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ABSTRACT
We present a generalized differential image motion monitor (GDIMM). It is a compact
instrument dedicated to the measurement of four parameters of optical turbulence: seeing,
isoplanatic angle, coherence time and wavefront coherence outer scale. The GDIMM is based
on a small telescope (28 cm diameter) equipped with a three-hole mask at its entrance pupil. The
instrument is fully automatic, and performs continuous monitoring of turbulence parameters
at the Calern Observatory (France). This paper gives a description of the instrument, data
processing and error budget. We also present statistics of three and a half years of monitoring
of turbulence parameters above the Calern Observatory.

Key words: instrumentation: high angular resolution – atmospheric effects – site-testing .

1 IN T RO D U C T I O N

Atmospheric turbulence is responsible for the degradation of astro-
nomical images observed through the atmosphere. Since the early
1970s, many techniques have been developed to achieve diffraction-
limited resolution of observing instruments, namely speckle inter-
ferometry (Labeyrie 1970), long-baseline interferometry (Labeyrie
1975) and adaptive optics (Rousset et al. 1990). The performance
of these techniques relies on good knowledge of atmospheric
turbulence parameters, i.e. the seeing ε0, the isoplanatic angle θ0,
the coherence time τ 0 and the outer scale L0.

The three parameters ε0, θ0 and τ 0 are of fundamental importance
for adative optics (AO) correction: a large coherence time reduces
the delay error, a small seeing value allows the loop to be closed
easily and benefits from a rather good correction, and a large
isoplanatic angle reduces the anisoplanatic error, enlarges the sky
coverage and allows very wide fields of correction (see Carbillet
et al. 2017 and references therein). The outer scale L0 has a
significant effect for large-diameter telescopes (8 m and above) and
impacts low Zernike modes such as tip-tilt (Winker 1991).

For several years, our group has been developing original tech-
niques and instrumentation for measuring the optical turbulence
of the atmosphere. Several prototypes have been developed in
the past, such as the generalized seeing monitor (GSM, Ziad
et al. 2000), which has become a reference for monitoring the
coherence parameters of the wavefront at ground level. Over the last
15 years the GSM has been used in a large number of astronomical
observatories and for prospecting potential new sites (see Ziad et al.
2000 and references therein).

� E-mail: Eric.Aristidi@unice.fr

The generalized differential image motion monitor (GDIMM)
was proposed in 2014 (Aristidi et al. 2014) to replace the aging
GSM. It is a compact instrument very similar to a DIMM (Sarazin &
Roddier 1990), with three sub-apertures of different diameters. The
GDIMM observes bright single stars up to magnitude V ∼ 2, at
zenith distances up to 30◦, which is enough to ensure observability
at any time or night of the year.

After a period of development and tests in 2013–2015, the
GDIMM has been operational since the end of 2015, as a part of the
Calern Atmospheric Turbulence Station (CATS) (Côte d’Azur Ob-
servatory – Calern site, France, UAI code: 010, latitude 43◦45′13′′ N,
longitude 06◦55′22′′ E). The GDIMM provides continuous moni-
toring of four turbulence parameters (ε0, θ0, τ 0 and L0) above
the Calern Observatory. Data are displayed in real time through a
website (cats.oca.eu), the idea being to provide a service available to
all observers at Calern, as well as building a database to make long-
term statistics of turbulence (before CATS, no such database existed
for this site, despite its 40 years of activity as an astronomical site).
The other objective is for Calern to become an operational on-sky
test platform for the validation of new concepts and components
in order to overcome current limitations of high angular resolution
(HRA) existing systems. Several activities regarding adaptive optics
are operated at the MéO (Samain et al. 2008) and C2PU (Bendjoya
et al. 2012) telescopes and they benefit from the data given by the
CATS station.

This paper is organized as follows: Section 2 describes the
instrument. Sections 3 to 6 present the method used to derive
each parameter (seeing, isoplanatic angle, coherence time and outer
scale) and the associated error budget. Section 7 is devoted to results
obtained at the Calern observatory. A final discussion is presented
in Section 8.

C© 2019 The Author(s)
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2 INSTRUMENT D ESCRIPTION

The GDIMM is based on a commercial Celestron C11 telescope
(diameter 28 cm), driven by an equatorial mount Astro-Physics
AP900, controlled remotely by a computer. It is equipped with
a pupil mask made of three sub-pupils (Fig. 1, left). Two sub-pupils
are circular with a diameter D1 = 6 cm, separated by a distance B =
20 cm along the declination axis. Both are equipped with a glass
prism oriented to give opposite tilts to the incident light. The third
sub-aperture is circular, with diameter D3 = 10 cm and a central
obstruction of 4 cm and was designed to estimate the isoplanatic
angle. It is protected by a glass parallel plate. A wide-field finder
with a webcam is used to point to stars and centre them on the
telescope.

The main camera is a Prosilica EC650. It offers good sensitivity
in the visible domain with a peak near the wavelength λ = 500 nm.
The pixel size is 7.4μm. A Barlow lens enlarges the telescope focal
to meet sampling requirements (we have λ/D1 = 7 pixels and λ/D3 =
4 pixels for λ = 500 nm). The camera allows short exposure times
and region-of-interest (ROI) definition to increase the frame rate.
An exposure time of a few milliseconds is required to observe stars
of magnitude V < 2 with sufficient signal-to-noise ratio (SNR). The
frame rate is limited by the hardware; it is about 100 frames per
second for our observations. Such a high cadence is mandatory to
properly sample the temporal variability of angles of arrival (AA)
and to estimate the coherence time (see Section 5.2).

