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Abstract. We present an original approach for motion-based video retrieval involving partial query. More
precisely, we propose a unified statistical framework allowing us to simultaneously extract entities of interest in
video shots and supply the associated content-based characterization, which can be used to satisfy partial queries.
It relies on the analysis of motion activity in video sequences based on a non-parametric probabilistic modeling of
motion information. Areas comprising relevant types of motion activity are extracted from a Markovian region-
level labeling applied to the adjacency graph of an initial block-based partition of the image. As a consequence,
given a set of videos, we are able to construct a structured base of samples of entities of interest represented by their
associated statistical models of motion activity. The retrieval operations is then formulated as a Bayesian inference
issue using the MAP criterion. We report different results of extraction of entities of interest in video sequences
and examples of retrieval operations performed on a base composed of one hundred video samples.

Keywords: motion information, statistical models, video indexing, video retrieval with query by example, partial
query, motion-based image segmentation, motion classification

1. Introduction

Retrieving multimedia documents through large
databases is of growing importance in various applica-
tion fields such as audio-visual archives, multimedia
editing, meteorology, traffic surveillance. In particu-
lar, to cope with the increasing amount of video data,
it is required to define appropriate automatic or semi-
automatic schemes for video characterization based on

their content, and to associate some measure of con-
tent similarity to these description schemes [2, 6].

As far as visual documents are concerned, retrieval
schemes can be divided into three main categories:
retrieval with textual query, retrieval with query by
sketch, retrieval with query by example. Textual query
simply consists in using natural language to express a
query [33]. It implies to assign a list of key-words to
a video, as currently done for audio-visual archives in
a manual manner. However, manual annotating can-
not cope with the tremendous amount of video data to
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be analyzed. Automatic semantic characterization of
visual content can be performed from the transcrip-
tion of audio stream as in Informedia project [33].
Nevertheless, the correspondence between the audio
stream and the visual content is not always guaranteed,
and visual information represents also an important
cue not to be neglected for video retrieval. Besides,
methods for semantic characterization of visual con-
tent have also been proposed [24, 31]. For instance,
in [31], movies are classified into romance and action
films, and in [24], features are proposed to detect ex-
plosions or waterfalls in video sequences. However,
the achieved characterization reveals rough or dedi-
cated, and automatic annotating of videos still remains
beyond reach for non-specific video bases.

The second category of approaches for video re-
trieval relies on querying by sketch. To introduce more
flexibility in the retrieval process, a sketch drawn by
the user to express his/her query can be considered
[4, 7]. For instance in [7], the user can draw a sketch
representing the global shape of the object of interest
and can specify its direction of displacement by an ar-
row. Thus, for queries such “retrieve cars going to the
right” or “retrieve skiers moving to the left of the im-
age”, this scheme is efficient. However, this approach
does not allow to formulate a wide range of queries.
For instance, how to sketch a query such as “retrieve
rugby game samples”.

The third class of approaches handles video queries
formulated as searching for similar examples as given
video samples [1, 15, 21, 23, 32]. It benefits from
the large research efforts devoted to the automatic ex-
traction of numerical content-based descriptors related
to color, texture or motion information. These low-
level features are stored to compare videos using some
feature-based similarity measure. The main limitation
of video retrieval with query by example lies in the
requirement for the user to be able to provide the sys-
tem with an initial video query representative of the
kind of samples he/she looks for. However, methods
relying on query by example currently appears more
suited to deal with the variety of contents present in
video bases.

As far as retrieval with query by example is con-
cerned, the proposed solutions mainly consider global
queries [1, 11, 12, 15, 21, 23, 32]. These schemes rely
on a global characterization of video content. Nev-
ertheless, the content of the submitted video query is
seldomly of interest as a whole w.r.t. user point of

view. Furthermore, it seems important to offer the
opportunity to the user to focus on specific areas of
the video. Therefore, handling partial queries appears
necessary. This reveals complex since it requires to
automatically extract and characterize entities of in-
terest (w.r.t. user expectations) from each sample of
the considered video base.

In this paper, we propose an original approach to
tackle this issue while focusing on dynamic content
analysis. We have designed a unified statistical frame-
work for the extraction and the characterization of en-
tities of interest in video shots. It relies on a non-
parametric probabilistic modeling of motion content
in terms of motion activity. In addition, our method
provides a complete scheme for video retrieval using
partial query embedded in a statistical framework. The
remainder of this paper is organized as follows. Sec-
tion 2 outlines the general ideas underlying our work.
Section 3 presents the local motion-related measure-
ments we exploit for non-parametric motion activity
modeling. In Section 4, the statistical modeling of
motion information and the issue of estimating these
models is addressed. Section 5 is concerned with im-
age segmentation w.r.t motion activity with a view to
automatically extracting entities of interest. Section
6 deals with motion-based video retrieval with partial
query. Experiments are reported in Section 7, and Sec-
tion 8 contains concluding remarks.

