3], [36], the norm of the spatial image

gradient krI�(p)k can represent, to a certain extent, a perti-
nent measure of the reliability of the computed normal velocity.
Furthermore, if the spatial intensity gradient is suÆciently dis-
tributed in terms of direction in the vicinity of pixel p, an appro-
priately weighted average of v�n(p) in a local neighborhood can
be used as a relevant motion-related quantity. More precisely,
we consider the following expression :

vobs(p) =

X
q2F(p)

krI�(q)k2jv�n(q)j

jF(p)jmax
�
G2; G2

moy(p)
� (5)

where F(p) is a small window centered on p, jF(p)j its size and
Gmoy(p) the square root of the average of the squared magnitude
of the spatial gradient within window F(p):

Gmoy(p) =

s
1

jF(p)j

X
q2F(p)

krI�(q)k2: (6)

G is a predetermined constant related to the noise level in uni-
form areas. This motion-related measurement forms a more
reliable quantity than the normal ow, yet simply computed
from the intensity function and its derivatives. This local mo-
tion information was successfully exploited for the detection of
mobile objects in motion compensated sequences [19], [28], [36]
and motion-based video indexing and retrieval using feature ex-
traction [7], [17]
We also have to cope with the limitations of the gradient-

based image motion constraint (3). This relation is not valid
in occluded regions, over motion discontinuities, and even on
sharp intensity discontinuities. In addition, it cannot handle
large displacements. Therefore, we adopt a multiscale strategy
to compute vobs(p) at a reliable scale and we use an appropriate
test to validate its applicability. More precisely, we build a
Gaussian pyramid of the video frame in consideration and the
succeeding one. At each pixel p, we determine the lowest scale
for which the image motion constraint (3) is valid using the
statistical test described in [25]. Then, vobs(p) is computed
at the selected scale. If for a given pixel p the image motion
constraint remains invalid at all scales, no motion quantity is
computed at p.
The expression described above for computing vobs(p) ignores

information related to motion direction, which prevents us from
discriminating, for instance, two opposite translations with the
same magnitude. However, this is not a real shortcoming, since
we are interested in identifying and classifying the type of dy-
namic situations observed in the considered video shot and not
a speci�c motion value.
The computation of the temporal cooccurrences of the

motion-related measurements fvobs(p)gp2R requires that these
continuous variables are quantized. By de�nition, the quantities
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Fig. 1. Quantization of motion-related measurements

fvobs(p)gp2R. We display two examples of quantization of the

motion-related quantities for a basketball shot and an anchor shot.

The �rst column depicts the �rst image of the processed shot; the

middle one the histogram resulting from a linear quantization of

fvobs(p)gp2R.on 16 levels within the interval [0; vmax
obs ], vmax

obs =

15:4 in the �rst example and vmax
obs = 0:91 in the second one; the

last one contains the histogram resulting from a linear quantization

within [0; 4] over 16 levels.

fvobs(p)gp2R are positive and, for a given pixel p, vobs(p) is theo-
retically less or equal to the greatest actual displacement magni-
tude in the window F(p). We could merely apply a linear quan-
tization within [0; vmax

obs ] with vmax
obs = max

p2R
vobs(p). However, we

would face two main problems. First, since we aim at evaluat-
ing content similarity between video shots, a range of quantized
motion-related quantities common to all image sequences has to
be selected. As illustrated in Fig.1, it does not make sense to
directly compare the histograms of basketball and anchor shots
if a linear quantization over [0; vmax

obs ] is used, because maximum
values vmax

obs greatly di�er between these two shots. Secondly,
although we consider a multiscale strategy combined with a
validity test of the image motion constraint, we may still get
spurious motion quantities in speci�c situations where the va-
lidity test happens to fail. Although vmax

obs = 15:4 in the �rst
sequence of Fig.1, it appears that the really informative part of
the histogram is retained within the range [0; 4]. Therefore, we
prefer to consider a linear quantization within a prede�ned in-
terval [0; Vmax]. Applying this quantization scheme, the direct
comparison of the quantized versions of motion-related mea-
surements becomes relevant. For instance in Fig.1, the motion
activity is greater in the basketball shot compared to the anchor
shot as con�rmed by the histograms of quantized motion-related
values obtained with Vmax = 4.

Let denote � the discretized range of variations for
fvobs(p)gp2R. Henceforth, we denote xk the set of the quantized
motion-related measurements for the kth frame of the video se-
quence.

IV. Causal Spatio-Temporal Gibbs models

A. Causal Gibbs random �elds

This Section is concerned with the description of our sta-
tistical modeling framework for the characterization of motion
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information within a video shot. Our goal is to associate a
probabilistic model to a sequence of quantized motion-related
quantities. As mentioned in Section II, we consider Gibbs mod-
els expressed in terms of cooccurrences. We previously exploited
cooccurrence statistics for video indexing in [7], [17]. We have
investigated causal probabilistic models for two reasons. Firstly,
the corresponding likelihood functions can be exactly computed
(including normalization constants), which in turn allows us
to properly de�ne a motion-based video similarity measure.
Whereas the exact computation of likelihood functions is gen-
erally intractable with classical spatial Markov random �elds
[23] due to the unknown partition function, it can be readily
obtained with most causal models. Secondly, we are concerned
with the characterization of sequences of maps of motion-related
measurements. The evolution of the content of such maps is by
nature causal along the time axis. Therefore, it seems pertinent
to design a temporally causal modeling of motion information.
It enables to handle temporal non-stationarities while being suf-
�cient to discriminate motion classes of interest.
We assume that the sequence of the motion-related quantities

along a given video shot x = (xk)k=0;::;K is the realization of a
�rst-order Markov chain X = (X0; : : : ; XK):

PM(x) = PM(x0)