An example of a GDIMM short-exposure image is shown on
Fig. 2. It was obtained at Calern Observatory on 2018 April 4
at 20:55 UT on the star Regulus (α Leo, magnitude V = 1.4).
The exposure time was 10 ms for this image. The central spot
corresponds to sub-pupil 3 (diameter 10 cm); it is brighter than
the other two, as expected. The first Airy ring is visible around the
central spot: the seeing was ε0 = 1.3 arcsec for the wavelength λ =
500 nm (Fried diameter r0 = 8 cm, close to the pupil diameter).
The image quality can be checked by computing the Strehl ratio of
sub-images, using a simple formula proposed by Tokovinin (2002).
It is generally assumed that image quality is good when the Strehl
ratio is over 30 per cent (this corresponds to phase distortions lower
than λ/5 over the pupil surface). For this example the three Strehl
ratios are 0.79, 0.83 and 0.36 for spots corresponding to sub-pupils
1, 2 and 3.

The acquisition software is written in C++/QT. It drives the
whole observing sequence: dome opening, choice of target star,
telescope pointing, image acquisition, computation of turbulence
parameters. The instrument is now fully automatic. It uses informa-
tion from a meteorological station and an all-sky camera to check
observability. Observations are stopped if conditions deteriorate.

The GDIMM is placed on the top of a 4 m high concrete pillar,
and protected by an all-sky dome (Fig. 1, right). A more detailed
description is given in previous papers (Aristidi et al. 2014; Ziad
et al. 2017; Ziad et al. 2018b; Aristidi et al. 2018).

2.1 Data processing

GDIMM data are based on sequences of two successive sets of N =
1024 frames of a bright star, taken at exposure times T = 5 ms and
2T = 10 ms. The full image size is 659 × 493 pixels. Every frame
contains three sub-images of the star, corresponding to the three
sub-pupils of the instrument (see Fig. 2). Images are cropped in a
rectangular zone (the ROI) of size 380 × 150 pixels containing the
three stellar spots. This allows a cadence of 100 frames per second
to be attained. After sky background removal and thresholding, we

calculate the three photocentres and integrated intensities. These
raw data are logged into a file for optional further processing. A
series of filters is then applied to control the data quality:

(i) Sub-image detection is made in three square boxes (size
30 × 30 pixels for lateral spots corresponding to pupils 1 and
2, 45 × 45 pixels for the central spot, pupil 3) whose position
is calculated on the first frame of the sequence. Sub-images for
which the photocentre is too close to the box edge are rejected (this
happens in cases of strong wind or mount drift).

(ii) Outlier detection and rejection is made on photocentre
coordinates and intensities.

(iii) Sub-images corresponding to pupil 3 (diameter D3 = 10 cm)
must be brighter than sub-images of pupils 1 and 2 (diameter D1 =
6 cm). They are rejected if this is not the case.

(iv) Drift correction is applied by removing a linear trend on
photocentre time series.

The four turbulence parameters are then calculated (a detailed de-
scription is given hereafter). The whole process (acquisition + pro-
cessing) takes less than one minute. The GDIMM provides one set
of turbulence parameters every 2 min; they are sent to a database for
real-time display on the CATS website (cats.oca.eu). Note that there
is some dead time between two successive acquisitions to match this
cadence of 2 min. We made this choice regarding the characteristic
time of evolution of parameters, which is a few minutes (see Ziad
2016 and references therein). If we suppress the dead time, we can
have a parameter quadruplet per minute with our current hardware.
Some tests are currently being made to see if the parameter stability
can ben improved, especially for the outer-scale estimation.

3 SEEI NG MEASUREMENTS

3.1 Theory

Seeing estimations by the GDIMM are based on differential motion.
The principle of seeing estimation is well known (Sarazin & Roddier
1990). It is based on variances of the photocentre difference of
images produced by sub-pupils 1 and 2 (Fig. 1, left). The seeing ε0

(in radians) is computed using the following formulae (Tokovinin
2002):

ε0,l|t = 0.98

(
D

λ

)0.2
(

σ 2
l|t

Kl|t

)0.6

(1)

with

Kl = 0.364 (1 − 0.532b−1/3)

Kt = 0.364 (1 − 0.798b−1/3) (2)

where B is the distance between the sub-apertures, D their diameter,
b = B/D, and λ the wavelength, traditionally set to 500 nm as a stan-
dard. σ 2

l|t are the longitudinal and transverse differential variances,
calculated at the zenith (the correction is σ 2(z = 0) = σ 2(z) cos(z)
with z the zenithal angle). Two estimations of the seeing are obtained
for a given sequence; they are supposed to be almost identical
(isotropic hypothesis) and are averaged.

Differential variances (longitudinal and transverse) σ 2
l|t,T and

σ 2
l|t,2T are calculated for sets corresponding to exposure times T and

2T. They are compensated from the finite exposure T time using an
exponential interpolation as proposed by Tokovinin (2002):

σ 2
l|t = (σ 2

l|t,T )n (σ 2
l|t,2T )1−n. (3)
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Generalized differential image motion monitor 917

Figure 1. Left: the pupil mask of the GDIMM (bottom part is a sectional view). Right: the GDIMM dome on its 4 m high tower at Calern Observatory.

Figure 2. Top: GDIMM instantaneous image, taken on 2018 April 4, 20:55
UT, of the star Regulus (α Leo) with an exposure time of 10 ms. Bottom: 1D
projection of the image (sum of lines).