2. Problem statement

As stressed previously, handling partial queries pri-
mary implies to extract entities likely to be of inter-
est for the user. Even if a simple block-based anal-
ysis at different scales could supply a first answer to
these requirements, some segmentation of the scene,
if available, appears more appropriate. The complex-
ity of the segmentation task lies in the variety of situ-
ations to cope with in non-dedicated video bases. In
a wide range of contexts, the searched entities of in-
terest are nevertheless closely related to specific dy-
namic content. Hence, motion information represents
an important cue for content-based video indexing and
retrieval. As far as motion content is concerned, we
have obviously to face different kinds of partial video
queries. For instance, as illustrated in Figure 1(a-b),
the user might be interested in a given moving ele-
ment in the scene. Such a situation can be tackled us-
ing usual motion detection or segmentation techniques
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[14, 17, 20, 22, 28] provided the scene is not too com-
plex to process. Other cases have also to be considered
such as areas of interest composed of different enti-
ties. In Figure 1(c-d), we display an example of rugby
video sequence within which one might focus on a par-
ticular area of the playing field where the game actu-
ally lies. Our goal is to define an appropriate method
able to handle these different kinds of situations. Fur-
thermore, in addition to the extraction of entities of in-
terest in video shots, we aim at performing within the
same framework the associated characterization w.r.t.
motion content with a view to straightforwardly tack-
ling video retrieval with partial query.

Motion detection or segmentation techniques have
been exploited to detect and track entities of interest
in the context of video indexing [7, 9, 16]. Motion
segmentation [17, 22] is usually expressed as the ex-
plicit partitioning of the image into homogeneous re-
gions involving 2D parametric motion models. How-
ever, they remain highly computationally expensive
and not reliable enough to deal with large video cor-
pus. Besides, in case of complex dynamic scenes such
as articulated motions, a single object may be divided
into several different regions. Grouping them into a
meaningful entity remains a difficult issue. On the
other hand, motion detection schemes [14, 20, 22, 28]
first require in case of a mobile camera the estima-
tion of the dominant image motion assumed to be due
to camera motion and aims at separating moving ob-
jects from the background, but no further characteriza-
tion of the associated areas is straightforwardly avail-
able. In both cases, the motion-based description of
extracted objects is generally their trajectories and the
retrieval process relies on trajectory matching [10].

For retrieval issues, the description of motion infor-
mation is as important as the extraction of the entities
of interest. In addition, characterizing scene motion
by object trajectories might appear insufficient and in-
appropriate. Besides, schemes have been recently pro-
posed for global motion characterization based either
on local motion-related measures [12, 15, 26] or on
dense optic flow fields [11, 13, 21, 32]. In this paper,
we adapt this kind of approaches to deliver a relevant
motion characterization in a more flexible way com-
pared to descriptions based on 2D parametric motion
models. Motion activity will be described using the
probabilistic framework we have introduced in [15].
To solve for the extraction of entities of interest, we
resort to a Markovian region-level labeling approach
applied to the adjacency graph resulting from an ini-

a b

c d

Fig. 1. Two video samples involving different kinds of entities of
interest: (a-b) tracking of a given hockey player; (c-d) focus on a
particular area of a rugby playing field. The bounding polygon en-
compassing the area of interest is displayed in white.

tial spatial partition of the image into blocks. This is
achieved by exploiting the statistical similarity mea-
sure derived from our probabilistic modeling frame-
work. This means that the latter allows us to produce
both the desired motion segmentation and the appro-
priate motion classification.

To cope with retrieval using partial query, we use
the proposed motion activity segmentation scheme to
build a base of entities of interest extracted within rep-
resentatives key-frames of the elementary shots of the
processed video set. We store each extracted entity
and its associated statistical motion activity model.
Given a query (video sample), we similarly extract en-
tities of interest in the submitted example. The user
selects one of these entities as the partial query. Since
our motion characterization relies on a probabilistic
framework, we can formulate the motion-based re-
trieval process as a Bayesian inference issue [15, 30].

3. Local motion-related measurements

To characterize motion content within a given region,
our approach relies on the analysis of the distribution
of local motion-related measurements. Two kinds of
local motion-related quantities can be exploited. On
one hand, one can consider dense optic flow fields
[11, 13, 21, 32]. In our context, the computation
of such fields reveals time consuming and situations
likely to be encountered are too complex to get accu-
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rate and reliable estimation. As a consequence, we
prefer to consider local motion-related quantities di-
rectly derived from the spatio-temporal derivatives of
the intensity function [12, 15, 26].

Since our goal is to characterize the actual dynamic
content of the scene, we have first to cancel camera
motion. To this end, we estimate the dominant im-
age motion between two successive images, and we
assume that it is due to camera motion. To cancel
camera motion, we then warp the preceding and next
images of the selected key-frame in the shot onto the
key-frame and process these three images.