KY
k=1

PM(xkjxk�1) (7)

whereM refers to the underlying model to be explicitly de�ned
later. PM(x0) represents the a priori distribution for the �rst
map of the sequence. In practice, we will consider no speci�c
prior, i.e., PM(x0) is uniform. In addition, we assume that the
random variables (Xk(p))p2R at time k are conditionally inde-
pendent given Xk�1 and that for each of them, the conditioning
w.r.t. Xk�1 reduces to a small subset of measurements around
the location under concern. Thus, we assume that conditional
probabilities PM(xkjxk�1) factorize as:

PM(xkjxk�1) =
Y
p2R

PM (xk(p)jxk�1)

=
Y
p2R

PM (xk(p)jxk�1(�p))

(8)

where R is the image grid, and �p designates the set of sites in
image k � 1 which interact with site p in image k. �p will be
called the temporal neighborhood of site p and is speci�ed in
Fig.2. We consider a small set of temporal interactions. Each
pair (p; q), with q 2 �p, can be characterized by the polar co-
ordinates a = (d; �) (see Fig.2). Let A denote the set of the
nine possible polar coordinates a corresponding to the tempo-
ral pairs de�ned in Fig.2. Henceforth, we use the term clique to
designate a temporal pair. In practice, we consider three di�er-
ent neighborhoods �1, �5 and �9 (Fig.2). The simplest case �1

is just the temporal clique de�ned by a = (0; 0) whereas �5 and
�9 refer to the cases with 5 cliques and 9 cliques respectively.
We also assume that PM (xk(p)jxk�1(�p)) is expressed as the

exponential of a sum of local Gibbsian potentials. It can be
written as follows:

PM (xk(p)jxk�1(�p)) =

exp

"X
a2A

	a
M (xk(p); xk�1(pa))

#
ZM(k; p; xk�1(�p))

(9)

where 	a
M = f	a

M(�; �0)g(�;�0)2�2 is the potential for the tem-

poral clique a. Model M is then de�ned by jAj � j�j2 poten-
tial values f	a

M(�; �0)g(�;�0)2�2; a2�. pixel pa is the temporal

neighbor of p for clique a in the considered neighborhood �p (see
Fig.2), and ZM(k; p; xk�1(�p)) designates the local normaliza-
tion constant. This normalization is given by:

ZM(k; p; xk�1(�p)) =
X
�2�

exp

"X
a2A

	a
M (�; xk�1(pa))

#
: (10)

The considered statistical models will be referred as \causal
spatio-temporal Gibbs" models. Let us point out that they
are not usual Gibbs models, which are equivalent to Markov
models [23], since the considered neighborhood con�guration is
not symmetric.
For notation convenience, 	a

M � 0 will denote the constant
potential for a given clique a. Similarly, the uniform model
M for which PM(x) / 1 is speci�ed by the constant potential
function for all cliques denoted 	M � 0.
Contrary to the case of general Markov random �elds [23],

such a causal modeling provides an exact expression of the joint
distribution PM(x) as a product of local transition probabilities:

PM(x) = PM(x0)
KY
k=1

Y
p2R

exp

"X
a2A

	a
M (xk(p); xk�1(pa))

#
ZM(k; p; xk�1(�p))

:

(11)

Thus, for given PM(x0) and potentials 	M, PM is entirely
known, which provides us with a general statistical framework
for motion-based video classi�cation and retrieval as described
in Section VI. Following [24], [48], we can now rewrite the causal
expression (11) using the temporal cooccurrence measurements
attached to the clique a as follows:

PM(x) = PM(x0)

exp
hX
a2A

	a
M � �a(x)

i
ZM(x)

; (12)

where ZM(x) is the global normalization factor given by:

ZM(x) =

KY
k=1

Y
p2R

ZM(k; p; xk�1(�p)); (13)

and �a(x) = f�a(�; �
0jx)g(�;�0)2�2 is the cooccurrence matrix

for the clique type a de�ned as:

�a(�; �
0jx) =

KX
k=1

X
p

Æ(� � xk(p))Æ(�
0 � xk�1(pa)) (14)

where Æ() denotes the Kronecker delta function. The dot prod-
uct between cooccurrence matrix �a and potentials 	a

M is de-
�ned as follows:

	a
M � �a(x) =

X
(�;�0)2�2

	a
M(�; �0)�a(�; �

0jx): (15)

This statistical framework for motion information modeling
in image sequences can be claimed as non-parametric in two
ways. Firstly, from a statistical point of view, our approach
is non-parametric in the sense that the conditional likelihood
PM(xk(p)jxk�1(�p)) is not assumed to follow a known paramet-
ric law (e.g., Gaussian). Secondly, from a measurement point of
view, the de�nition of quantities xk does not refer to 2d para-
metric motion model. We think these quantities thus capture
motion information in generic enough way to characterize the
motion activity.
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image kimage k � 1

p
d

image k � 1 image k

q

p

�

Causal temporal neighborhoods of pixel p Parameterization of the temporal pair (p; q) using polar coordinates a = (d; �)

Fig. 2. Causal temporal neighborhood comprising up to 9 pairs. Given a pixel p in image k, we denote �1p the temporal neighborhood

formed by the single site � at same location as p in image k� 1, �5p the set of the 5 sites represented by symbols � and Æ, and �9p the whole set

of the 9 neighbors of p (symbols �, Æ and 2). Each kind of neighbor pair is parameterized using polar coordinates as illustrated on the right.