This correction increase variances by a factor of the order of
10–20 per cent. Two values of the seeing ε0, l|t are deduced from
equation (1) and averaged.

3.2 Error analysis

3.2.1 Statistical error

The variance of image motion at exposure times T and 2T is
computed from samples of N = 1024 individual frames: they
are then affected by statistical noise due to the finite size of the
sample. Assuming statistical independence between the frames, the
statistical error on the variance σ 2 (both at exposure times T and
2T) is given by (Frieden 1983)

δσ 2

σ 2
=

√
2

N − 1
, (4)

which propagates on to the seeing an error contribution δε0. With
1024 independent frames we have δσ 2

σ 2 = 4.4 per cent. The error
on the seeing is calculated from equations (1) and (3) and gives
δε0
ε0

� 5 per cent. This is the main source of uncertainty in our seeing
estimations.

3.2.2 Scale error

Differential variances are obtained in units of square pixels and
require calibration of the pixel size. This is done by making image
sequences of the binary star β Cyg AB (separation 34.6 arcsec). We
measured a pixel scale of ξ = 0.242 ± 0.003 arcsec.

The uncertainty on ξ propagates into the differential variances
when the conversion from pixels into arcsec is performed. It gives a
relative contribution on the differential variances δσ 2

σ 2 = 0.6 per cent
and on the seeing δε0

ε0
= 0.4 per cent.

The scale calibration has to be done regularly: the telescope
tube is subject to thermal dilatations that result in slight variations
δF of the focal length F, especially during the transition between
the summer and the winter. We measured relative variations δF

F
�

1 per cent, leading to a relative uncertainty δε0
ε0

� 1 per cent on the
seeing. This remains lower than the statistical error.

3.2.3 Background noise

The sky background is an additive Poisson noise independent of the
stellar signal. Its influence on DIMM data is discussed in Tokovinin
(2002). It biases the computed differential variances by a term

σ 2
B = 2

B2

I 2

∑
window

(xij − x̄)2 (5)

where I is the total stellar flux, B is the sky background standard
deviation and xij the coordinates of contributing pixels (the number
of illuminated pixels in the star image is typically of the order
of 300 after thresholding and that defines the ‘window’ over
which the summation is made). With our data, the bias term is
σ 2

B � 10−2 pixel2, giving a relative error δσ 2

σ 2 = 0.2 per cent. This is
negligible compared to the statistical error.
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918 E. Aristidi et al.

Other instrumental noises include the readout noise of the CCD,
and the error on the centroid determination. These errors have been
studied in detail in the past (see Ziad et al. 1994 and references
therein) and have a very small contribution, orders of magnitude
below the statistical error.

4 ISOPLANATIC ANGLE MEASUREMENTS

4.1 Theory

The isoplanatic angle θ0 is estimated from the scintillation of a
single star observed through sub-pupil 3, with a diameter of 10 cm
and a central obstruction of 4 cm (Fig. 1, left). The scintillation
index is the ratio of the variance σ 2

I of the stellar intensity, divided
by the square of its mean value Ī :

s = σ 2
I

Ī 2
. (6)

The principle of the calculation is based on the similarity of the
theoretical expressions of θ0 and the scintillation index s (Loos &
Hogge 1979; Ziad et al. 2000). θ0 is obtained (in arcsec) for a
wavelength λ = 500 nm by the following formula:

θ
−5/3
0 = A s (7)

where A = 14.87 is computed numerically from equations (19)
and (21) of Ziad et al. (2000) using the value h0 = 10 km. The
scintillation index s is corrected from the zenithal distance z by the
formula s(z = 0) = s(z) cos(z)8/3.

Simultaneous measurements of the seeing and the isoplanatic
angle make it possible to derive the equivalent turbulence altitude
defined by Roddier, Gilli & Vernin (1982) as

h̄ = 0.31
r0

θ0
(8)

with r0 = 0.98 λ
ε0

the Fried parameter. Statistics for h̄ at Calern are
presented in Section 7.

4.2 Isoplanatic angle estimation

Scintillation indexes (sub-image corresponding to pupil 3) sT and
s2T are calculated for sets corresponding to exposure times T and
2T. These sets are composed of N = 1024 images, representing
about 10 s of data. This integration time appears to be long enough
for the scintillation index to converge. To check this, we recorded
long data sequences (up to 4000) of images and calculated the
scintillation index for integration times varying from 0 to 40 s.
The result is shown in Fig. 3 for three different sets taken at
Calern on the night of 2018 March 19. Scintillation indexes show
satisfactory convergence (below 2 per cent) after 10 s of integration
time.

Compensation from the finite exposure time is made by linear
extrapolation on scintillation indexes as proposed by Ziad et al.
(2000):

s = 2sT − s2T . (9)

This compensation is more critical on the scintillation than on the
differential variances. The correction can be of the order of 30–
50 per cent. The isoplanatic angle is then derived from equation (7).

Figure 3. Scintillation index as a function of the integration time for three
different data sets taken at Calern on the night of 2018 March 19. The
horizontal axis is limited to the range 0–15 s.