3.1. Dominant motion estimation:

To model the global transformation between two suc-
cessive images, we consider a 2D affine motion model
(a 2D quadratic model could also be considered). The
velocitywΘ(p), at pixelp, related to the affine motion
model parameterized byΘ is given by:

wΘ(p) =
(
a1 + a2x+ a3y
a4 + a5x+ a6y

)
(1)

with p = (x, y) andΘ = [a1 a2 a3 a4 a5 a6]. The
six affine motion parameters are computed with the
robust gradient-based incremental estimation method
described in [27]. It comes to solve:

Θ̂ = argmin
Θ

∑
p∈S

ρ (DFD(p,Θ)) (2)

whereDFD(p,Θ) = I(p+ wΘ(p), t+ 1)− I(p, t),
andI(·, t) andI(·, t+1) are the image intensity func-
tions at timest andt+ 1, andS the support of the es-
timation, i.e. the image grid.ρ is a hard-redescending
M-estimator. In practice, we consider the Tukey’s bi-
weight function. This functionρ and its derivativeψ
depend on a parameterC and are defined as follows:

ρ(x,C) =


x6

6
− C2x4

2
+
C4x2

2
if |x| < C

C6

6
otherwise

(3)

ψ(x,C) =
{
x(x2 − C2)2 if |x| < C

0 otherwise
(4)

The use of a robust estimator ensures the dominant
image motion estimation not to be sensitive to sec-
ondary motions due to mobile objects in the scene.
The minimization is performed by means of an iter-
ative reweighted least-square technique embedded in
a multiresolution framework. More precisely, we op-

erate with an incremental strategy. The initial value
Θ0 is set to zero. A succession of refinements∆Θk

are then computed and cumulated using first order ap-
proximationsrp of the residualDFD(p, Θ̂k), where

Θ̂k denotes the sum of increments computed before it-
erationk and∆Θk the increment to be estimated at
iterationk according to:

∆̂Θk = arg min
∆Θk

∑
p∈S

ρ(rp) (5)

whererp is expressed as:

rp = I(p+ w
cΘk(p), t+ 1)− I(p, t)

+ ∇I(p+ w
cΘk(p), t+ 1) ·w∆Θk(p)

(6)

with ∇I denoting the spatial intensity gradient. The

estimateΘ̂k+1 at iterationk+1 is updated as follows:

Θ̂k+1 = Θ̂k + ∆̂Θk (7)

Increments are estimated and cumulated until the stop-

ping criterion on the norm of̂∆Θk is satisfied.

3.2. Local motion-related quantity:

We now process the image sequence generated by
compensating for the estimated dominant image mo-
tion. To evaluate the residual motion in the com-
pensated image sequence, the following local motion-
related quantity is considered:

vobs(p) =

∑
s∈F(p)

‖∇I∗(s)‖ · |I∗t (s)|

max

η2,
∑

s∈F(p)

‖∇I∗(s)‖2

 (8)

whereI∗(s) is the intensity function at points in the
warped image,F(p) a 3 × 3 window centered onp,
η2 a predetermined constant related to the noise level
in uniform areas (typically,η = 5), andI∗t the tem-
poral derivative of the intensity functionI∗. I∗t (p) is
approximated by a simple finite difference. Whereas
the normal flow measure I∗t (p)

‖∇I∗(p)‖ turns out to be
very sensitive to noise attached to the computation of
spatio-temporal derivatives of the intensity function,
the considered motion-related measurement forms a
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more reliable quantity, still simply computed from the
intensity function and its derivatives. This quantity has
already been successively used for motion detection
issues [14, 20, 28], and for motion-based video index-
ing and retrieval [12, 15].

As stressed previously, our approach relies on a
statistical modeling of the distribution of the local
motion-related measurements. It can be regarded as
an extension of texture modeling for grey level im-
ages. In our approach, local motion quantities play a
role similar to grey levels for texture analysis not with-
standing the continuous nature of the exploited mo-
tion information. Since the proposed Gibbsian mod-
eling framework is based on cooccurrence measure-
ments, it in fact requires to use motion-related obser-
vations defined over a finite set. Besides, to ensure
feasible comparison of motion content between differ-
ent videos, we introduce in practice a quantization of
the continuous motion measurements within a prede-
fined bounded interval. Another reason to fix a limit
beyond which these local motion measurements are no
more regarded as usable is due to the fact that gradient-
based motion measurements known to be valid for
rather small motion magnitude. Typically, sampling
within [0, 4] on 16 levels proves accurate enough in
our previous work [12, 15]. We had also investigated
logarithmic quantization but it did not prove relevant
in our experiments. LetΛ be the discretized range of
values for{vobs(p)}.

4. Statistical modeling of motion activity

4.1. Temporal Gibbs models of motion activity

To characterize motion activity in an area of inter-
est within the key-frame of a given video shot, we
exploit the probabilistic framework presented in [15]
which involves non parametric statistical models of
motion activity. We briefly outline the scheme devel-
oped for characterizing global motion content within
video shots (further details can be found in [15]) and
specify it to the case of a given spatial area.