B. Maximum likelihood estimation of potentials

Given a realization x of X, the causal temporal Gibbs model
de�ned by its potentials f	a

M(�; �0); a 2 A; (�; �0) 2 �2g can
be estimated using the Maximum Likelihood (ML) criterion:

cM = argmax
M

LFM(x) (16)

where the log-likelihood function is given by:

LFM(x) = ln(PM(x)): (17)

We hereafter assume that PM(x0) is uniform. From (12), we
get:

cM = argmax
M

X
a2A

	a
M � �a(x)� lnZM(x): (18)

Setting to zero the �rst-order derivatives of the log-likelihood
function w.r.t. potential values f	a

M(�; �0)g provides the fol-
lowing equations to be simultaneously solved by the ML model
estimate:

8(a; �; �0) 2 A� �2;
X

(k;p)2Sa�0

P
cM
(xk(p) = �jxk�1(�p)) = �a(�; �

0jx)

(19)

with Sa�0 = f(k; p) 2 f1; : : : ; Kg �R = xk�1(pa) = �0g.
This naturally con�rms that signi�cant potentials of modelcM correspond to high cooccurrence values, as the model cM will

give the highest probabilities to the con�gurations associated to
the greatest cooccurrence values. We exploit this property to
reduce the model complexity in subsection V-C. In practice, the
maximization in (16) is carried out using a classical conjugate
gradient procedure as detailed in Algorithm 1.
It is worth mentioning that the log-likelihood function

LFM(x) may have several local minima w.r.t. 	M, whereas the
existence of a unique global minimum is guaranteed in the case
of exponential models [24]. Hence, it is important to de�ne an
appropriate optimization scheme. As described in the next Sec-
tion, we have adopted an incremental strategy, in terms of model
complexity, which has proven robust and accurate enough.

V. Model estimation

This Section details how the potential values which explicitly
specify the causal Gibbs models are estimated. Besides, we
describe a scheme to reduce model complexity after potential
estimation.

Algorithm 1 -Maximum likelihood estimation of model

potentials 	M = (	a
M(�; �0))a2A;(�;�0)2�2 by applying a con-

jugate gradient technique to criterion (16)

� Step 1: Initialization
1. k = 0
2. Initialize the Gibbs modelM0

3. Initialize the ascent direction d0 � 0

� Step 2:
1. k � k + 1
2. Compute the gradient rLFMk�1(x)
3. Update the ascent direction dk :

dk = rLFMk�1(x) +
krLFMk�1(x)k2

krLFMk�2(x)k
2
dk�1

4. Search for the coeÆcient �k which veri�es:

�k = argmin
�

LFM�(x)

where M� stands for the model with potentials 	M� =
	Mk + �dk
5. Update model potential:

	Mk+1 = 	Mk + �kdk

� Step 3: repeat step 2 until: krLFMk (x)k1 <  where  is
a prede�ned constant.

A. Estimation of the simple temporal model

When using the simple temporal clique model for which
A = fa0g = f(0; 0)g, the model under consideration is in fact
equivalent to a product of jRj independent Markov chains. If
the unique potential is constrained to verify:X

�2�

exp	
(0;0)
M (�; �0) = 1; 8�0 2 �; (20)

then the transition probabilities amount to:

PM(xk(p)jxk�1(p)) = exp
h
	
(0;0)
M (xk(p); xk�1(p))

i
(21)

Thus, this simple temporal model provides a characterization of
the temporal aspects of motion content whereas spatial aspects,
captured by the more complex spatio-temporal causal Gibbs
models, .are not explicitly modeled. However, the use of only
one clique makes easier the computation and the maximization
of the likelihood function
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For simple temporal model, the likelihood function is then
simply given by:

PM(x) = exp
h
	M � �(x)

i
(22)

where, for sake of concision, the mention of the unique clique

type a = (0; 0) is dropped (e.g., 	M stands for 	
(0;0)
M ). The

availability of this simple exponential formulation presents sev-
eral interests. First, it makes the computation of the likelihood
PM(x) for any sequence x and model M for which A = (0; 0)
feasible and simple. Second, all motion information exploited by
these models is contained in the cooccurrence distributions. In
particular, in order to evaluate the likelihoods fPMi

(x)g w.r.t.
di�erent models fMig's for a given sequence x, it is not nec-
essary to store the entire sequence x. We only need to com-
pute and store the related temporal cooccurrence distributions
�(x). The evaluation of the conditional likelihoods fPMi

(x)g is
then simply achieved by exponentiating products f	Mi

��(x)g,
whereas, in the general case, it is required to store the sequence
of maps x to compute the normalization constant ZM(x).
From equation (19), we get the following ML estimate of the

only temporal model for a given sequence x of local motion-
related quantities:

	
cM
(�; �0) = ln

 
�(�; �0jx)=

X
�2�

�(�; �0jx)

!
: (23)

Similarly to the computation of the likelihood PM(x), the ML
model estimation only requires the evaluation of the temporal
cooccurrence distribution �(x).

B. Estimation of the extended temporal models

Let us now consider the case of the extended temporal neigh-
borhoods �5 or �9 (see Fig.2). To perform the ML estima-
tion, we adopt an incremental strategy, sketched in Algorithm
2. First, we determine a ranking of the di�erent cliques accord-
ing to their relevance in the model. For each a 2 A, we evaluate
the ML estimate of the speci�c model Ma with potentials set
as constant for all cliques b other than a:

cMa = arg max
M

8b 6= a;	b
M � 0

LFM(x): (24)

Exactly as for the ML estimation of 	
(0;0)
M only in previ-

ous subsection, the ML estimated potential 	a
cMa is given by:

8(�; �0) 2 �2,

	a
cMa(�; �

0) = ln

 
�a(�; �

0jx)=
X
�2�

�a(�; �
0jx)

!
; (25)

under normalizing constraint:

8a 2 A; 8�0 2 �;
X
�2�

exp	a
M(�; �0) = 1: (26)

We can rank cliques a 2 A according to the values of the
likelihoods of the sequence of motion-related quantities x w.r.t.cMa:

A = fa1; ::; ajAjg with LF
cMa1

(x) � :: � LF
cM
ajAj (x): (27)

The incremental estimation of the modelM is then carried out
as follows. At step l from 1 to jAj, it consists in estimating the

model cMl that maximizes the likelihood LFM(x) under the
constraint:

8b 2 fal+1; :::; ajAjg; 	b
M � 0: (28)

This maximization is achieved using the conjugate gradient
ascent described in Algorithm 1 with initialization 	Ml;0 =

	
cMl�1 . Finally, at iteration jAj, we obtain the ML estimate cM

de�ned on the whole temporal neighborhood structure under
consideration.