4.3 Error analysis

4.3.1 Statistical error

The isoplanatic angle is estimated from the scintillation index s via
equation (6). Two estimates sT and s2T are made, corresponding to
exposure times T and 2T, and combined to obtain the scintillation
index corrected from the exposure time effects (equation 9). The
error on sT (as for s2T) is

δsT

sT

= δσ 2
I

σ 2
I

+ 2
δĪ

Ī
. (10)

If we assume statistical independence between frames, the first term
is the same as that for the seeing and the second is 2√

N
. We get

δsT

sT

=
√

2

N − 1
+ 2√

N
� 10 per cent. (11)

However, in cases of slow wind speed in the upper atmosphere (the
major contributor to scintillation) the number of independent frames
within an image cube is reduced to a number NI < N and we must
replace N by NI in the previous equation. An order of magnitude of
NI is given by the ratio

NI = Nte

D3/v
(12)

where D3 is the diameter of the sub-pupil 3, Nte the integration
time (10 s at a frame rate of 100 Hz) and v the wind speed of
atmospheric layers contributing to the scintillation (high altitude
layers). We do not know v, but we can have its order of magnitude
by looking at the distribution of the effective wind speed v̄ defined
in equation (16). At Calern observatory, the distribution is bimodal
(as shown in Fig. 11) and high layers have a speed of the order of
13 m s−1. Taking this value for v, we obtain NI � 1300, which is
the same order of magnitude as the number N of frames in a data
cube. Using equation (9), we obtain the relative statistical error on
the zero exposure time scintillation index:

δs

s
� 15 per cent. (13)

There is another error source depending on the constant A in
equation (7). A is indeed a function of an altitude parameter h0

defined in equation (21) of Ziad et al. (2000). The relation A(h0) is
a function of the pupil geometry and is analytic. Its dependence on
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Generalized differential image motion monitor 919

h0 remains weak; we found the relative error

δA

A
� 5 per cent (14)

in the range h0 ∈ [1, 25] km. The relative statistical error on the
isoplanatic angle is

δθ0

θ0
= 3

5

δA

A
+ 3

5

δs

s
� 15 per cent. (15)

4.3.2 Sky background

The presence of a sky background on individual images introduces
a bias on the estimation of the mean stellar intensity Ī , its standard
deviation σ I and then on the scintillation index s. The observed
background on our images is typically 40 ADU pixel-1. Its relative
contribution to the stellar flux (integrated on the star image)
represents about 30 per cent for bright stars such as Deneb (α Cyg,
magnitude V = 1.2) observed by the GDIMM. To estimate the bias,
let us introduce the following variables:

(i) B, the background intensity collected over the NI pixels
illuminated by the star after threshold application, B̄ and σ 2

B its
mean and variance. B is a Poisson random variable; it must satisfy
σB =

√
B̄, which has been well verified on images.

(ii) It, the total intensity (background + stellar flux) collected
over the NI pixels.

The stellar flux is given by I = It − B, the measure being It. The
mean Ī is biased by the term B̄. This bias is estimated and removed
as indicated above, but the background fluctuations lead to an error
δI on the estimation of Ī equal to δI = σB �

√
B̄. Similarly, the

intensity variance σ 2
I is biased by a term σ 2

B .
The error on the scintillation index is calculated from equa-

tion (10) taking δσ 2
I = σ 2

B (bias on intensity variance) and δĪ = σB .
Typical values are, in ADU: σ B � 240, Ī � 100 000, σI � 30 000.
That gives a background error on the scintillation index δs

s
≤

1 per cent, which is an order of magnitude below the statistical
error.

5 C O H E R E N C E T I M E ME A S U R E M E N T S

5.1 Theory

The coherence time τ 0 relevant for AO applications is defined by
Roddier (1981):

τ0 = 0.31
r0

v̄
(16)

where v̄, the effective wind speed, is a weighted average of the
wind speed on the whole atmosphere. It can be estimated (Ziad
et al. 2012; Aristidi et al. 2014; Ziad et al. 2017) from the temporal
structure functions Dx|y(τ ) of the AA in the x (resp. y) direction
(parallel to the declination (resp. right ascension)). This function
is zero for τ = 0 and saturates to a value Ds for large τ , and its
characteristic time

D(τAA,x|y) = Ds

e
(17)

defines the decorrelation time of AA fluctuations in directions x
and y. To calculate the effective wind speed v̄, we make use of
the work by Conan et al. (2000) and Ziad et al. (2012) who gave
two approximations of v̄ (in m s−1) corresponding to two different
regimes:

(i) For τAA,x|y > D
v̄

:

v̄ = 103D G−3

[
τ

1
3

AA,x + τ
1
3

AA,y

]−3

(18)

where D is the sub-pupil diameter and G a constant (Conan et al.
2000):

G= (1−e−1)(3.001 K
1
3 +1.286 K

7
3 )+e−1(2.882 + 1.628 K2)

0.411 + 0.188 K2

(19)

with K = πD
L0

. This case is met almost all the time with small pupils
like the GDIMM ones.

(ii) For τAA,x|y < D
v̄

(this case was never observed with our data):

v̄ = D
√

G1

2

[
τ−2

AA,x + τ−2
AA,y

] 1
2 (20)

with

G1 = 2.62

e

(
1 − 1.04 K

1
3 + 0.57 K2 − 0.45 K7/3

)
. (21)

We obtain three values of v̄ for the three sub-pupils, which are
averaged. The coherence time τ 0 is eventually calculated from r0

and v̄ using equation (16).