Let {xk} be the sequence of quantized motion-
related quantities for the processed shot andk0 the
frame number of the selected key-frame. LetR de-
note the spatial region of interest in the imagek0 and
{xRk } the restriction of sequence{xk} on the spa-
tial support of regionR. We assume that the pair
xR = {xRk0

, xRk0+1} is the realization of a first-order

Markov chain:

PM(xR) = PM(xRk0
)
∏
p∈R

PM(xRk0+1(p)|xRk0
(p)) (9)

where M refers to the motion activity model.
PM(xRk0

) designates the a priori distribution ofXR
k0

.
We will consider in practice a uniform law for
PM(xRk0

).
In this causal modeling framework, we evaluate

only temporal interactions, i.e., cooccurrence of two
given values at the same grid point at two successive
instants. The advantages are two-fold. First, it permits
to handle certain kinds of temporal non-stationarity.
Second, it enables an exact computation of the con-
ditional likelihoodPM(xR). This is crucial since it
allows us to achieve model estimation in an easy way
and to define an appropriate statistical similarity mea-
sure based on the Kullback-Leibler divergence [3].

In addition, we consider an equivalent Gibbsian for-
mulation of PM(xRk0+1(p)|xRk0

(p)) which comes to
the introduction of potentialsΨM

(
xRk0+1(p), x

R
k0

(p)
)

defining the modelM such as:

PM
(
xRk0+1(p)|xRk0

(p)
)

=

exp
[
ΨM

(
xRk0+1(p), x

R
k0

(p)
)]

with ∀ν′ ∈ Λ,
∑
ν∈Λ

exp [ΨM(ν, ν′)] = 1

(10)

Besides, this Gibbsian setting establishes a corre-
spondence with cooccurrence distributions [15, 19,
34]. In fact, the conditional likelihoodPM(xR) can
be expressed according to an exponential formulation
involving a dot product :

PM(xR) = PM(xRk0
) · exp

[
ΨM • ΓR

]
(11)

whereΓR = {ΓR(ν, ν′)}(ν,ν′)∈Λ2 is the cooccurrence
distribution defined by:

ΓR(ν, ν′) =∑
p∈R

δ(ν − xRk0+1(p)) · δ(ν′ − xRk0
(p))

(12)

whereδ is the Kronecker symbol.ΨM •ΓR is the dot
product between the cooccurrence distributionΓR and
the potentialsΨM:

ΨM • ΓR =
∑

(ν,ν′)∈Λ2

ΨM(ν, ν′) · ΓR(ν, ν′) (13)
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The modeling scheme can be considered as non-
parametric in two ways. On one hand, the statisti-
cal modelM does not refer to a 2D parametric mo-
tion model. Whereas the latter aims at representing
the global transformation occurring between succes-
sive frames, our approach copes with the description
of motion information in terms of motion activity. On
the other hand, from a statistical point of view, our ap-
proach is also non-parametric in the sense that the dis-
tribution {PM(ν|ν′)}(ν,ν′)∈Λ2 is not assumed to fol-
low a known parametric law (Gaussian,. . . ).

As far as video indexing and retrieval is concerned,
the availability of the exponential formulation (11) is
interesting for several reasons. First, it makes feasible
and simple the computation of the conditional likeli-
hoodPM(xR) for any sequencex and regionR. Sec-
ond, for indexing issues, the storage of the motion-
related quantitiesxR is not needed. In fact, all motion
information are entirely captured by the cooccurrence
distributionΓR and then by the activity modelM.

4.2. Maximum likelihood estimation

Given a sequence of motion-related measurementsxR

within a regionR, we aim at identifying the model
M̂R, specified by its potentialsΨ

cMR , best fittingxR.
To this end, we consider the Maximum Likelihood
(ML) criterion:

M̂R = argmax
M

PM(xR) = argmax
M

LLM(xR)

with LLM(x) = lnPM(xR)
(14)

In fact, the considered temporal Gibbsian mod-
eling framework consists in a product of|R| inde-
pendent first-order Markov chains defined at each
point of the regionR. These Markov chains
are characterized by their common transition ma-
trix {P

cMR(ν|ν′)}(ν,ν′)∈Λ2 . Therefore, the ML

model estimateM̂R is readily determined from
the empirical estimation of the transition probability
P
cMR(xRk0+1(r)|xRk0

(r)) as follows:

Ψ
cMR(ν, ν′) = ln

(
]{xRk0+1(p) = ν, xRk0

(p) = ν′}
]{xRk0

(p) = ν′}

)
(15)

Using cooccurrence notation, it comes to:

Ψ
cMR(ν, ν′) = ln

 ΓR(ν, ν′)∑
ϑ∈Λ

ΓR(ϑ, ν′)

 (16)

4.3. Parzen-Rosenblatt estimation

In Section 5, we will exploit the motion activity mod-
eling framework described above to characterize the
dynamic content in a given image block. The use of
the ML criterion can become irrelevant if the num-
ber of available samples is too small. To overcome
this problem occurring for small regions, we consider
a regularized solution to the model estimation issue
by using a Parzen-Rosenblatt (PR) window estimator
[29].