Algorithm 2 - Incremental strategy for model potential

estimation

� Step 1: Initialization
1. l = 1
2. Sort clique set A = fa1; ::; ajAjg according to relation (27)
3. Estimate model potentials 	

cM1 considering only the �rst
clique a1 (relation (25))
� Step 2:
1. l � l + 1
2. Introduce the new clique al
3. Initialize model potentials 	Ml with 	

cMl�1

4. Use the conjugate gradient procedure (detailed in Algo-
rithm 1) to estimate potentials 	

cMl with cliques a1,...., al
� Step 3: repeat step 2 until l = jAj

C. Model complexity reduction

When considering n cliques (i.e., jAj = n) with N levels of
quantization (i.e., j�j = N) for the local motion-related mea-
surements, n � N2 potential values f	a

M(�; �0)ga2A; (�;�0)2�2
have to be estimated. Typically, N = 16 and n = 1; 5; or
9. The number of potential values rapidly increases with the
number of considered cliques. As far as video indexing is con-
cerned, it is crucial to supply parsimonious content represen-
tations while keeping the characterization of the video content
accurate enough. To this end, we aim at reducing the global
model complexity while retaining the most pertinent informa-
tion in the selected model. Two aspects are considered.

C.1 modi�cation of the range of �

Some quantization levels may seldom appear in the sequence
of local motion-related quantities x. In that case, the poten-
tials associated with these quantization levels are less impor-
tant as stressed by relation (19). To select the relevant quan-
tization levels, we compute the number of occurrences of each
level � 2 � in the sequence x. For each level �0 with an occur-
rence number lower than a given threshold, potential values
f	a

M(�0; �);	
a
M(�; �0)g(a;�)2A�� are set to �1 (a very low

value in practice), which corresponds to a null probability of
the local con�gurations including measurement �0. These po-
tentials are let unchanged in the whole estimation process.

C.2 Selection of informative ML potential values

The second phase of complexity reduction intervenes after
ML parameter estimates are computed and is two-fold. First,
for each clique, we store only pertinent potential values of the

global estimated model cM while setting the other ones to a con-
stant value. Second, we eliminate cliques that bring negligible
information. This model complexity reduction can be regarded
as a pruning procedure applied to the set of potential values

of the ML estimate of the causal Gibbs model cM. To achieve
this, we resort to likelihood ratio tests to specify the amount of
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information to be kept. For both aspects of complexity reduc-
tion, we compute the ratio of the likelihood of sequence x w.r.t
a proposed reduced model M� over the likelihood of x w.r.t.cM:

LRx(M
�; cM) = PM�(x)=P

cM
(x): (29)

This ratio is compared to a user-speci�ed threshold �LR. This
threshold allows us to specify the tolerated error between the
ML estimate of the Gibbs model and the reduced model actually

stored. LRx(M
�; cM) can be viewed as an evaluation of the

precision loss occurring if we substituteM� for cM.
We now describe in more detail the incremental complexity

reduction strategy. It is composed of two successive steps: a
�rst step to select the informative model potentials for each
clique as described in Algorithm 3, and a second step to select
the pertinent cliques as detailed in Algorithm 4.

Algorithm 3 - Selection of the informative potentials of

ML estimated model cM for a given clique a

� Step 1: Initialization
1. Sort estimated potential values f	a

cM
(�; �0)g(�;�0)2�2 w.r.t

cooccurrence values f�a(�; �0jx)g(�;�0)2�2
2. Initialize the potentials of the reduced modelM�: 	M� �
0

� Step 2:
1. Introduce one-by-one sorted potential values 	a

cM
(�; �0) in

the potentials 	a
M�

2. Compute the likelihood ratio LRx(M
�; cM) by relation (29)

considering only the simple temporal model with clique a

� Step 3: repeat Step 2 while LRx(M
�; cM) < �LR

Concerning model potential selection for a given clique a,
equation (19) shows that the largest potential values of ML
estimate 	a

cM
correspond to high cooccurrence values. For a

given clique a, potential values 	a
cM
(�; �0) are one-by-one intro-

duced in a model M� (initially, 	M� � 0), according to their
corresponding value �a(�; �

0jx) in the cooccurrence matrix with
the highest values being introduced �rst. At each step, we com-
pute the likelihood ratio (29). As soon as this ratio exceeds
�LR, we consider the selected potential values as representative
of the ML potential estimate 	a

cM
associated to the sequence x.

Let fM denote the reduced model consisting of the potentials
selected after this procedure has been applied to each clique a.

Algorithm 4 - Selection of the informative cliques for

the ML estimated model cM
� Step 1: Initialization
1. l = 0
2. Sort clique set A = fa1; ::; ajAjg according to relation (27)

3. Compute the reduced model potentials fM by selecting the
informative potentials for each clique a (see Algorithm 3)
� Step 2:
1. l � l + 1
2. De�ne the reduced model fMl using relation (30)

3. Compute the likelihood ratio LRx(fMl; cM) using relation
(29)

� Step 3: repeat step 2 while LRx(fMl; cM) < �LR

Then, the selection of the representative cliques, as detailed
in Algorithm 4, relies on the ranking a1; ::; ajAj de�ned in

subsection V-B. We consider the di�erent reduced models
(fMk)k2f1;::;jAjg such that:8<:

	a
fMk = 	a

fM
; 8a 2 fa1; ::; akg

	a
fMk � 0; 8a 2 fak+1; ::; ajAjg:

(30)

We compute the likelihood ratios LRx(fMk; cM) and stop at

step k� where the ratio LRx(fMk� ; cM) exceeds �LR. The cor-

responding reduced model fMk� is �nally selected as the model
attached to the sequence x.