5.2 Coherence time estimation

We remarked that the frame rate (100 frame s-1) is slightly variable:
the first operation is then to resample time series of photocentre
coordinates with a constant time step δt (after some trials, we chose
δt = 5 ms). 12 structure functions D(τ ) are computed for the 12
photocentre series (two coordinates for three sub-images, and two
frame sets for exposure times T and 2T) using the direct expression

Dx|y(τ ) = 〈[x|y(t) − x|y(t + τ )]2〉 (22)

where 〈〉 stands for ensemble average over the N = 1024 frames.
Structure functions are compensated from a finite exposure time
using the same method as for the seeing:

Dx|y(τ ) = Dx|y,T (τ )n Dx|y,2T (τ )1−n (23)

where Dx|y, T and Dx|y, 2T are calculated on image cubes taken with
exposure times of T and 2T, and n = 1.75. An example of structure
functions is shown in Fig. 4. Curves correspond to the x-axis
(declination) and are divided by their respective saturation value
Ds. One can see that saturation is attained after 0.3–0.4s, and that
there are some fluctuations of Dx(τ ) in the saturation regime. These
fluctuations are the main source of uncertainty in the determination
of τAA, as discussed in Section 5.3. The graph on the right is an
enlargement for small values of τ : curves intersect with the line
Dx (τ )
Ds

= 1
e

at τAA, 1 = 9.5 ms, τAA, 2 = 8.8 ms and τAA, 3 = 6.1 ms.
For each sub-pupil, the effective wind speed v̄ is calculated from

equation (18). The three values of v̄ are then averaged.

5.3 Error analysis

The coherence time is deduced from the AA decorrelation time τAA

defined by equation (17). To calculate the error on τAA, we express
the finite difference

δD0(τ ) � D′
0(τ ) δτ (24)

where D0(τ ) = D(τ )
e

is the normalized structure function and D′
0(τ )

the derivative of D0. Then, it is possible to estimate the error δτ at
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920 E. Aristidi et al.

Figure 4. Example of normalized structure functions of AA fluctuations along the x-axis, calculated for the three sub-pupils (and compensated from exposure
time). Left: structure functions Dx (τ )

Ds
divided by their saturation value. Right: enlargement for τ ∈ [0, 25] ms. The three curves intersect the line Dx (τ )

Ds
= 1

e

(brown dashed line) at τ = τAA (circles).

Table 1. Relative errors on the estimation of the AA decorrelation time for
the three sub-pupils and the two directions.

sub-pup. 1 sub-pup. 2 sub-pup. 3
x y x y x y

τ
τAA

29% 35% 29% 37% 27% 27%

τ = τAA:

δτ = D0

D′
0(τAA)

. (25)

The error on D0 can be estimated as the standard deviation of
the structure function in the saturation zone; typical values are
10 per cent to 20 per cent. The derivative D′

0(τAA) can be estimated
by the slope of the structure function at τ = τAA. Errors on on
τAA were calculated for each of the six structure functions, for a
three-month data sample. We found a typical error of ∼30 per cent.
Relative errors on τAA, x|y for each sub-pupil are summarized in
Table 1.

The error on τAA propagates to the effective wind speed, giving a
contribution δv, τ to the uncertainty on v̄, obtained by differentiation
of equation (18). For a relative error of 30 per cent on τAA, this
contribution δv, τ is of 10 per cent (for τAA = 6 ms) to 20 per cent
(for τAA = 24 ms).

In addition, the effective wind speed v̄ calculated from equa-
tion (18) needs an estimate of the outer scale L0. However,
as discussed in Section 6.3, the outer scale is strongly filtered
and a measurement is not always available. In this case the
standard value L0 = 20 m is used. This results in a bias δv, L

on the effective wind speed. This bias remains below 20 per cent
for outer scales L0 ∈ [10, 40] m, which covers the majority of
the situations on traditional sites. Combining these two contri-
butions, the relative uncertainty on v̄ is then δv

v̄
� 20 per cent to

30 per cent.
The error δτ0 on the coherence time τ 0 is obtained from

equation (16):

δτ0

τ0
= δε0

ε0
+ δv

v̄
� 25 per cent to 35 per cent. (26)

6 O UTER-SCALE MEASUREMENTS

6.1 Theory

The outer scale is, among the four turbulence parameters measured
by the GDIMM, the most difficult to estimate with a small
instrument. In previous papers (Ziad et al. 1994; Aristidi et al. 2014)
we proposed to make use of variances of the absolute motions of
sub-images to estimate the outer scale L0. These absolute variances
(in square radians) are given by (Ziad et al. 1994)

σ 2
D = 0.17 λ2r

−5/3
0 (D−1/3 − 1.525L−1/3

0 ). (27)

Because of telescope vibrations, direct estimation of L0 from
absolute variances using equation (27) is not reliable. Our first idea,
following the work by Ziad et al. (1994), was to use the inverse
relative difference of variances measured with sub-pupils 1 (or 2)
and 3 (diameters 6 cm and 10 cm), i.e.

R = σ 2
D1

σ 2
D1

− σ 2
D3

= D
−1/3
1 − 1.525L−1/3

0

D
−1/3
1 − D

−1/3
3

. (28)

But with our values for D1 and D3, the variation is weak for
decametric values of L0, as illustrated by Fig. 5 and Table 2.
We have 1/R = 0.216 for L0 = 10 m and 0.200 for L0 = 20 m.
To extract reliable L0 from this estimator, we need high precision
on variances (about 1 per cent), which is not the case (the statistical
error on variances is of the order of 5 per cent, as discussed in
Section 3.2, and there is some bias from telescope vibration).

We then looked for another estimator for L0, and found that it
was possible to use the ratio of absolute to differential variances of
image motion:

Qi = σ 2
Di

σ 2
l|t

(29)

where σ 2
Di

is the absolute variance corresponding to the sub-pupil
i, and σ 2

l|t the longitudinal or transverse differential variance used
to calculate the seeing (equation 1). This gives two expressions for
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Generalized differential image motion monitor 921

Figure 5. Outer-scale estimators: 1/R (equation 28) and Qi, l|t (equation 30)
as a function of L0.