For given sequencex and areaR, it comes to sub-
stitute in relation (16) a regularized versionΓ̃R for the
cooccurrence distributionΓR. To getΓ̃R, ΓR is con-
volved with a Gaussian kernel of varianceσ2:

Γ̃R(ν, ν′) =∑
(γ,γ′)∈Λ2

η (γ − ν) η (γ′ − ν′) · ΓR(γ, γ′)
(17)

whereη (γ − ν) is the weight of the Gaussian PR win-
dow given by:

η (γ − ν) =
exp

[−(γ − ν)2/2σ2
]∑

υ∈Λ

exp
[−(υ − ν)2/2σ2

] (18)

Therefore, we infer the expression of potentialsΨ
fMR

of the PR model estimatẽMR as follows:

Ψ
fMR(ν, ν′) = ln

 Γ̃R(ν, ν′)∑
ϑ∈Λ

Γ̃R(ϑ, ν′)

 (19)

In addition, we can perform model complexity re-
duction in order to supply an informative representa-
tions of the motion activity while remaining parsimo-
nious [15]. After PR estimation, we select relevant
potentials of estimated model̃MR by evaluating like-
lihood ratios as described in [15].
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5. Segmentation based on motion activity

Given a video shot, we aim at extracting areas of inter-
est in the representative key-frame of the shot in an au-
tomatic way. Here, meaningful entities are supposed
to correspond to areas comprising pertinent motion ac-
tivity. To this end, we exploit the statistical motion
activity modeling introduced in the previous section.
A prominent advantage of such an approach is to pro-
vide within the same framework the extraction and the
characterization of particular areas which will then be
used to perform video retrieval with partial query.

In the sequel, we assume that a primary partition
of the image is available. In practice, we consider a
block-based partition (it could also be a texture-based
or color-based segmentation). The goal is to build
meaningful clusters from this initial set of blocks w.r.t.
motion content. Hence, we first define a similarity
measure related to motion activity (subsection 5.1).
Secondly, this similarity measure is used to achieve
the labeling of the block-based partition (subsection
5.2).

As previously defined,k0 is the frame number of
the representative key-frame of the shot. Considering
three images in the shot, i.e. the one preceding the key-
frame, the key-frame and the one following the key-
frame, we determine the pair{xk0 , xk0+1} of maps of
motion-related measurements as described in Section
3. Let us consider a partition of the image defined by
the set ofNbl blocks{Bi}i∈{0,...,Nbl}. We further as-
sume that motion activity within each blockBi is char-
acterized by means of the associated statistical model
MBi issued from the cooccurrence distributionΓBi as
explained in Section 4. Let us stress that we perform
this estimation using the PR estimator (relation (19)).

5.1. Statistical similarity measure related to mo-
tion activity

Considering two regionsR andR′, our goal is to de-
fine a measure of content similarity betweenR andR′
w.r.t. to motion activity. Let us noteMR andMR′

the
statistical models of motion activity attached respec-
tively to regionsR andR′ for the sequence of motion-
related measurements resp.xR = {xRk0

, xRk0+1},

xR
′

= {xR′
k0
, xR

′
k0+1} and for the associated cooccur-

rence distributions resp.ΓR, ΓR
′
.

We have built a similarity measure relying on an ap-
proximation of the Kullback-Leibler (KL) divergence
[3], which evaluates the similarity of two statistical
distributions as the expectation of the log-ratio of these
distributions. More precisely, the considered similar-
ity measureD(MR,MR′

) is a symmetrical version
of the KL divergence:

D(MR,MR′
) =[

KL(MR‖MR′
) +KL(MR′‖MR)

]
2

(20)

whereKL(MR‖MR′
) is the KL divergence. Based

on a Monte-Carlo strategy, the latter quantity is ap-
proximated as [15]:

KL(MR‖MR′
) ≈ 1

|R| · ln
(
PMR(xR)
PMR′ (xR)

)
(21)

Using the exponential expression of the lawsPMR

(relation 11),KL(MR‖MR′
) can be rewritten as:

KL(MR‖MR′
) ≈

[
ΨMR • ΓR −ΨMR′ • ΓR

]
|R|

(22)
SinceMR is the ML estimate associated to the cooc-
currence distributionΓR,KL(MR‖MR′

) is positive
and equals 0 if the two statistical distributions are iden-
tical. In fact, this ratio quantifies the loss of informa-
tion occurring when consideringMR′

instead ofMR

to describe motion activity within areaR.

5.2. Region-level graph labeling

We now present the labeling scheme of the block-
based partition of the image,{Bi}i∈{0,...,Nbl}, which
will be exploited in the next section for image seg-
mentation. It relies on a Markovian region-level label-
ing framework [14, 17] applied to the adjacency graph
G = (N ,A) whereN is the set of nodes of graphG
andA the set of its arcs. Each nodeni ∈ N holds
for blockBi with i ∈ {0, . . . , Nbl}, andA represents
the set of arcs between graph nodes corresponding
to connected blocks (in practice, we consider a four-
connectivity neighborhood). Over this graph struc-
tureG, we define a region-level Markov random field
model the sites of which are the nodes of graphG. A
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two-site clique neighborhood system is deduced from
the set of arcsA.