VI. Motion-based video classification and retrieval

We now discuss the application of our modeling framework
to motion-based video classi�cation and retrieval. Considering
a set of video sequences, we are interested in retrieving exam-
ples in this database similar, in terms of motion content or more
generally of motion activity, to a given video query. The general
idea is to de�ne an appropriate similarity measure between im-
age sequences and to determine the closest matches according
to this similarity measure. As far as feature-based techniques
are concerned, the retrieval process generally makes use of clas-
sical distances in the feature space such as the Euclidean or
Mahanalobis distances, [30], [31]. In our case, we �rst bene�t
from our statistical modeling of motion activity to de�ne an
appropriate similarity measure w.r.t. motion content. We then
exploit this similarity measure to achieve a hierarchical classi�-
cation over a video set. In a third step, we tackle video retrieval
with query-by-example formulated as a Bayesian inference task.

A. Statistical similarity measure related to motion activity

Given video shots characterized by statistical models of mo-
tion activity, we have to evaluate the degree of similarity of their
contents. We have de�ned a similarity measure based on the
Kullback-Leibler (KL) divergence [4], [6]. Let xn1 and xn2 be
the two sequences of motion-related measurements associated
to videos n1 and n2, and, M

n1 and Mn2 the two estimated
models on them using the method from the previous section.
Considering an approximation of the KL divergence detailed

in Appendix A, and using the exponential form (12) of the like-
lihood function PM, the KL divergence KL(Mn1kMn2) of law
PMn2 w.r.t. law PMn1 can be approximated by:

KL(Mn2kMn1) �
X
a2A

�
	a
Mn1 �	a

Mn2

�
�

1

KjRj
�a(x

n1)

�
1

KjRj

h
lnZMn1 (x

n1)� lnZMn2 (x
n1)
i
:

(31)

Expression (31) quanti�es the loss of information occurring
when considering Mn2 instead of Mn1 to model the motion
distribution attached to n1.
In the case of the simple temp oral model de�ned in Subsec-

tion V-A, this reduces to:

KL(Mn2kMn1) �
h
	Mn1 �	Mn2

i
�

1

KjRj
�(xn1 ): (32)

In order to deal with a symmetric similarity measure, the
similarity measure DKL(n1; n2) between elements n1 and n2 is
de�ned by:

DKL(n1; n2) =
1

2
[KL(Mn1kMn2) +KL(Mn2kMn1 )] : (33)

Note that this similarity measure is not a metric since it does
not satisfy the triangular inequality. However, it can be easily
computed and interpreted, since it involves logarithms of likeli-
hood ratios.
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B. Hierarchical motion-based indexing and retrieval

For eÆcient retrieval in large databases, it is necessary to
structure the target video set beforehand. We focus here
on hierarchical representations that have been successfully
exploited for browsing or retrieval in still image database
citeChen99b,Milanese96,Schweitzer99,Yeung96. Such indexing
structures rely on binary trees. The tree nodes will correspond
to subsets of shots of the processed video database. To achieve
this hierarchical structuring, either top-down [40] or bottom-up
[31] strategies can be adopted. As pointed out in [11], bottom-
up techniques seem to o�er better performance in terms of clas-
si�cation accuracy. In fact, since top-down methods consist in
successively splitting the nodes of the tree from the root to the
leaves, an element misclassi�ed at the top of the hierarchy will
appear in an undesirable branch of the �nal binary tree. There-
fore, we retain bottom-up clustering and more particularly, we
consider an ascendant hierarchical classi�cation (AHC) proce-
dure, [15].
We also need to de�ne the similarity measure DAHC between

clusters of videos used in the ascendant hierarchical classi�ca-
tion scheme. For two clusters C1 and C2, DAHC is de�ned by:

DAHC(C
1; C2) = max

(n1;n2)2C1�C2
DKL(n1; n2): (34)

We can now construct an ascendant hierarchical classi�cation
based on DAHC . It proceeds incrementally as follows. At a
given iteration, a pair is formed by merging the closest clusters
according to DAHC . If a cluster C is too far from all the others,
i.e., minC0 6=C DAHC(C;C

0) > Dmax, it is kept alone to form
a single cluster. Dmax is a given threshold. For two clusters
C1 and C2, exp [�DAHC(C1; C2)] can be expressed as the prod-
uct of two likelihood ratios and is comprised in [0; 1] (relations
(33) and (34)). Therefore, we set Dmax = � ln � where � is a
threshold in [0; 1]. This Threshold quanti�es the information
loss we tolerate in terms of accuracy of description of motion
distributions when substituting models attached to C2 for those
attached to C1, and conversely. Typically, � = 0:1. The merg-
ing procedure starts at the level of individual shots, which form
the leaves of the tree, and is iterated until no new cluster can
be built.
For retrieval purposes, a motion activity model has to be

attached to each newly created cluster. In the case of the sim-
ple temporal Gibbs model, since it is directly determined from
temporal cooccurrence measurements, the activity model asso-
ciated with the cluster formed by merging two clusters can be
straightforwardly estimated using relation (23). Indeed, for the
set of sequences comprised in the new cluster, the correspond-
ing cooccurrence measurements can be directly determined as
the sum of the cooccurrence measurements computed for each
sequence of the new cluster. When merging two clusters C1 and
C2, we �rst compute the cooccurrence matrix �(C1; C2) as the
sum of the cooccurrence matrices �(C1) and �(C2), and then,
exploiting relation (23), we estimate the potentials of the Gibbs
model associated with the new cluster formed by the union of
C1 and C2. On the other hand, such a simple updating is no
longer possible for the extended temporal Gibbs models. We
could use the incremental estimation scheme described in Sub-
section V-B. However, it would be computationally demand-
ing when handling large hierarchical structures with numerous
nodes. Therefore, we prefer not to estimate the model associ-
ated with the union of two clusters to save computation, and
rather to select eitherMC1 orMC2 as the model representative
of the new cluster resulting from the merged nodes C1 and C2.
We select the model that maximizes the likelihood computed

for the motion-related quantity sequence issued from the union
of all the sequences from of the two clusters C1 and C2. Even if
we thus do not compute the exact model for the new cluster, we
believe that the selected model still provides a pertinent char-
acterization of the motion content of the new cluster. Indeed,
the two merged clusters are supposed to be similar in terms of
motion content.