Table 2. Value of ratios 1/R (equation 28) and Qi, l|t
(equation 30) for L0 = 10 m and L0 = 20 m. Column
4 is the required precision on variances to discriminate
between the two values of L0.

L0 = 10m
L0 =
20 m

Required precision
on variances

1/R 0.216 0.200 1%
Q1, l 0.520 0.560 4%
Q1, t 0.725 0.782 4%
Q3, l 0.407 0.448 5%
Q3, t 0.578 0.625 5%

the ratios Qi:

Qi,t = σ 2
Di

σ 2
t

= 0.17
D

−1/3
i − 1.525L−1/3

0

0.364D
−1/3
1 − 0.2905B−1/3

Qi,l = σ 2
Di

σ 2
l

= 0.17
D

−1/3
i − 1.525L−1/3

0

0.364D
−1/3
1 − 0.1904B−1/3

.

(30)

Using absolute variances from the three sub-pupils, we get six
estimations of L0, from which we take the median value. Note
that the absolute variance at the numerator of equation (29) may
be contaminated by telescope vibrations. Hence we use only the x
direction (declination axis) to compute absolute variances to reduce
oscillations from the motor of the mount. Fig. 5 shows the variation
of ratios 1/R and Qi, l|t as a function of L0. All estimators have
weak dependence with decametric L0, but the ratios Qi are a little
more sensitive. In Table 2 we computed the expected Qi ratios for
L0 = 10 m and L0 = 20 m, and the required precision on variances
to discriminate between the two values of L0. We found that this
required precision is 4–5 per cent for the ratios Qi, while it was
1 per cent for the ratio R.

Note that this estimator uses ratios of variances and is therefore
independent of scale calibration. Also, we can remark that it is not
necessary to have pupils of different diameters; the method should
work with any DIMM or with a Shack–Hartmann (however, in
this case it will not be possible to filter data with the H invariants
presented hereafter).

Figure 6. Time series of variances observed at Calern on 2018 October 3.
Solid lines: absolute variance in the x direction (declination) for the three
sub-pupils. Dashed line: differential longitudinal variance σ 2

l between pupils
1 and 2. These variances were smoothed by a 10 min large sliding average.

6.1.1 H invariants

Combining equations (1) and (27), we calculated the following
ratios:

Ht = σ 2
Di

− σ 2
D3

σ 2
t

= 0.17(D−1/3
1 − D

−1/3
3 )

0.364D
−1/3
1 − 0.2905B−1/3

Hl = σ 2
Di

− σ 2
D3

σ 2
l

= 0.17(D−1/3
1 − D

−1/3
3 )

0.364D
−1/3
1 − 0.1904B−1/3

(31)

where i = 1, 2 refers to sub-pupil 1 or 2 (they have the same
diameter D1 = D2 = 6 cm). These ratios appear, at the first
order, to be independent of turbulence conditions, so we named
them ‘H invariants’. In fact this invariance is valid for large outer
scales (L0

Di
� 1). There is indeed a weak dependence of differential

variances σ 2
l|t with the outer scale (Ziad 1993). This dependence is

generally omitted in seeing estimations (equations 1 and 2). It can be
estimated using equations (5.4) and (5.8) of Conan et al. (2000). For
pupils of diameter of 6 cm, the effect of the outer scale on differential
variances is under 0.1 per cent for L0 > 10 m and over 3 per cent
for L0 < 1 m. The impact on H invariants is � 0.03 per cent for
L0 > 10 m and becomes greater than 2 per cent for L0 < 1 m (these
very low outer scales are nevertheless exceptional: at Calern they
correspond to less than 0.5 per cent of measured values).

Values of H corresponding to our instrument are

Ht = 0.1567 and Hl = 0.1128. (32)

These invariants are easy to calculate and can be used as a filter
to reject bad data (contaminated by telescope vibrations). More
discussion will be presented in Section 6.2.

6.2 Outer-scale estimation

Estimation of the outer scale requires absolute variances σ 2
Di

of
AA fluctuations for each pupil (in the x direction only). As for
differential variances used for seeing estimation, absolute variances
are calculated from each image cube, and corrected from exposure
time, following the same process as for differential variances
(equation 3). One obtains a set of absolute and differential variances
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922 E. Aristidi et al.

Figure 7. Histograms of invariants Hl (left) and Ht (right) for measured at Calern during the period 2018 August–October. Blue (resp. orange) bars correspond
to sub-pupil 1 (resp. 2). The vertical solid line is the theoretical value, and the two dashed lines are rejection thresholds.

Figure 8. Relative error on L0 as a function of L0 for different values of
Nv (number of averaged variances). The number of images in a sequence is
N = 1024.

every 2 min. To reduce noise, time series of variances (both absolute
and differential) are smoothed by a temporal sliding average. After
some trials, the width of the temporal window was set to 10 min,
leading to an average of five successive variances, reducing the error
by a factor

√
5 (see Section 6.3).

Fig. 6 shows an example of the evolution of these smoothed
variances for the night of 2018 October 3. Two things can be notices
on these curves:

(i) The variance σ 2
D3

corresponding to the sub-pupil 3 should be
smallest than σ 2

D1
according to equation (27). This is not always the

case; fluctuations are sometimes larger than the expected difference.
(ii) The differential variance σ l between sub-pupils 1 and 2 is

almost two times greater than the absolute variances. This is good
news: it means that the AA fluctuation signal is not dominated by
correlated vibrations due to the telescope mount.