Let us assume that a set of labelsL relative to dif-
ferent motion activity models has been specified (it
will be defined in the next section). We further con-
sider that to each labell ∈ L is attached a motion
activity modelMl and the associated cooccurrence
distribution Γl. Let us notee = {eni}i∈{0,...,Nbl}
the label field witheni taking value inL, ando =
{oni}i∈{0,...,Nbl} the observation field. In our case,
at eachni, oni refers to the motion activity charac-
terization attached to the blockBi, i.e. both model
MBi and cooccurrence distributionΓBi . Adopting the
Maximum A Posteriori (MAP) criterion and using the
equivalence between Markov and Gibbs random fields
[18], the labeling scheme comes to solve for:

ê = arg min
e∈LNbl

U(e, o) (23)

whereU(e, o) = Ua(e, o) + U b(e), with Ua the data-
driven energy term, andU b the regularization term.
Both energy terms are split in the sum of local poten-
tialsV a andV b:

Ua(e, o) =
∑
n∈N

V a(en, on)

U b(e) =
∑

(ni,nj)∈A
V b(eni , enj )

(24)

The regularization potentialV b tends to favor identical
labels for neighboring nodes:

V b(eni , enj ) = β · δ(eni − enj ) (25)

with β a parameter tuning the importance of the reg-
ularization andδ the Kronecker function. Besides, at
nodeni, the data-driven potentialV a(eni , oni) quan-
tifies how relevant is the description of observationoni

by labeleni according to motion activity. It involves
the similarity measureD, defined by the relation (22),
as given by:

V a(eni , oni) = exp
[−D (Meni ,MBi

)]
(26)

We introduce an exponential form to get values of po-
tentialV a within the range[0, 1], which enables to set
more easily the regularization parameterβ.

Finally, the minimization issue (23) is tackled us-
ing the HCF (Highest Confidence First) algorithm [8]
since the number of nodes of the considered graph is
relatively small.

5.3. Separation of entities of interest from static
background

We want to come to separate the static background
from entities of interest. Since we consider warped
image sequences using the dominant image motion as-
sumed to be due to the camera motion, this issue re-
duces to extract regions which do not conform to the
dominant image motion [14, 28].

In a first step, we determine a binary labeling of the
initial partition of the image in terms of blocks con-
forming or not to the dominant image motion. As
the image segmentation proceeds from motion activ-
ity characterization, we have to establish a model cor-
responding to the static background. Even if we could
a priori infer an activity model according to null mo-
tion measurements, we prefer to explicitly estimate
this model from actual motion quantity distribution
at points attached to the static extracted background
since camera motion cannot be perfectly cancelled.
To achieve this, we exploit a by-product of the ro-
bust multiresolution estimation of the affine motion
model accounting for the dominant image motion (see
Section 3). More precisely, the minimization of crite-
rion (5) is solved using an IRLS (Iterated Re-weighted
Least Squares) technique, leading to:

∆̂Θ
k+1

= arg min
∆Θk+1

∑
p

1
2
ωpr

2
p

with ωp =
ψ(rp)
rp

(27)

whereψ is defined in relation (4) andrp is given by

expression (6) where∆Θk is given by∆̂Θ
k
. At the

final step of the estimation of the dominant motion,
the weight valueωp indicates if the pointp is likely
or not to belong to the part of the image undergoing
the dominant image motion. By definition,ωp belongs
to the interval[0, 1]. In addition, the closerωp to 1,
the more the pointp conforms to the dominant image
motion.

We can deduce by thresholding mapω a rough sup-
port associated to the dominant image motion. Points
p satisfyingωp > µ are stated as belonging to support
Sd associated to the dominant image motion, and they
then form the static background. Using our statistical
motion activity modeling framework, we can estimate
modelMSd attached toSd using the PR window es-
timator (relation (19)). IfSd designates the comple-
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mentary ofSd (corresponding to the outlier map), we
can evaluate in the same way the associated motion
activity modelMSd .

At this stage, we achieve a Markovian block-based
labeling as described in Subsection 5.2 while consid-
ering only two labels referring to statistical models
attached to regionsSd andSd (i.e. label setL con-
tains only two labels in that case). The obtained bi-
nary segmentation supplies a new estimate of the sup-
port of regionsSd andSd, and their associated mod-
els MSd andMSd can be updated. SinceSd in-
cludes the areas likely to be of interest for video in-
dexing, we then extract its connected components. Let
us denote by{Ri}i∈{1,...,Nreg} theNreg resulting re-
gions. For each regionRi, we perform the estimation
of its activity modelMRi . We then perform a second
region-level labeling step applied to the original block-
based partition as explained in Subsection 5.2 with
|L| = Nreg + 1. We considerNreg + 1 different la-
bels{l0, .., lNreg} corresponding to the updated model
MSd (label l0) and to models{MRi}i∈{1,...,Nreg}.
Once convergence is reached, regionsQi formed by
pixels with labelsli 6= l0 are regarded as the entities
of interest for the processed video shot. Besides, for
each regionQi, we store its associated modelMQi as
a descriptor of its dynamic content which will be used
in the retrieval stage.

6. Retrieval with partial query

6.1. Partial query

We can now tackle retrieval with partial query by ex-
ample. Considering a set of video documents, we first
construct an index base composed of the set of enti-
ties and their associated activity descriptors extracted
from all the stored video samples. This is achieved by
segmenting each video into shots [5] and by applying
the motion activity segmentation scheme described in
Section 5. This provides us automatically and simulta-
neously with the extraction of meaningful entities and
the associate characterization in terms of motion activ-
ity. The addition of an entity to the base is manually
validated in order to reject areas which are not relevant
for indexing purpose such as logos or score captions.