C. Probabilistic retrieval

As in [43], the retrieval process is formulated as a Bayesian
inference issue. Given a video query q, we aim at determin-
ing the best match n� in the stored set D of video sequences
according to the MAP criterion:

n� = argmax
n2D

P (njq) = argmax
n2D

P (qjn)P (n): (35)

The distribution P (n) allows us to formulate a priori knowledge
of the video content relevance over the database. It can be in-
ferred from semantic descriptions attached to each type of video
sequence. This distribution could also be learned from relevance
feedback during the retrieval process [33]. Indeed, the likelihood
of the di�erent possible replies could be weighted according to
some evaluation of former retrieval operations performed by the
user. In the remainder however, we will in fact incorporate no
a priori (distribution P (n) is taken uniform, i.e. P (n) / 1).
Furthermore, criterion (35) also supplies a ranking of the el-

ements fngd2D according to P (qjn)P (n), which quanti�es how
relevant the selection of n w.r.t. the motion content of query
q is. In our case, to each element n of the database, a causal
Gibbsian model Mn is attached. We compute the sequence
of motion-related measurements xq for video query q and the
likelihood P (qjn) is expressed using PMn . Then, we obtain:

n� = argmax
n

PMn(xq): (36)

Let us stress that we do not need to estimate a model for the
query.
In addition, we can take advantage of the hierarchical rep-

resentation of the video database mentioned in the previous
section to satisfy a video query. When dealing with large
databases, solving criterion (36) exhaustively is quite time con-
suming. Therefore, we exploit the constructed binary tree to
obtain a suboptimal but eÆcient solution of criterion (36). If
obtaining the best match is not guaranteed, this can be viewed
as a trade-o� between reply accuracy and search complexity.
The retrieval process is carried out through the binary tree from
the root to the leaves as follows. To initialize, we select the best
node C0 at the root Troot of the search tree according to:

C0 = arg max
C2Troot

PMC (x
q): (37)

At each step k, given a parent cluster Ck, we select the best
child node Ck+1 according to the MAP criterion:

Ck+1 = arg max
C2Ck

PMC (x
q): (38)

This procedure is iterated until a given maximal number of el-
ements in the selected cluster is reached.

VII. Results

We have evaluated the whole proposed framework for motion
activity modeling, content-based video indexing and content-
based video retrieval, on a database containing samples of real
videos. We have paid particular care to choose examples that
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anchor1 anchor2 hall Concorde highway1

highway2 landing take-o� rugby1 rugby2

windsur�ng1 windsur�ng2 hockey1 hockey2 hockey3

basketball1 basketball2 basketball3 �re river

Fig. 3. Set of the 20 video shots used in the motion-based hierarchical classi�cation of Fig.4. For each video, we display the median image of

the shot.

are representative of various motion situations. The database
includes temporal textures (samples of �re and sequences of
river), video shots exhibiting signi�cant motion activity such as
sports videos (basket, horse riding,...), rigid motion situations
(cars, train, ...), and sequences with a low motion activity. We
have built a database of 150 sequences of 10 images derived
from 70 video shots (elements from the same video shot are not
temporally adjacent). A sample of frames from this video set is
provided in Fig. 3.

The experiments reported in this section have been performed
using parameter values set as follows. In the motion-related
measurement stage, we set Vmax = 4:0 and j�j = 16. These
values seem to be suitable based on previous work [7], [17], [20].
For the model complexity reduction stage, we set �LR = 0:99.
Finally, we set Dmax = 2:3 (i.e., � = 0:1), in the hierarchical
structuration of the database.

The goal of this section is to illustrate the interest of the
designed statistical motion modeling with di�erent neighbor-
hood structures for video indexing and retrieval. We do not
aim at supplying a complete experimental comparison of the
di�erent versions of the motion activity modeling introduced in
this paper. We report an example of motion-based hierarchical
classi�cation using neighborhood �5, and we describe di�erent
retrieval operations with query by example using neighborhood
�1.

A. Model complexity reduction

In a �rst step, we have estimated the causal Gibbs model at-
tached to each element of the database for the neighborhood
�5 (see Section IV). For the processed database, we �nally
only kept from 5% to 20% of the 1280 potential values (here,
j�j = 16, jAj = 5 and 162 � 5 = 1280) of each ML model
attached to each video shot after the model complexity reduc-

tion phase. We report here two examples of model complexity
reduction respectively for shots anchor1 and basket1 with the
temporal neighborhood �5. The median images of these two
sequences are displayed in Fig.3. Video anchor1 is a static shot
of an anchor person in a news program. The motion activity
is very low and only potential values related to low values of
motion magnitude are kept. This leads to 5% of the estimated
ML potential values being retained and only one clique out of
the �ve initial ones. The second example basketball3 involves
substantial motion activity. The stored Gibbs model is more
complex, with two selected cliques and 10% of the estimated
potential values being retained.

B. Statistical hierarchical motion-based classi�cation

To provide a comprehensive visualization of the statistical hi-
erarchical motion-based classi�cation described in Section VI,
we have performed a classi�cation on the subset of 20 se-
quences displayed in Fig.3. It contains: two shots of anchor
person in news programs, anchor1 and anchor2, with a very
weak motion activity; two other examples of low motion ac-
tivity, hall and Concorde; four examples of rigid motion situ-
ations corresponding to road traÆc sequences, highway1 and
highway2, and airport sequences, landing and take-off ; ten
sport video sequences involving shots of rugby games, rugby1
and rugby22, hockey games, hockey1, hockey2, and hockey3,
basketball games, basketball1, basketball2 and basketball3, and
windsur�ng, windsurfing1 and windsurfing2; �nally, two
samples of temporal textures with high motion activity, fire
and river.