The six ratios Q are calculated from equation (29) leading
to six estimations L0,i of the outer scale. Then, we calculate
invariants Hl|t (equation 31) to be used as a filter for bad data.
Histograms of H invariants obtained during a three-month period
(2018 August–October) are displayed in Fig. 7. They present a

peak for the theoretical value (Ht = 0.1567 and Hl = 0.1128),
and somewhat large dispersion around it. This dispersion results
mainly from contamination of variances by noise and/or telescope
vibrations (there is also a weak contribution due to the dependence
of Hl|t with the outer scale). After some trials, we decided to
reject data for which Hl|t > 0.25 or Hl|t < 0.05. That led to
rejection of about 70 per cent of the individual outer scales L0,i .
The final outer-scale value is the median of the remaining L0,i after
filtering.

6.3 Error analysis

The estimation of L0 is made from the ratios Qi by inverting
equation (30). The error δQ comes from errors on variances that
propagate to Qi via equation (29).

To increase accuracy, we perform a rolling average of measured
variances (they are calculated every 2 min) over time intervals of
T (set to T = 10 min), corresponding to an average of Nv = 5
individual variances, thus reducing the error by

√
Nv on variances.

The relative error δQ on Qi is expressed as

δQ

Qi

= 1√
Nv

(
δσ 2

Di

σ 2
Di

+ δσ 2
l|t

σ 2
l|t

)
. (33)

Taking only the statistical error on variances (they do indeed
dominate, as discussed in Section 3.2.1), we obtain δQ

Qi
� 5 per cent

for N = 1024 images and Nv = 5. The error δL0 on the outer scale
is obtained by the finite difference

δL0 = L′
0(Qi) δQ (34)

where the derivative L′
0(Qi) is calculated from equation (30). The

expected relative error δL0
L0

(due to the statistical error) is shown in
Fig. 8. Three curves are plotted for different values of Nv in the range
L0 ∈ [5, 50] m. Both show that low L0 values are estimated with
better precision. With Nv = 1 (no variance averaging) it is impossible
to obtain reliable values of L0 (relative error is ∼70 per cent for
L0 = 20 m). An average of at least Nv = 5 individual variances
is necessary to obtain acceptable error bars ( δL0

L0
� 30 per cent for

L0 = 20 m). The drawback is that one obtains estimations of L0

smoothed over time intervals 10 min with Nv = 5. This is greater
than the characteristic time of outer-scale fluctuations, whose value,
estimated by GSM, is of the order of 6 min (Ziad 2016).
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Generalized differential image motion monitor 923

Figure 9. Histograms of turbulence parameters at Calern, calculated at the wavelength λ = 0.5μm.

Figure 10. Left: seeing histogram for the summer (July–August). Right: seeing histogram for the winter (Nov–March). Superimposed curves are a least-squares
fit by a sum of two lognormal distributions (individual lognormal curves are dashed lines). The percentages corresponding to each lognormal distribution are
indicated in the legend.

The statistical error is not the only contribution to the total
uncertainty, especially for absolute variances that are contaminated
by vibrations. A measure of their effect on L0 can be made
from the remaining distribution of H invariants after filtering (see
Section 6.2). The thresholds on Hl|t to filter the data were obtained
as a trade-off between data quality and the number of variances
kept for outer-scale estimation. The remaining H distribution has a
dispersion H � 0.1 around the nominal value. This results in an
error L0 on the outer scale. To estimate it, we rewrite equation (31)
as

Hl|t = Qi,l|t − Q3,l|t (35)

so that

H � Qi,l|t + Q3,l|t � 0.1 (36)

corresponding to an uncertainty Qi, l|t � 0.05 on the ratios Q.
Writing

Qi,l|t = ∂Qi,l|t
∂L0

L0 (37)

and making use of equation (30) to calculate ∂Qi,l|t
∂L0

, we found that
the resulting relative error on L0 is of the order of 50 per cent for
L0 around 20m.

MNRAS 486, 915–925 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/486/1/915/5443136 by C
N

R
S - ISTO

 user on 30 M
ay 2023



924 E. Aristidi et al.

Figure 11. Histograms of the effective wind speed in winter (November–January). Superimposed curves are a least-squares fit by a sum of two lognormal
distributions. Left: summer histogram. Right: winter histogram.

Table 3. Statistics of turbulence parameters measured at Calern (at the
wavelength λ = 0.5μm) during the period 2015 June–2018 October.
Paranal, La Silla and Mauna Kea values are from the GSM database.

ε0 θ0 τ 0 L0 h̄ v̄

[arcsec] [arcsec] [ms] [m] [m] [m s−1]

Median 1.09 1.73 2.30 26.00 3436 12.84
Mean 1.23 1.86 3.10 37.14 3698 13.59
Std. dev. 0.52 0.65 1.80 29.20 1566 5.47
1st quartile 0.80 1.35 1.40 13.50 2504 9.24
3rd quartile 1.49 2.21 3.80 51.00 4618 16.74
1st centile 0.45 0.58 0.50 3.10 1121 3.03
Last centile 3.37 4.27 14.90 142.25 10 279 30.23
Paranal 0.81 2.45 2.24 22 3256 17.3
La Silla 1.64 1.25 1.46 25.5 3152 13.1
Mauna Kea 0.75 2.94 2.43 24 2931 17.2

We are currently working on improvements to the algorithm of
L0 calculation to find better metrics and to reduce the effect of
vibrations, an issue with small telescopes.