Otherwise, once a video query is submitted by
the user, we extract automatically from the submitted
video sample local relevant entities and the user speci-

fies which one is of interest to perform the retrieval of
similar examples from the indexed video base.

6.2. Bayesian retrieval

Considering a databaseD comprising a set of ex-
tracted entities with their non-parametric statistical
motion characterization, the retrieval process is formu-
lated as a Bayesian inference issue based on the MAP
criterion [15, 30]. Given a video queryq and a region
Rq as partial query, we aim at delivering to the user
examples similar toq w.r.t. dynamic content. The best
matchd∗ is given by:

d∗ = arg max
d∈D

P (d|q)

= arg max
d∈D

P (q|d)P (d)
(28)

The prior distributionP (d) allows us to expressa pri-
ori knowledge on the video content relevance over the
database. It could be inferred from semantical descrip-
tion attached to each type of video sequences or from
relevance feedback by interacting with the user in the
retrieval process [25]. In the current implementation
of our retrieval scheme, we will set no a priori (P (d)
distribution is uniform). A statistical model of mo-
tion activity Md is attached to each entityd of the
database. Furthermore, a cooccurrence distribution
ΓRq relative to motion-related measurementsxRq are
also attached toRq. Hence, the conditional likelihood
P (q|d) is formally expressed asPMd(xRq ) and we
get:

d∗ = argmax
d∈D

PMd(xRq ) (29)

From the exponential expression of the lawPMd (re-
lation (11)), we further deduce:

d∗ = arg max
d∈D

[
ΨMd • ΓRq

]
(30)

In addition, the computation of the conditional like-
lihoodsPMd(xRq) supplies us with a ranking of the
elementsd of the baseD since we can evaluate how
the different statistical modelsMd fits to the motion-
related measurements computed in the query areaRq.
In practice, we provide the user with a given number
of ranked replies.
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7. Results

7.1. Extraction of entities of interest

We have first carried out experiments for the extraction
of entities of interest based on motion activity. All ex-
periments have been performed with the values of pa-
rameters involved in the motion activity segmentation
scheme given in Table 1.

In Figure 2, we show partial corresponding to the
different steps of the motion activity segmentation
scheme. Figure 2.a contains to the key-frame of
the processed shot, Figure 2.b the binary support of
the dominant image motion, Figure 2.c the map of
quantized motion-related measurements and Figure
2.d the extracted regions of interest w.r.t. motion ac-
tivity. This scheme enabling simultaneous extraction
and characterization of entities of interest within key-
frames of video shots also appears efficient in terms of
computational time. It indeed requires about0.2 sec-
ond of CPU time to process images of size120× 160
comprising 20 blocks of size32× 32 blocks on a Sun
Creator workstation 360MHZ.

Concerning the parameter setting (given in Table 1),
it appears that the selected values of the constantη
and of the regularization coefficientβ have a rather
weak influence on the obtained results. Similarly,
thresholdµ can be set in the range[0.1, 0.5] without
major changes in the segmentation results. The re-
maining parameters, i.e., block size, number of lev-
els and bounds of quantization of motion-related mea-
surements, are closely related. Let us denote byN
the number of quantization levels andB the size of

Table 1. Parameter setting or selected options for our motion ac-
tivity segmentation scheme

Motion-related
measurements

quantization within[0, 4] on 16
levels,η = 5

Support of the dominant
image motion

µ = 0.2

Motion activity model
estimation

PR estimator using a Gaussian
kernel with varianceσ2 = 0.25

Markovian region-level
labeling

32 × 32 blocks (i.e 20 blocks
for images of size120 × 160)
β = 0.5

a b

c d

Fig. 2. Results of motion activity segmentation: (a) selected key-
frame for the processed shot, (b) support of the dominant image
motion in white (µ = 0.2), (c) map of motion-related measure-
ments quantized within[0, 4] on 16 levels (visualized with grey-
levels within[0, 256]), (d) result of the motion activity segmentation
using the PR estimator withσ = 0.5, β = 0.5 and32× 32 blocks.
The black area holds for the region regarded as the static background
and the two areas delimited by a white line are the extracted entities
of interest.

blocks. Indeed,B has to be set in accordance toN .
More precisely, we need to estimateN2 potentials for
motion activity models within blocks using2B2 sam-
ples. Therefore, if we consider32 × 32 blocks, the
number of quantization levels should not be greater
than32. SettingN to 16 is a reasonable trade-off be-
tween accuracy of the representation of motion activ-
ity and computation complexity . Besides, for image
sizes comprised between120 × 160 and 352 × 288
pixels as in our video base, the use of32 × 32 blocks
proves sufficient enough to locate entities of interest in
the scene. The use of the PR estimator should indeed
help dealing with rather small blocks. Therefore, the
choice ofσ value obviously depends both onN andB.
For large values ofB andN , the PR regularization is
not necessary, which leads to low value forσ2 (lower
than to0.2). For 32 × 32 blocks and 16 quantization
levels, it turns out thatσ2 should take a value in the
range[0.2, 1.0].