For this experiment, we exploit extended temporal models
corresponding to �5. The unsupervised hierarchical classi�ca-
tion obtained, shown in Fig.4, correctly separates the di�erent
kinds of dynamic contents. TraÆc sequences, road1 and road2,



1
0

daVinci V2.0.3

 b
a
s
k
e
tb

a
ll2

 b
a
s
k
e
tb

a
ll1

 0
.0

1
1

 b
a
s
k
e
tb

a
ll3

 0
.0

0
0

0
0

 0
.0

5
2

 h
o
ck

e
y
2

 h
o
ck

e
y
1

 0
.0

1
6

 h
o
ck

e
y
3

 0
.0

0
0

0
0

 0
.0

3
2

 0
.1

1
3

 w
in

d
s
u

rfin
g

2

 w
in

d
s
u

rfin
g

1

 0
.0

1
6

 ru
g

b
y
1

 0
.0

0
0

0
0

 0
.0

2
2

 ru
g

b
y
2

 0
.0

0
0

0
0

 0
.0

0
0

0
0

 0
.0

8
4

 0
.2

7
1

 riv
e
r

 fire

 0
.1

5
8

 0
.1

5
8

 0
.1

5
8

 0
.1

5
8

 0
.5

4
0

 h
ig

h
w

a
y
2

 h
ig

h
w

a
y
1

 0
.0

2
1

 ta
k
e
−

o
ff

 la
n

d
in

g

 0
.0

1
0

4
3

 0
.1

5
2

 0
.1

5
2

 a
n

ch
o
r2

 a
n

ch
o
r1

 0
.0

0
7

 h
a
ll

 0
.0

0
0

0
0

 0
.0

1
0

 co
n

co
rd

e
 0

.0
0

0
0

0
 0

.0
0

0
0

0

 0
.1

1
9

 0
.2

8
3

 0
.2

8
3

 2
.0

4

F
ig
.
4
.
M
o
t
io
n
-b
a
s
e
d
s
t
a
t
is
t
ic
a
l
c
la
s
s
i�
c
a
t
io
n
:
o
b
ta
in
ed

m
o
tio

n
-ba

sed
h
ie
ra
rc
h
ica

l
c
la
ssi�

ca
tio

n
fo
r
th
e
se
t
o
f
2
0
v
id
eo

seq
u
e
n
ce
s
p
re
se
n
ted

in
F
ig
.3

w
ith

D
m
a
x
=

2
:3

(
�
=

0
:1
).

A
t
ea
c
h
lea

f
o
f
th
e
tree

,
w
e
re
p
o
rt

th
e
n
a
m
e
o
f
th
e
v
id
eo

seq
u
e
n
ce
.
F
o
r
th
e
o
th
e
r
n
o
d
e
s
o
f
th
e
tree

,
w
e

d
isp

la
y
th
e
m
a
x
im

u
m

in
tra

-c
lu
ste

r
d
ista

n
ce

e
v
a
lu
a
ted

u
sin

g
e
x
p
re
ssio

n
D
A
H
C

o
f
re
la
tio

n
(3
4
).



11

airport videos, landing and take�off , and low motion activity
situations, anchor1, anchor2, hall and Concorde, constitute a
separate cluster in which relevant subclusters have been created
associated to these two types of motion content. In addition,
all sport video shots are properly grouped. In this last group,
pertinent subgroups have also been identi�ed such as the one
comprising the three basketball sequences displaying very high
motion activity, and the one with the three hockey shots.

C. Statistical motion-based retrieval with query-by-example

For the retrieval experiments performed over the base of 150
videos, we have considered simple temporal models with neigh-
borhood �1. Fig.5 describes the results of four experiments of
retrieval operations with the query-by-video example. The �rst
query is a news program which consists of a static shot of an
anchor person. A rigid motion situation (airplane take-o�) is
proposed as the second query. The third and fourth retrieval op-
erations concern sport videos. The third query is a global view
of the game �eld, whereas a close-in shot of a basketball player
tracked by the camera constitutes the last example. We locate
the three best replies according to the computed log-likelihood
values PMC (xq) (as given in relation (38)). For all the consid-
ered queries, the retrieval process supplies relevant replies. In
particular, when considering the two examples involving sport
videos with an important motion activity, the close-up situation
is well discriminated from the other ones. To evaluate a pos-

teriori the relevance of the replies, we have also estimated the
modelMq associated with the query q and we report the values
of the distance DKL(q; n) given by relation (33) between Mq

and the di�erent retrieved models Mn. The ranking supplied
by log-likelihood values is con�rmed by the values of distance
DKL for each reply.

To carry out a more quantitative evaluation of our motion-
based retrieval system, we have analyzed the relevance of the
replies retrieved when considering in turn each element of the
video database as a query. To this end, we need to de�ne a

priori classes w.r.t. motion content. We consider four classes
which seemed to be relevant as illustrated by the classi�cation
experiment reported in Fig.4. More precisely, class (I) refers
to low motion activity contents, class (II) to rigid motion situ-
ations, class (III) to wide-angle shots and close shots of sport
games, class (IV) to temporal texture samples. It should be
stressed that the evaluation of retrieval performances w.r.t. se-
mantic classes is necessarily somewhat subjective. For evalua-
tion purpose, we consider two measures. First we count how
many times the query shot appears as the best answer. Let
us note that this is not guaranteed a priori since the retrieval
process is conducted through the hierarchical representation of
the database and not by way of to an exhaustive search. For
the processed video database, the �rst retrieved answer is the
query shot 76% of the time. Within the remaining 24%, i.e. 36
video samples, the best reply belongs to the same a priori class
for 30 queries.

Secondly, we have evaluated the relevance of the second re-
trieved answer in terms of correct classi�cation w.r.t. the a

priori motion activity classes described above. The results ob-
tained with simple temporal Gibbs models are given in Table I.
For classes (I), (II), (III) and (IV), the rate of correct classi�ca-
tion is mostly within the range 89% to 100%. These results also
reveal the limitations of the evaluation of our retrieval system
involving query by example w.r.t. semantic a priori classes. For
instance, we obtain a misclassi�cation rate of 11% for class (II)
which involves rigid motion situations. The corresponding video
shots do actually involve rigid objects, but these are close to the

camera and undergoing large displacements. Thus, they could
appear as more similar to the close shots of sport games than
to rigid motion situations such as the traÆc sequences involved
in the classi�cation experiments illustrated in Fig.4. However,
this evaluation should be considered as a �rst validation of our
approach. We plan to evaluate it on a larger database.