7 FIRST LONG-TERM G DIMM STATISTICS

A total of 70 097 turbulence parameter measurements (22 698
for L0) were collected at Calern observatory during the 3.5 yr
period from 2015 June to 2018 October. Half of the data were
obtained during the summer season (June to September) when
meteorological conditions are better. Statistics are presented in
Table 3 for the four turbulence parameters (ε0, θ0, τ 0, L0) and
for the equivalent turbulence altitude (equation 8) and the effective
wind speed (equation 16). Histograms are displayed in Fig. 9 and
show a classical lognormal shape for all parameters. Comparisons
with other astronomical sites in the world (examples for Paranal,
La Silla and Mauna Kea are given in Table 3) show that the Calern
plateau is an average site.

The seeing is slightly lower in summer; we measured a median
value of 0.96 arcsec in July and August (the median winter seeing
during the period November–January is 1.21 arcsec). As a conse-
quence, the median coherence time is higher in summer (3.2 ms in
July–August, 2.40 ms in November–January). The outer scale L0

has values similar to other sites such as Mauna Kea or La Silla.

Sequences of several hours of good seeing were sometimes
observed, which is a good point for this site (and already known by
‘old’ observers on interferometers during the 1980s and 1990s).
Fig. 10 displays seasonal seeing histograms, calculated for the
summer (July and August) and the winter (November–March).
They appear to be well modelled by a sum of two lognormal
functions (they appear as dashed curves on the plots; their sum
is the solid line). This is evidence of the existence of two regimes:
a ‘good seeing’ distribution with a median value ε1 and a ‘medium
seeing’ situation with a median value ε2. In summer, we have ε1 =
0.63 arcsec (the good seeing distribution contains 22 per cent of the
data) and ε2 = 0.95 arcsec (78 per cent of the data). In winter we
have ε1 = 0.66 arcsec (15 per cent of the data) and ε2 = 1.15 arcsec
(85 per cent of the data).

The equivalent turbulence altitude h̄ has a median value around
3 km, which is comparable to other classical sites. However, we
noticed a difference between the summer and the winter. During the
two months of July and August, the median value of h̄ was 3940 m,
while it is only 2870 m in winter (November to March). Situations
with a high value of h̄ correspond to less turbulence in the ground
layer, giving good seeing conditions as the ground layer is the main
contributor to the total seeing.

As for the seeing, the effective wind speed histograms (Fig. 11)
are bimodal and can be modelled by the sum of two lognormal
functions. They peak at v̄1 = 6.7 m s−1 and v̄2 = 13 m s−1 for both
the summer and the winter. They contain respectively 32 per cent
and 68 per cent of the data in summer; these proportions go to
53 per cent and 47 per cent in winter. The value v̄1 = 6.7 m is indeed
close to the median ground wind speed vG = 5.7 m s−1 measured
by the meteorological station.

8 C O N C L U S I O N S

We have presented the GDIMM, a new turbulence monitor aiming
to measure the four integrated parameters of optical turbulence.
The GDIMM is a small instrument, easy to transport to make
measurements at any site in the world, and was designed to
provide monitoring of the four integrated parameters of atmospheric
turbulence, i.e. seeing, isoplanatic angle, coherence time and outer
scale.

Seeing measurements are given by differential motion, according
to a well established theory and to an instrumental concept that
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Generalized differential image motion monitor 925

makes them robust to telescope vibrations (Sarazin & Roddier 1990;
Vernin & Munoz-Tunon 1995). Isoplanatic angle measurements are
made via scintillation, again following a well known technique
(Loos & Hogge 1979), which has become popular thanks to its
simplicity. It appears to give satisfactory results when compared
to other techniques (Ziad et al. 2018a). We indeed used these two
techniques intensively to measure ε0 and θ0 during the campaigns
of site testing of the site of Dome C in Antarctica (see Aristidi 2012
and references therein).

The method for estimating the coherence time from the decorre-
lation time of AA fluctuations is recent. It was proposed a few years
ago (Ziad et al. 2012) and is based upon analytical developments
by Conan et al. (2000). First tests on reprocessed GSM data and
comparisons with radio soundings (Ziad et al. 2012) showed the
pertinence of the method. The instrumental concept is simple,
compared to other monitors such as the Multi-Aperture Scintillation
Sensor (MASS-DIMM, Kornilov et al. 2007); the only requirement
is to have a camera allowing a high frame rate (at least 100 frames
per second) to properly sample the AA decorrelation time. After
GSM in the past, the GDIMM is now, to our knowledge, the first
monitor to use this method routinely to calculate τ 0. A true asset
of the GDIMM is the possibility of measuring the outer scale.
In particular, obtaining reliable values of L0 is a challenge with
small instruments, and this parameter is often neglected, though
it has a strong impact on high angular resolution techniques,
especially for extremely large telescopes (see the recent review
by Ziad 2016). We have proposed here a method based on the
ratios of absolute to differential motions. It is simple and can work
with any DIMM or Shack–Hartmann-based monitor, but requires
good stability of the telescope mount since it is sensitive to
vibrations.

A portable version of the GDIMM has been developed in
parallel with the Calern one, to perform turbulence measure-
ments at any site in the world. Discussions with the ESO
(European Southern Observatory) are currently in progress to
make GDIMM and PML observations at Paranal and compare
them with the ESO Astronomical Site Monitor (Chiozzi et al.
2016).
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