The considered video set involves different kinds of
sport videos. Two main classes of shots can be distin-
guished: the first one consists of close-up of a partic-
ular area of the play field, and the second one displays
global views of the scene. In the first case, the entities
of interest are obviously the tracked players, whereas
in the second case this is no more a single player but
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Fig. 3. Examples of block-based segmentation of entities of interest within shot key-frames according to motion activity. The extracted areas
are delimited in white. For these different examples, the parameters used are those given in Table 1.

Video query 1 1st reply 2ndreply 3rd reply
LL = −1.199 LL = −1.212 LL = −1.215
D = 0.122 D = 0.95 D = 0.087

Video query 2 1st reply 2ndreply 3rd reply
LL = −1.766 LL = −1.776 LL = −1.778
D = 0.082 D = 0.109 D = 0.120

Video query 3 1st reply 2ndreply 3rd reply
LL = −1.453 LL = −1.449 LL = −1.464
D = 0.273 D = 0.165 D = 0.165

Fig. 4. Examples of retrieval with partial query. We give for each replyd the valueLL of the log-likelihoodln
�
PMd (xRq )

�
corresponding

to partial video queryRq . To a posteriori evaluate the relevance of the replies, we have also estimated modelMRq for the query and we report
the distancesD(MRq ,Md) betweenMRq and the different retrieved modelsMd.

rather a group of players or a particular area of the
play field. We display in Figure 3 some examples of

entities extracted w.r.t motion activity in shots of the
processed video set.
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7.2. Retrieval operations with partial query

We have conducted several experiments of retrieval
operations with partial query. We have considered
a set of one hundred video shots involving different
dynamic contents. They are color image sequences
downloaded from different web sites in a compressed
format (MPEG, AVI, MOV). In practice, we process
uncompressed grey-level sequences of about ten to
twenty images. We have focused on sport shots such
as rugby, football, basketball and hockey. In Figure 4,
we report three examples of retrieval operations. The
three best replies are given for each query. For all
the processed examples, the system delivers relevant
replies in terms of motion properties. To appreciate
the relevance of the replies, we give for each replyd
the value of the conditional likelihoodPMd

(xRq ). To
further quantify the similarity between the retrieved
entities of interest and the query, we have also de-
termined the value of the similarity measureD com-
puted between the statistical motion activity models
estimated within the query area and those attached to
the retrieved ones Let us recall that we do not need to
estimate the activity model corresponding to the query
in the retrieval phase; this is just performed here to
enable a complementary quantitative evaluation of the
results.

To evaluate the statistical diversity of the motion
activity contents available in the processed base of
entities of interest, we cannot supply any direct 2D

absolute mapping of the elements of the base since
our approach only allows to compare pairs of mo-
tion models through the similarity measureD. How-
ever, we select one “reference” model to map the
base onto a 1D axis w.r.t. this model and supply
such a 1D mapping for several “reference” models.
We have then considered the three partial queries re-
ported in Fig.4 as reference models, and we have com-
puted the distances{D(MRq ,Md)}d∈D between the
motion model of the partial queryRq and those of
the elementsd of the baseD. To compute dis-
tance histograms, we need to quantize the distances
{D(MRq ,Md)}d∈D. In fact, we have used the set
of values{1.0 − expD(MRq ,Md)}d∈D since these
quantities are comprised within[0, 1]. Fig.5 depicts
histograms of these distances resulting from a linear
quantization within[0, 1] using 25 levels. Plots 5.(a),
5.(b) , 5.(c) resp. refer to the distance histograms
computed w.r.t. resp. the video query 1, 2 and 3

of Fig.4. These histograms, in particular plots 5.(a)
and 5.(b), show that the distribution of motion activity
contents within the processed base is widespread. Be-
sides, from these 1D mappings of the processed base,
it can be envisaged that our motion modeling frame-
work may also be exploited for motion classification
since different modes seem to be discriminated in the
first two plotted histograms.

8. Conclusion

We have presented in this paper an original approach
for motion-based video retrieval able to handle partial
query. It relies on an automatic and efficient extraction
of entities of interest within key-frames of each video
shot, which results from motion activity characteriza-
tion. Motion information is expressed as non paramet-
ric statistical models which account for a large range
of dynamic scene content. This statistical framework
can then be straightforwardly exploited to perform the
retrieval with partial query, as validated by representa-
tive real experiments.

In future work, we plan to evaluate our approach
on a larger video base. An important issue will be to
define a procedure to evaluate in a quantitative way
our retrieval scheme (for instance, in terms of cor-
rectly classified or misclassified scenes). In particular,
it will require to define a preliminary categorization
of the video base, which is not so easy. Besides, we
could also address the tracking of the extracted enti-
ties of interest in video shots. Then, the trajectory of
the tracked entities could be also exploited for retrieval
purpose. To still benefit from a Bayesian framework,
this would require to propose an appropriate statistical
framework to combine trajectory and motion activity
characterizations.
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