D. Discussion

Promising results have been obtained using the statistical
non-parametric motion models introduced in this paper both
for motion classi�cation and for motion-based video retrieval
on a video database involving various types of motion activity.
We have not tackled the issue of selecting the causal spatio-
temporal neighborhood structure. As far, note that there are
unfortunately no labeled video databases and protocols avail-
able in order to carry out objective performance comparisons
between di�erent methods in the �eld of content-based video
indexing and retrieval.

However, in order to evaluate the inuence of the choice of
the neighborhood structure on the achieved global motion char-
acterization, we addressed a di�erent motion recognition task
in another work [16]. In that case, a ground-truth was available
to compute rates of correct and false classi�cation, and we were
able to compare statistical motion activity models associated
with di�erent neighborhood structures. We refer the reader to
[16] for further details on these experiments. For the consid-
ered motion recognition task, spatio-temporal neighborhoods
�5 and �9 did not bring substantial improvements compared to
the simple temporal model, while the latter is far less complex
and time consuming regarding the computation of likelihood
functions and the ML model estimation.

VIII. Conclusion

We have described an original method for the global charac-
terization of motion content in video sequences, which is able to
handle a very large range of dynamic scene contents. We rely on
a statistical modeling of the distribution of local motion-related
measurements using non-parametric causal Gibbs distribution
�tted at the ML sense. In addition, we have designed an eÆcient
model complexity reduction scheme based on likelihood ratios.
This statistical modeling leads to a general statistical framework
for motion-based hierarchical classi�cation of a video database
and motion-based retrieval with query-by-example according to
the MAP criterion.

In future work, we plan to validate our approach on a larger
video database. In that context, as pointed out in [11], the
hierarchical indexing structure can be regarded as a relevant
alternative to retrieval with query-by-example, since it allows
users to navigate the database according to their interest. Mul-
tiscale causal Gibbs model will be also investigated. Ongoing
work aims at using this novel approach of motion modeling and
characterization to automatically segment entities of interest in
the shot and to satisfy partial queries [18]. It could also be use-
ful to extract shots of interest in video sequences with a view
to creating video summaries.
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Video query 1 1streply 2ndreply 3rd reply

LF = �0:664 LF = �0:667 LF = �0:673
D = 0:004 D = 0:007 D = 0:009

Video query 2 1streply 2ndreply 3rd reply

LF = �1:052 LF = �1:054 LF = �1:057
D = 0:008 D = 0:012 D = 0:016

Video query 3 1streply 2ndreply 3rd reply

LF = �1:411 LF = �1:414 LF = �1:419
D = 0:008 D = 0:014 D = 0:015

Video query 4 1streply 2ndreply 3rd reply

LF = �2:125 LF = �2:126 LF = �2:131
D = 0:008 D = 0:008 D = 0:009

Fig. 5. Results of retrieval operations involving three replies. For each reply n, we give the value LF of the log-likelihood ln (PMn (xq))

corresponding to video query q. To evaluate a posteriori the relevance of the replies, we have also estimated the model Mq associated to the

query q and we report the values of the distance DKL(n; q), given by relation (33) between Mq and the di�erent retrieved models Mn.

number of

samples
I II III IV

I 19 100 % 0 % 0 % 0 %

II 18 0 % 89 % 11 % 0 %

III 71 0 % 1 % 94 % 5 %

IV 6 0 % 0 % 0 % 100 %

TABLE I

Tab. I. Evaluation of the performance of the retrieval system w.r.t. an a priori classi�cation of the video base of 150 elements. Class (I) refers

to low motion activity, class (II) to rigid motion situations, class (III) to wide-angle shots and close shots of sport videos, class (IV) to

temporal texture samples. We supply the classi�cation rates for the second retrieved answer obtained when considering in turn each element of

the database as a query. For instance, within the 18 elements of class II, 89% and 11% were respectively assigned to classes (II) and (IV).
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Appendix

I. Approximation of Kullback-Leibler divergence

In this appendix, we give details of a Monte-Carlo approxi-
mation of the KL divergence (39). Considering two probability
distributions � and �0, the Kullback-Leibler (KL) divergence
KL(�k�0) is de�ned by:

KL(�k�0) =

Z
ln

�

�0
d�: (39)

It can be viewed as the expectation of the log-likelihood ra-
tio ln (�=�0) w.r.t. distribution �. In our case, if we consider
an element n of the processed video database, the sequence
of motion-related quantities xn represents a sample associated
with the distribution modeled byMn. More precisely, for each
(k; p) 2 [1; K] �R, the transition probability from xnk�1(�p) to
xnk (p) is governed by the causal Gibbs model Mn. If we con-
sider two elements n1 and n2 of the video database, their asso-
ciated models Mn1 and Mn2 , and the sequences of computed
motion-related quantities xn1 and xn2 , then, the KL divergence
KL(Mn1kMn2) is approximated as the average of the log-ratio
of the transitions probabilities from xnk�1(�p) to x

n
k(p) computed

respectively w.r.t. Mn1 andMn2 :

KL(Mn1kMn2) �
1

KjRj

KX
k=1

X
p2R

ln

 
PMn1

�
xn1k (p)jxn1k�1(�p)

�
PMn2

�
xn1k (p)jxn1k�1(�p)

�!:
(40)

Due to the causal nature of the model, it comes to approximate
the KL divergence KL(Mn1kMn2) by the log-ratios of the like-
lihoods of the sequence of motion-related quantities xn1 under
modelsMn1 andMn2 respectively:

KL(Mn1kMn2 ) �
1

KjRj
ln

�
PMn1 (xn1)

PMn2 (xn1)

�
:

(41)

Using the exponential formulation of law PM, we then obtain
relation (31).
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